Test 4

1.

The distance to the point source of sound increased by 2 times.
Find how many times the sound intensity has decreased.

$r_{2}=2 \cdot r_{1}$
$I_{1}=\frac{P}{4 \cdot \pi \cdot r_{1}^{2}}$
$I_{2}=\frac{P}{4 \cdot \pi \cdot r_{2}^{2}}$
$\frac{I_{2}}{I_{1}}=\frac{P \cdot 4 \cdot \pi \cdot r_{1}^{2}}{4 \cdot \pi \cdot r_{2}^{2} \cdot P}=\left(\frac{r_{1}}{r_{2}}\right)^{2}=\left(\frac{r_{1}}{2 \cdot r_{1}}\right)^{2}=\frac{1}{4}$
Answer: 4
2.

Intensity of sound is $I=1\left[\mathrm{~W} / \mathrm{m}^{2}\right]$.
Find the sound power $P[\mathrm{~W}]$ passing through the window of $3 \mathrm{~m}^{2}$.

$I=\frac{P}{A}$
$P=I \cdot A=1 \cdot 3=3[\mathrm{~W}]$
3.

Speed of sound in ideal gas is $v_{1}=100[\mathrm{~m} / \mathrm{s}]$ at $T_{1}=127^{\circ} \mathrm{C}$.
Find v_{2} at $T_{2}=-173{ }^{\circ} \mathrm{C}$.

$v_{1}=\sqrt{\frac{\gamma \cdot R \cdot T_{1}}{M}}$
$v_{2}=\sqrt{\frac{\gamma \cdot R \cdot T_{2}}{M}}$
$\frac{v_{2}}{v_{1}}=\frac{\sqrt{\frac{V \cdot R \cdot T}{2}}}{\sqrt{\frac{\sqrt{\cdot R} \cdot T_{1}}{M}}}=\sqrt{\frac{T_{2}}{T_{1}}}$
$v_{2}=v_{1} \cdot \sqrt{\frac{T_{2}}{T_{1}}}=100 \cdot \sqrt{\frac{273-173}{273+127}}=100 \cdot \sqrt{\frac{1}{4}}=\frac{100}{2}=50[\mathrm{~m} / \mathrm{s}]$
4.

Intensity of sound $\left[\mathrm{W} / \mathrm{m}^{2}\right]$ is $I=100 \cdot I_{0}$.
Find the sound loudness $\beta[\mathrm{dB}]$.

$\beta[\mathrm{dB}]=10 \cdot \log _{10}\left(\frac{I}{I_{0}}\right)=10 \cdot \log _{10}\left(\frac{100 \cdot I_{0}}{I_{0}}\right)=10 \cdot \log _{10} 10^{2}=10 \cdot 2 \cdot \log _{10} 10=20[\mathrm{~dB}]$
5.

The car creates a sound with frequency $f_{s}=1 \mathrm{kHz}$ and moves to person at speed $v_{s}=360[\mathrm{~km} / \mathrm{h}]$.
Find the frequency of sound that a person hears $f[\mathrm{~Hz}]$.

$v_{s}=360[\mathrm{~km} / \mathrm{h}]=\frac{360 \cdot 1000[\mathrm{~m}]}{60 \cdot 60[\mathrm{~s}]}=100[\mathrm{~m} / \mathrm{s}]$
$v=343[\mathrm{~m} / \mathrm{s}]$
$f=f_{s} \cdot\left(\frac{v}{v-v_{s}}\right)=1000 \cdot\left(\frac{343}{343-100}\right)=1412[\mathrm{~Hz}]$
6.

The speed of light in material is $v=1.5 \cdot 10^{8}[\mathrm{~m} / \mathrm{s}]$.
Find the refractive index of material n.

$c=3 \cdot 10^{8}[\mathrm{~m} / \mathrm{s}]-$ the speed of light in vacuum.
$n=\frac{c}{v}=\frac{3 \cdot 10^{8}}{1.5 \cdot 10^{8}}=2$
7.

The distance from object to thin lens is $o=12[\mathrm{~cm}]$.
The distance from thin lens to image is $i=6[\mathrm{~cm}]$.
Find the focal length $f[\mathrm{~cm}]$.

$\frac{1}{o}+\frac{1}{i}=\frac{1}{f}$
$\frac{1}{12}+\frac{1}{6}=\frac{1}{f}$
$\frac{3}{12}=\frac{1}{f}$
$f=\frac{12}{3}=4[\mathrm{~cm}]$
8.

The focal length of thin lens is $f=10$ [cm]
Find the lens power P [diopters].

$f=10[\mathrm{~cm}]=0.1[\mathrm{~m}]$
$P=\frac{1}{f}=\frac{1}{0.1}=10$ [diopters]
9.

Light incident normally from a medium 1 (refractive index $n_{1}=2.5$) upon a medium 2 (refractive index $n_{2}=1.5$).
Find reflectivity $R[\%]$.
$R=\left(\frac{n_{2}-n_{1}}{n_{2}+n_{1}}\right)^{2} \cdot 100=\left(\frac{1.5-2.5}{1.5+2.5}\right)^{2} \cdot 100=6.25[\%]$
10.

The film has thickness $d=100 \mathrm{~nm}$ and refractive index $n=1.5$.
Light ($\lambda=600 \mathrm{~nm}$) incident normally upon this film.
Can we see the reflection of this light?

Normally: $\beta=0^{\circ}, \cos (\beta)=1$
maximum reflection: $2 \cdot \mathrm{n} \cdot \mathrm{d} \cdot \cos (\beta)=(m-0.5) \cdot \lambda$
$2 \cdot 1.5 \cdot 100 \cdot 1=(m-0.5) \cdot 600$
$\mathrm{m}=1$
Answer: yes
11.

You pass laser light $\lambda=600 \mathrm{~nm}$ through a narrow slit and observe the diffraction pattern on a screen $D=6[\mathrm{~m}]$ away.
The distance on the screen between centers of first minima outside the central bright fringe is 25 mm .
How wide is the slit $a[\mathrm{~m}]$?

First minima means $m=1$.
$\lambda=600 \mathrm{~nm}=600 \cdot 10^{-9}[\mathrm{~m}]$
$y=0.5 \cdot 25 \cdot 10^{-3}[\mathrm{~m}]$
$a=\frac{m \cdot \lambda \cdot D}{y}=\frac{1 \cdot 600 \cdot 10^{-9} \cdot 6}{0.5 \cdot 25 \cdot 10^{-3}}=2.88 \cdot 10^{-4}[\mathrm{~m}]$
12.

A gamma-ray photon has energy of $E=2.209 \cdot 10^{-13}[\mathrm{~J}]$.
Find the wavelength $\lambda[\mathrm{m}]$ of this electromagnetic radiation.

$h=6.626 \cdot 10^{-34}[\mathrm{~J} \cdot \mathrm{~s}]$
$c=3 \cdot 10^{8}[\mathrm{~m} / \mathrm{s}]$
$E=h \cdot f=\frac{h \cdot c}{\lambda}$
$\lambda=\frac{h \cdot c}{E}=\frac{6.626 \cdot 10^{-34} \cdot 3 \cdot 10^{8}}{2.209 \cdot 10^{-13}}=9 \cdot 10^{-13}[\mathrm{~m}]$

