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Abstract

The work represents the extended theoretical model of the electrical conductance in nanoscale magnetic point-like
contacts. The developed approach describes diffusive, quasi-ballistic, ballistic and quantum regimes of the spin-
resolved conductance that is important for further development of the contact Andreev reflection spectroscopy, het-
erojunction models, scanning tunnel microscopy techniques. As a benefit, the model provides a unified description
of the contact resistance from Maxwell diffusive through the ballistic to purely quantum transport regimes without
residual terms. The model of the point contact assumes that the contact area can be replaced by a complicated object
(i.e. the tunnel barrier or complicated one with nanoparticles, narrow domain wall, etc.), where the potential energy
profile determines its electrical properties. The model can be easily adapted to particular contact materials, its physical
properties and species of the contact area.
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1. Introduction

Quantitative theory of conductance G in various elec-
tronic systems with restricted geometry has numerous
important applications, e.g., in a case of point contacts
it solves the problem of determining the size of the con-
tact [1, 2, 3]. The conductivity of point contacts (PCs)
has been studied during many years in the past [4].
At present time, great efforts have been made to cre-
ate reliable PCs or nanocontacts (NCs) with predictable
properties, considering the interface matching of the
nanowire connections between normal, semiconductor,
ferromagnetic (FM) and superconducting materials in
nanoscale spintronics devices [5, 6, 7, 8, 9, 10, 11].

A simplest, but relevant in most cases, solvable model
for the PC is a circular constriction of the radius a,
which connects two large electron reservoirs. It is con-
venient to quantify the conducting properties of the NC
via the dimensionless ratio of the geometrical size a to
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the bulk electron mean free path l. The a/l or it’s in-
verse, the Knudsen ratio K = l/a, becomes an output of
a fitting of the theory to experimental data on the resis-
tance of the PCs [12]. Once l is known from resistivity
measurements of the material, the effective diameter of
the contact can be estimated from the fitted K.

The model diameter d = 2a can be identified as
the size of the contact, if information about the contact
shape is unavailable. Two limiting regimes of the con-
ductance through NCs are commonly discussed. The
first one is the Maxwell, or diffusive conductance GM ,
when the contact size much larger than l (K � 1.0)
[13, 14, 15],

GM = 2a/ρV, (1)

where ρV is the bulk resistivity, which can be expressed
in terms of bulk conductivity σV of the isotropic metal
as follows:

ρ−1
V = σV =

e2n l
~kF

=
e2 p2

F l
3π2~3 , (2)

where e, kF = pF/~ and n = k3
F/3π

2 are the electron
charge, Fermi wave-number and free electron density in
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metals, respectively. Within the model, the bulk mean
free path l = ~kFτ/me (me is the electron mass) depends
on impurities concentration, defects, electron-electron
and electron-phonon scattering via the averaged time τ
between collisions.

The second regime refers to the ballistic conductance
through the contact area when no any collisions occur
during the electron transmission [16], K � 1.0. In
this case, there is no place or information about l in the
Sharvin conductance:

GS =
e2a2k2

F

4π~
= G0N. (3)

The factor G0 = 2e2/h = 7.7481 · 10−5 Ω−1 is the
conductance quantum, N ' (kFa/2)2 is the num-
ber of open conductance channels accommodating the
nanoconstriction [7, 17].

Furthermore, it is relatively easy to obtain the expres-
sions, which show the connection between GS , σV and
GM: GS = 3πa

4K σV, σV = 4K
3πaGS and GM = 8 K

3π GS . It is
noticed that Sharvin [16] estimated asymptotic behavior
of the resistance as RS ' pF/e2 (2a)2 n. An expression
of Sharvin conductance in the form of GS = 3π/ (16RS )
with accuracy up to 3π/16 factor is used in literature
[2, 18, 19]. In general case, n is a complicated function
of kF . Hence, if the system is not limited by the model
of free electrons, the n might be corrected according
properties of the specified material and its Fermi sur-
face, so n and kF can be determined within ab-initio
calculations as well.

