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Abstract
Let M be a von Neumann algebra of operators on a Hilbert space and τ be a faithful normal
semifinite trace on M. Let I be the unit of the algebra M. A τ -measurable operator A
is said to be τ -essentially right (or left) invertible if there exists a τ -measurable operator B
such that the operator I− AB (or I − BA) is τ -compact. A necessary and sufficient condition
for an operator A to be τ -essentially left invertible is that A∗A (or, equivalently,

√
A∗A)

is τ -essentially invertible. We present a sufficient condition that a τ -measurable operator A
not be τ -essentially left invertible. For τ -measurable operators A and P = P2 the following
conditions are equivalent: 1. A is τ -essential right inverse for P; 2. A is τ -essential left
inverse for P; 3. I − A,I − P are τ -compact; 4. PA is τ -essential left inverse for P. For
τ -measurable operators A = A3, B = B3 the following conditions are equivalent: 1. B is τ -
essential right inverse for A; 2. B is τ -essential left inverse for A. Pairs of faithful normal
semifinite traces on M are considered.

Keywords Hilbert space · Von Neumann algebra · Normal weight · Semifinite trace ·
Measure topology · τ -measurable operator · τ -compact operator · Rearrangement ·
τ -essentially invertible operator · Idempotent

1 Introduction

The section of functional analysis, called noncommutative integration theory, is an impor-
tant part of the theory of operator algebras. This article is devoted to unbounded analogs of
the classical results on essential invertibility of linear bounded operators on Hilbert spaces.
The beginning of the development of the noncommutative integration theory is related to
the names of I. Segal and J. Dixmier, who in the early 1950s created a theory of integration
with respect to a trace on a semifinite von Neumann algebra [20]. The results of these inves-
tigations found spectacular applications in the duality theory for unimodular groups and
stimulated the progress of “noncommutative probability theory”. The theory of algebras of
measurable and locally measurable operators is rapidly developing and has interesting appli-
cations in various areas of functional analysis, mathematical physics, statistical mechanics,
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and quantum field theory. Hermitian idempotents (A = A2) describe particles that can be
found in two states (the spectrum σ (A) = {0, 1}), tripotents (B = B3) relative to three states
(σ (B) = {− 1, 0, 1}). Every tripotent can be represented as a difference of two idempotents
[5]. The differences of idempotents play an important part in the quantum Hall effect [2, 10,
11]. For invertibility of the difference of idempotents see, for example, [16–18].

Let M be a von Neumann algebra of operators on a Hilbert space and τ be a faithful
normal semifinite trace on M. Let I be the unit of the algebra M. Denote by M̃ the *-
algebra of all τ -measurable operators. Unbounded idempotents and tripotents in M̃ were
studied in [8].

Let μt(X) denote the rearrangement of the operator X ∈ M̃ and M̃0 stand for {T ∈
M̃ : μ∞(T ) = lim

t→∞μt (T ) = 0}. An operator A ∈ M̃ is said to be τ -essentially right (or

left) invertible if there exists an operator B ∈ M̃ such that the operator I − AB (or I − BA)
lies in M̃0. A necessary and sufficient condition that an operator A ∈ M̃ be τ -essentially
left invertible is that A∗A (or, equivalently,

√
A∗A) be τ -essentially invertible (Theorem

3.2). In Theorem 3.4 we present a sufficient condition that an operator A ∈ M̃ not be τ -
essentially left invertible. It is shown in Theorem 3.6 that for τ -measurable operators A and
P = P2 the following conditions are equivalent: (i) A is τ -essential right inverse for P; (ii) A
is τ -essential left inverse for P; (iii) I − A, I − P ∈ M̃0; (iv) PA is τ -essential left inverse
for P. For operators A = A3, B = B3 from M̃ the following conditions are equivalent: (i) B is
τ -essential right inverse for A; (ii) B is τ -essential left inverse for A (Corollary 3.8). Let an
operator T ∈ M̃ be such that the operator I− T lies in M̃0. Then for all operators X ∈ M̃
we have μ∞(TX) = μ∞(XT) = μ∞(X) (Theorem 3.11). Let operators T1, T2, . . . , Tn ∈ M̃
be such that I − Tk ∈ M̃0 for all k = 1,2,. . . ,n. Then I − |T1|, I − T1T2 · · · Tn ∈ M̃0
(Theorem 3.13). Pairs of faithful normal semifinite traces on M are considered (Corollaries
3.18, 3.19).

