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INTRODUCTION

The investigated mechanical system simulates a vibration�driven robot, which is a mobile device that
moves without moving external parts in a resisting medium. The motion of the system as a whole is ensured
by the periodic oscillations of the internal propulsion (internal mass) relative to the shell. Vibration�driven
robots have a number of advantages over traditional mobile devices. They are simple in design, their shell
can be made hermetic, and it can contain no protruding parts, which makes it possible to use them in con�
fined spaces.

For the first time, the question of the optimal motion of a system by moving the inner body was raised
by F.L. Chernous’ko [1, 2], who considered the linear motion of the rigid body with a cavity containing a
movable internal mass in the horizontal plane in the presence of the Coulomb friction between the plane
and the body. In recent years, this problem has been widely discussed in the literature both for other ide�
alized laws of resistance and for the multidimensional motion of the internal mass [3–8]. A very common
case was considered in [9], where the resistance force should only be a monotonically increasing function
of the body velocity. In [10], the resistance law was selected based on the known experimental data for the
case of motion of a spherical body in a viscous liquid [11]. In this case, the resistance crisis makes the
dependence of the resistance force on the velocity nonmonotonic. However, until now studies have been
limited to quasi�stationary laws, when the resistance force is uniquely determined by the shell velocity.

In fact, the resistance forces of hydrodynamic shell motion in a viscous liquid are defined by the flows
which have been formed by the body in the liquid for the entire time of movement. In the general case,
they cannot be described solely in terms of the instantaneous velocity but should be determined by the
entire history of the movement. In hydrodynamics the history is taken into account by the Basset resis�
tance force which is nonlocal in time. In this paper, the Basset force is set in its simplest classical form with
a rigorous justification only in the case of a slow body movement. However, the adopted formulation is
useful in the study of the vibration�driven robot motion in a viscous liquid for the following two reasons:
as a necessary first step in considering more realistic laws [12, 13] for the inherited resistance forces as a
means of the qualitative assessment of the limits of applicability of the quasi�stationary approximation.

In this paper, the optimization problem is put in the energy formulation proposed in [8, 10]. It consists
in determining the periodic law of motion of the internal mass that minimizes the work of the resistance
forces for the period of the system’s motion in the case of a fixed period of oscillations and the given aver�
age velocity of the shell’s motion.

1. FORMULATION OF THE PROBLEM

Let us consider a system of two bodies. The body of a spherical shape (shell) with mass  is in a viscous
liquid, and a shell with mass  (hereinafter, the internal mass) moves inside it. The longitudinal periodic
movements of the internal mass relative to the shell, in which the whole system moves as a whole, are
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investigated. Let us denote the body velocity through u and the movement and velocity of the internal mass
relative to the shell as x and . The basic equation which describes the motion’s velocity  of the
shell under the given law  of the motion of the internal mass has the form

(1.1)

Here,  is the liquid resistance force to the shell’s movement, which depends, in general, not only on the
current values of the velocity  but also on its history . In (1.1),  plays the role of the kine�
matic control.

Let us denote with the angled brackets

,

the average over the period  and determine the average power

,

spent on overcoming the forces of resistance. This value is equal to [8] the power of the forces imparted to
the body by the internal mass. The formulation of the optimization problem proposed in [8] consists of
finding such a periodic law  of internal mass oscillations which for a fixed period  of oscillations and
given average velocity  of the shell movement will minimize the power of the internal propulsion .

The convenience of this formulation is that the original problem is split into two consecutive tasks: the
first task determines the optimal law  of the shell movement, while the second restores the dependence

 of the movement of the internal mass on time according to the optimal law . The possibility of split�
ting is associated with the fact that the only condition imposed on the function  is the periodicity con�
dition, which can be expressed in terms of u. Indeed, (1.1), which is regarded as the problem of finding a
periodic function  at a predetermined periodicity of the left side, has a solution if and only if .
Therefore, for any periodic law  that satisfies the constraint , the periodic function  can be
found from (1.1) by simple integration. The original problem is thus reduced to the problem of finding the
periodic function  with period  that provides a minimum for function  within the constraints

 and .