Moreover, there is another view of the Sharvin con-
ductance, which is often used [2, 18, 19]:

G∗
S

=
3πa2

4ρVl
. (4)

It is obtained by multiplying the numerator and denom-
inator of (3) by l and applying (2). Expression (4) has
an advantage in the case of constriction (i.e. a contact
of identical metals), it can be applied for estimating the
effective constriction radius a. Indeed, according to Eq.
(2), the product ρVl = constant is independent of l. Pro-
vided that the product ρVl is known, ρV can be obtained
from resistivity measurements, and l can be extracted
via the size effects in thin films and nanowires (NWs),
or combining the resistivity with specific heat measure-
ments and utilizing the Pippard relations [20, 21]. It
seems, that Eq. (4) represents a useful tool to estimate
the NC size.

The problem can be considered from the opposite
point of view: once the contact size is known in some
way, the resistance measurements give a tool to estimate

ρVl - product, i.e. establish the contact material pa-
rameter from the single kind of measurements. Indeed,
it has been done for Au-Au nanocontacts [18], where
it was pointed out that the procedure to extract l from
ρVl = constant has yielded l = 3.8 nm, which is an order
of magnitude below the bulk l ' 38 nm for 99.99% pure
gold [22] at room temperature. Moreover, it was noticed
that the range of applicability of the ballistic Sharvin ap-
proach, (3) or (4), is restricted to a smallest radius of the
contacts close to 1 nm, otherwise, the accordance of the
theory with the relevant experiment is poor. Thus, both
diffusive Maxwell and ballistic Sharvin limits of the NC
conductance cover extreme limits keeping unexplored
a wide gap of most accessible and relevant sizes from
1 nm to 100 nm.

The analysis of the electron transport through a cir-
cular constriction at arbitrary relationship between the
orifice radius a and the mean free path l has been made
by Wexler [12]. It is based on the variation solution
for the Green function (GF) of the Boltzmann kinetic
equations. The obtained solution for the resistance was
represented as follows [12]:

RW =
1

GW
=

1
GM

γ (K) +
1

GS
, (5)

where GW is defined as the Wexler conductance, γ(K)
is a slowly varying function with the asymmetric values
γ(K → 0) = 1.0, and γ(K → ∞) = 9π2/128 = 0.694.
Expression (5) has the form of an interpolation formula
combining additively the diffusive Maxwell and ballis-
tic Sharvin resistances, the relevant terms are vanish-
ingly small when one of them approaches the related
limit. The gamma factor gives a smooth transition from
one regime to the other by inclining the asymptotics to
the correct values.

In 1999 Nikolic and Allen [23] reconsidered the
Wexler solution for the orifice conduction for the non-
magnetic junctions. The stationary Boltzmann and
Poisson equations for the electric potential were solved
taking into account the Bloch-wave propagation and
Fermi-Dirac statistics in presence of an electric field. It
is worthy to note, that this solution is referred to in liter-
ature as the most accurate solution [24] (see, however,
strong assumptions after Eq. (59) in Ref. [23] when
formulating an easy-to-use outcome of the approach.
The low-order solution was cast into the form of the
Wexler solution with a proper γ(K) re-definition, Fig. 2
in Ref. [23]). At the same time, Mikrajuddin et al. [25]
proposed the approach of the resistance model, which
is based on the solution of the electrostatic Laplace
problem, summing up the resistances of the infinitesi-
mal shells between equipotential surfaces in the orifice
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constriction. The result is represented in the form of
Eq. (5) with the re-defined γ(K). The comparison of the
Nikolic-Allen and Mikrajuddin et al. solutions shows
the significant difference between them, which again re-
freshes the interest to the problem. To summarize, the
theoretical approach of the orifice constriction, which is
determined via the classical electrodynamics, results in
the sum of the diffusive and ballistic terms with a com-
plex transition between them.

We propose an alternative approach, which is based
on the quasiclassical transport formalism [26, 27, 28].
The outcome and advantage of our solution is a sim-
ple integral expression, which provides smooth func-
tional transition between the Sharvin and Maxwell lim-
its without residual terms or counterparts. Moreover,
this result is derived as a limiting case from a general
quantum model of the NC, where NC can be built from
different magnetic metals or metal alloys. As example
of verification, the theoretical model is applied to ex-
plain experimental data for the golden NCs (symmetric,
non-magnetic limit of the general theory) as well as to
explain the resistance impact of the single domain wall
(DW) in magnetic NWs.

