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Abstract—A mathematical model of incompressible viscous laminar flow in smooth coil tubes is pro-
posed and the results of its numerical realization in a nonorthogonal helical coordinate system are pre-
sented. This coordinate system is free of singularities in the domain of definition of the unknown
functions, that is, the pressure and the velocity components, which makes it possible to refine the ex-
isting distributions of the axial component and the secondary crossflows obtained using the well-known
orthogonal coordinate system having a singularity at the center of the coil channel. The momentum
transport equation is written in the projections on the axes of the natural basis of the coordinate system,
which makes it possible to subdivide the system of equations into two alternately solved subsystems.
The distributions of the axial and two transverse components show that at the center of coil tubes the
transverse components are comparable with the axial velocity (the transverse components can be as high
as half the mean-flow-rate velocity and one third of it at the center of the channel).
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Curved coil tubes are conventionally used as effective component parts of the present-day heat-exchange
equipment [1-11].

Widely used in the industry are the coil tubes [1-4, 12—15] with a constant radius of the helical spiral
bend immersed in a reservoir with a fluid. The methods of their engineering calculation are described in
both the Russian [16] and foreign [12—15, 17-19] literature. In this connection, the detailed theoretical and
experimental investigations of the hydrodynamic and heat-transfer processes in the flow-through sections of
curved coil tubes seem very topical.

The foundation for developing the mathematical models of viscous flows is given by studies [20-23],
where flows in the channels with a slightly curved axis were investigated. These flows were described
using the simplified Navier—Stokes equations for curved tubes with a small curvature of the axis. Later, this
approach was applied in the case of laminar fluid flows in coils [24, 25].

Typical of laminar flows in coil tubes with arbitrary values of the curvature and the torsion of the central
helical line are, as in flows in turns (toruses), secondary flows [7]. Precisely the transverse circulation of
the fluid in flow-through sections of the curvilinear channels under consideration is the main reason for
the enhancement of heat-transfer processes [5-10]. Natural for these flows are the suppositions on the
importance of the secondary flows at the center of a coil tube and of a nonsymmetric distribution of the
transverse velocity components in a section relative to the line whose direction vector coincides with the
vector of the principal normal to the central helical line. Thus, the transverse components in the orthogonal
coordinate system cannot be determined at the center of a section [24, 25]; they considerably vary in its
vicinity and can be assessed only with large errors. In this case, different simplifications and approximations
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are invoked, which, however, do not allow one to estimate in the full measure the velocity fields in the central
region of a channel [26]. The use of the nonorthogonal coordinate system proposed below makes it possible
to obtain a more accurate flowfield pattern in this region.

There are known some studies, for example, [12, 19], that use numerical methods for solving the prob-
lems of viscous flow in coils written in the Cartesian coordinate system in the three-dimensional formula-
tion. In this case, the helical symmetry is not taken into account and the necessary amount of numerical
calculations becomes unwarrentedly large. Well-known in the literature and fairly completely described are
also special helical coordinate systems [24, 25, 27-30], which make it possible to reduce the solution of
three-dimensional problems to two-dimensional ones. In [24, 25] orthogonal and nonorthogonal coordinate
systems were proposed. However, the orthogonal system has one shortcoming, namely, the translation along
the helix is not the translation along one of the independent variables. Because of this, after the system of
governing equations has been written in the orthogonal system, the inverse passage to the variables of the
nonorthogonal system is inevitable.

The fractional step method proposed in [31] for analyzing the heat transfer processes in laminar flows
with fully formed velocity and pressure profiles in curved toroidal tubes uses the toroidal coordinate system.
In this case, the solution of the problem formulated depends only on two variables determined in the cross-
section of the curved tube. In view of the fact that at the center of the cross-section of a toroidal tube
there is the singular point of this coordinate system (the Jacobian is zero), in [31] it was proposed to use
the symmetry of the flows under consideration about the line passing through the vector of the principal
normal to the axial line of tube and to seek the unknown velocity and pressure fields only in one half of
the cross-section. This approach makes it possible to pass over the singular point of the system. In our
case, in which the axial line torsion must be taken into account, the symmetry condition is violated and the
consideration of the flow only in a half of the cross-section becomes unjustified. However, the approach [31]
can be used in the case of flow in coil tube, when the bend radius is considerable greater than the diameter
of its flow-through section [32-34].