Until now the problem posed above and similar problems were considered [8, 10] in the quasi�station�
ary formulation when resistance  is completely determined by the current shell velocity. In the case of
the motion of the spherical vibration�driven robot in the viscous liquid

(1.2)

Here,  is the radius of the sphere, while  and  are kinematic viscosity and liquid density. The resistance
coefficient  is considered a known function of the instantaneous Reynolds number Re. For ,
the optimization problem was solved in [8], and for dependence  given according to the results of
the experiments, it was solved in [10].

When the shell moves in the viscous liquid, the condition of quasi�stationarity of the hydrodynamic
resistance forces is applicable only for small accelerations of the shell. Therefore, it inevitably breaks with
the increasing oscillation frequency of the internal mass. Unfortunately, until now the only strictly valid
expression for the hydrodynamic forces acting on the sphere is the formula obtained in the limit of infin�
itesimal Reynolds numbers [14]:

. (1.3)
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The first term in it describes viscous resistance forces, the second term denotes Basset forces, and the
third term refers to the inertia forces of the added mass. Note that for any periodic motion law  the
average over the period from Basset forces is zero, and the Basset operator

is positively defined

.

With this in mind, it is clear that (1.3) does not allow the linear motion of the vibration�driven robot.
Indeed, when the average of both sides is taken, using the periodicity condition u and by satisfying the
restriction  we find that . Thus, for the motion to be possible, it should not be under infinites�
imal but under finite Reynolds numbers.

A natural and widely used generalization of (1.3) for the case of finite Reynolds numbers in practice [15] is
obtained by replacing the viscous forces in (1.3) with a dependence of form (1.2) with an empirically
determined resistance coefficient. This approach is subject to justifiable criticism [13, 16]. Nevertheless,
in our opinion, it is a useful first step in the study of the motion of a vibration�driven robot in the presence
of hydrodynamic drag forces. If we exclude additional inertial forces in (1.3) due to the increase in (1.1)

of the apparent mass of the main shell in the associated mass  (half the mass of the liquid
displaced by the shell), we come to the expression for the resistance forces used in this paper:

. (1.4)

As can be seen, (1.4) differs from the quasi�stationary approximation (1.2) only by the additional
account for Basset forces.

Let us restrict ourselves to the consideration of the important special case of  of the qua�

dratic resistance. It corresponds to moderate Reynolds numbers lying in the range .
Within this range,  varies in the range 0.4–0.5 [11]. By normalizing velocity u on  and time t on period ,
we write down the problem of the optimal control of the shell movements in the following form:

 (1.5)

, (1.6)

, (1.7)

.

The minimization in (1.5) is carried out on a set of periodic functions with a unit period that satisfy
constraints (1.6) and (1.7). When writing (1.7), it is further taken into account that  for any peri�
odic function u. The only dimensionless parameter of problem (1.5)

(1.8)

sets the degree of the nonstationarity of the shell’s motion by characterizing the ratio of Basset forces to
viscous forces.

As a result of solving (1.5)–(1.7), the optimal dependences  and  are determined, and the prob�
lem of finding the optimal internal mass motion control is solved. By normalizing the relative coordinate x of
the internal mass  we write this problem in the following form:

, (1.9)
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Parameters  characterize the mass ratio

.

Note that in contrast to parameter s the dimensionless parameter  introduced here does not depend
on the oscillation period . Within a constant factor this is the Reynolds number constructed from the
average velocity of the shell’s motion.

The main resulting integral characteristics of the optimal motion found in the solutions of (1.5)–(1.7)
and (1.9) are the energy coefficient  and the range of oscillation of the internal mass 

.

The energy coefficient  describes the effectiveness of the internal propulsion. It is defined in [8] as the
ratio of energy consumption in the case of the uniform motion of the shell to energy costs when moving
the shell by means of the internal mass with the same average velocity.