2 Notation, Definitions, and Preliminaries

Let M be a von Neumann algebra of operators on a Hilbert space H, let Mpr be the
lattice of projections in M. Let M+ be the cone of positive elements from M and let
I be the unit of the algebra M. A mapping ϕ : M+ → [0, +∞] is called a weight if
ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X) for all X, Y ∈ M+, λ ≥ 0 (here 0 · (+∞) ≡ 0).
Let Mpr

ϕ = {P ∈ Mpr : ϕ(P ) < +∞}. A weight ϕ is said to be faithful if ϕ(X) > 0 for
all X ∈ M+, X 	= 0; normal if Xi ↗ X(Xi,X ∈ M+) ⇒ ϕ(X) = supϕ(Xi); a trace if
ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M. A trace is called semifinite if ϕ(X) = sup{ϕ(Y ) : Y ∈
M+, Y ≤ X,ϕ(Y ) < +∞} for each X ∈ M+.

An operator on H (not necessarily bounded or densely defined) is said to be affiliated to
the von Neumann algebra M if it commutes with any unitary operator from the commutant
M′ of the algebra M. Let τ be a faithful normal semifinite trace on M. A closed operator
X, affiliated to M and possesing a domain D(X) everywhere dense in H is said to be τ -
measurable if, for any ε > 0, there exists a P ∈ Mpr such that PH ⊂ D(X) and τ (I − P)
< ε. The set M̃ of all τ -measurable operators is a *-algebra under passage to the adjoint
operator, multiplication by a scalar, and operations of strong addition and multiplication
resulting from the closure of the ordinary operations [19, 20]. If an operator X belongs to
M̃ then its real and imaginary components RX = (X + X∗)/2,IX = (X − X∗)/(2i) lie in the set
M̃sa

of all self-adjoint τ -measurable operators, and |X| = √
X∗X lies in the cone M̃+

of
all positive τ -measurable operators.
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Let μt(X) denote the rearrangement of the operator X ∈ M̃, i.e., nonincreasing right-
continuous function μ(X): (0,∞) → [0,∞), given by the formula

μt (X) = inf {‖ XP ‖: P ∈ Mpr, τ (I − P) ≤ t}, t > 0.

The sets U(ε, δ) = {X ∈ M̃ : (‖ XP ‖≤ ε and τ(I −P) ≤ δ for some P ∈ Mpr)}, where
ε > 0, δ > 0, form a base at 0 for a metrizable vector topology tτ on M̃, called the measure
topology ([19, 22, p. 18]). Equipped with this topology, M̃ is a complete topological *-
algebra in which M is dense. We will write Xnτ → X if a sequence {Xn}∞n=1 converges

to X ∈ M̃ in the measure topology on M̃. A sequence {Xn}∞n=1 is said to be converge

τ -locally to X ∈ M̃ (notation: Xnτ l → X) if XnPτ → XP for all P ∈ Mpr
τ , cf. [12, p.

114].
The set of τ -compact operators M̃0 = {X ∈ M̃ : μ∞(X) ≡ lim

t→∞μt (X) = 0} is

an ideal in M̃ [23]. The set of τ -elementary operators F(M) = {X ∈ M : μt (X) =
0 for some t > 0} is an ideal in M. Let m be a linear Lebesgue measure on R. A non-
commutative Lp-Lebesgue space (0 < p < +∞) affiliated with (M, τ ) can be defined as
Lp(M, τ ) = {X ∈ M̃ : μ(X) ∈ Lp(R+, m)} with the F-norm (the norm for 1 ≤ p < +∞)
‖X‖p = ‖μ(X)‖p, X ∈ Lp(M, τ ). We have F(M) ⊂ Lp(M, τ ) ⊂ M̃0 for all 0 < p <

+∞.
An operator A ∈ M̃ is said to be τ -essentially right (or left) invertible if there exists

an operator B ∈ M̃ such that the operator I − AB (or I − BA) is τ -compact. An operator
A ∈ M̃ is said to be τ -essentially invertible if there exists an operator B ∈ M̃ such that the
operators I − AB and I − BA are simultaneously τ -compact. On τ -compactness of products
of τ -measurable operators see [9].

