Итерационные методы (ИМ) решения СЛАУ

Основная идея ИМ решения СЛАУ состоит в построении последовательности векторов $x^0, x^1, \ldots, x^k, \ldots$, сходящейся к решению x системы Ax = b. Пусть $\|\cdot\|$ заданная норма вектора.

Определение 1. Последовательность векторов $\{x^k\}_{k=0}^{\infty}$ называется сходящейся к вектору x, если $\|x-x^k\| \to 0$ при $k \to \infty$.

За приближенное решение СЛАУ принимается вектор x^k при достаточно большом k. В качестве *критерия окончания ИМ* обычно принимают либо достаточную близость двух соседних приближений, либо достаточную малость вектора невязки , т.е. итерации заканчиваются при выполнении одного из условий (или обоих):

$$||x^k - x^{k-1}|| \leqslant \varepsilon \quad ||Ax^k - b|| \leqslant \varepsilon. \tag{0.1}$$

Вектор x^k называют k-тым приближением к решению или k-той итерацией, k — номером итерации. ИМ (iteration — повтор, повторение) состоит в циклическом выполнении одной и той же группы операций, скажем \mathcal{F} . Двуслойные ИМ имеет вид

$$x^{k+1} = \mathcal{F}(x^k), \quad k = 0, 1, \dots$$
 (0.2)

Каждое следующее приближение вычисляется лишь по предыдущему и для начала счета необходимо знать (задать) лишь одно начальное приближение x^0 к решению СЛАУ. ИМ вида $x^{k+1} = \mathcal{F}(x^k, x^{k-1})$, $k = 1, 2, \ldots$, называются трехслойными ИМ и требуют двух начальных приближений x^0 и x^1 . ИМ конструируются так, чтобы начальные приближения можно было задавать произвольно.

Возникает естественный вопрос: зачем нужны ИМ, если имеются прямые методы, позволяющие найти решение СЛАУ за конечное число операций? Можно привести по крайней мере две причины, когда ИМ будут полезны.

- 1) При реализации прямых методов важно, чтобы исходные и промежуточные данные располагались в оперативной (быстрой) памяти компьютера. Если порядок системы настолько велик, что оперативной памяти для реализации метода недостаточно или число операций метода недопустимо велико, то для таких систем предпочтительнее оказываются ИМ.
- 2) На практике часто встречается ситуация, когда достаточно знать не точное, а приближенное решение СЛАУ, причем начальное приближение к решение имеется. В этом случае ИМ может оказаться предпочтительнее прямого метода, если небольшое число итераций позволит уточнить это приближение и получить приближение с необходимой точностью.

1. Простейшие итерационные методы.

Всюду в дальнейшем через z^k будем обозначать вектор $x-x^k$, где x — решение системы

$$Ax = b, (1.1)$$

т. е. norpeumocmb npuближения с номером k. Далее используем представление матрицы A в виде суммы трех матриц:

$$A = L + D + U, \quad D = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn}),$$
 (1.2)

- L (U) нижняя (верхняя) треугольная матрица, поддиагональные (наддиагональные) элементы которой совпадают с соответствующими элементами матрицы A, а все диагональные элементы равны нулю.
- 1. Метод Якоби $^{1)}$. Будем считать, что все диагональные элементы матрицы A отличны от нуля. Перепишем систему (1.1) в виде

$$Dx = b - Lx - Ux \implies x = D^{-1}(b - Lx - Ux).$$
 (1.3)

Итерационный метод определим по формуле

$$x^{k+1} = D^{-1}(b - Lx^k - Ux^k), \quad k = 0, 1, \dots,$$
 (1.4)

где начальное приближение $x^0 = (x_1^0, x_2^0, \dots, x_n^0)$ — произвольно задано. Компоненты приближения x^{k+1} определяются по уже найденному вектору x^k при помощи соотношений:

$$x_i^{k+1} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^k - \sum_{j=i+1}^n a_{ij} x_j^k\right) / a_{ii}, \quad i = 1, 2, \dots, n.$$
 (1.5)

Формулы (1.4) или (1.5) определяют итерационный метод решения системы (1.1), называемый методом Якоби.

Укажем легко проверяемое достаточное условие сходимости этого метода. Напомним, что для матрицы A выполнено условие диагонального преобладания по строкам, если

$$q = \max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} \frac{|a_{ij}|}{|a_{ii}|} < 1.$$
 (1.6)

Теорема 1. Пусть матрица A системы (1.1) — матрица c диагональным преобладанием по строкам. Тогда итерационный метод Якоби сходится при любом начальном приближении x^0 ; справедлива следующая оценка скорости сходимости:

$$||z^k||_{\infty} \leqslant q^k ||z^0||_{\infty}. \tag{1.7}$$

 $[\]overline{\ \ }^{(1)}$ Карл Густав Якоб Яко́би (Carl Gustav Jacob Jacobi; 1804-1851) — немецкий математик.

