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В настоящей работе представлен подход к нахождению значений барьера нуклеации, а также меж-
фазной свободной энергии (поверхностного натяжения), реализуемый в рамках моделирования
молекулярной динамики структурных трансформаций систем, в частности процессов образования
зародышей новой фазы. Основу подхода составляет метод термодинамического интегрирования,
где ключевыми величинами являются траектории, характеризующие изменение потенциальной
энергии, получаемые в результате независимых численных экспериментов. Важная особенность
подхода – его применимость как к равновесным, так и к неравновесным ситуациям, а также воз-
можность нахождения упомянутых термодинамических характеристик в случае, когда зародыши
новой фазы имеют малые размеры и характеризуются сильной кривизной поверхности (границы
раздела). В работе в качестве примеров представлены рассчитанные в рамках подхода температур-
ные зависимости поверхностного натяжения зародышей капель воды при капельной нуклеации в
водяном паре и барьера нуклеации при кристаллической нуклеации в двух различных модельных
стекольных системах. Рассчитанные значения коэффициента поверхностного натяжения зароды-
шей капель воды сравниваются с известными экспериментальными значениями.
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ВВЕДЕНИЕ

С развитием методов численного моделирова-
ния равновесных и неравновесных процессов в
многочастичных системах актуальными стано-
вятся задачи, связанные с трактовкой результатов
моделирования, а также с нахождением различ-
ных физических параметров рассматриваемых
многочастичных систем [1–6]. Специфика моде-
лирования классической молекулярной динамики,
связанная с возможностью получения информа-
ции о траекториях и скоростях молекул (атомов)
системы, естественным образом определила до-
статочно успешное применение этого метода мо-
делирования для нахождения парных и многоча-
стичных функций распределения, временных
корреляционных функций и спектральных плот-
ностей корреляционных функций, что позволило
осуществлять сопоставление результатов модели-
рования с экспериментальными данными, в част-
ности по диэлектрической, нейтронной и рентге-
новской спектроскопии [7, 8]. Тем не менее рас-

четы таких (термодинамических) параметров, как
свободная энергия и конфигурационная энтро-
пия, ассоциируются преимущественно с метода-
ми, реализуемыми на основе моделирования ме-
тодом Монте-Карло [9], в котором учет и стати-
стическая обработка возможных структурных
конфигураций системы при заданных внешних
условиях выполняются достаточно аккуратно. В
качестве примеров можно привести метод моде-
лирования Монте-Карло для марковской цепи с
обменными репликами (replica exchange Markov
chain Monte-Carlo sampling) [10] и метод зонтич-
ной выборки (umbrella sampling), в котором моде-
лирование Монте-Карло адаптируется к вычис-
лению свободной энергии как функции некото-
рой реакционной координаты, параметра
порядка, что позволяет определять так называе-
мый энергетический ландшафт рассматриваемой
системы [11, 12]. Сложности в нахождении сво-
бодной энергии в рамках моделирования Монте-
Карло возникают в случае, когда в системе силь-
но выражены неравновесные эффекты [13].
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Попытки адаптировать моделирование моле-
кулярной динамики непосредственно к решению
задач, связанных с определением свободной энер-
гии, привели к возникновению ряда методов, среди
которых можно выделить метадинамическое моде-
лирование, предложенное и развиваемое группой
М. Паринелло [14, 15], и метод, основанный на тер-
модинамическом интегрировании [16]. В настоя-
щей работе будет показано, что метод термодина-
мического интегрирования может быть развит
применительно к вычислению таких термодина-
мических параметров, как барьер нуклеации и
межфазная свободная энергия зародыша новой
фазы критического размера. В разд. 1 представлен
метод термодинамического интегрирования при-
менительно к расчету абсолютных значений сво-
бодной энергии. В разд. 2 и 3 показано примене-
ние этого метода для определения соответствен-
но значений барьера нуклеации и межфазной
свободной энергии. И, наконец, результаты мо-
лекулярно-динамических расчетов конденсации
капель воды и кристаллического зародышеобра-
зования в модельных аморфных системах, полу-
ченные с помощью данного метода, представле-
ны в разд. 4.

