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New Analytical Solutions for Phreatic Darcian
Flows Over Non-Planar Bedrocks

Anvar Kacimov, Yurii Obnosov and Osman Abdalla

1 Introduction

Groundwater flow in unconfined aquifers is characterized by a free (phreatic) surface
and nonlinear boundary conditions there [ 1, 2]. Common catchment-scale reconnais-
sance models or regular annual assessment of aquifers’ resources utilize a hydraulic
Dupuit-Forchheimer (DF) approximation, which in steady regimes requires solving
aboundary-value problem for a second-order ordinary differential equation. A more
general, potential theory (PT), solves Laplace’s equation, provided the aquifer is
homogeneous. In the arid climate of Northern Oman, with a periodic occasional
rainfalls of 200-300 mm/year in mountains (2-3 km high) and 100 m/year in the
valley zones of catchments, which are several tens of kilometers long, recharge from
the vadose zone to the water table can be neglected everywhere but the fractured rock
in upper reaches of North Oman Mountains (NOM). The main factor controlling the
shape and locus of the phreatic surface is the subjacent bedrock whose geometry is
commonly inferred from geological data.

In the study area (Northern Oman), for which our model is developed, the geology
ranges from the Precambrian basement rocks, mainly phyllites and slates, at the bot-
tom of the succession occupying the core of NOM to karstified carbonate rocks (Hajar
Supergroup, HSG) at the elevated areas to fractured ophiolitic sequence overlain by
porous medium of Tertiary limestones and Quaternary alluvium gravel at the top of
the geologic section. Recent monitoring of the water table, whose slope is steep in
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the mountains and relatively mild in the valley part of the catchment, revealed a puz-
zling spatial variability, detected in direct borehole observations and reconstructed
geophysical (mostly TDEM) surveys. The degree of this steepness, position of the
water table and other aquifer characteristics are vital because groundwater is the
main resource for agriculture and other sectors of Omani economy.

In standard DF or PT models the bedrock boundary of an unconfined aquifer
is assumed to be planar [2]. In Refs. [3, 4] steep slopes of the free surface were
attributed to a “groundwater fall” geometry of the bedrock, i.e. a non-planar aquifuge
boundary making a step-down. In hillslope hydrology, both the DF and PT models
are used but explicit closed-form solutions (like ours below) to phreatic-surface flow
problems are rare. Here we extend the model of Ref. [4] and consider the following
bedrock “anomalies™: (a) an aquifer with an underlying aquifuge whose inclination
changes abruptly from aquifer’s upflow to downflow (Fig. 1) and (b) an aquifuge with
a continuously varying slope. Correspondingly, we apply two different techniques:
the hodograph method [4] and boundary-value problem method [5]. We assume a
Darcian flow, ignore the capillary fringe, accretion or evapotranspiration to/from the
vadose zone and any sinks-sources (e.g. pumping wells) in the flow domain.

w=gh
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exposed as a fan or badja)
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Fig. 1 Phreatic flow over a corner-shaped aquifuge; physical, complex potential, hodograph,
inverted and auxiliary domains
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2 Flow Over Non-Planar Aquifuge

The bedrock AOD makes a corner (Fig. 1). The origin of a Cartesian coordinate sys-
tem coincides with the vertex O. The flanks of the wedge, OD and AO, dip at angles
a7 (counted from Ox positive clockwise) and f 7 (positive counterclockwise), cor-
respondingly. Without any loss of generality we consider here the “hillslope™ case
of 0 < a =const < 1/2, 0 < B = const < 1/2. If a > B, flow decelerates
downstream of the transition zone near point O, otherwise it accelerates. The flow
rate (per unit length perpendicular to the plane of Fig. 1) is Q. A PT-based solu-
tion was obtained in Ref. [1] fora = —1/2, B = 1/2; in Refs. [3, 4] the case of
a =0, = 1/2 was studied, in Ref. [2] winding seepage in domains with sharp-
edged impermeabilities was considered.

If a > 0and p < 1/2, then BC far upflow and downflow of O is parallel to
the bedrock i.e. a 1-D unidirectional flow is “normal” of saturated thicknesses Hy
and Hy far above and below point O, respectively. The corresponding zones are
schematically demarcated by dotted lines in Fig. I. In these zones flow is aligned
with the bedrock, the 1-D DF approximation works well and gives exactly the same
solution as PT. In the conjugation zone of Fig. 1, the free surface BC is essentially
non-straight. Dashed lines in Fig. 1 represent the “primitive” phreatic surface cor-
responding to two “normal” flows at constant slopes a 1 and f 7, i.e. the straight
lines y = —tana 7tx + Ho/cos a7 and y = —tan  wx + H;/cos B 7. The “primitive”
lines intersect at the point M and the corresponding “phreatic corner” BMC would
be a simplistic Dupuit replica of AOD, translated. The angularity of AOD affects the
shape of BMC in PT.

We introduce a complex physical coordinate z = x+iy, hydraulic head h(x, y),
Darcian velocity vector V.= —kVh, velocity potential ¢ = —kh, stream function s,
complex potential w = ¢ +i and complexified Darcian velocity V = u + iv. ¢,
and h are harmonic functions. ¢ + ky = 0 along BC. In the w-plane we have a strip
Gy (Fig. 1) corresponding to the flow domain G,. In the hodograph plane, we have a
circular triangle Gy . In Fig. I the case of & > B is illustrated with O being a stagnation
point. If a < B then Vo = oo i.e. the hodograph trigon is infinite. The magnitudes
of velocities in the “normal” flow zones of Fig. 1 are |Va| = |Vg| = ksina 7t and
[Vcl = |Vp| = ksin B 7. From the mass balance, Q = Hy|Va| = H;|Vp|. We use the
method of inversion [2] and invert Gy into a trigon G, where w = dz/dw (Fig. I). If
a < Pthen G, inFig. | is a standard triangle. We map conformally G, onto G, viaan
auxiliary plane ¢ = & 411 using the Schwarz—Christoffel formula twice. After some
algebra we obtain equations of BC. Fig. 2 represents the results of computations for
a = 0.35,B = 0.1. This and computations for other tilt angles illustrate the accuracy
of the DF approximation as compared with a full 2-D model.

The case of AOD in Fig. 1 as an arbitrary curve is tackled by the method from
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Fig. 2 Phreatic surface for
a = 0.35,8 = 0.1 (solid
curve) computed by PT,
dashed lines are DF asymp-
totics
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singular (Cauchy-type) integrals. Like on Fig. 2 the phreatic surfaces are plotted but

the confining boundary also emerging as a part of solution.

Similarly to Ref. [6] our groundwater system if gravity-controlled. However, con-
trary to a humid climates (e.g. Canada), the water table in arid climates and catch-
ments with a tick vadose zone is a “hydraulic” replica of the bedrock rather than of

land topography.
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