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The encoding of information in time intervals of an echelon of laser pulses of an object pulse in the optical echo processor
is considered. The measures of information are introduced to describe the transformation of classical information in quantum
information. It is shown that in the description of information transformation into quantum information, the most appropriate
measure is a measure of quantum information based on the algorithmic information theory.

1. Introduction

The methods of dynamical echo holography allow processing
and storage of the information, which is carried by object
laser pulses. They have prospects on creation of high-speed
optical echo-processors [1]. In this case, the information can
be incorporated in the amplitude and temporal shape of the
exciting laser pulses, in their wave fronts and polarization
and also in echelons of laser pulses. Demonstration of
frequency-selective optical memory, where the data record-
ing and processing of data occurs both in the time domain
and in the frequency slot, is described in [2]. The echo-
processor based on use of long-lived photon echo has been
proposed in [3]. The design of this processor is given
an opportunity to demonstrate the density of information
recording and processing about several gigabits/cm2 in [4],
using compression and tension of data signals through a
rapid change of the carrier frequency. From the point of
view of the information theory, it is possible to present an
echo-processor as an information channel with memory and
noise, in an input and output of which the information has
a classical appearance and inside of the channel quantum.
This channel provides the information transmission and
transformation between the different moments in time
and directions in space. Common channel features are the
information rate, throughput rate, and use factor. Attempts
to describe the quantum information processes in general

relied on the formulae of classical information theory, which
was operated with the quantum probabilities, rather than
amplitudes. In [5] it has been shown that the von Neumann
entropy has the information and theoretical value asymp-
totically characterizing the minimal quantum resources
required to describe the ensemble of quantum states. This
suggests that the enhanced information theory should be
defined as a theory which takes into account the quantum
phases explicitly. For example, the theory, developed in
[6], describes a quantum system, divided into many parts,
using only density matrix and von Neumann entropy. This
theory includes the Shannon theory as a special case, but
also describes quantum entanglement and establishing the
correspondence between classical and quantum information
in this way. We consider the system (the message), described
by the variables A (classical or quantum), and construct
its classical and quantum description at the same time. In
classical information theory the entropy of Shannon for A is
defined as:

Jc = −
∑

n

p(a)log2p(a), (1)

where the A takes the value a with probability p(a).
This entropy can be interpreted as uncertainty about A.
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The quantum analogue is the von Neumann entropy (where
the subsystem A is described by the density operator ρA),

J f n = −TrA
[
ρAlog2 ρA

]
, (2)

where TrA denotes the trace over degrees of freedom
subsystem A.

The von Neumann entropy reduces to Shannon entropy,
if ρA is the mixed state, decomposed in orthogonal quantum
state.

In the case of echo-processor information reproduction
depends on coding method. It is obvious that in this case it
will be the best information reproduction if the information
is coded in time intervals of the laser pulses echelon of an
object pulse.

In the given work we will consider the process of
transformation of the classical information put in time
intervals of an echelon of laser pulses in quantum at their
resonant interaction with two level quantum system.

2. Von Neumann Entropy in the Description of
Systems with Coherent Superposition of
Basis States

Expression of the von Neumann entropy for a two-level
system can be represented by means of functions from
matrixes

J f n
(
ρ
)

= − Tr
(
ρlog2 ρ

)
= 1√(

ρ11 − ρ22
)2 + 4

∣∣ρ12
∣∣2

×
[

2
∣∣ρ12

∣∣2log2
λ2

λ1

+
1
2
ρ11

(
ρ22 − ρ11 −

√(
ρ11 − ρ22

)2 + 4
∣∣ρ12

∣∣2
)

log2 λ1

− 1
2
ρ11

(
ρ22−ρ11 +

√(
ρ11 − ρ22

)2 + 4
∣∣ρ12

∣∣2
)

log2 λ2

+
1
2
ρ22

(
ρ11 − ρ22 −

√(
ρ11 − ρ22

)2 + 4
∣∣ρ12

∣∣2
)

log2 λ1

−1
2
ρ22

(
ρ11−ρ22 +

√(
ρ11 − ρ22

)2 + 4
∣∣ρ12

∣∣2
)

log2 λ2

]
,

(3)

where

λ1,2 = ρ11 + ρ22

2
± 1

2

√(
ρ11 − ρ22

)2 + 4
∣∣ρ12

∣∣2
. (4)

In the absence of coherence in the system from (3)
follows

lim
|ρ12|→ 0

J f n
(
ρ
) = −ρ11log2 ρ11 − ρ22log2 ρ22. (5)

As the ρ11 ≤ 1 and ρ22 ≤ 1 then J f n(ρ) ≥ 0. In the case of
a pure state J f n(ρ) → 0.