2. Theoretical model of the spin-resolved electron
transport in heterojunction

In this section, the model of the NC is considered in
terms of the extended quasiclassical approach, which is
based on solution of the transport differential equations
for the quasiclassical GFs. The model is formulated as
a boundary problem in which two large electron reser-
voirs (leads) are linked via the general NC’s interface,
[dataset] Supplementary Material. The NC itself can
be a simple constriction or a complicated structure con-
taining e.g. a tunnel barrier. It is important only that
the internal NC’s structure could be solved quantum-
mechanically, and then the electric current through the
NC is expressed in terms of the boundary solution, solv-
ing the problem of the conduction. The application of
this method is suitable for the heterostructure dimen-
sions larger than the Fermi wavelength of a free elec-
tron, λF = 2π/kF ≈ 0.5 nm.

Considering the general case of FM hetero-contact,
which is composed of different FM metals, we assume
that the spin-dependent Fermi wave-numbers in both
sides of the contact kF,α as well as lα (α =↑, ↓) are ac-
counted as arbitrary parameters. The NC is modeled
by a conductive circular orifice of the radius a obtained
in an impenetrable membrane. This membrane divides
the space into the left (L) and right (R) half-spaces and
each half-space is assigned to a single magnetic domain,

Figure 1: The schematic view of NC with chemical potential drop.
The selected rectangular area shows the contact interface in a non-
conductive membrane. In general case, an electron with pL

F,α and
trajectory angle θL,α transmits through the NC to the right-hand side
having outgoing parameters pR

F,α and θR,α, respectively.

Fig. 1. The geometry of this NC matches with the cylin-
drical coordinate system [r, φ, z], where z is the sym-
metry axis. The voltage V , which is applied far away
from the contact area by equipotential planes, induces
the electrical current Iz = Iz

↓
+ Iz
↑
. The solution for the

net charge current Iz
α with the spin projection α and pos-

itive bias, which is applied to the right terminal, can be
brought to the form:

Iz
α =

e2(kmin)2a2V
2π~

∞∫
0

dk
J2

1(ka)
k

Fα(k), (6)

where k is the wave-number conjugated to the radial
variable in the contact plane; kmin is minimum one of the
two wave-numbers: kL

F,α and kR
F,α; J1 (ka) is the Bessel

function, appearing after the integration over the contact
plane, the detailed derivation is given in the [dataset]
Supplementary Material. Despite the external similarity
of expression (6) with those given earlier in our works
[28, 29, 30], the integrand function Fα(k) is completely
reconsidered:

Fα(k) = 〈xLDα〉θL −
(
N1 〈xLWL〉θL +N2 〈xLWR〉θL

)
, (7)

where Dα is the quantum-mechanical transmission
coefficient; xL = cos (θL); The angle between the z-axis
and direction of the electron trajectory is θc,α, which
is related to the contact side c = L (R), see Fig. 1.
The averaging over solid angle is given in spherical
coordinate system [k, θ, ϕ], and 〈...〉θL

is equivalent

to 1
2π

2π∫
0

dϕ
θcr∫
0

sin (θL) (...)dθL =
1∫

x̃
(...)dxL, where the

limit x̃ = cos (θcr) appears as a result of the electron
momentum conservation along the direction of the
contact’s plane. The index α is hidden, but refers to all
variables throughout. Further quantities are displayed
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as follows:

N1 =
{
〈Dα〉θL

[2 (1 − λR) + λ2] − 〈Dα〉θR
λ4

}
∆−1,

N2 =
{
〈Dα〉θR

[2 (1 − λL) + λ1] − 〈Dα〉θL
λ3

}
∆−1,

∆ = 4 (1 − λL) (1 − λR)+2 [λ1 (1 − λR) + λ2 (1 − λL)]
−λ3λ4 + λ1λ2,

where

λL(R) = 1
1+k2l2L(R)

,

λ1 =

〈
Dα

(1+(klL)2(1−x2
L))

3/2

〉
θL

,

λ2 =

〈
δ·xLDα√

x2
L+x2

cr(1+(klRδ)2(1−x2
L))

3/2

〉
θL

,

λ3 =

〈
δ·xLDα√

x2
L+x2

cr(1+(klL)2(1−x2
L))

3/2

〉
θL

,

λ4 =

〈
Dα

(1+(klRδ)2(1−x2
L))

3/2

〉
θL

,

〈xLWL〉θL
=

〈
xLDα

(1+(klL)2(1−x2
L))

3/2

〉
θL

,

〈xLWR〉θL
=

〈
xLDα

(1+(klRδ)2(1−x2
L))

3/2

〉
θL

.