2. OPTIMAL SHELL MOTION

If  the problem (1.5)– (1.7) of the optimal control by the shell’s motion is reduced to an algebraic
one. Its solution in [8] indicates that the shell’s motion with maximum energy coefficient  is
implemented when its velocity takes two values:  and . In this case, the alternation
of periods of forward and backward motion can be of any kind, but the total time of each motion type on
the periodicity interval should be  and , respectively. The only (basic in the
notation of [8]) among the whole set of optimal laws of the shell’s motion stands out by the requirement
stating that motion phases should change only once on the periodicity interval (forward–backward–for�
ward).

We imposed the same requirements in the general case of nonzero values of parameters s. It will make
it possible not to consider the set of local high frequency minima of the functional capacity . The pres�

ence of such minima is easy to understand, having noted, for example, that if  is the solution

of (1.5)–(1.7), then  along with  will also deliver a local minimum to the functional .

The values of the functionals in these minima are  and , respectively. The first is know�
ingly greater because of the positive definiteness of the Basset operator.

By introducing Lagrange multipliers  and  that meet constraints (1.6) and (1.7) and by varying the
Lagrange functional obtained from (1.5), (1.6), and (1.7)

we find

.

By integrating by parts the last term in this equation and by using the fact that the operation of taking
the average gives the same result at any time shift, one can show that
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By taking this into consideration and using randomness , we obtain the following equation for deter�
mining :

. (2.1)

Because of invariance (2.1) with respect to the shift and time inversion it is possible to consider
problem (1.6), (1.7), and (2.1) in the half�period 0 < t < 1/2 and set symmetry conditions at its ends:

. (2.2)

Further simplification of the resulting problem is associated with the removal of constraints (1.6) and
(1.7) because of the selection of Lagrange multipliers. Let us integrate (2.1) over the period. Because of
constraint (1.7) the mean of the first term on the left side of (2.1) is zero. The mean of the second term is
also zero. This follows directly from the properties of the zero mean for the Basset operator of periodic
functions. As a result of averaging we obtain . The remaining Lagrange multiplier  can be
selected arbitrarily by taking, for example, . The thus obtained solution  will be normalized to

 and will meet both (2.1) and all additional conditions in the case of a simple translation of .

Problem (2.1) and (2.2) for fixed values of  and  was solved numerically. The sampled on a uniform
grid

(2.1) takes the form

. (2.3)

By calculating the integrals in (2.3) using the conditions of periodicity and symmetry of the grid func�
tion and by passing to (2.3) to the estimated interval, we obtain

(2.4)

Matrix  with elements  appearing in (2.4) is symmetric, positive semi�definite, and the sum of the
elements in each row is zero. The nonlinear finite�difference equation (2.4) is solved using Newton’s
method with the lowering of the right side of (2.4) to the previous iteration

(2.5)

The relaxation parameter  in all calculations was set to 0.4. The reversion of the symmetric positive
definite matrix in (2.5) was carried out by direct methods. A grid containing 4097 nodes was used in the
calculations. The iteration loop is exited when the maximum residual of 10–5 is reached on the right side
of (2.5). In this case, depending on parameter s and the accuracy of the initial approximation the number
of iterations varied from a few dozen to a few hundred.

As noted above, the solution of this problem is not unique. In order to obtain basic solutions (i.e., solu�
tions without other extreme points except for 0 and 1/2 on the marked half�cycle) corresponding to the
global minimum (1.5), the initial approximation should fall in the vicinity of these solutions. In the
numerical procedure it was guaranteed by the gradual continuation of parameter s, when  was
selected as the initial approximation for . The presence of the basic analytical solution for s = 0
was used at the initial step.

uδ
( )u t

sign( )
3 ( ) 0

t
u u s u d u

t

∞

−∞

− τ
+ τ τ + λ − μ =

− τ∫ �

(0) (1 2) 0u u= =� �

uμ = λ λ

1λ = ( ; )u t s

u s s u=

λ µ

1, , , 0,1, ,
2

kt kh h k n
n

= = =… … …

( ) sign /

1

1
13 ( 1 2)

j

j

t

k k j j k
kj t

du u s u u h k j u u
t

−

∞

−

−

=−∞

⎛ ⎞
τ⎜ ⎟+ − − + = −

⎜ ⎟− τ
⎝ ⎠
∑ ∫

0

3 , 0, ;
n

k k k kj j k

j

u u s A u f k n
=

γ + = =∑

( )
/1 2, 0, ,

, 0, ;
1, 0 .