1. ТЕРМОДИНАМИЧЕСКОЕ 
ИНТЕГРИРОВАНИЕ В ОЦЕНКЕ 

СВОБОДНОЙ ЭНЕРГИИ

Пусть система из  идентичных классических
частиц одинаковой массы , заключенных в не-
котором объеме  и взаимодействующих через
парно-аддитивный сферический потенциал

, находится в некотором состоянии с
температурой и давлением , т.е. реализуется
NPT-ансамбль.1) В соответствии с классической
механикой координаты и скорости частиц,  и

, где  образуют 6N-мерное фазовое
пространство

фазовая точка на котором характеризует мгно-
венное состояние системы. Функцию Гамильто-
на  запишем в общем виде:

полагая, что отсутствует непосредственное взаи-
модействие частиц с каким-либо внешним по-

1) Условия о парно-аддитивных силах и сферическом по-
тенциале взаимодействия позволяют лишь упростить пер-
вичные расчеты, но не являются необходимыми. В даль-
нейшем можно выполнить обобщение на произвольный
потенциал межчастичного взаимодействия.
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лем, а, следовательно, отсутствуют соответствую-
щие этому вклады в функцию Гамильтона [16].

Свободная энергия Гиббса системы определя-
ется как

где  – есть внутренняя энергия,  – объем,  –
есть энтропия. С другой стороны, величина

(1)

представляет собой свободную энергию Гельм-
гольца, где  – статистический интеграл:

(2)

где  Второе равенство в выра-
жении (2) получается при интегрировании экспо-
ненциальной функции по импульсам, а остав-
шийся интеграл в этом выражении известен как
конфигурационный интеграл [16].

Рассмотрим такую трансформацию (переход)
системы из некоторого состояния I в состояние
II, в ходе которой можно положить, что темпера-
тура T, число частиц N, объем  не изменяются,
но изменяется потенциальная энергия , а следо-
вательно, меняется и свободная энергия F. Не-
смотря на то, что тип перехода на настоящем этапе
рассмотрения не конкретизируется (это может
быть структурный переход или релаксация в неко-
торое равновесное состояние), на характер перехо-
да накладываются следующие условия: переход
должен быть обратимым и не содержать каких-ли-
бо признаков гистерезиса, а изменение свободной
энергии должно происходить непрерывно. Таким
образом, это не может быть фазовый переход пер-
вого рода.

Пусть переход системы из некоторого началь-
ного состояния I в состояние II учитывается без-
размерным параметром λ, который может пред-
ставлять собой, например, параметр порядка, ре-
акционную координату и т.д., – таким, что
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Последнее равенство в (3) можно записать в виде

(4)

где  есть усреднение по ансамблю независи-
мых траекторий λ. Выражение (4) определяет так
называемую процедуру термодинамического ин-
тегрирования (λ-разложения), предложенную
Кирквудом (J.G. Kirkwood) [16].

Выражение (4) указывает прежде всего на то,
что изменение свободной энергии коррелирует с
изменением потенциальной энергии многоча-
стичной системы, которое, в свою очередь, может
быть вызвано трансформациями в структуре си-
стемы или преобразованием потенциала межча-
стичного взаимодействия, например в результате
химической реакции. Далее, как следует из (4),
для оценки изменения свободной энергии

 системы достаточно знать ансамбль тра-
екторий , характеризующих изменение по-
тенциальной энергии, которые могут быть полу-
чены на основе независимых экспериментальных
измерений, моделирования молекулярной дина-
мики, моделирования Монте-Карло или теорети-
ческих расчетов.

Термодинамическое интегрирование позволя-
ет выполнить оценку абсолютного значения сво-
бодной энергии состояния  при известном
значении начального состояния  на основе со-
отношения

где интеграл определяется численно. Так, напри-
мер, для оценки абсолютного значения свободной
энергии кристаллической фазы многочастичной
системы с известным потенциалом межчастично-
го взаимодействия в качестве начального состоя-
ния I удобно рассматривать эйнштейновский
кристалл [17].