Lemma 2.1 (see [13, 23]). We have μs+t(X + Y ) ≤ μs(X) + μt(Y ) for all X, Y ∈ M̃ and
s, t > 0.

If M = B(H) is the *-algebra of all bounded linear operators on H and τ = tr is the
canonical trace then M̃ coincides with B(H), and M̃0 coincides with the ideal of compact
operators on H; the τ -local convergence coincides with the strong-operator convergence.
We have μt (X) = ∑∞

n=1 sn(X)χ [n−1,n)(t), t > 0, where {sn(X)}∞n=1 is the sequence of
s-numbers of the operator X [14, Chap. II, §2] and χA is the indicator of the set A ⊂ R.
Then the space Lp(M, τ ) is a Shatten–von Neumann ideal Sp, 0 < p < +∞.

Let (	,ν) be a measure space and M be the von Neumann algebra of multiplicator
operators by functions from L∞(	,ν) on the space L2(	,ν). The algebra M containes no
compact operators ⇐⇒ the measure ν has no atoms [1, Theorem 8.4].

3 On τ -essentially Invertible τ -measurable Operators

Let τ be a faithful normal semifinite trace on a von Neumann algebra M and τ (I) = ∞.

Proposition 3.1 For every τ -essentially left (or right) invertible operator A ∈ M̃ its τ -
essential left (or right) inverse may be chosen in M. The set LA = {B ∈ M̃ : I − BA ∈
M̃0} (or {B ∈ M̃ : I − AB ∈ M̃0} ) is convex and tτ -closed in M̃. If operators
A, T ∈ M̃ have τ -essential left inverses B,S, respectively, then TA has a τ -essential left
inverse TSBS.

International Journal of Theoretical Physics (2021) 60:56 –577 5 569



Proof By [21, p. 75] we have M̃ = M̃0 + M (i.e. every operator X ∈ M̃ has the
form X1 + X2 with X1 ∈ M̃0 and X2 ∈ M). We also have I − (tB1 + (1 − t)B2)A =
t (I −B1A)+(1−t)(I −B2A) ∈ M̃0 for all t ∈ C and B1,B2 ∈ LA. Since the multiplication
operation Z �→ ZY(M̃ → M̃) is tτ -continuous and M̃0 is tτ -closed in M̃, the set LA
is tτ -closed in M̃. Finally, we have C = I − ST,TACBS ∈ M̃0 and T (I − AB)S =
(−I +T S)+ (I −TA(T S +C)BS) = (−I +T S)+ (I −TA ·TSBS)−TACBS ∈ M̃0. If an
operator T ∈ M̃ is invertible in M̃ then TAT− 1 is τ -essentially left (or right) invertible.
The proposition is proved.

Theorem 3.2 A necessary and sufficient condition for an operator A ∈ M̃ to be τ -
essentially left invertible is τ -essential invertibility of A∗A (or, equivalently, |A|).

Proof The proof is similar to the proof of Theorem 14.4 [15].

Corollary 3.3 A necessary and sufficient condition for an operator A ∈ M̃ to be τ -
essentially right invertible is τ -essential invertibility of AA∗ (or, equivalently, |A∗|).

Theorem 3.4 A sufficient condition for an operator A ∈ M̃ not to be τ -essentially left
invertible is the existence of a tτ -bounded sequence {Xn}∞n=1 ⊂ M̃ suchthat

Proof If AXnτ → 0(n → ∞), and I − BA = C ∈ M̃0, then

Xn − CXn = Xn − (I − BA)Xn = BAXnτ → 0 (n → ∞),

since the multiplication operation Z �→ YZ(M̃ → M̃) is tτ -continuous. The mapping
Z �→ Z∗(M̃ → M̃) is tτ -continuous, hence

(Xn − CXn)
∗ = X∗

n − X∗
nC

∗τ → 0 (n → ∞). (1)

Since C∗ ∈ M̃0 and X∗
nτ l → 0(n → ∞), by Theorem 2 of [3] we have

X∗
nC

∗τ → 0 (n → ∞).