ДОКАЗАТЕЛЬСТВО. Пусть x — решение системы уравнений (1.1). Вычитая из второго равенства (1.3) равенство (1.4), получим $z^{k+1} = -D^{-1}(Lz^k + Uz^k)$ или

$$z_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} z_j^k - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} z_j^k, \quad i = 1, 2, \dots, n.$$

Следовательно, для i = 1, 2, ..., n:

$$|z_{i}^{k+1}| \leqslant \sum_{j=1}^{i-1} \frac{|a_{ij}|}{|a_{ii}|} |z_{j}^{k}| + \sum_{j=i+1}^{n} \frac{|a_{ij}|}{|a_{ii}|} |z_{j}^{k}| \leqslant$$

$$\leqslant \left(\sum_{j=1}^{i-1} \frac{|a_{ij}|}{|a_{ii}|} + \sum_{j=i+1}^{n} \frac{|a_{ij}|}{|a_{ii}|}\right) \max_{1 \leqslant j \leqslant n} |z_{j}^{k}| == q \max_{1 \leqslant j \leqslant n} |z_{j}^{k}|,$$

откуда вытекает, что

$$||z^{k+1}||_{\infty} \leqslant q \, ||z_i^k||_{\infty}$$

для любого k = 0, 1, ..., поэтому

$$||z^k||_{\infty} \leqslant q^k ||z_j^0||_{\infty} \to 0$$

при $k \to \infty$, поскольку 0 < q < 1, а это и означает, что $x^k \to x$. \square

Оценка (1.7) показывает, что, чем меньше q, т. е. чем выше диагональное преобладание матрицы A, тем быстрее сходится метод Якоби.

2. Метод Зейделя. Формулы (1.5) допускают естественную модификацию. Именно, при вычислении x_i^{k+1} будем использовать уже найденные компоненты вектора x^{k+1} , т. е. $x_1^{k+1}, x_2^{k+1}, \ldots x_{i-1}^{k+1}$. В результате приходим к итерационному методу Зейделя¹⁾:

$$x_i^{k+1} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^{n} a_{ij} x_j^k\right) / a_{ii}, \quad i = 1, 2, \dots, n. \quad (1.8)$$

В матричных обозначениях он запишется в виде (проверьте!):

$$x^{k+1} = D^{-1}(b - Lx^{k+1} - Ux^k), \quad k = 0, 1, \dots$$
 (1.9)

Метод Зейделя позволяет более экономно расходовать память компьютера, поскольку в данном случае вновь получаемые компоненты вектора x^{k+1} можно размещать на месте соответствующих компонент вектора x^k , в то время как при реализации метода Якоби все компоненты векторов x^k , x^{k+1} должны одновременно находиться в памяти компьютера.

 $^{^{1)}}$ Филипп Людвиг Зейдель (Philipp Ludwig von Seidel; 1821 — 1896) — немецкий математик и астроном.

Теорема 2. Пусть матрица A — матрица c диагональным преобладанием по строкам. Тогда метод Зейделя сходится при любом начальном приближении x^0 и справедлива оценка

$$||z_i^k||_{\infty} \leqslant q^k ||z^0||_{\infty},$$
 (1.10)

 $rde\ q\ onpedeляется\ (1.6).$

Доказательство. Аналогично методу Якоби имеем

$$z_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} z_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} z_j^k, \quad i = 1, 2, \dots, n.$$
 (1.11)

Пусть $\max_{1 \leq j \leq n} |z_j^{k+1}| = |z_l^{k+1}|$. Из l-того уравнения (1.11) следует

$$|z_l^{k+1}| \leqslant \alpha_l \max_{1 \leqslant j \leqslant n} |z_j^{k+1}| + \beta_l \max_{1 \leqslant j \leqslant n} |z_j^k|,$$

где

$$\alpha_l = \sum_{j=1}^{l-1} \frac{|a_{lj}|}{|a_{ll}|}, \quad \beta_l = \sum_{j=l+1}^n \frac{|a_{lj}|}{|a_{ll}|},$$

следовательно,

$$||z^{k+1}||_{\infty} \leqslant \frac{\beta_l}{1-\alpha_l} ||z^k||_{\infty}.$$

Из условия (1.6) получаем, что $\alpha_l + \beta_l \leqslant q < 1$, но тогда и $q\alpha_l + \beta_l \leqslant q$, таким образом, $\beta_l/(1-\alpha_l) \leqslant q$, поэтому $\|z^{k+1}\|_{\infty} \leqslant q \max \|z^k\|_{\infty}$ для любого $k \geqslant 0$. Дальнейшие рассуждения совпадают с соответствующими рассуждениями из доказательства предыдущей теоремы. \square

3. Метод релаксации. Зачастую существенного ускорения сходимости можно добиться за счет введения в расчетные формулы числового параметра. В качестве примера приведем ИМ

$$x_i^{k+1} = (1 - \omega) x_i^k + \omega \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^n a_{ij} x_j^k \right) / a_{ii}, \quad (1.12)$$

 $i=1,2,\ldots,n,\ k=0,1,\ldots$ Этот метод называется методом релаксации, число ω — релаксационным параметром. При $\omega=1$ метод переходит в метод Зейделя. В матричных обозначениях получаем

$$x^{k+1} = (1 - \omega) x^k + \omega D^{-1} (b - Lx^{k+1} - Ux^k), \quad k = 0, 1, \dots$$
 (1.13)

Ясно, что по затратам памяти и объему вычислений на каждом шаге итераций метод релаксации не отличается от метода Зейделя.