The more appropriate measure of quantum information
in the presence of coherence in the system can be K-
complexity and the applications of algorithmic information
theory to the description of the quantum information
processes [7, 8].

3. Quantum Structural Information in
the Medium with Phase Memory

Since the structural information in the resonant medium is
carried by transitional dynamic gratings, which are described
by a density matrix, the structural information is contained
in the amplitude and phase structure of the density matrix
ρ. If we match a graph G to this matrix, the measure of
structural information will be defined as the measure of
the structure uncertainty of this graph [8]. In the simplest
case, this uncertainty can be determined by enumerating
the corresponding diagrams of the graph. However, the
resulting measure of information is incomplete, since it
ignores off-diagonal elements of the corresponding matrix
of conditional transitions. We will therefore use the notion
of K-complexity to quantify structural information.

We consider a graph G, corresponding to the density
matrix of the system. Its elements belong to a finite set ∈
V(G), consisting of N labeled vertices and q edges, which
correspond to the diagonal and off-diagonal elements of the
density matrix, respectively. Thus, V = Γ

⋃
Q where Γ is the

set of the vertices of the graph and Q is the set of its edges.
The relative complexityK of the objectG is the minimum

length l(p) of a program p that can derive object Go from G.
We define the amount of structural information of G relative
to Go as

J = K(G,Go)− K(Go). (6)

We will partition the algorithmic process of deriving
object Go from object G into separate steps of bounded
complexity. Each step transforms the current state Gκ of the
object to state Gκ+1

Gκ+1 = Dκ(Gκ). (7)

Operator D is determined by the set of rules for
processing the active part of object G. Thus, we have

Go = D(G). (8)

Since the quantum information lies in the coherent part
of the density matrix, we will consider the elements ∈ Q as
the active part objectG. OperatorD is defined as the operator
of removing elements from the active part of object G by any
possible means [9]:

D(Q) = �. (9)

We will assume that object with the elements, belonging
to the zero set �, has structural information, which is
equal to 0. It is convenient to quantify the length l(p) of
program p on a logarithmic scale as log2 of the sum of all
weighting functions corresponding to diagrams ofGκ. Taking
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the temporal evolution into account, we define the weighting
function as the sum of the active part of elements of object G
at time t. The active part of object G corresponds to diagram
Gκ, referred to the sum of the active part elements of object
G at the initial time instant to. Procedure (9) leads to an
ensemble of sets Q(κ). Since weighted graph G corresponds
to the density matrix

ρ =
N∑

i, j=1

ρi jPi j , (10)

where Pi j are the projector matrices (which have element i j
equal to 1 and all other elements equal to 0), then the sum
S(to) of the active part elements of the object is given at the
initial time by

S(to) = abs

⎛
⎝
∑

i /= j

ρi j(to)

⎞
⎠. (11)

Calculating the corresponding sum S′(t) = ∑κ S
(κ)(t) for

the ensemble of sets Q(κ) at time t, we arrive at:

Jq = log2

(
S′(t)
S(to)

)
. (12)

Since ρ̂ is a Hermitian operator, its matrix elements meet
the equality ρi j = ρ∗ji. Now it is easy to see that our choice
of the operator D brings us to S′(t) and S(to), consisting of
matrix elements sum ρi j + ρji. Thus, S′(t) and S(to) are real
quantities. We should note also that, when the system has
only two quantum states, |1〉 and |2〉, the total state is a linear
superposition |ψ〉 = α|1〉+β|2〉 (where α and β are complex
numbers). The relevant density matrix operator is written as

ρ̂ = ∣∣ψ〉〈ψ∣∣ = |α|2|1〉〈1| +
∣∣β
∣∣2|2〉〈2|

+ αβ∗|1〉〈2| + α∗β|2〉〈1|.
(13)

4. The Transformation Process of
the Classical Information in Quantum
Structural Information

We consider the transformation of the classical information
Jc(A) carried by an object laser pulse during its interaction
with a system of two-level atoms, where the quantum
information Jq carriers which are superposition states of
atoms.