Кристаллизация переохлажденной жидкости,
плавление перегретого кристалла, конденсация
пара, испарение жидкости и некоторые другие
процессы представляют собой фазовые переходы
первого рода, поэтому выполнить оценку измене-
ния свободной энергии в результате этих фазовых
переходов непосредственно с помощью термоди-
намического интегрирования не представляется
возможным [13]. Тем не менее можно показать,
что метод термодинамического интегрирования
все же может быть применен, хотя и при опреде-
ленных условиях, для оценки таких характери-
стик этих процессов, как работа, совершаемая си-
стемой для формирования зародыша критиче-
ского размера, барьер нуклеации и межфазная
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свободная энергия зародыша новой фазы крити-
ческого размера.

2. БАРЬЕР НУКЛЕАЦИИ

Согласно классическим представлениям [18],
образование зародышей новой фазы является
процессом активационного типа. Это означает,
что зародыш становится устойчивым для роста
лишь при достижении некоторого критического
размера , а на формирование такого зародыша
системой затрачивается энергия [18–20]

где  – свободная энергия исходного состояния
системы;  – свободная энергия системы, со-
держащей зародыш новой фазы критического
размера   – фактор формы поверхности заро-
дыша (например, для зародыша сферической
формы имеем  для зародыша кубиче-
ской формы находим  и т.д.);  – количе-
ственная плотность фазы II;  – межфазная сво-
бодная энергия;  – разность химических потен-
циалов для фаз I и II. Пусть принадлежность
частиц системы к той или иной фазе является из-
вестной. Если в состоянии I частицы распределе-
ны в системе однородно и, таким образом, форми-
руют некоторую общую фазу, то можно записать

где  и  – средняя потенциальная
энергия состояния I, приходящаяся на одну ча-
стицу. Пусть в некотором состоянии c  в
системе находится зародыш новой фазы размера

 Потенциальную энергию частиц системы в
этом случае можно оценить с помощью простого
соотношения:

Здесь  и  – есть средняя потенциальная
энергия для фазы II, приходящаяся на одну части-
цу. Поскольку рассматриваемый переход I  II
связан с формированием зародыша критического
размера , то параметр  удобно связать с разме-
ром зародыша и выбрать в виде

Тогда получаем
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Следовательно, находим

(5)

Таким образом, если в рассматриваемой системе
происходит формирование лишь единственного
зародыша критического размера, что возможно
при определенных термодинамических условиях
[20], а сам процесс зародышеобразования удовле-
творяет условиям NVT-ансамбля, то величина ба-
рьера нуклеации может быть оценена с помощью
соотношения (5). Здесь входными параметрами
являются траектории, характеризующие измене-
ние потенциальной энергии при зародышеобра-
зовании, а также траектории роста зародыша но-
вой фазы, , при  – величины, которые
являются извлекаемыми из данных моделирова-
ния молекулярной динамики. В этом случае
усреднение  осуществляется по различным
молекулярно-динамическим итерациям.

3. МЕЖФАЗНАЯ СВОБОДНАЯ ЭНЕРГИЯ

Непосредственное измерение межфазной сво-
бодной энергии  возможно через определение
анизотропии давления в поверхностном слое:

(6)

где ось z совпадает с нормалью к поверхности; 
  – диагональные компоненты тензора дав-

ления. Очевидно, что такой подход применим,
когда граница раздела образуется макроскопиче-
ским объектом, в поверхностном слое которого
возможно однозначно определить нормальное и
тангенциальное направления, а соответствующие
компоненты тензора давления являются измери-
мыми. Выражение (6) также используется для на-
хождения  из данных моделирования молеку-
лярной динамики при рассмотрении идеализиро-
ванной системы, представляющей собой две
сосуществующие фазы с плоской границей разде-
ла. В этом случае компоненты тензора давления
вычисляются через микроскопические выраже-
ния Ирвина–Кирквуда [16].