Now via (1) we have X∗
nτ → 0(n → ∞). The mapping Z �→ Z∗(M̃ → M̃) is

tτ -continuous, hence Xnτ → 0(n → ∞) – a contradiction. Theorem is proved.

Corollary 3.5 A sufficient condition for an operator A ∈ M̃ not to be τ -essentially right
invertible is the existence of a tτ -bounded sequence {Xn}∞n=1 ⊂ M̃ such that

Theorem 3.6 For τ -measurable operators A and P = P2 the following conditions are
equivalent:

(i) A is τ -essentialright inverse for P;
(ii) A is τ -essentialleft inverse for P;
(iii) I − A, I − P are τ -compact;
(iv) PA is τ -essentialleft inverse for P.
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Proof

(i)⇒(iii). We have I − P = (I − P)(I − PA) ∈ M̃0 and I − A = I − PA − (I −
P)A ∈ M̃0.

(iii)⇒(i), (ii). We have I − PA = I − A + (I − P)A ∈ M̃0 and I − AP = I − A +
A(I − P) ∈ M̃0.

(ii)⇒(iii). Since I −P = (I −AP)(I −P) ∈ M̃0 the inclusion I −A = I −AP −
A(I − P) ∈ M̃0 holds.

(iv)⇒(i). Note that I −P = (I −P)(I −PAP) ∈ M̃0 and AP −PA = (I −P)A−
A(I −P) ∈ M̃0. So (I −PA)− (I −PAP) = (AP −PA)(I −P) ∈ M̃0
and I − PA ∈ M̃0.

(i)⇒(iv). We have I −P = (I −P)(I −PA) ∈ M̃0 and −(I −P)+ (I −PAP) =
(I − PA)P ∈ M̃0. Thus I − PAP ∈ M̃0. Theorem is proved.

Example 3.7 (Example 1 in [7]). The idempotence does not imply boundedness. Assume
that 0 < p,q < ∞ and an = 2n+ 1n−q, n ∈ N. Let us equip the von Neumann algebra
M = ⊕∞

n=1M2(C) with the faithful normal finite trace ϕ = ⊕∞
n=12

−ntr2 and put A =
⊕∞

n=1

(
1an

0 0

)

. We have A = A2, the operator A lies in Lp(M, ϕ) if pq > 1, and A /∈
Lp(M, ϕ) if pq ≤ 1.

Corollary 3.8 For operators A = A3, B = B3 from M̃ the following conditions are
equivalent:

(i) B is τ -essential right inverse for A;
(ii) B is τ -essential left inverse for A.

Proof We show (i)⇒(ii). Let P = P2, Q = Q2, S = S2, T = T2 in M̃ be such that

PQ = QP = 0, ST = T S = 0 and A = P − Q,B = S − T ,

see Proposition 1 in [5]. Since I − AB ∈ M̃0, we conclude that

I − A2B2 = A(I − AB)B + (I − AB) ∈ M̃0.

Since A2 = P + Q = (A2)2 and B2 = S + T = (B2)2, by Theorem 3.6 we have

I − B2A2 ∈ M̃0. (2)

Since V = I − PS − QT = 2−1((I − AB) + (I − A2B2)) ∈ M̃0, the operators P − S =
PV − V S, Q − T = QV − V T lie in M̃0. Therefore, there exist K,C ∈ M̃0 such that P =
S + K, Q = T + C. Now by (2) we have

I − BA = I − B2A2 + 2TP + 2SQ = I − B2A2 + 2T (S + K) + 2S(T + C)

= I − B2A2 + 2TK + 2SC ∈ M̃0.

The implication (ii)⇒(i) can be handled similarly. The assertion is proved.

Theorem 3.9 If an operator A ∈ M̃ is τ -essentially right and left invertible then it is
τ -essentially invertible.
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Proof We show that the difference B1 − B2 of any τ -essential right B1 and left B2 inverses
is τ -compact and both B1 and B2 are τ -essential inverse for A. Let

I − AB1 = X1, I − B2A = X2.

Then X1, X2 ∈ M̃0 and (I − X2)B1 = B2AB1 = B2(I − X1), hence B1 = B2 + X with
X = X2B1 − B2X1 ∈ M̃0. Therefore

B1A = B2A + XA = I − X2 + XA.

