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0. The class of α-convex functions Mα is defined for α ∈ R as the preimage

Mα = J−1
α (C) (1)

of the Caratheodory class C by means of the operator Jα = Jα(f, ζ) = p(ζ) + αζp′(ζ)/p(ζ), p(ζ) =
ζf ′(ζ)/f(ζ), acting on the family LS of all holomorphic functions f(ζ) = ζ + a2ζ

2 + a3ζ
3 + . . . in the

unit disk D with f(ζ)f ′(ζ)/ζ �= 0, ζ ∈ D. The seminal result of the α-theory [1], namely, the inclusion

Mα ⊂ S∗ (the class of all starlike f in D with f(0) = f ′(0)− 1 = 0), (2)

have generated the series of works generalizing (2) both in parametrical (see [2–4]) and in functional
(e.g., [5, 6]) directions.

1. If we write (2) in the working form

Jα(f, ζ) =
1 + ϕ

1− ϕ
(ζ), ζ ∈ D, ⇒ f ∈ S∗, (2′)

then the illusion can arise that the Schwarz lemma function ϕ gains the status of the “controlling
parameter” for f to be in the class Mα. But really this is not the case: if α ∈ (−1, 0), then

J−1
α

(
1 + ζ2

1− ζ2

)
/∈ Mα.

Indeed, if α �= −1/2, then

J−1
α

(
1 + ζ2

1− ζ2

)
= ζ +

1

2α+ 1
ζ3 + . . . ≡ fα,

whence |a3| = |2α + 1|−1 > 1, i.e. |{fα, 0}| > 6, where {f, ζ} = (f ′′/f ′)′(ζ)− (f ′′/f ′)2(ζ)/2, and the
well-known Kraus–Nehari theorem implies fα /∈ Mα (by the use of (2)). In the case α = −1/2,
moreover, the formal expression of fα contains ln ζ !

The “solution” of this “phenomenon” is find in more pedantry form of (1), Mα = J−1(C) ∩ LS: we
must keep in mind the domain of definition LS of the operator Jα. Nevertheless, this “detective” poses
the following

Open problem. Decribe Jα(Mα) in C for any α ∈ R. Find the set of α’s such that Jα(Mα) = C.
The expression of Jα in terms of ϕ (see (2′)) presents a some way for the “morphogenesis” of such a

description. If we have ϕ(ζ) = cζ2 + . . . in (2′), then a2 = 0 and (2α + 1)a3 = c. When α = −1/2, this
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implies c = 0. Symmetrizing the situation, we consider the example fn(ζ) = ζ(1− ζn)−2/n, for which
J−1/n(fn) = (1 + ζ2n)/(1 − ζ2n), in order to pose the following

Minimization Problem. Find the minimal zero multiplicity k = k(n) of ϕ(ζ) = cζk + . . . over
M−1/n under the correspondence f �→ ϕ defining by J−1/n(f) = (1 + ϕ)/(1 − ϕ). It is clear that
k(n) ≤ 2n.

Let us note that fn ∈ Mα exactly for α ∈ [−2/n, 0].
2. Returning to n = 2 the latter gives us (the sharpness in) the following
Proposition 1. If f ∈ Mα, α ∈ [−1, 0], and a2(f) = 0, then we have the sharp estimate

a3(f) ≤ 1. (3)

This is an easy consequence of (2) and the Kraus–Nehari theorem.
Proposition 1 may be considered as an extension to [−1, 0] of the results of [7] or [4] about the estimate

on |a3 − λa22| over Mα for α ≥ 0, but it is not the direct consequence of these results. Moreover, in view
of (2α+1)a3 = c and |c| ≤ 1 we can bring the inequality (3) to the estimate a3(f) ≤ min{1, |2α+1|−1}
for any α ∈ R.

Hypothesis. The estimate a3(f) ≤ |2α + 1|−1 is sharp for α < −1.
3. We are interested in the situation n = 2. Let us note in passing that for n = 2 and α ∈ (−1, 0) the

“control” for the inclusion J−1
α

(
1+ϕ
1−ϕ

)
∈ Mα goes over from the parameter c = ϕ′′(0)/2 to the parameter

a3. An interest to the behavior of a3 can be based on its role in the uniqueness problem for the extreme
of the conformal radius

R(ζ) = |f ′(ζ)|(1− |ζ|2). (4)

The parameter a3 detects the appearance of the additional critical points near ζ = 0: when a3 moves
across the value 1/3, an elliptic maximum ζ = 0 turns into the several critical points (in one of the
typical cases—into hyperbolic saddle at ζ = 0 and two elliptic maxima). It is important to determine the
domain of the elliptic α’s as the basin for the uniqueness α’s.

Proposition 2. The whole collection Mα ∩ {f ′′(0) = 0} has an elliptic R-critical point at ζ = 0
if and only if α ∈ (−∞,−2) ∪ (1,+∞).

As a hypothesis we can suppose that “the uniqueness scale” (for the zero critical point of (4)) has
the center at α = −1/2 (“the worst case”), surrounded by the “bad” segment [−1, 0]; an outcome into
[−2, 1] improves the situation up to the uniqueness for α ≥ 1 or α ≤ −2.

Hypothesis. The zero critical point of (4) is unique (with natural exclusions) if and only if α
as in the Proposition 2.

Theorem. The union
⋃

α≥1 Mα is the class of (no more than) uniqueness with the strip as the
only exclusion. The value α = 1 is the obstacle to the uniqueness extension to α < 1.

The proof is needed to the second statement only and consists of the study of the function

fα(ζ) =

{
1

α

∫ ζ

0

t1/α−1

(1− t2)1/α
dt

}α

, 0 < α ≤ 1.

4. The final remark concerns with the best dominant problem for the subordination

p(ζ) + αζ
p′

p
(ζ) ≺ 1 + ζ

1− ζ
, (5)

where α > 0, i.e. the problem of existence of the best univalent q in D with (5) implying p ≺ q. (This
problem and the Open Problem from the Section 1 may be formulated as mutually inverse). We want
to formalize the notion of the best p(ζ) = 1 + bζn + . . ., b �= 0, satisfying (5). The standard theory of
dominants [6, 3, 2] provides their existence, but the sharpness take place only for n = 1, and this is
the consequence of the structure of the definition (p(D) ⊆ q(D)). Modifying the latter we obtain the
following
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Proposition 3. The best dominant for (5) over the p’s with expansion p(ζ) = 1 + bζn + . . .,
b �= 0, n ≥ 1, is the univalent solution q of the differential equation

q(ζ) + nαζ
q′

q
(ζ) =

1 + ζ

1− ζ
.

The sharpness of the dominant q for (5) means that the function q(ζn) satisfies (5) (when ϕ(ζ) = ζn;
we exclude rotations for the brevity).

This remark has appeared as the background for the selection of the above fα as an indicator to the
passage “uniqueness–non-uniqueness”.
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