В настоящее время для нахождения межфазной
свободной энергии на основе молекулярно-дина-
мических расчетов находят широкое применение
метод термодинамического интегрирования в раз-
личных реализациях [21, 22] и метод оценки теп-
ловых флуктуаций поверхности в рамках капил-
лярно-волновой модели [23, 24]. Однако в обоих
методах предполагается наличие обширной гра-
ницы раздела: в первом методе граница должна
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приближать плоскую форму, во втором – разгра-
ничение фаз должно быть однозначно определяе-
мым, а сама граница раздела должна быть доста-
точного размера для статистической характериза-
ции ее кривизны. Таким образом, применение
этих методов к вычислению межфазной энергии
объектов микроскопических размеров, например
зародышей формирующейся фазы, является за-
труднительным [25]. Тем не менее можно пока-
зать, что метод термодинамического интегриро-
вания может быть применен для оценки  заро-
дышей критического размера. При этом
реализация метода термодинамического инте-
грирования будет отличаться от того, как она осу-
ществляется в уже известных методах.

Как известно, поверхностная энергия  может
быть определена как избыточная энергия, прихо-
дящаяся на единичную площадь поверхности,
появление которой обусловлено недостатком
“соседей” у поверхностных частиц по сравнению
с частицами, находящимися в объеме [18]. Если
ограничиться рассмотрением “соседей” каждой
частицы в пределах первой координационной
сферы, то получаем следующее соотношение [18]:

где  – среднее расстояние между соседними ча-
стицами дочерней фазы; величина  обозначает
количество поверхностных частиц, приходящих-
ся на единицу поверхности;  и  – первые коор-
динационные числа для объемных и поверхност-
ных частиц соответственно. В общем случае вели-
чина  будет являться функцией размера зародыша.
Тогда в соответствии с выражением (5) межфазная
свободная энергия может быть оценена непо-
средственно через соотношение

(7)

Вполне очевидно, что параметр , так же как и в
случае вычисления барьера нуклеации, удобно
связать с приведенным размером формирующе-
гося зародыша: . При таком определе-
нии параметр  равен нулю, если в системе отсут-
ствуют зародыши новой фазы, а следовательно,
отсутствует какая-либо граница раздела фаз, и
параметр  равен единице, если размер зародыша
равен критическому размеру . При обработке
результатов моделирования молекулярной дина-
мики под  подразумевается усреднение по ан-
самблю независимых траекторий при конкрет-
ном значении  [25]. Входными параметрами в
этом методе являются поверхностная энергия  и
набор независимых траекторий  при  ха-
рактеризующих рост зародыша. При этом коор-
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динационные числа  и  достаточно удобно опре-
делять из результатов моделирования молекулярной
динамики как площади под первыми максимумами
функций радиального распределения объемных и
поверхностных частиц –  и  [16]:

где  – есть положение первого минимума в со-
ответствующей функции радиального распреде-
ления частиц,  – количественная плотность ча-
стиц.

На рис. 1а в качестве примера показана кри-
вая, характеризующая изменение поверхностной
энергии  отдельного формирующегося заро-
дыша, где , получаемая на основе дан-
ных моделирования молекулярной динамики
процесса зародышеобразования. Соответствую-
щая этой кривой производная , опреде-
ляемая численно, представлена на рис. 1б.

4. РЕЗУЛЬТАТЫ

4.1. Кристаллизация модельных стекольных 
систем: барьер кристаллического 

зародышеобразования

Были выполнены молекулярно-динамиче-
ские расчеты процесса кристаллической нуклеа-
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ции в двух различных стекольных системах, раз-
личающихся потенциалами межчастичного вза-
имодействия. Начальная конфигурация каждой
моделируемой системы задавалась в виде
ГЦК-решетки внутри кубической ячейки разме-
ром , где  – параметр по-
тенциала межчастичного взаимодействия, харак-
теризующий эффективный размер частицы. На
моделируемую ячейку налагались периодические
граничные условия по всем направлениям. В уз-
лах решетки располагалось  частиц. Все
расчеты выполнялись в NPT-ансамбле; интегри-
рование уравнений движения осуществлялось в
соответствии со скоростным алгоритмом Верлe с
шагом интегрирования . Изначально
каждая моделируемая система приводилась к
жидкому состоянию. Ее температура  задавалась
существенно выше температуры плавления  и
в этом состоянии система приводилась в равнове-
сие. Далее стекольные образцы приготавливались
быстрым охлаждением со скоростью 