This completes the proof.

Corollary 3.10 For an operator A ∈ M̃sa
the following conditions are equivalent:

(i) A is τ -essentially right invertible;
(ii) A is τ -essentially left invertible;
(iii) A is τ -essentially invertible.

In this case the operator A also possesses a self-adjoint τ -essential inverse.

Proof An operator X ∈ M̃ is τ -essentially right invertible if and only if the adjoint
operator X∗ is τ -essentially left invertible. Let an operator A ∈ M̃sa

and an operator

B ∈ M̃ be such that I −AB, I −BA ∈ M̃0. Then 2
(
I − AB+B∗

2

)
= 2I −AB −AB∗ =

I − AB + (I − BA)∗ ∈ M̃0. This completes the proof.

Theorem 3.11 Let an operator T ∈ M̃ be such that the operator I − T is τ -compact.
Then for all operators X ∈ M̃ we have μ∞(TX) = μ∞(XT) = μ∞(X).

Proof For X ∈ M̃0 the assertion is obvious. Assume that X /∈ M̃0. Since (I − T )X ∈
M̃0, we have

∀ε > 0∃t1 > 0∀t > t1 (μt/2((I − T )X)) < ε).

The function μ(X) is nonincreasing, so

∀ε > 0∃t2 > 0∀t > t2 (μ∞(X) ≤ μt (X) < μ∞(X) + ε).

Let ε > 0 be arbitrary and t0 = max{t1,t2}. We have for all t > t0 via Lemma 2.1 the
following estimates:

μ∞(X) ≤ μt (X) = μt ((I − T )X + TX) ≤ μt/2((I − T )X) + μt/2(TX)

≤ ε + μt/2(TX),

i. e. μt(TX) ≥ μ∞(X) − ε for all t > 2t0. On the other hand via Lemma 2.1 for all t > 2t0
we have

μt (TX) = μt (X − (I − T )X) ≤ μt/2(X) + μt/2((I − T )X)

≤ μ∞(X) + 2ε.

The rest is obvious. The theorem is proved.

Corollary 3.12 Let an operator A ∈ M̃ have a τ -essential right (or left) inverse B ∈ M̃.
Then for all operators X ∈ M̃ we have μ∞(ABX) = μ∞(XAB) = μ∞(X) (or μ∞(BAX) =
μ∞(XBA) = μ∞(X)).
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Theorem 3.13

(i) s Let operators T1, T2, . . . , Tn ∈ M̃ be such that I − Tk ∈ M̃0 for all k = 1,2,. . . ,n.
Then I − |T1|, I − T1T2 · · · Tn ∈ M̃0.

(ii) Let operators T1, T2, . . . , Tn ∈ M be such that I −Tk ∈ F(M) for all k = 1,2,. . . ,n.
Then I − |T1|, I − T1T2 · · · Tn ∈ F(M).

Proof

(i). We have I − |T1|2 = I − T ∗
1 T1 = I − T1 + (I − T1)

∗T1 ∈ M̃0. Since the operator
I + |T1| is invertible with (I + |T1|)−1 ∈ M+, the operator I −|T1| = (I −|T1|2)(I +
|T1|)− 1 belongs to M̃0. Consider A = T1T2· · ·Tn. We have

I − A = (I − T1) + (T1 − T1T2) + (T1T2 − T1T2T3) + · · · + (T1T2 · · · Tn−1 − A)

= (I −T1)+T1(I −T2)+T1T2(I −T3)+· · ·+T1T2 · · · Tn−1(I −Tn) ∈ M̃0.

The item (ii) can be handled similarly. The theorem is proved.

Example 3.14 Let us equip the von Neumann algebra M = ⊕∞
n=1M2(C) with the faithful

normal semifinite trace τ = ⊕∞
n=1tr2 and set

X = ⊕∞
n=1

(
1/2 1/2
1/2 1/2

)

, Z = ⊕∞
n=1

(
1 0
0 −1

)

.

Then X ∈ Mpr, Z ∈ Msa and XZX = 0 ∈ M̃0, but the operator XZ /∈ M̃0.

Proposition 3.15 If an operator A ∈ M̃ is such that An ∈ M̃0 for some n ∈ N then A
is not τ -essentially left (or right) invertible.

