On Some "Collateral" Effects in the Alpha-convex Theory

A. V. Kazantsev*

(Submitted by A. M. Elizarov)
Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia Received June 5, 2018

Abstract

Some effects in the α-convex theory of the univalent functions are discussed in the light of the uniqueness problem for the critical point of the conformal radius.

DOI: 10.1134/S199508021809041X
Keywords and phrases: Conformal radius, hyperbolic derivative, α-convex function, best dominant.
$\mathbf{0}$. The class of α-convex functions \mathfrak{M}_{α} is defined for $\alpha \in \mathbb{R}$ as the preimage

$$
\begin{equation*}
\mathfrak{M}_{\alpha}=J_{\alpha}^{-1}(C) \tag{1}
\end{equation*}
$$

of the Caratheodory class C by means of the operator $J_{\alpha}=J_{\alpha}(f, \zeta)=p(\zeta)+\alpha \zeta p^{\prime}(\zeta) / p(\zeta), p(\zeta)=$ $\zeta f^{\prime}(\zeta) / f(\zeta)$, acting on the family $\mathcal{L} S$ of all holomorphic functions $f(\zeta)=\zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}+\ldots$ in the unit disk \mathbb{D} with $f(\zeta) f^{\prime}(\zeta) / \zeta \neq 0, \zeta \in \mathbb{D}$. The seminal result of the α-theory [1], namely, the inclusion

$$
\begin{equation*}
\left.\mathfrak{M}_{\alpha} \subset S^{*} \text { (the class of all starlike } f \text { in } \mathbb{D} \text { with } f(0)=f^{\prime}(0)-1=0\right), \tag{2}
\end{equation*}
$$

have generated the series of works generalizing (2) both in parametrical (see [2-4]) and in functional (e.g., [5, 6]) directions.

1. If we write (2) in the working form

$$
J_{\alpha}(f, \zeta)=\frac{1+\varphi}{1-\varphi}(\zeta), \quad \zeta \in \mathbb{D}, \quad \Rightarrow \quad f \in S^{*}
$$

then the illusion can arise that the Schwarz lemma function φ gains the status of the "controlling parameter" for f to be in the class \mathfrak{M}_{α}. But really this is not the case: if $\alpha \in(-1,0)$, then

$$
J_{\alpha}^{-1}\left(\frac{1+\zeta^{2}}{1-\zeta^{2}}\right) \notin \mathfrak{M}_{\alpha} .
$$

Indeed, if $\alpha \neq-1 / 2$, then

$$
J_{\alpha}^{-1}\left(\frac{1+\zeta^{2}}{1-\zeta^{2}}\right)=\zeta+\frac{1}{2 \alpha+1} \zeta^{3}+\ldots \equiv f_{\alpha}
$$

whence $\left|a_{3}\right|=|2 \alpha+1|^{-1}>1$, i.e. $\left|\left\{f_{\alpha}, 0\right\}\right|>6$, where $\{f, \zeta\}=\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}(\zeta)-\left(f^{\prime \prime} / f^{\prime}\right)^{2}(\zeta) / 2$, and the well-known Kraus-Nehari theorem implies $f_{\alpha} \notin \mathfrak{M}_{\alpha}$ (by the use of (2)). In the case $\alpha=-1 / 2$, moreover, the formal expression of f_{α} contains $\ln \zeta$!