Object pulse can be represented as a sequence (echelon)
of the n rectangular laser pulses (in the general case with
different duration and amplitude εη), separated by arbitrary
time intervals. Time intervals are denoted as τη (η =
1, . . . ,n). Then εη > 0 is the presence of a pulse, and εη =
0 is the presence of a time interval. The duration of the
pulse echelon will be δt = ∑

τη, satisfying δt � T1,T2,
where T1 and T2 are the times of longitudinal and transverse
irreversible relaxation of the system considered.

To describe the process of transformating the classical
information, into quantum information the most appropri-
ate definition of classical information can be a differential

information entropy of the Fourier spectrum of the echelons
of laser pulses, because in the resonant medium information
carriers are q-bits, which are distributed in the range
of the inhomogeneously broadened line of the resonance
transition.

The intensity of Fourier components of the pulse echelon
electric field will be:

E(ν′) =
n∑

η=1

εη

∫ tη

tη−1

e−i2πν′tdt, (14)

where ν′ is the frequency of the Fourier spectrum, and the
time tη of the ηth pulse start is defined as

tη = to +
η∑

κ=1

τκ (15)

and it is assumed that the initial time to = 0. Then from (16)
for the amplitude of the Fourier components of the pulse
echelon electric field we obtain

A(ω′) = ∣∣E(ω′)
∣∣ =

√
Re (E(ω′))2 + Im (E(ω′))2, (16)

where ω′ = 2πν′,

Re(E(ω′)) =
n∑

η=1

εητηsinc

(
ω
′τη

2

)
cos

⎛
⎝
ω′
(

2
∑η

κ=1 τκ − τη
)

2

⎞
⎠,

(17)

Im(E(ω′)) =
n∑

η=1

εητηsinc

(
ω
′τη

2

)
sin

⎛
⎝
ω′
(

2
∑η

κ=1 τκ − τη
)

2

⎞
⎠.

(18)

Differential information entropy of Fourier spectrum of
the laser pulses echelon is defined as J ′c = Jc − Jc0, where

Jc = −
∫∞

−∞
p(ω′) log2 p(ω′)dω′. (19)

There

p(ω′) = A(ω′)∫∞
−∞ Ao(ω′)dω′

, (20)

and Ao(ω′) is determined from the expression (17), Jc0 is
defined similarly to (19) at identical amplitudes and time
intervals in (17) and (18).

To find the values of quantum information (algorithmic
or von Neumann) it is necessary to calculate the density
matrix of the resonant system after exposure to the object
pulse (echelon).

Neglecting power broadening and spectral diffusion
during the object pulse we find the density matrix in the
interaction of the atom with a single Fourier component of
the pulse echelon field with subsequent averaging over all
frequencies.

The electric intensity of Fourier components of the pulse
field can be written as

E(ω′) = 1
2

[
E∗(ω′)ei(ω−ω

′)t + E(ω′)e−i(ω−ω
′)t
]
. (21)
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Figure 1: (a) Information measures in case of position change of the middle pulse in the object pulse echelon. (b) Information measures in
case of position change of the extreme pulse in the object pulse echelon. ξ = τ1/(τ1 + τ2); θ = π/2: area of the object pulse; n = σ · δ where
σ is a half-width of the inhomogeneously broadened line, δt-the pulse echelon duration. Jc: classical information; Jq: quantum information;
J f n: von Neumann entropy.

The frequency of the Fourier spectrum ω′ can be either
> 0 or < 0. The frequency of the transition in an atom = Ω,
but in the case of interaction with the local fields (crystal), it
becomes Ω − Ω′, where Ω′ is the value of frequency shift.
Ω′ can be either > 0 or < 0 within the inhomogeneously
broadened line of the atomic transition. We assume that
ω = Ω, that is, the central laser frequency coincides with the
transition frequency in the absence of the local field.