Proof An operator A ∈ M̃ is τ -essentially left invertible if and only if A2k
is τ -essentially

left invertible for all k ∈ N. Indeed, if I − BA2 = C ∈ M̃0, then BA is a τ -essential left
inverse of A; if, on the other hand, I − BA = C ∈ M̃0, then

I − B2A2 = I − B(I − C)A = I − BA + BCA = C + BCA ∈ M̃0,

so B2 is a τ -essential left inverse of A2. Thus, for a τ -essentially left invertible A and k ∈ N

with 2k ≥ nwe have a τ -essentially left invertible τ -compact operator A2k
– a contradiction.

Since A∗n = An∗ ∈ M̃0, an operator A is also not τ -essentially right invertible. By
Corollary 3.12 we have μ∞(B2m

A2m
X) = μ∞(XB2m

A2m
) = μ∞(X) for all X ∈ M̃ and

m ∈ N. The assertion is proved.

Remark 3.16 Corollary 3.8, Theorems 3.4, 3.6, 3.11 and 3.13 are new even for the algebra
M = B(H) endowed with the canonical trace τ = tr.

Theorem 3.17 Let τ be a faithful normal semifinite trace on a von Neumann algebra M
and ϕ be a normal weight on M. If Mpr

τ ⊂ Mpr
ϕ , then

∀ε > 0∃δ > 0 (P ∈ Mpr, τ (P ) < δ ⇒ ϕ(P ) < ε).

Proof Assume the contrary. Then

∃ε > 0∀δ > 0∃Pδ ∈ Mpr (τ (Pδ) < δ and ϕ(Pδ) ≥ ε).
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Choose δn = 2−n for all n ∈ N and put P = ∨∞
n=1Pδn , the least upper bound of {Pδn}∞n=1.

So
τ(P ) ≤

∑∞
n=1

τ(Pδn) <
∑∞

n=1
2−n = 1 < +∞

and ϕ(P) < +∞. The restrictions τ 1 = τ |MP
, ϕ1 = ϕ|MP

are normal functionals on the
reduced von Neumann algebra MP (= PMP), moreover, ϕ1 = ϕ(P · P) and τ 1 = τ (P ·
P) is faithful and tracial. Let T = dϕ1

dτ 1
∈ L1(MP , τ 1) be the Radon–Nicodym derivative

[20, Theorem 14]. Then by absolute continuity of the Segal’s integral (see also [6, Theorem
2.10]) we have ϕ(Pδn) = ϕ1(Pδn) = τ 1(T Pδn) = τ 1(PδnT Pδn) → 0 as n →∞. A
contradiction. Theorem is proved.

Corollary 3.18 Let τ ,ϕ be faithful normal semifinite traces on a von Neumann algebra
M and Mpr

τ ⊂ Mpr
ϕ . Then

(i) every τ -measurable operator is ϕ-measurable operator;
(ii) every τ -compact operator is ϕ-compact operator;
(iii) every τ -elementary operator is ϕ-elementary operator;
(iv) every τ -essentially left invertible operator is ϕ-essentially left invertible operator;
(v) every tτ -convergent sequence of τ -measurable operators is tϕ-convergent.

Proof

(i). Let X be a closed densely defined linear operator affiliated to the von Neumann

algebra M and |X| =
∞∫

0
λP |X|(dλ) be the spectral decomposition. Then X is τ -

measurable if and only if there exists λ ∈ R such that τ (P|X|((λ,+∞))) < +∞.
(ii). We have M̃0 = {X ∈ M̃ : τ(P |X|(λ,∞)) < +∞∀λ > 0}.
(iii). An operator X ∈ M is τ -elementary if and only if there exists P ∈ Mpr

τ such that
XP = 0.

(iv). Follows by (ii).
(v). The topology tτ can be determined by the metric

ρτ (X, Y ) = inf
P∈Mpr

max{‖ (X − Y )P ‖, τ (I − P)}

for all τ -measurable operators X, Y.

Corollary 3.19 ([4, Corollary 1]). For a von Neumann algebra M with faithful normal
finite trace, the topology of convergence in measure on M̃ is independent of the choice of
such a trace.
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