As shown in [7], the heat transfer effect is considerably greater in the coil heat-exchangers with a small
bend radius of the coil, since the effect of toroidal vortex formation and mixing most clearly manifests itself
in the flow-through sections of these tubes. The special feature of these flows is that they are different from
the hydrodynamic conditions of flows in toroidal tubes, earlier comprehensively considered in [31]. Owing
to the violation of the flow symmetry in the tubes, a flow analysis in only half of the cross-section becomes
inadequate.

The main purpose of this study is to obtain and to analyze the hydrodynamic characteristics over wide
ranges of the geometric and regime parameters throughout the entire flow region, including the central
regions of the coil tubes under consideration. Since the crossflows are the reason for an enhancement of
heat-transfer processes in the coil tubes, it is necessary to obtain the profiles of the transverse velocity
components in order to estimate their values, compared with the axial flows.

1. MATHEMATICAL MODEL

Since the geometric shape of the coil channels and the system of equations of motion and continuity are
invariant with respect to translations along the helical spiral, we note the fact of the existence and uniqueness
of the solution of this system under certain restrictions imposed on the Reynolds number [35]. When using
the conventional Cartesian coordinate system the numerical solution essentially depends on three spatial
coordinates, which makes the calculations considerably more difficult and diminishes their accuracy and the
processing and presentation of the results obtained.

We will assume that the incompressible fluid flow is steady, isothermal, and laminar. In the fluid flows
in coil channels the density p varies only slightly.

For the purpose of using the geometric symmetry of the coil channels we will consider the helical coor-
dinate system related with the Cartesian coordinate system by the following equations
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where Kk =2R/d and w = S/(2nR) are the parameters of the central helix, S is the helical channel pitch, d/2
is the coil tube radius, and R is the bend radius of the central helical line of the coil tube.
Any curve is usually characterized by two parameters, namely, the curvature k and the torsion 7 [24, 25, 29].
In particular, for a helical line we can write

. R _ S/
TR+ /o2 TR+ /o)

It might be expected that the problem solution depends on the curvature, the torsion, and the Reynolds
number. As shown in [25], for the helical axial line the problem solution depends on the ratio A = 7/k =
S/(2mR) = w and the Reynolds number. In our case, the solution is determined by two geometric simplexes,
kK and 6 = w/v/'1 + w?. The parameter o is a function of A, while the parameter x is responsible for the
ratio of the bend radius of the central helix to the coil tube radius.

For the adequacy of the passage from the Cartesian to the helical coordinate system it is necessary to
ensure the condition that the corresponding Jacobian of the passage is nonzero

d\° 1 s |
J:<§> W(K(l +w) — &) #0.

Hence it follows that the one-to-one correspondence between the Cartesian x, y, z and helical 61, 52, 53
coordinates is valid at ' # k(1 + w?) or k(1 4+ w?) > 1. This condition is always fulfilled, since xk > 1.

In [30] the similar problem was solved in the coordinate system, whose parameters depended on the
curvature and the torsion. The Navier—Stokes equations were written in the projections on two vectors of
the natural basis and on one vector of the dual basis directed perpendicular to the plane of the two former
vectors. As a result, the unknown function of the dimensionless pressure was present in three equations,
which made the calculations considerably more difficult and diminished their accuracy.

In our case, the &', £2, &3 coordinate system has the following characteristics.