In this case, the equation for the Fourier components of
the single-particle density matrix can be written as

∂ρ̃

∂t
= − i

�

[
B, ρ̃

]
, (22)

where

B = H̃0 − �A + Ṽ ,

H0 = �(Ω−Ω′)P22, A = (ω − ω′)P22,

e±iAt = P11 + P22e
±i(ω−ω′)t,

Ṽ = −1
2
d[E∗(ω′)P12 + E(ω′)P21],

(23)

d is the dipole moment of the resonance transition, Pi j are

the projector matrices (which have element i j equal to 1 and
all other elements equal to 0)

B =

⎛
⎜⎜⎜⎝

0 −1
2
dE∗(ω′)

−1
2
dE(ω′) �(ω′ −Ω′)

⎞
⎟⎟⎟⎠. (24)

The solution of (22) can be written as

ρ̃(t) = e−i�
−1Btρ(0)ei�

−1Bt. (25)

The bordering exponents in (25) can be determined by
methods of matrix functions. In the case t = 0 ρ22(0) → 0,
ρ11(0) → 1 and

ρ̃(t) ≈ P11

(
cos2 θ

2
+

Δ2

θ′2
sin2 θ

2

)

+ P12

(
−i a

∗

2θ′
sin θ +

a∗Δ
θ′2

sin2 θ

2

)

+ P21

(
i
a

2θ′
sin θ +

aΔ

θ′2
sin2 θ

2

)
+ P22

|a|2
θ′2

sin2 θ

2
,

(26)
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where

Δ = ω′ −Ω′, θ = θ′t, θ =
√
Δ2 + d2E2

0�
−2
∣∣ε̃
∣∣2,

a = dE0�
−1ε̃ei

�k�r , a∗ = dE0�
−1ε̃∗ei�k�r .

(27)

After pulse excitation B = P22�Δ, that is

e±i�
−1B(t′−t) = P11 + P22e

±iΔ·(t′−t), (28)

ρ̃(t′ − t) =
(
P11 + P22e

−iΔ·(t′−t)
)
ρ̃(t)

(
P11 + P22e

iΔ·(t′−t)
)
.

(29)

The final result for the quantum algorithmic information is
of the form

Jq =
∫∞

−∞
p(ω′)dω′

∫∞

−∞
g(Ω′)Jq(ω′,Ω′)dΩ′, (30)

where g(ω′) is the frequency distribution of the inhomo-
geneously broadened line of the resonant transition, and
Jq(ω′,Ω′) is defined by the expression (12).

By analogy, for the von Neumann entropy we have

J f n =
∫∞

−∞
p(ω′)dω′

∫∞

−∞
g(Ω′)J f n

(
ρ(ω′,Ω′)

)
dΩ′, (31)

where J f n(ρ(ω′,Ω′)) is defined by the expression (3).
After the influence on the resonant medium of the

object pulse that carries classical information, this informa-
tion is distributed over separate isochromatic components
of the inhomogeneously broadened line. In other words,
an information-phase grating within the inhomogeneously
broadened line of the resonant transition arises. Every single
q-bit can have a piece of classical (the diagonal part of the
density matrix) and quantum information (off-diagonal part
of the density matrix).

In case when the information lies in the time intervals
of the laser pulse echelon, the minimum structure, which
carries information, is a sequence of three laser pulses with
unequal time intervals τ1 and τ2 between them. For such a
structure the conversion Jc → Jq result is shown in Figure 1.

Figure 1(a) shows the values of information measures in
case of the position change of the middle exciting pulse in
the object pulse echelon and Figure 1(b) shows the values
of information measures in case of the position change of
the extreme exciting pulse in the object pulse echelon (the
object pulse consists of 3 pulses). The highest obtained
correlation coefficient between the classical and quantum
information ≈ 0, 94.

5. Conclusion

The best classical information measure in the case of
information encoding in the time intervals is the differential
information entropy of the object laser pulse Fourier spec-
trum. Quantum information measure, based on algorithmic
information theory, is the most appropriate for description
of superpositional quantum system. Information encoding
in the time intervals in laser pulses’ echelon causes minimal
information distortions in response to the resonant system.
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