The "solution" of this "phenomenon" is find in more pedantry form of (1), $\mathfrak{M}_{\alpha}=J^{-1}(C) \cap \mathcal{L} S$: we must keep in mind the domain of definition $\mathcal{L} S$ of the operator J_{α}. Nevertheless, this "detective" poses the following

Open problem. Decribe $J_{\alpha}\left(\mathfrak{M}_{\alpha}\right)$ in C for any $\alpha \in \mathbb{R}$. Find the set of α 's such that $J_{\alpha}\left(\mathfrak{M}_{\alpha}\right)=C$.
The expression of J_{α} in terms of φ (see $\left(2^{\prime}\right)$) presents a some way for the "morphogenesis" of such a description. If we have $\varphi(\zeta)=c \zeta^{2}+\ldots$ in $\left(2^{\prime}\right)$, then $a_{2}=0$ and $(2 \alpha+1) a_{3}=c$. When $\alpha=-1 / 2$, this

[^0]implies $c=0$. Symmetrizing the situation, we consider the example $f_{n}(\zeta)=\zeta\left(1-\zeta^{n}\right)^{-2 / n}$, for which $J_{-1 / n}\left(f_{n}\right)=\left(1+\zeta^{2 n}\right) /\left(1-\zeta^{2 n}\right)$, in order to pose the following

Minimization Problem. Find the minimal zero multiplicity $k=k(n)$ of $\varphi(\zeta)=c \zeta^{k}+\ldots$ over $\mathfrak{M}_{-1 / n}$ under the correspondence $f \mapsto \varphi$ defining by $J_{-1 / n}(f)=(1+\varphi) /(1-\varphi)$. It is clear that $k(n) \leq 2 n$.

Let us note that $f_{n} \in \mathfrak{M}_{\alpha}$ exactly for $\alpha \in[-2 / n, 0]$.
2. Returning to $n=2$ the latter gives us (the sharpness in) the following

Proposition 1. If $f \in \mathfrak{M}_{\alpha}, \alpha \in[-1,0]$, and $a_{2}(f)=0$, then we have the sharp estimate

$$
\begin{equation*}
a_{3}(f) \leq 1 \tag{3}
\end{equation*}
$$

This is an easy consequence of (2) and the Kraus-Nehari theorem.
Proposition 1 may be considered as an extension to [$-1,0$] of the results of [7] or [4] about the estimate on $\left|a_{3}-\lambda a_{2}^{2}\right|$ over \mathfrak{M}_{α} for $\alpha \geq 0$, but it is not the direct consequence of these results. Moreover, in view of $(2 \alpha+1) a_{3}=c$ and $|c| \leq 1$ we can bring the inequality (3) to the estimate $a_{3}(f) \leq \min \left\{1,|2 \alpha+1|^{-1}\right\}$ for any $\alpha \in \mathbb{R}$.

Hypothesis. The estimate $a_{3}(f) \leq|2 \alpha+1|^{-1}$ is sharp for $\alpha<-1$.
3. We are interested in the situation $n=2$. Let us note in passing that for $n=2$ and $\alpha \in(-1,0)$ the "control" for the inclusion $J_{\alpha}^{-1}\left(\frac{1+\varphi}{1-\varphi}\right) \in \mathfrak{M}_{\alpha}$ goes over from the parameter $c=\varphi^{\prime \prime}(0) / 2$ to the parameter a_{3}. An interest to the behavior of a_{3} can be based on its role in the uniqueness problem for the extreme of the conformal radius

$$
\begin{equation*}
R(\zeta)=\left|f^{\prime}(\zeta)\right|\left(1-|\zeta|^{2}\right) \tag{4}
\end{equation*}
$$

The parameter a_{3} detects the appearance of the additional critical points near $\zeta=0$: when a_{3} moves across the value $1 / 3$, an elliptic maximum $\zeta=0$ turns into the several critical points (in one of the typical cases-into hyperbolic saddle at $\zeta=0$ and two elliptic maxima). It is important to determine the domain of the elliptic α 's as the basin for the uniqueness α 's.

Proposition 2. The whole collection $\mathfrak{M}_{\alpha} \cap\left\{f^{\prime \prime}(0)=0\right\}$ has an elliptic R-critical point at $\zeta=0$ if and only if $\alpha \in(-\infty,-2) \cup(1,+\infty)$.