 где  – параметр потенциала меж-
частичного взаимодействия, характеризующий
глубину потенциальной ямы,  – еди-
ничный временнóй масштаб,  – масса части-
цы.2) Температура и давление контролировались
соответственно через термостат и баростат Нозе–
Гувера с параметрами  и .

2) Со значениями σ = 0.34 нм, ε/kB = 120 K и m ≈ 6.6 ⋅ 10–26 кг,
где kB – есть постоянная Больцмана, соответствующими

атому аргона, получаем  с и  К/с.

20.3 20.3 20.3σ × σ × σ σ

6912N =

0.005tΔ = τ

T
,mT

dT dt =
0.001 ,Bk= ε τ ε

( )1 2mτ = σ ε
m

1210−τ ≈ ≈ 1110d T dt

250TQ = ετ 2100PQ = ετ

Рис. 1. a – Кривая, характеризующая изменение поверхностной энергии  зародыша при его росте; б – производ-
ная , получаемая численным дифференцированием кривой зависимости . Для процедуры термодинами-
ческого интегрирования необходимо сгенерировать набор , что можно сделать на основе результатов после-
довательности независимых молекулярно-динамических итераций. После соответствующего усреднения интеграл в
выражении (7) также определяется численно.
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Для того чтобы была возможна последующая ста-
тистическая обработка результатов моделирова-
ния молекулярной динамики с помощью метода
термодинамического интегрирования, для каж-
дого интересуемого (P,T)-состояния было приго-
товлено 50 образцов. Обнаружение локальных
упорядоченных групп частиц осуществлялось с
помощью кластерного анализа по алгоритму Вол-
де–Френкеля [26], подразумевающего исследова-
ние ближайшего окружения каждой частицы.

Так, в первой системе взаимодействие частиц
осуществлялось через парный короткодействую-
щий осциллирующий потенциал Джугутова [27].
В твердотельных состояниях данная система (си-
стема Джугутова) формирует преимущественно
квазикристаллические фазы, а также кристалли-
ческую фазу с ГЦК-решеткой [28]. Аморфные об-
разцы были приготовлены для состояний с тем-
пературами , , ,  и  при

постоянном давлении . Для данной
изобары температура плавления составляет

, а температура стеклования (при
выбранной скорости охлаждения) есть

 [29].
Другая система представляла собой двух-ком-

понентную систему Леннарда–Джонса (Len-
nard–Jones), где соответствие между параметрами
потенциала Леннарда–Джонса для частиц типов

 и  определялось через так называемые правила
смешивания, которые имеют следующий вид:

(8)

Концентрация частиц типа  составляла 80% от
общего их количества. Следует обратить внима-
ние на то, что правила смешивания (8) отличны
от тех, которые используются для получения из-
вестных стеклообразующих двухкомпонентных
леннард-джонсовских систем: системы Коба–Ан-
дерсона (Kob–Anderson system) и системы Ванстро-
ма (Wahnstrom system). Для рассматриваемой нами
системы аморфные образцы готовились при темпе-
ратурах , , ,  и  для состо-

яний с давлением . Температура плавле-
ния составляет  а температура стек-
лования оценивается как  [30].

Как было показано в работе [30], при заданных
(P,T)-условиях кристаллизация обеих стеколь-
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ных систем инициируется через механизм гомо-
генной кристаллической нуклеации. При этом
достаточно высокие давления (  и

 в случаях систем Джугутова и Леннарда–
Джонса соответственно) привносят особенности в
процесс структурного упорядочения. Во-первых,
появление отдельных кристаллических зародышей
детектируется на пространственно-временных мас-
штабах, реализуемых в молекулярно-динамиче-
ских расчетах. Критический размер  зародышей
является очень малым: для рассмотренных состо-
яний было установлено, что величина  практи-
чески не превышает 100 частиц в случае системы
Джугутова и 60 частиц в случае леннард-джонсов-
ской системы, хотя сам процесс кристаллизации
систем протекает очень медленно вследствие вы-
сокой вязкости. Во-вторых, объем систем прак-
тически не изменяется при нуклеации при таких
условиях.