k k k k

k n
f u u k n

k n

=⎧= γ − = γ = ⎨ < <⎩

A kjA

( ) ( ) ( ) ( ) ( )

0 0

( 1) ( )

6 3 , 0, ,

.

n n
s s s s s

k k k kj j k k k k kj j

j j

s s

u u s A u f u u s A u k n

u u u

= =

+

γ δ + δ = − γ − =

= + ξδ

∑ ∑

ξ

( ; )u t s
( ; )u t s ds+



500

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 54  No. 3  2015

EGOROV, ZAKHAROVA

The calculation results are presented in Figs. 1 and 2, in which, for clarity, the logarithmic scale is used
on the abscissa. In Fig. 1, optimal dependences  for different values of s are shown on half of the period
(0, 1/2). As can be seen, with the growth of s the nature of the quasi�stationary optimal motion law of the
shell is preserved, but the jump of velocities at  is gradually smoothed out. The maximum shell veloc�
ity increases with the increase of s from  at s = 0 to  at , the minimum velocity
decreases from  to , and the duration of the backward motion phase increases
from  to . Figure 1 shows that the most significant change in the optimal motion
law  occurs in the range of s from 0.1 to 3. If s is less than 0.1, the law of motion is close to the quasi�
stationary  obtained by neglecting the Basset forces. At s larger than 3, in contrast, viscous friction
forces can be ignored. Here  practically coincides with .

In Fig. 2 the solid line shows the dependence of the main integral characteristic, which is the energy
coefficient , on parameter s. The dashed lines in this figure indicate  and the asymptotic

 ( ).  is calculated by the power of Basset forces for  according to the for�

mula . As might be expected, the energy coefficient decreases monotonically with an
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increase of parameter s, which corresponds to additional power losses of the propulsion to overcome Bas�
set forces.

3. OPTIMAL MOTION OF THE INTERNAL MASS

After solving the minimization problem, the optimal motion law of the internal mass is found by inte�
grating (1.9). Let us restrict ourselves to the representation of the results relating to the calculation of the
dimensionless amplitude of oscillations  of the internal mass. It is convenient to express  directly in terms
of the optimal law  of shell movements. To do this, by introducing the function 

and by integrating (1.9) once, we obtain

. (3.1)

Periodicity  is guaranteed by the condition , and periodicity x is guaranteed by conditions
. As shown by the numerical calculations, the function  has only two extrema in the peri�

odicity interval, high and low. Therefore, by taking the module from both sides of (3.1) and by integrating
the result over the period, we arrive at the desired expression

. (3.2)

Given that , and the optimal law  is defined by parameter s, which in turn is uniquely asso�
ciated with the energy coefficient , the oscillation amplitude  is a function of the energy coefficient 
and the Reynolds number . In Fig. 3, the solid lines show the curves of the level of this function.

Let us note two important points. Firstly, for a fixed value of parameter  the function  decreases
monotonically with the increase of its argument from infinity at s = 0 to zero at . Therefore,  is
reversible, and each  can be associated with the corresponding s. Secondly, as will be seen below, the main
physical interest is the range ,  of the parameter values. In this range there is the so�called
inertial mode of the internal mass [8], when the second term in the right�hand side of (3.1) and (3.2) can
be neglected. This is illustrated in Fig. 3 by the proximity of the curves of the level of the function 
constructed by the general formula (3.2) (solid lines) and on the assumption

(3.3)

of the inertial mode (dashed lines). Relation (3.3) implies that

, (3.4)
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where . The calculations show that when s changes from zero to infinity  increases from
0.275 to 0.335. A slight change in b makes it possible to consider this value constant, with  in
practice.