As a hypothesis we can suppose that "the uniqueness scale" (for the zero critical point of (4)) has the center at $\alpha=-1 / 2$ ("the worst case"), surrounded by the "bad" segment $[-1,0]$; an outcome into $[-2,1]$ improves the situation up to the uniqueness for $\alpha \geq 1$ or $\alpha \leq-2$.

Hypothesis. The zero critical point of (4) is unique (with natural exclusions) if and only if α as in the Proposition 2.

Theorem. The union $\bigcup_{\alpha \geq 1} \mathfrak{M}_{\alpha}$ is the class of (no more than) uniqueness with the strip as the only exclusion. The value $\alpha=1$ is the obstacle to the uniqueness extension to $\alpha<1$.

The proof is needed to the second statement only and consists of the study of the function

$$
f_{\alpha}(\zeta)=\left\{\frac{1}{\alpha} \int_{0}^{\zeta} \frac{t^{1 / \alpha-1}}{\left(1-t^{2}\right)^{1 / \alpha}} d t\right\}^{\alpha}, \quad 0<\alpha \leq 1
$$

4. The final remark concerns with the best dominant problem for the subordination

$$
\begin{equation*}
p(\zeta)+\alpha \zeta \frac{p^{\prime}}{p}(\zeta) \prec \frac{1+\zeta}{1-\zeta}, \tag{5}
\end{equation*}
$$

where $\alpha>0$, i.e. the problem of existence of the best univalent q in \mathbb{D} with (5) implying $p \prec q$. (This problem and the Open Problem from the Section 1 may be formulated as mutually inverse). We want to formalize the notion of the best $p(\zeta)=1+b \zeta^{n}+\ldots, b \neq 0$, satisfying (5). The standard theory of dominants $[6,3,2]$ provides their existence, but the sharpness take place only for $n=1$, and this is the consequence of the structure of the definition $(p(\mathbb{D}) \subseteq q(\mathbb{D})$). Modifying the latter we obtain the following

Proposition 3. The best dominant for (5) over the p's with expansion $p(\zeta)=1+b \zeta^{n}+\ldots$, $b \neq 0, n \geq 1$, is the univalent solution q of the differential equation

$$
q(\zeta)+n \alpha \zeta \frac{q^{\prime}}{q}(\zeta)=\frac{1+\zeta}{1-\zeta}
$$

The sharpness of the dominant q for (5) means that the function $q\left(\zeta^{n}\right)$ satisfies (5) (when $\varphi(\zeta)=\zeta^{n}$; we exclude rotations for the brevity).

This remark has appeared as the background for the selection of the above f_{α} as an indicator to the passage "uniqueness-non-uniqueness".

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan within the scientific project no. 18-41-160017.

REFERENCES

1. S. S. Miller, P. T. Mocanu, and M. O. Reade, "All α-convex functions are univalent and starlike," Proc. Am. Math. Soc. 37, 553-554 (1973).
2. S. S. Miller and P. T. Mocanu, "Univalent solutions of Briot-Bouquet differential equations," J. Differ. Equat. 56, 297-309 (1985).
3. S. S. Miller and P. T. Mocanu, "On some classes of first-order differential subordinations," Mich. Math. J. 32, 185-195 (1985).
4. Z. Jakubowski and J. Kaminski, "On some classes of alpha-convex functions," Anal. Numer. Theor. Approx. 27, 13-26 (1985).
5. Z. Lewandowski, S. Miller, and E. Zlotkiewicz, "Generating functions for some classes of univalent functions," Proc. Am. Math. Soc. 56, 111-117 (1976).
6. S. S. Miller and P. T. Mocanu, "Differential subordinations and univalent functions," Mich. Math. J. 28, 157171 (1981).
7. J. Szynal, "Some remarks on coefficients inequality for α-convex functions," Bull. Acad. Polon. Sci., Ser. Math., Astron. Phys. 20, 917-919 (1972).

[^0]: *E-mail: avkazantsev63@gmail.com