Малый размер и изолированность зародышей
позволяют выделять локальную область в моде-
лируемой ячейке, в которую попадает лишь един-
ственный зародыш (например, самый крупный),
и выполнять оценку барьера кристаллической
нуклеации  в соответствии с методом термоди-
намического интегрирования, представленного в
разд. 2. Полученные значения барьера нуклеации

 при различных значениях температуры  сте-
кольной системы Джугутова и стекольной двух-
компонентной леннард-джонсовской системы
представлены на рис. 2. Как видно из этого ри-
сунка, величина  в рассмотренной темпера-
турной области имеет одинаковую линейную
температурную зависимость для обеих систем,
что качественно согласуется с представлениями
классической теории нуклеации [31]. Далее, в со-
ответствии с классической теорией нуклеации
для величины  справедливо следующее выра-
жение, связывающее температуру системы 
критический размер  и параметр Зельдовича 

Таким образом, несмотря на то, что критический
размер кристаллического зародыша  имеет тен-
денцию к уменьшению с увеличением глубины
переохлаждения (т.е. с уменьшением температу-
ры системы), изменение величины  практиче-
ски полностью компенсируется ростом значений
параметра Зельдовича  с уменьшением темпера-
туры системы. Так, методом инвертированного
усреднения, подробно описанным в работе [25,
30], было оценено значение величины  которое
для системы Джугутова с ростом температуры
уменьшается от 0.014 до 0.011, в то время как для
системы Леннарда–Джонса уменьшение проис-
ходит от 0.028 до 0.020.
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4.2. Конденсация водяного пара:
поверхностное натяжение зародышей капель

воды критического размера

Моделирование молекулярной динамики про-
цесса конденсации водяного пара выполнялось
для системы, состоящей из 8000 молекул воды,
заключенных в кубическую ячейку с периодиче-
скими граничными условиями и взаимодейству-
ющих через эффективный потенциал, представ-
ляющий собой модификацию анизотропного по-
тенциала Стиллинжера–Вебера (Stillinger–Weber
potential) [32, 33]. Объем ячейки есть  где

 Å. Интегрирование уравнений движения
осуществлялось через скоростной алгоритм Верлe
(Verlet algorithm) с временным шагом  фс. Из-
начально приготовленные образцы равновесного
пара охлаждались со скоростью  К/нс
к состояниям с температурами из области

 К. Последующие молекулярно-динами-
ческие расчеты выполнялись в NPT-ансамбле
(при давлении  атм). Температура и давле-
ние системы контролировались с помощью тер-
мостата и баростата Нозе–Гувера с параметрами

 ккал · фс2/моль [25]. Выявление
“связанных” молекул, которых можно отнести к
формирующим жидкую фазу, осуществлялось че-
рез вычисление для всех пар соседствующих мо-
лекул пространственного критерия Стиллинже-
ра. Согласно этому критерию две молекулы мож-
но рассматривать как связанные, если расстояние
между их центрами масс  Å [25, 34].

На рис. 3 представлены фрагменты моделиру-
емой системы (переохлажденный водяной пар)
при температуре 273 К в различные моменты вре-
мени; при этом изображаются лишь молекулы,
формирующие жидкую фазу. Из этого рисунка
видно, что конденсация пара происходит через
формирование зародышей новой (жидкой) фазы,
протекающее по гомогенному сценарию: вероят-
ность появления зародыша капли не зависит от
положения (координат) в ячейке. На рис. 3a и 3б
видны зародыши капель, чей размер меньше кри-
тического, т.е. . Рисунок 3в демонстрирует
систему, в которой присутствуют зародыши кри-
тического размера. Величина  определялась с
помощью статистической обработки результатов
моделирования в соответствии с методом средне-
го времени первого появления (mean-first-pas-
sage-time method) зародыша заданного размера
[35]. Так, для системы при температуре  К
и давлении  атм критический размер заро-
дыша капли составил  молекул.