The expressions above include 〈Dα〉θR
=

〈
δ·xLDα√

x2
L+x2

cr

〉
θL

and δ = kL
F,α/k

R
α(V), where α is conserved for kR

α (V) =√(
kR

Fα

)2
+

(
2mRe/~2) V according the assumption that the

spin diffusion length is larger than the contact di-
mension. The lower integral limit becomes x̃ = 0
(θcr = π/2) at the condition δ ≤ 1, otherwise x̃ =√

(δ2 − 1)/δ2, or both conditions can be joined as fol-
lowing: x̃ = Re[

√
(δ2 − 1)/δ2]. The solution for the re-

versed bias V with negative terminal on the right-hand
side can be retrieved using the symmetry of the sys-
tem: kL

F,α → kR
α (V), kR

α(V) → kL
F,α that gives again

the positive terminal on the right side. It is assumed
that the left side is grounded and the conduction band
edge does not move with V , the Fermi level is fixed,

otherwise: kR
α (V) =

√(
kR

Fα

)2
+

(
2mRe/~2) V/2 and kL

α (V) =√(
kL

Fα

)2
−

(
2mLe/~2) V/2, and δ = kL

α(V)/kR
α(V).

The transmission coefficient Dα is a function of the
applied voltage V and parameters of the potential energy
profile within NC area. It should be noticed that trans-
mission Dα for 2D and 3D electron transport, which
is characterized originally by 1D potential energy pro-
file U(z), becomes a function of θc,α and V , consist-
ing the projections of the Fermi wave-vectors on the z-

axis: k⊥L
α = kL

Fα cos(θL,α) and k⊥R
α = kR

α(V) cos(θR,α).
It should be noticed, that the derived set of the vari-
ables, such as λc, λ1..4, 〈xLWc〉θc

as a functions of k in
(6) and (7), is significantly different from the set that
in our previous works [28, 29, 30], while the ballistic
and tunnel-responsible term 〈xLDα〉θL

is conserved. The
origin of this difference is the accurate solution of the
integro-differential equation which takes into account
the second-order derivatives of the GFs by z. The math-
ematical derivation of the Eq. (6) is collected in [dataset]
Supplementary Material.

The general solution (6) can be verified applying it
to the case of symmetric non-magnetic contact: D↑,↓ =

1.0, lL,R = l, kL
F = kR

F = kF , and thus F↓(k) = F↑(k), Iz
↑

=

Iz
↓
. The replacement of the variable y = ka in Eq. (6)

results to
∫ ∞

0 dy J2
1(y)/y = 1/2. For the infinitesimal ap-

plied voltage V the conductance G = dI
dV =

(
Iz
↑

+ Iz
↓

)
/V

reads:

G = 4GS

1
4
−

∞∫
0

dy
y

J2
1(y)

1 + y2K2 +
√

1 + y2K2

 , (8)

which satisfies the exact Maxwell and Sharvin lim-
its automatically. It is an advantage of the revisited
derivation of the present work against the previous ones
[28, 29, 30]. One might expect that it gives also more
precise I −V curves for the non-magnetic NCs. The an-
alytical solution Eqs. (6)-(8) is applied in the next sec-
tion for the comparison with alternative theoretical ap-
proaches and fitting the experimental data available in
literature.

3. Discussion: applicability of the model

The general approach, that we developed in the
present work, covers a variety of the NC realizations,
which might be involved further in the development of
the quantum integrated circuits for the next generation
of electronics below 10 nm. Potentially, the model
can deal with spin-resolved conducting properties of
the nanoscale elements such as interconnects, compli-
cated magnetic tunnel junctions (MTJs), quantum dots,
spin field-effect transistors (FETs), etc. As a first-order
approximation, the contact area can be replaced by a
simple or composite quantum object, where the electric
properties are determined by the internal structure of the
energy levels and/or the potential energy profile across
the junction. For instance, the spin-resolved quantum
term Fα = 〈xLDα〉θL

of the model was successfully ap-
plied for the simple MTJs [31, 32, 33] as well as for
MTJs with embedded nanoparticles [34, 35] explaining

4



Figure 2: (a) The conductance ratios Rx of the different models, where R1 = G/GS , R2 = G̃/GS , R3 = GW′/GS and R4 = GW/GS correspond
to the models of the present work, Mikrajuddin, Nikolic-Allen and Wexler approach with flexible γ, respectively. The arrows 1 and 2 point to the
ballistic and diffusive limits, respectively. (b) The relative difference for the relevant ratios in respect to R1.

the voltage dependence of the tunnel magnetoresistance
TMR(V), the quantized conductance behavior [34] and
R(V) curves. The improved model Eqs. (6)-(8) extends
further the range of applicability, making it more ade-
quate to the real systems.

