Test 4

1.

The distance to the point source of sound increased by 2 times. Find how many times the sound intensity has decreased. *****

$$r_{2} = 2 \cdot r_{1}$$

$$I_{1} = \frac{P}{4 \cdot \pi \cdot r_{1}^{2}}$$

$$I_{2} = \frac{P}{4 \cdot \pi \cdot r_{2}^{2}}$$

$$\frac{I_{2}}{I_{1}} = \frac{P \cdot 4 \cdot \pi \cdot r_{2}^{2}}{4 \cdot \pi \cdot r_{2}^{2} \cdot P} = \left(\frac{r_{1}}{r_{2}}\right)^{2} = \left(\frac{r_{1}}{2 \cdot r_{1}}\right)^{2} = \frac{1}{4}$$
Answer: 4

2.

Intensity of sound is $I = 1 \text{ [W/m}^2\text{]}$. Find the sound power P [W] passing through the window of 3 m². *****

$$I = \frac{P}{A}$$
$$P = I \cdot A = 1 \cdot 3 = 3 \text{ [W]}$$

3.

Speed of sound in ideal gas is $v_1 = 100 \text{ [m/s]}$ at $T_1 = 127 \text{ °C}$. Find v_2 at $T_2 = -173 \text{ °C}$.

$$v_{1} = \sqrt{\frac{\gamma \cdot R \cdot T_{1}}{M}}$$

$$v_{2} = \sqrt{\frac{\gamma \cdot R \cdot T_{2}}{M}}$$

$$\frac{v_{2}}{v_{1}} = \frac{\sqrt{\frac{\gamma \cdot R \cdot T_{2}}{M}}}{\sqrt{\frac{\gamma \cdot R \cdot T_{1}}{M}}} = \sqrt{\frac{T_{2}}{T_{1}}}$$

$$v_{2} = v_{1} \cdot \sqrt{\frac{T_{2}}{T_{1}}} = 100 \cdot \sqrt{\frac{273 - 173}{273 + 127}} = 100 \cdot \sqrt{\frac{1}{4}} = \frac{100}{2} = 50 \text{ [m/s]}$$

4.

Intensity of sound $[W/m^2]$ is $I = 100 \cdot I_0$. Find the sound loudness β [dB]. *****

$$\beta \,[\mathrm{dB}] = 10 \cdot \log_{10} \left(\frac{I}{I_0}\right) = 10 \cdot \log_{10} \left(\frac{100 \cdot I_0}{I_0}\right) = 10 \cdot \log_{10} 10^2 = 10 \cdot 2 \cdot \log_{10} 10 = 20 \,[\mathrm{dB}]$$

5.

The car creates a sound with frequency $f_s = 1$ kHz and moves to person at speed $v_s = 360$ [km/h].

Find the frequency of sound that a person hears f [Hz]. *****

$$\nu_{s} = 360 \text{ [km/h]} = \frac{360 \cdot 1000 \text{ [m]}}{60 \cdot 60 \text{ [s]}} = 100 \text{ [m/s]}$$

$$\nu = 343 \text{ [m/s]}$$

$$f = f_{s} \cdot \left(\frac{\nu}{\nu - \nu_{s}}\right) = 1000 \cdot \left(\frac{343}{343 - 100}\right) = 1412 \text{ [Hz]}$$

6.

The speed of light in material is $v = 1.5 \cdot 10^8$ [m/s]. Find the refractive index of material *n*. *****

 $c = 3 \cdot 10^8 \text{ [m/s]}$ - the speed of light in vacuum. $n = \frac{c}{v} = \frac{3 \cdot 10^8}{1.5 \cdot 10^8} = 2$

7.

The distance from object to thin lens is o = 12 [cm]. The distance from thin lens to image is i = 6 [cm]. Find the focal length *f* [cm]. *****

$$\frac{1}{o} + \frac{1}{i} = \frac{1}{f}$$
$$\frac{1}{12} + \frac{1}{6} = \frac{1}{f}$$
$$\frac{3}{12} = \frac{1}{f}$$
$$f = \frac{12}{3} = 4 \text{ [cm]}$$

8.

The focal length of thin lens is f = 10 [cm] Find the lens power *P* [diopters]. *****

$$f = 10 \text{ [cm]} = 0.1 \text{ [m]}$$

 $P = \frac{1}{f} = \frac{1}{0.1} = 10 \text{ [diopters]}$

9.

Light incident normally from a medium 1 (refractive index $n_1 = 2.5$) upon a medium 2 (refractive index $n_2 = 1.5$). Find reflectivity *R* [%]. *****

$$R = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2 \cdot 100 = \left(\frac{1.5 - 2.5}{1.5 + 2.5}\right)^2 \cdot 100 = 6.25 \ [\%]$$

10.

The film has thickness d = 100 nm and refractive index n = 1.5. Light ($\lambda = 600$ nm) incident normally upon this film. Can we see the reflection of this light?

Normally: $\beta = 0^{\circ}$, $\cos(\beta) = 1$ maximum reflection: $2 \cdot n \cdot d \cdot \cos(\beta) = (m - 0.5) \cdot \lambda$ $2 \cdot 1.5 \cdot 100 \cdot 1 = (m - 0.5) \cdot 600$ m = 1 Answer: yes

11.

You pass laser light $\lambda = 600$ nm through a narrow slit and observe the diffraction pattern on a screen D = 6 [m] away.

The distance on the screen between centers of first minima outside the central bright fringe is 25 mm.

How wide is the slit *a* [m]? *****

First minima means m = 1. $\lambda = 600 \text{ nm} = 600 \cdot 10^{-9} \text{ [m]}$ $y = 0.5 \cdot 25 \cdot 10^{-3} \text{ [m]}$

$$a = \frac{m \cdot \lambda \cdot D}{y} = \frac{1 \cdot 600 \cdot 10^{-9} \cdot 6}{0.5 \cdot 25 \cdot 10^{-3}} = 2.88 \cdot 10^{-4} \text{ [m]}$$

12.

A gamma-ray photon has energy of $E = 2.209 \cdot 10^{-13}$ [J]. Find the wavelength λ [m] of this electromagnetic radiation. *****

 $h = 6.626 \cdot 10^{-34} \text{ [J} \cdot \text{s]}$ $c = 3 \cdot 10^8 \text{ [m/s]}$ $E = h \cdot f = \frac{h \cdot c}{\lambda}$ $\lambda = \frac{h \cdot c}{E} = \frac{6.626 \cdot 10^{-34} \cdot 3 \cdot 10^8}{2.209 \cdot 10^{-13}} = 9 \cdot 10^{-13} \text{ [m]}$