The covariant components of the metric tensor divided by (d/2)? take the form:

gn=1 gn=1, gun=(E" - x)?+ 0*(&»)* + w'x?),
gn=81=0, gi3=g3=-0E" gn=gn=0c&"

The contravariant components of the metric tensor divided by 1/(d/2)? are as follows:
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The nonzero Cristoffel symbols of the first kind normalized by d/2 are as follows:
Tia=Tia=0, Tyni=Tu1=-0, Tni=Tui=0> Tuy=-0¢%

T33=T3=(&" — x), T30 =—(&" — k).
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Those of the second kind are as follows:
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Clearly that, as distinct from the orthogonal coordinate system of general form, the following Cristoftel
symbols are additionally nonzero. These are two symbols of the fist kind, I'312 =I'132 =0 and I'35 | =
I'23 1 = —0 and two symbols of the second kind, 1"%1 = 1"%3 = g221“1372 + g23l“1373 and Féz = l“%3 = g“l“2371 +
gPTas3.

In the chosen coordinate system (1.1) and in the projections on the natural axes the system of equations
of motion and continuity takes the form:

% ,oV! ov3 ov3
Re, vl v? vl Vi
e <g11 FED +&n P +813 FED +813 P
+2(gnT s + g1aTi3)V'V2 + 2gnT5V2V2 + (gniTas + g13T33)V°V?) (1.2)
) OBl 0B?
B p1 + 1 + é
d& Ja&l  d¢

I p3 12 03 13 p3 .13 pl
—T'13B] —I'[3B; — 1383 +F31B1>7

2 3

s A% A%
Re, <822V Al + 822V28§2 + 823‘/1851

+2(g22TTs + 823T13)V'V2 + (822153 + g23T33)V7V?) (1.3)
__9p 0B} N 0B3
=5 T g T a;

8 3
+ gnVias

I p3 3 pl
— I'y3By + F31B2>7

jov! ov! av? av? ov? V3
Re. <g31V Al + 831V28§2 +g32V18§1 +g32V28§2 + 833Vlagl +g33V28—§2

+2(g3 T3 + gl + gnlis)V'VE + 285 T VAV + (ga1Th + g3ol53 + gl)VVe)  (1.4)

Jp dB:.  OB?
I <a§§ + 3@3 — I3, B] — I5,B] — T8 — T3,B) — 5383 — F§3B§>,
v ov?
a8 T ap TV 0 (1.5)

where Re, = V,dp/(2u) is the modified Reynolds number, p = dP/(2uV,) is the dimensionless pressure,
V, is the characteristic velocity, p is the density, and u is the dynamic viscosity.
The dimensionless components of the White—Metzner tensor B = 2D take the form:
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where ¢ = ((£! — x)? + 62(52)2 + w?Kk?) and D = 1/2(grad V + grad V7) is the strain rate tensor.

The geometric domain, where the system of equations (1.2)—(1.5) is fulfilled, is the cross-section of the
coil tube, namely, the circle of unit radius in the plane of the variables &', £2.

The system of equation written above must be supplemented with the uniqueness conditions, namely, the
given value of the fluid flow rate Q through the channel cross-section and the no-slip conditions imposed on
the inner channel wall.

Equations (1.2)—(1.5) are written in the projections on the natural coordinate axes, where the contravari-
ant velocity components are used, while the term including div(uB) is not transformed to the form y grad V
or u curlcurl V, which makes it possible to use in what follows the system of hydrodynamic equations ob-
tained in the case, in which the fluid viscosity is a function of either the temperature or the second invariant
of the strain rate tensor. In the case of isothermal flows the tensor of the velocity gradient grad V can be used
instead of the White—Metzner tensor. For the sake of comparison we made the calculations in which grad V
is used, as the tensor B. The error of the calculations is in this case not greater than 1%.

To investigate the solutions of system (1.2)—(1.5) it is necessary to pass to dimensionless variables, which
makes it possible to postulate the dependence of the solution on three complexes, namely, the Reynolds
number and two geometric simplexes x and w. The former geometric simplex describes the dependence of
the solution on the channel curvature and the latter represents the dependence on the helix pitch.

In the general case of laminar flows the problem solution depends on three parameters: Re, x, and w.

The system of equations (1.2)-(1.5), subject to the uniqueness conditions, was solved using the finite
element method.