3.1. The orifice conductance: comparison with alterna-
tive theoretical models

One of the goals of this work is to compute the classi-
cal conductance for the non-magnetic junction and com-
pare it with that obtained in the earlier theories. The
proposed approach allows to reproduce the Maxwell
and Sharvin analytical limits in such terms that they
smoothly transform from one to the other exactly with-
out some additional factors like γ in Refs. [12, 23, 25].
Indeed, at K → ∞ (a/l→ 0) the integral in Eq. (8) van-
ishes, hence, the conductance transforms into the ballis-
tic Sharvin one, G = GS . The integral in Eq.(8), at small
K � 1 (a/l � 1), reads

(
1
4 −

2K
3π

)
that gives accurate so-

lution for the diffusive limit, G = (8/3π) KGS = GM . In
contrast to the Wexler and the followers’ solutions, in
which the ballistic term always exists in (5) for any K,
our solution (8) exactly transforms from the ballistic to
the diffusive limit of the conductance.

The normalized conductance by the Sharvin limit is
given in Fig. 2a for the four solutions of the problem,
the result of the present work is shown as R1 = G/GS .
The ratios R2 = G̃/GS , R3 = GW′/GS and R4 = GW/GS

correspond to the solutions by Mikrajuddin et al. with
γ ≈ 2

π

∫ ∞
0 e−K·xsinc(x) dx, by Nikolic and Allen with

γfit ≈ (1+0.83K)/(1+1.33K) and, finally, by the Wexler

approach with flexible γ, respectively. The compari-
son of the relative differences of the conductance to R1,
which is displayed in Fig. 2b, shows that the Mikrajud-
din solution is the closest one to our result. The Nikolic-
Allen solution GW′ with relevant γfit shows the maxi-
mal difference of 15.8% with ours at a/l ≈ 1. It should
be noticed, the presented GW′ is the lowest order solu-
tion with a maximal deviation of 1.0% against the most
exact summed-up series solution in [23]. The Wexler
solution shows the intermediate deviation of 12.9% at
a/l ≈ 0.75. We believe that the strong assumption cre-
ated by Wexler [Ref. [12], the paragraph after Eq. (42)],
where the numerical coefficient 9/8 is replaced by 1 at
the Knudsen-Sharvin limit, and the one which is made
by Nikolic and Allen [Ref. [23], the paragraph after
Eq. (59)], where the numerical coefficient 3/4 is also re-
placed by 1 at the same limit, could be a cause of the
deviations in the vicinity of the Sharvin limit reported
above.

Finally, it should be noticed that some experimental
works manipulate with γ in Eq. (5), in order to achieve
the desired fitting, considering γ ≈ 0.7 − 0.75 as a re-
duced constant, e.g. [2, 18, 19]. We assume that their re-
duced value of γ originates from the striving to compen-
sate the inaccuracy of the Wexler model for the quasi-
ballistic region a/l ≈ 0.25 − 4.0, Fig. 2b, nevertheless
that it can give a valuable deviation from a real value for
l, being estimated at the larger scales, e.g. for a/l ≈ 10.
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Figure 3: The conductance of the golden NCs with various contact dimensions. (a) Theoretical curves 1-5, ascribed to the ballistic regime at
kAu

F = 0.8Å−1, kAu
F = 0.9Å−1, kAu

F = 1.0 Å−1, kAu
F = 1.1 Å−1 and kAu

F = 1.2 Å−1, respectively. (b) Curves 1-4 correspond to kAu
F = 1.1 Å−1,

kAu
F = 1.0 Å−1, kAu

F = 0.9 Å−1, and kAu
F = 0.85 Å−1 with l = 4.0 nm, l = 6.0 nm, l = 10.0 nm and l = 38.0 nm, respectively. The black dots refer

to the experimental data [18].

3.2. Conductance of the golden nanocontacts
The experimental data by Erts et al. [18] is consid-

ered for a quantitative comparison with our theory. The
conductance for the golden NCs was measured with dif-
ferent dimensions and fitted by Wexler’s model finally
resulting in l ' 3.8 nm [18]. The drastic reduction of l
in the NCs was attributed to a high density of scatter-
ing centers, which are created during the point contact
formation process.

