On Some "Collateral" Effects in the Alpha-convex Theory A. V. Kazantsev^{*}

(Submitted by A. M. Elizarov)

Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia Received June 5, 2018

Abstract—Some effects in the α -convex theory of the univalent functions are discussed in the light of the uniqueness problem for the critical point of the conformal radius.

DOI: 10.1134/S199508021809041X

Keywords and phrases: Conformal radius, hyperbolic derivative, α -convex function, best dominant.

0. The class of α -convex functions \mathfrak{M}_{α} is defined for $\alpha \in \mathbb{R}$ as the preimage

$$\mathfrak{M}_{\alpha} = J_{\alpha}^{-1}(C) \tag{1}$$

of the Caratheodory class *C* by means of the operator $J_{\alpha} = J_{\alpha}(f,\zeta) = p(\zeta) + \alpha \zeta p'(\zeta)/p(\zeta)$, $p(\zeta) = \zeta f'(\zeta)/f(\zeta)$, acting on the family $\mathcal{L}S$ of all holomorphic functions $f(\zeta) = \zeta + a_2\zeta^2 + a_3\zeta^3 + \ldots$ in the unit disk \mathbb{D} with $f(\zeta)f'(\zeta)/\zeta \neq 0$, $\zeta \in \mathbb{D}$. The seminal result of the α -theory [1], namely, the inclusion

 $\mathfrak{M}_{\alpha} \subset S^*$ (the class of all starlike f in \mathbb{D} with f(0) = f'(0) - 1 = 0), (2)

have generated the series of works generalizing (2) both in parametrical (see [2-4]) and in functional (e.g., [5, 6]) directions.

1. If we write (2) in the working form

$$J_{\alpha}(f,\zeta) = \frac{1+\varphi}{1-\varphi}(\zeta), \quad \zeta \in \mathbb{D}, \quad \Rightarrow \quad f \in S^*, \tag{2'}$$

then the illusion can arise that the Schwarz lemma function φ gains the status of the "controlling parameter" for f to be in the class \mathfrak{M}_{α} . But really this is not the case: if $\alpha \in (-1, 0)$, then

$$J_{\alpha}^{-1}\left(\frac{1+\zeta^2}{1-\zeta^2}\right)\notin\mathfrak{M}_{\alpha}.$$

Indeed, if $\alpha \neq -1/2$, then

$$J_{\alpha}^{-1}\left(\frac{1+\zeta^2}{1-\zeta^2}\right) = \zeta + \frac{1}{2\alpha+1}\zeta^3 + \ldots \equiv f_{\alpha},$$

whence $|a_3| = |2\alpha + 1|^{-1} > 1$, i.e. $|\{f_\alpha, 0\}| > 6$, where $\{f, \zeta\} = (f''/f')'(\zeta) - (f''/f')^2(\zeta)/2$, and the well-known Kraus–Nehari theorem implies $f_\alpha \notin \mathfrak{M}_\alpha$ (by the use of (2)). In the case $\alpha = -1/2$, moreover, the formal expression of f_α contains $\ln \zeta$!

The "solution" of this "phenomenon" is find in more pedantry form of (1), $\mathfrak{M}_{\alpha} = J^{-1}(C) \cap \mathcal{L}S$: we must keep in mind the domain of definition $\mathcal{L}S$ of the operator J_{α} . Nevertheless, this "detective" poses the following

Open problem. Decribe $J_{\alpha}(\mathfrak{M}_{\alpha})$ in *C* for any $\alpha \in \mathbb{R}$. Find the set of α 's such that $J_{\alpha}(\mathfrak{M}_{\alpha}) = C$. The expression of J_{α} in terms of φ (see (2')) presents a some way for the "morphogenesis" of such a description. If we have $\varphi(\zeta) = c\zeta^2 + \ldots$ in (2'), then $a_2 = 0$ and $(2\alpha + 1)a_3 = c$. When $\alpha = -1/2$, this

^{*}E-mail: avkazantsev630gmail.com

KAZANTSEV

implies c = 0. Symmetrizing the situation, we consider the example $f_n(\zeta) = \zeta(1-\zeta^n)^{-2/n}$, for which $J_{-1/n}(f_n) = (1+\zeta^{2n})/(1-\zeta^{2n})$, in order to pose the following

Minimization Problem. Find the minimal zero multiplicity k = k(n) of $\varphi(\zeta) = c\zeta^k + ...$ over $\mathfrak{M}_{-1/n}$ under the correspondence $f \mapsto \varphi$ defining by $J_{-1/n}(f) = (1+\varphi)/(1-\varphi)$. It is clear that $k(n) \leq 2n$.

Let us note that $f_n \in \mathfrak{M}_{\alpha}$ exactly for $\alpha \in [-2/n, 0]$.

2. Returning to n = 2 the latter gives us (the sharpness in) the following

Proposition 1. If $f \in \mathfrak{M}_{\alpha}$, $\alpha \in [-1, 0]$, and $a_2(f) = 0$, then we have the sharp estimate

$$a_3(f) \le 1. \tag{3}$$

This is an easy consequence of (2) and the Kraus–Nehari theorem.