Since the main variables in the equations of motion are the dimensionless contravariant velocity compo-
nents V!, V2, and V3, the passage to the dimensionless contravariant components was made according to
the formulas

Vi=Vl — &3, Vv, =V? 4+ 6EV?,

Vs=—0EW! + 0E'V? + (' — 1) + ow(E) + WiV,

In the general case of spiral channels different velocity components and their projections on different
axis directions can be employed. In analyzing the results of the numerical calculations it is convenient to
subdivide the velocity vector into two parts, V=U + W, where U=V — (V3/g¥)e’ = (Vi /g11)e; +
(V5 /g22)e, is the vector in the plane perpendicular to the central helical line, and W = (V3 /g33)e? is the
vector tangent to the central helical line U and perpendicular to the cross-sectional plane. Here, ey, e,, and
e3 are the vectors of the natural basis defined as e; = dr/ Béi , wWhere r is the radius-vector of an arbitrary
point in space, and e', €2, and e? are the vectors of the dual basis. While the system of the vectors ey,
e, e3 is orthogonal, the system of coordinates &!, £2, &3 is not orthogonal, since the orthogonal system is
considered to mean such a system in which the covariant g;; = (e; - ;) and the contravariant g"/ = (e’ -e/)
components of the metric tensor form a diagonal matrix.
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Re =80

Fig. 1. Streamlines of crossflows in laminar flows in the coils with the relative pitch S/D = 1.5 for different Reynolds
numbers; (a—c) relate to R/d = 1, 2.5, and 5.

2. RESULTS OF THE NUMERICAL CALCULATIONS

Figures 1 to 7 present the results of a numerical investigation of viscous flows in curved coil tubes. The
Reynolds number was taken to be Re = 0, 10, 80, and 1100, the dimensionless radius of curvature varied
on the range 1 < R/d < 5, and the value of the relative coil pitch S/d = 1.5 taken in the calculations is that
most frequently encountered in practice.

In Fig. 1 we have plotted the streamlines of the crossflows, that is, the lines, whose tangents coincide
with the direction of the velocity vector U component lying in the cross-section. As follows from the
calculations (Re — 0), the “streamlines” of the transverse velocity component are directed parallel to the
vector e,. The absolute values of the transverse velocities V; / V/&11 and V, / /822 (Fig. 3) can be considered
as negligibly small (by a factor of 100 and more smaller than the third component V3 / \/gT3 in Fig. 7). With
increase in the Reynolds number (Re = 10 to 100) the velocity field restructures itself: the streamlines in
the upper left and lower right wall regions form pairwise vortices which then grow in dimensions. When
the value of the central helix curvature is fairly large, R/d = 1, the dimensions of the upper vortex region
are considerably smaller than those of the lower region. With further increase in the Reynolds number
(Re = 100 to 1000) the coil tube flow changes in nature, which is reflected on the streamline deformation
pattern and the displacement of the vortex formation centers toward the peripheral tube walls. In the coils
with the parameters R/d = 2.5 and 5 the fluid flow becomes similar with that in toroidal tubes, while the

FLUID DYNAMICS Vol. 52 No.4 2017



474 BAGOUTDINOVA et al.

o
B

0 0
Re —> 0 Re=10 Re =80 Re = 1100

N

&

(=]

S

Fig. 2. Contours of the dimensionless contravariant velocity component V3 /+/ ¢33 directed perpendicular to the cross-
section with the relative pitch S/d = 2.5 for different Re. The regions of the positive and negative values of the presented
quantity are labelled by the plus and minus signs, The other notation same as in Fig. 1.

vortex regions become symmetric about the horizontal axis &'. With increase in the parameter R/d the
process of pairwise vortex formation is completed at smaller Reynolds numbers, the transverse circulatory
velocity component becomes negligibly small, and the fluid flow becomes similar with that in a rectilinear
round tube. The qualitative pattern of the transverse circulation streamlines coincides with the data of studies
[24, 25, 30].