Considering the golden contacts in the ballistic con-
ductance regime, we found that the experimental points
from Ref. [18] lie predominantly between the straight
lines of the Sharvin conductance at kAu

F = 0.8 Å−1 and
kAu

F = 0.9 Å−1, Fig. 3a. The Fermi wave-number in the
bulk for the gold can be estimated using the electron
density n = 5.9×1022 cm−3, and thus kAu

F = (3π2n)1/3 =

1.205 Å−1, Ref. [36] (Chapter 1, Table 1.1) and com-
pared with that corresponding to the lines 1 – 5 of the
Fig. 3a.

It makes sense to go beyond a ballistic conductance
regime in analysis of the experimental data of Erts et
al. [18], because most probably, they refer to the quasi-
ballistic regime of the conductance (see Fig. 2). Fig-
ure 3b shows theoretical curves of the contact con-
ductance derived from (8), where the kAu

F and l values
were considered as independent parameters. The fitted
curves 1 – 4 refer to kAu

F = 1.1 Å−1, kAu
F = 1.0 Å−1,

kAu
F = 0.9 Å−1 and kAu

F = 0.85 Å−1 with l = 4.0 nm,
l = 6.0 nm, l = 10.0 nm and l = 38.0 nm, respec-
tively. Utilizing (2) in the form n = kAu

F /
(
π l G0 ρ

Au
V

)
,

where ρAu
V = 22.14 Ω·nm, the related parameters corre-

spond to n = 5.1 × 1023 cm−3, n = 3.09 × 1023 cm−3,
n = 1.67 × 1023 cm−3 and n = 4.15 × 1022 cm−3 for the
curves 1 – 4, respectively. It seems that the experimental
points lie predominantly on the curve 4. Moreover, the
curve 4 has the closest value by n, which is estimated in
the Ref. [36].
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Figure 4: The conductance of the golden NCs with the various contact radius. The red circles are the data adapted from Fig. 4 in Ref. [37]. The
ballistic limit is estimated at kAu

F = 0.9 Å−1, while the curve 1 is obtained from eq. (8) with kAu
F = 0.9 Å−1 and l = 38 nm.

The experimental data, which cover not only quasi-
ballistic but also the diffusive regimes of the conduc-
tance as well, might be determinative to verify our the-
oretical model. Fortunately, experiments of Jensen et
al. [37] with golden NCs extend further the measure-
ment range, which was partly covered by Erts et al., to-
wards the diffusive regime of the conductance. Figure 4
shows the best fit of our model Eq. (8) to the Jensen data.
The theory matches the experimental data almost ide-
ally with the fitting parameters kAu

F = 0.9 Å−1 and l =

38 nm. Both datasets by Erts and Jensen are collected in
the inset of Fig. 4 together, keeping the linear scale for
G.

The remaining discrepancies in kAu
F values with re-

spect to the textbook references, as well as the large
scatter in the estimated l, which may satisfactory de-
scribe the existing experimental data, should not raise
doubts about the correctness of the approach: the lat-
eral shape deviation from the ideal circular orifice and
the opening angle of the constriction might also influ-
ence the conductance quantitatively, giving a correction
up to ∼ 50% [38].

3.3. Domain wall resistance in magnetic nanowires
We apply the developed model to calculate the con-

ductance of a magnetic NW with and without single
DW. It demonstrates the full range of the spin-resolved
ballistic and diffusive electron transport regimes, that is
suited to explain a DW resistance behavior, for exam-
ple, in Ni80Fe20 Permalloy (Py) [39], Co/Ni [40, 41]
and Co NWs [42]. Since a difference in resistance of
a NWs with and without DW is a subject of our interest,
only DW contribution ∆R = (RDW + RNW)− (R0 + RNW)
is calculated for a wide range of a diameters, Fig. 5a.
Thus, the resistance of the homogeneous wire’s seg-
ments, RNW = 4ρV lNW/πd2, cancels in the difference,
where lNW is total length of NW. The other terms
RDW(0) ' V/

(
IDW(0)
↑

+ IDW(0)
↓

)
are resistances of a DW

or an interface between segments of the composite NW.
The spin-dependent currents IDW(0)

↑,↓
are estimated within

the general magnetic case of the heterojunction Eq. (6)
with low bias approach, when the integral distribution is
voltage-independent. A spin-bands transition has been
taken into account for the case with DW (RDW), while
the case without DW assumes D↑,↓ = 1.0 for R0 in the
case of homogeneous NW. The assignment of spin sub-
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Figure 5: (a) Individual impact of the DW resistance in NW versus its diameter d. The model parameters for the dashed black curve are l↓ = 3.0 nm,
l↑ = 12.0 nm; and for the solid blue line: l↓ = 2.5 nm, l↑ = 12.5 nm; Both curves calculated at kL(R)

F↓ = 1.08 Å−1, kL(R)
F↑ = 0.61Å−1, dDW = 3.0 nm.