4. RESULTS AND DISCUSSION

The wording of the original problem involves fixing the diameter of the shell of the vibration�driven
robot, its average motion velocity, and oscillation period of the internal mass. In dimensionless variables
it was consistent with the setting of parameters s and . After minimizing the power integral the range  of
oscillation of the internal mass was calculated. Instead of fixing the oscillation period of the internal mass,
the range of oscillations could be fixed by counting the corresponding period after the solution of the
respective minimization problem. In both cases, the result would have been the same. Figure 3 would have
been interpreted as a series of diagrams of the dependence of the energy coefficient  (and, hence, the
dimensionless oscillation period s uniquely associated with it) on the dimensionless average velocity  of
the shell’s motion for different values of .

Further, it is convenient to use this representation. The fact is that as opposed to the period the mag�
nitude of the oscillation range has a purely structural limitation. It cannot exceed the diameter of the shell.

In dimensionless variables we have . Here, the safety factor  is the ratio of the oscillation
range to the diameter of the shell. In the case of , , zero mass of the shell, and neutral buoy�
ancy of the vibration�driven robot ( ) we have l = 0.15. The clarification of rough estimates
for the safety factor and shell mass can lead to a significant decrease of l.

If , in the case of neutral buoyancy the dimensionless velocity  is related to the Reynolds
number built by an average velocity of the shell motion by the ratio . The range of the quadratic

law of the viscous resistance in terms of  can be written as .

In specified ranges of variation of l and  (Fig. 3), the inertial motion mode of the internal mass is obvi�
ously implemented. In the inertial mode, (3.4) holds for optimal movements. This formula can be given
the following simple form in dimensional variables

. (4.1)

It associates the motion  of the vibration�driven robot for one period with its structural character�
istics. By setting the average velocity of the translational motion of the shell , the shell diameter , the
ratio of masses of the body and the internal propulsion, and fixing the amplitude of oscillations, according
to (4.1) it is possible to determine the optimal duration of the period  of oscillations of the system. Next,
by calculating the parameter s, according to (1.8) and using Fig. 2, we can find the energy coefficient that
characterizes the optimal motion efficiency.

In the inertial mode the velocity of the internal mass  is determined equally simply by the optimal
velocity  of the shell movements. By neglecting the second term in the right�hand side in (3.1) we
obtain

.

As can be seen, the maximum velocity of the internal mass is several times higher than the shell velocity.

CONCLUSIONS

In this paper, the problem of optimal motion control of the vibration�driven robot in a viscous liquid
was posed when the resistance forces include not only viscous forces but also the inherited Basset forces,
which corresponds to a more realistic description of the forces acting on the sphere. In the course of solv�
ing the problem the following facts were established.

Firstly, the energy formulation of the problem of optimizing the control of the motion of the vibration�
driven robot and approaches to its solution proposed in [8] can be used in laws of resistance to motion from
the external environment that are more complex than the quasi�stationary laws. In particular, they can be
transferred directly to nonlocal time dependences that take into account the motion’s history.
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Secondly, the accounting for inherited effects does not lead to a qualitative change in the optimal
modes of motion of the shell and internal mass obtained under the assumption of quasi�stationary nature
of the resistance law. Optimum movements are still biphasic; the durations and velocities of forward and
backward phases of the shell’s motion differ from the quasi�stationary ones for about the first ten percent.

Thirdly, the energy coefficient  calculated for the quasi�stationary case ( ) that char�
acterizes the motion efficiency is in the general case  of the upper bound for . With the reduction
of the oscillation period  the energy coefficient of the optimal motion is reduced because of the addi�
tional power losses of the propulsion to overcome the Bass forces.

Fourthly, in the practically interesting range of changes of the parameters of the problem the inertial
mode of motion of the internal mass is implemented. In this case, the vibration�driven robot movement
for one period in the optimal motion is determined completely by the structural characteristics of the
vibration�driven robot by (4.1).

Obviously, the last three conclusions were made within the considered formulation of the problem. It
is too early to directly extend them to the case of the vibration�driven robot motion in a viscous liquid at
moderate Reynolds numbers. The restricted formulation is mainly due to the excessive schematization of
the inherited forces. Their more realistic accounting based on semi�empirical models, such as [12, 13],
and the direct numerical simulation of the hydrodynamic problem will be carried out in the future.
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