In Fig. 2 we have plotted the contours of the dimensionless contravariant velocity component V3 / \/g?
which takes only positive values. This component has a unique maximum, which in slow motions (in the
Stokes approximation, as Re — 0) is displaced rightward, toward the center of curvature of the helical
line, which especially clearly manifests itself in the case in which R/d = 1. With increase in the Reynolds
number (Re = 10 to 80) and the centrifugal force this maximum is displaced leftward. At the same time,
with increase in Re the tube flow pattern alters and the contours, which had earlier the shape of circles,
are deformed and extended along the vertical axis. The flow development (Re = 80 to 1000) results in the
further deformation of the contours, while the fluid is pushed toward the left boundary of the tube cross-
section with the formation of two additional local maxima in the upper and lower wall regions. In the coil
with R/d = 1 the distribution of the contravariant component V3 / \/g? is asymmetric: under the influence
of the channel wall the contours rotate clockwise. With increase in R/d to 2.5 and 5 and as Re — 0 the
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Fig. 3. Profiles of the covariant physical component V3 /,/g33 of the velocity vector for different Re with the relative pitch
S/d =2.5 along the lines (1) 2 =0,0<E!' <1; (QE2=EL0<E' <V2/2:(3) E' =0,0<E2 <1, (4) E2 = =&,
—V2/2<8' <0:(5) 87 =0,-1<E' <0:(0) &2 =", —v2/2<E' <0, (D) &' =0, -1 < &> < 0;and (8 £ = &,
0< éfl < ﬂ/Z The other notation same as in Fig. 1.

maximum displacement becomes less noticeable, while the distribution of the level lines approaches the
symmetrical distribution about the horizontal axis.

In Fig. 3 the profiles of the covariant velocity component V3/,/g33 are presented in eight radial sections
£2=00<8' <18 =80<8'<v2/2:8'=0,0<8>< 1,87 =-E, —v2/2<81 <0, 62 =0,
—1<ENC0,E2=E! V2/2<E<0,E =0, -1 <E2<0;and E2 = —E1, 0 <EN < V/2/2. The
calculations showed that at §/d = 1.5 the distributions of the contravariant V3 / \/gﬁ and covariant V3 /,/g33
components differ by no more than 2% and the greater this difference the smaller the Reynolds number,
which is in qualitative agreement with the earlier obtained results [24, 25].

In Fig. 4 we have plotted the contours of the component p*(E', &2) of the dimensionless pressure
p(EY E2 E3) = Co&? + p*(&', &2). In the case in which Re — O for all R/d the dimensionless pressure
contours are horizontally oriented, the pressure increasing from bottom to top. As Re increases (Re = 10 to
80), together with the body force effect, the contours rotate counterclockwise. As a result, the regions with
the highest dimensional pressure are located on the outside of the roundness, that is, in the right part of the
coil cross-section. The further increase in the Reynolds number (Re = 80 to 1000) causes the formation of
local zones with pressure minima in the upper and lower regions of the curved tube.
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Fig. 4. Contours of the dimensionless pressure p in the cross-section with the relative pitch S/d = 2.5 for different Re.
Notation same as in Figs. 1 and 2.
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The most important for understanding and analyzing the heat transfer in curved coil tubes in an investi-
gation and an assessment of the transverse components of the velocity vector (Figs. 5-7).

In Fig. 5 we have plotted the contours of the horizontal component V3/,/gi1. Clearly that, as Re — 0,
the channel cross-section can conditionally be subdivided into four regions with different directions of the
horizontal velocity component. When R/d = 1 or 2.5, the regions on the inner side of the roundness are
considerably smaller and pressed against the cross-section boundaries; at grater values of R/d all the four
regions are approximately the same. With increase in the Reynolds number the lower right and the upper left
regions with the same negative sign of the horizontal velocity component unite into one region. The channel
cross-section can be conditionally subdivided into three regions, namely, the upper and lower regions with
positive horizontal velocity values and the central region with its negative values. The flow pattern and
intensity change with increase in the flow velocity and at Re = 1000 the regions with positive values of the
horizontal velocity are pushed toward the outer walls of the coil. The region with negative velocity values
enlarges, while the region outline becomes smeared.