Experimental points by Wong, Mohammed and Ebels et al. correspond to Py, Co/Ni and Co NWs with single DW, respectively. (b) The sketch of
the two vortex magnetic states and electron transitions with the DOS differences: without (left) and with DW (right). The vortex magnetic states
are shown similar to that in the experimental paper [39] and marked as the color thin arrows, while the theoretical DW representation is simplified
to 1D case and magnetization is shown as the large gray arrows.

bands with respect to the quantization axis is opposite in
the case of the opposite direction of the domain’s mag-
netizations, Fig. 5b. The vortex states and the area be-
tween them in [39] are simplified to 1D DW representa-
tion in our case similarly to Ref. [40, 41]. The DW im-
pact is integrated into the present model in the same way
as in Ref. [29], where Dα for the DW is considered as an
exact analytical solution for the sloping potential profile
between two spin-split conduction bands. The values of
the spin-dependent density of states (DOS) at the Fermi
level are taken proportional to kF,α. The spin diffusion
length, the length of the spin conservation, is assumed
to be much larger than the fixed DW width (dDW).

The model estimations are compared with experi-
mental data of the resistance difference ∆R in Py [39],
Co/Ni [40] and Co nanowires [42], which are shown
as symbols in Fig. 5a. The first experimental point
∆R ≈ 0.3 Ω is shown as magenta triangle for Py NW
with d = 350 nm [Ref. [39], Fig. 4a] that correspond
to the case l↑/l↓ ≈ 4.5. The second experimental point
(green diamond) with ∆R ≈ 1.2 Ω correlates to Co/Ni
NW with d = 80 nm [Ref. [40], Fig. 2b and Fig. 2c].
Red square points correspond to ∆R ≈ 2.178 Ω and
∆R ≈ 7.5 Ω for Co NW with d = 50 nm and d = 35 nm,
respectively [Ref. [42], Fig. 1]. The black dashed line,
which is drawn for l↑/l↓ = 4, fits well the experimental
points except for the case Co NW with d = 35 nm. Fol-
lowing the assumption that this point corresponds to the
case of two DWs connected in series, the additional red

circle is depicted as half of the ∆R for d = 35 nm as a
reduction to the case of single DW. It should be noticed,
Ebels et al. [42] has also considered the assumption of
the presence of two DWs for d = 35 nm.

In general, it is found that ∆R rapidly reduces with
increasing of d, however, the curve’s slope decreases
when the conductance transforms from quasi-ballistic
to a diffusive regime for the spin-up conductance chan-
nel at d ≈ 2 l↑. The curve for ∆R is sensitive to the
mean free path ratios. Experimental measurements of
the spin-split lα are accessed in [43, 44], theoretical es-
timations are available in Ref. [22]. The considered kF-
values are also consistent with the literature data: kPy

F↑↓
are similar to Mu-metal (Py-type) compounds [29]. It
should be noticed also that, taking into account the spin-
flip effect and spin accumulation might further improve
the consistency of the material parameters utilized in the
data fittings.

4. Conclusions

In the present work, a quasi-classical transport model
is developed as an approach for computing of elec-
tron transport through the point-like contact. The spin-
resolved quantum, ballistic, quasi-ballistic and diffu-
sive regimes of the transport are covered by the the-
ory. The solution includes the boundary conditions in
terms of the quantum-mechanical transmission coeffi-
cient for the NC interface. The NC interface potentially
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can be replaced by any quantum object, where the trans-
mission coefficient can be spin-resolved, depending on
the applied voltage, the strength of the magnetic field or
any other external parameter affecting the energy pro-
file properties. As a result, the analytical solution is
derived for the general spin-resolved case for the sys-
tem, obeying cylindrical symmetry. It doesn’t require
so much computer programming to represent it into the
form, which allows to make the comparison and fitting
to the experiment. The theory has great generality: it
can handle with spin-resolved conduction of the nano-
scale objects such as NCs, single and multi-barrier tun-
nel junctions, MTJs with embedded nanoparticles, ob-
serving in some cases the quantized conductance, etc.