На рис. 4 значения коэффициента поверх-
ностного натяжения зародышей капель воды
критического размера, рассчитанные с помощью
метода термодинамического интегрирования (см.
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10T PQ Q= =
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cn

273T =
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75 25cn = ±

разд. 3) на основе данных моделирования молеку-
лярной динамики, сравниваются с известными
экспериментальными данными [36], а также с ре-
зультатами моделирования Монте-Карло, с ато-
мистическими моделями воды: трехточечной,
SPC/E, и четырехточечной, TIP4P, моделей воды
различных модификаций [37–40]. Из рис. 4 вид-
но, что полученные в настоящей работе значения
коэффициента поверхностного натяжения наи-
лучшим образом согласуются с эксперименталь-
ными данными во всей интересующей нас темпе-
ратурной области. Отметим, что такое согласие
полученных результатов с экспериментальными
данными является несколько неожиданным по
двум причинам. Во-первых, как указывалось вы-
ше, молекулярно-динамические расчеты выпол-
нялись с эффективным потенциалом межмолеку-
лярного взаимодействия, что должно приводить к
более грубым результатам по сравнению с атоми-
стическими моделями. Вторая причина связана с
зависимостью поверхностного натяжения от гео-
метрии поверхности. Очевидно, что поверхность
зародышей капель, чей размер не превышает сот-
ни молекул, характеризуется сильной кривизной.

Рис. 2. Температурная зависимость барьера кристал-
лической нуклеации, рассчитанная с помощью мето-
да термодинамического интегрирования на основе
данных моделирования молекулярной динамики си-
стемы Джугутова (d) и двухкомпонентой леннард-
джонсовской системы (s). При определении каждого
значения  в процедуре усреднения (см. выражение
(5)) использовались результаты 50 независимых мо-
лекулярно-динамических итераций.

0

1

2

3

4

5

6

7

8

0.1 0.2 0.3 0.4 0.5

ΔF, ε

T, ε/kB

FΔ



68

ХИМИЧЕСКАЯ ФИЗИКА  том 36  № 6  2017

МОКШИН, ГАЛИМЗЯНОВ

Рис. 3. Конфигурации моделируемой системы (конденсирующегося водяного пара) в различные моменты времени:
а – 0.2 нс, б – 0.6 нс, в – 1.0 нс, г – 1.2 нс. Результаты получены для системы с температурой  K и давлением

 атм. Масштаб области, показанной на рисунках, уменьшается от случая а к случаю г.

xy

z

xy

z

xy

z

xy

z

а б

в г

273T =
= 1P

Рис. 4. Температурная зависимость коэффициента поверхностного натяжения . Квадраты – экспериментальные
значения поверхностного натяжения воды в случае макроскопической (плоской) границы раздела [36]. Кружки – зна-
чения  для зародышей капель воды критического размера, полученные на основе данных моделирования молеку-
лярной динамики методом термодинамического интегрирования. Остальные символы – значения поверхностного
натяжения, полученные для атомистических моделей воды SPC/E и TIP4P различных модификаций с помощью ме-
тодов моделирования Монте-Карло: n – TIP4P/Ice, e – TIP4P/Ew, , – TIP4P/2005, x – TIP4P, v – SPC/E.
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Тем не менее, получаемые значения коэффици-
ента поверхностного натяжения зародышей ка-
пель за неимением соответствующих экспери-
ментальных данных сопоставляются с данными
для плоской поверхности.

Молекулярно-динамические расчеты выпол-
нены на вычислительном кластере Казанского
федерального университета, а также вычисли-
тельном кластере Межведомственного Супер-
компьютерного Центра РАН.

Работа частично поддержана Российским
фондом фундаментальных исследований (грант
№ 14-02-0335).
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