As follows from Fig. 6, the vertical velocity components V/,/g2 take positive values, as Re — 0.
As the flow intensity in the upper right and lower left regions of the tube cross-section increases, zones with
negative values of the vertical velocity component are formed. Then they develop and at Re = 80 to 100
become comparable with the regions of positive values. With further increase in Re the zones with negative
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0
Re — 0 Re = 10 Re = 80 Re = 1100

Fig. 5. Contours of the dimensionless horizontal component V; /,/g11 of the velocity vector in the cross-section (covariant
component) with the relative pitch S/d = 2.5 for different Re. Notation same as in Figs. 1 and 2.

and positive values of the vertical velocity component are pushed toward the boundaries of the channel
cross-section and new zones are formed in the central region of the channel.

We will present the following general tendency: at small values of R/d the transverse velocity compo-
nents become comparable with the axial component of the flow velocity directed along the helix and the
higher Re the greater their values (Fig. 7). With increase in the coil parameter R/d the transverse velocity
components considerably diminish and at R/d > 10 they are negligibly small compared with the axial com-
ponent directed along the helical line. In this case, the coil flow pattern is almost indistinguishable from
flows in cylindrical channels with the corresponding cross-sections. At low Reynolds numbers the distri-
butions of the velocity components V| and V; in the channel cross-section are symmetric. As Re increases,
the effect of the inertia factor on the flow pattern becomes increasingly greater and the distributions of the
transverse velocity components become asymmetric.

We note that the novelty of the results obtained consists in the fact that the profiles of the velocity
components along the lines passing through the center of the cross-section are calculated for the first time.
From an analysis of the profiles it follows that at the center of the cross-section the velocity components of
the secondary flows can be considerable amounting to one third of the mean-flow-rate velocity. In [32-34],
where the orders of the secondary flow velocities are not estimated, the velocity vector fields, or the stream
function distributions, in the cross-section are presented, which are the indirect quantitative representations
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(a)

Re—0 Re=10 Re =80 Re =1100

Fig. 6. Contours of the dimensionless vertical component V,/,/g25 of the velocity vector in the cross-section (covariant
component) with the relative pitch S/d = 2.5 for different Re. Notation same as in Figs. 1 and 2.

of the velocity field. Precisely to remove these shortcomings we introduced the new helical coordinate
system which is free of singularities at the center of the cross-section. Thus, it makes it possible to obtain
the velocity and pressure fields in the cases in which these distributions are asymmetric about the line
passing through the vector of the principal normal to the central helical line. On the basis of the calculations
performed it can be concluded that at small Reynolds numbers the fields of the secondary flows in the cross-
section can be considered as approximately symmetric, so that the orthogonal coordinate system can be used
in the calculations [24, 25].

In this study, the helical coordinate system is used, in which in the channel cross-section the natural
axes coincide in their directions with the vectors of the principal normal and the binormal. In this case,
translation along one of the variables corresponds to the translation along the helical line. This allows one to
reduce the solution of the three-dimensional problem to the two-dimensional one without passing to some
other variables, to considerably simplify its numerical realization, to obtain particular solutions, and to fairly
accurately and fully assess the singularities of the velocity fields in coil tubes for a wide class of channels
with similar geometry.

Moreover, the results obtained open the possibility of subsequent wide theoretical investigations and
the development of small-scale innovation heat-exchange equipment [1-4] and improved methods of their
calculations.
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Fig. 7. Profiles of the covariant components of the velocity vector V;/, /g1 (broken curves) and V»/,/g2; (chain curves)
with the relative pitch S/d = 2.5 along different lines for different Re. Notation same as in Fig. 3.

Summary. The problem of viscous flow in coil tubes is numerically investigated. The distributions of
the axial and transverse velocity components in the coil cross-section are obtained for different values of
the Reynolds number and the geometric parameters of the coils. The representation of the behavior of
the hydrodynamic fields in the central parts of the coil cross-sections is widened. It is established that at
high Reynolds numbers and arbitrary curvatures and torsions the secondary flows can be comparable with
the axial flow. It is shown that the velocity field of the secondary flows is asymmetric about the direction
determined by the vector of the principal normal to the central helical line.
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