Proposition 1 may be considered as an extension to [-1, 0] of the results of [7] or [4] about the estimate on $|a_3 - \lambda a_2^2|$ over \mathfrak{M}_{α} for $\alpha \ge 0$, but it is not the direct consequence of these results. Moreover, in view of $(2\alpha + 1)a_3 = c$ and $|c| \le 1$ we can bring the inequality (3) to the estimate $a_3(f) \le \min\{1, |2\alpha + 1|^{-1}\}$ for any $\alpha \in \mathbb{R}$.

Hypothesis. The estimate $a_3(f) \leq |2\alpha + 1|^{-1}$ is sharp for $\alpha < -1$.

3. We are interested in the situation n = 2. Let us note in passing that for n = 2 and $\alpha \in (-1, 0)$ the "control" for the inclusion $J_{\alpha}^{-1}\left(\frac{1+\varphi}{1-\varphi}\right) \in \mathfrak{M}_{\alpha}$ goes over from the parameter $c = \varphi''(0)/2$ to the parameter a_3 . An interest to the behavior of a_3 can be based on its role in the uniqueness problem for the extreme of the conformal radius

$$R(\zeta) = |f'(\zeta)|(1 - |\zeta|^2).$$
(4)

The parameter a_3 detects the appearance of the additional critical points near $\zeta = 0$: when a_3 moves across the value 1/3, an elliptic maximum $\zeta = 0$ turns into the several critical points (in one of the typical cases—into hyperbolic saddle at $\zeta = 0$ and two elliptic maxima). It is important to determine the domain of the elliptic α 's as the basin for the uniqueness α 's.

Proposition 2. The whole collection $\mathfrak{M}_{\alpha} \cap \{f''(0) = 0\}$ has an elliptic *R*-critical point at $\zeta = 0$ if and only if $\alpha \in (-\infty, -2) \cup (1, +\infty)$.

As a hypothesis we can suppose that "the uniqueness scale" (for the zero critical point of (4)) has the center at $\alpha = -1/2$ ("the worst case"), surrounded by the "bad" segment [-1, 0]; an outcome into [-2, 1] improves the situation up to the uniqueness for $\alpha \ge 1$ or $\alpha \le -2$.

Hypothesis. The zero critical point of (4) is unique (with natural exclusions) if and only if α as in the Proposition 2.

Theorem. The union $\bigcup_{\alpha \ge 1} \mathfrak{M}_{\alpha}$ is the class of (no more than) uniqueness with the strip as the only exclusion. The value $\alpha = 1$ is the obstacle to the uniqueness extension to $\alpha < 1$.

The proof is needed to the second statement only and consists of the study of the function

$$f_{\alpha}(\zeta) = \left\{ \frac{1}{\alpha} \int_{0}^{\zeta} \frac{t^{1/\alpha - 1}}{(1 - t^2)^{1/\alpha}} dt \right\}^{\alpha}, \quad 0 < \alpha \le 1.$$

4. The final remark concerns with the best dominant problem for the subordination

$$p(\zeta) + \alpha \zeta \frac{p'}{p}(\zeta) \prec \frac{1+\zeta}{1-\zeta},\tag{5}$$

where $\alpha > 0$, i.e. the problem of existence of the best univalent q in \mathbb{D} with (5) implying $p \prec q$. (This problem and the *Open Problem* from the Section 1 may be formulated as mutually inverse). We want to formalize the notion of the best $p(\zeta) = 1 + b\zeta^n + \ldots, b \neq 0$, satisfying (5). The standard theory of dominants [6, 3, 2] provides their existence, but the sharpness take place only for n = 1, and this is the consequence of the structure of the definition $(p(\mathbb{D}) \subseteq q(\mathbb{D}))$. Modifying the latter we obtain the following

Proposition 3. The best dominant for (5) over the p's with expansion $p(\zeta) = 1 + b\zeta^n + ..., b \neq 0, n \geq 1$, is the univalent solution q of the differential equation

$$q(\zeta) + n\alpha\zeta \frac{q'}{q}(\zeta) = \frac{1+\zeta}{1-\zeta}.$$

The sharpness of the dominant q for (5) means that the function $q(\zeta^n)$ satisfies (5) (when $\varphi(\zeta) = \zeta^n$; we exclude rotations for the brevity).

This remark has appeared as the background for the selection of the above f_{α} as an indicator to the passage "uniqueness—non-uniqueness".

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan within the scientific project no. 18-41-160017.

REFERENCES

- S. S. Miller, P. T. Mocanu, and M. O. Reade, "All α-convex functions are univalent and starlike," Proc. Am. Math. Soc. 37, 553–554 (1973).
- S. S. Miller and P. T. Mocanu, "Univalent solutions of Briot-Bouquet differential equations," J. Differ. Equat. 56, 297–309 (1985).
- 3. S. S. Miller and P. T. Mocanu, "On some classes of first-order differential subordinations," Mich. Math. J. **32**, 185–195 (1985).
- 4. Z. Jakubowski and J. Kaminski, "On some classes of alpha-convex functions," Anal. Numer. Theor. Approx. 27, 13–26 (1985).
- 5. Z. Lewandowski, S. Miller, and E. Zlotkiewicz, "Generating functions for some classes of univalent functions," Proc. Am. Math. Soc. 56, 111–117 (1976).
- S. S. Miller and P. T. Mocanu, "Differential subordinations and univalent functions," Mich. Math. J. 28, 157– 171 (1981).
- J. Szynal, "Some remarks on coefficients inequality for α-convex functions," Bull. Acad. Polon. Sci., Ser. Math., Astron. Phys. 20, 917–919 (1972).