Finally, we applied our general expression for the cur-
rent through the NC to a particular problem of the con-
ductance between two separated metallic (nonmagnetic)
leads, which are connected by a short and small orifice
and filled with the same metal. The simple expression
for the conductance that we have got from our general
solution provides the smooth functional transition be-
tween the Sharvin ballistic and Maxwell-Holm diffusive
limits without residual terms. The theory fits quite well
with the existing experimental data for the golden NCs.
Another application is also shown, which concerns the
DW resistance in ferromagnetic nanowires. The com-
parison to the existing experimental data shows a rea-
sonable quantitative agreement, confirming the wide
range of applicability of our approach.
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[23] B. Nikolić, P. B. Allen, Electron transport through a circular
constriction, Phys. Rev. B 60 (1999) 3963–3969.

[24] E. Y. Tsymbal, I. Zutic, Handbook of spin transport and mag-
netism, CRC Press, Hoboken, NJ, 2011.

9



[25] A. Mikrajuddin, F. G. Shi, H. K. Kim, K. Okuyama, Size-
dependent electrical constriction resistance for contacts of ar-
bitrary size: from Sharvin to Holm limits, Materials Science in
Semiconductor Processing 2 (1999) 321–327.

[26] G. Eilenberger, Transformation of Gorkov’s equation for type
II superconductors into transport-like equations, Zeitschrift für
Physik A Hadrons and nuclei 214 (1968) 195–213.

[27] J. Rammer, H. Smith, Quantum field-theoretical methods in
transport theory of metals, Rev. Mod. Phys. 58 (1986) 323–359.

[28] L. R. Tagirov, B. P. Vodopyanov, K. B. Efetov, Ballistic versus
diffusive magnetoresistance of a magnetic point contact, Phys.
Rev. B 63 (2001) 104428.

[29] A. N. Useinov, R. G. Deminov, L. R. Tagirov, G. Pan, Giant
magnetoresistance in nanoscale ferromagnetic heterocontacts,
Journal of Physics: Condensed Matter 19 (2007) 196215.

[30] N. Useinov, Semiclassical Green’s functions of magnetic point
contacts, Theoretical and Mathematical Physics 183 (2015)
705–714.

[31] A. Useinov, J. Kosel, Spin asymmetry calculations of the
TMR−V curves in single and double-barrier magnetic tunnel
junctions, IEEE Transactions on Magnetics 47 (2011) 2724–
2727.

[32] A. Useinov, Y. Saeed, N. Singh, N. Useinov, U. Schwingen-
schlögl, Impact of lattice strain on the tunnel magnetoresistance
in Fe/insulator/Fe and Fe/insulator/La0.67Sr0.33MnO3 magnetic
tunnel junctions, Phys. Rev. B 88 (2013) 060405.

[33] A. Useinov, O. Mryasov, J. Kosel, Output voltage calculations in
double barrier magnetic tunnel junctions with asymmetric volt-
age behavior, Journal of Magnetism and Magnetic Materials
324 (2012) 2844 – 2848.

[34] A. Useinov, L. X. Ye, N. Useinov, T. H. Wu, C. H. Lai, Anoma-
lous tunnel magnetoresistance and spin transfer torque in mag-
netic tunnel junctions with embedded nanoparticles, Scientific
Reports 5 (2015) 18026.

[35] A. Useinov, H. H. Lin, C. H. Lai, Symmetric and asymmetric
magnetic tunnel junctions with embedded nanoparticles: Effects
of size distribution and temperature on tunneling magnetoresis-
tance and spin transfer torque, Scientific Reports 7 (2017) 8357.

[36] N. W. Ashcroft, N. D. Mermin, Solid State Physics, Harcourt
Brace College Publishers, New York., 1976.

[37] B. D. Jensen, K. Huang, L. L. W. Chow, K. Kurabayashi,
Low-force contact heating and softening using micromechan-
ical switches in diffusive-ballistic electron-transport transition,
Applied Physics Letters 86 (2005) 023507.

[38] J. A. Torres, J. I. Pascual, J. J. Sáenz, Theory of conduction
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