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FORMAL MATRICES AND RINGS CLOSE TO REGULAR

A. N. Abyzov and A. A. Tuganbaev UDC 512.552

Abstract. This paper contains new and known results on formal matrix rings close to regular. The main
results are given with proofs.

1. Preliminaries

All rings are assumed to be associative and with nonzero identity element; all modules are assumed
to be unitary. Let R1, R2, . . . , Rn be rings and let Mij be (Ri, Rj)-bimodules such that Mii = Ri for all
1 ≤ i, j ≤ n. In addition, let ϕijk : Mij ⊗Rj Mjk → Mik be (Ri, Rk)-bimodule homomorphisms such that
ϕiij and ϕijj are canonical isomorphisms for all 1 ≤ i, j ≤ n. We set a ◦ b = ϕijk(a ⊗ b) for a ∈ Mij and
b ∈ Mjk. We denote by K the set of all n×n matrices (mij) with elements mij ∈ Mij for all 1 ≤ i, j ≤ n.
It is easy to verify that K is a ring with respect to ordinary operations of addition and of multiplication
if and only if a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a ∈ Mik, b ∈ Mkl, and c ∈ Mlj , 1 ≤ i, k, l, j ≤ n. The obtained
ring K is called a formal matrix ring of order n; it is denoted by K({Mij} : {ϕikj}). If

K =
(

R M
N S

)

are formal matrix rings of order 2, then the ordered family (R, S, M, N, ϕ, ψ) is called a Morita context
or a pre-equivalence situation.

The formal matrix ring K({Mij} : {ϕikj}) of order n, in which Mij = R for all 1 ≤ i, j ≤ n, is called
a formal matrix ring over R of order n; it is denoted by Kn(R) or Kn(R : {ϕikj}). For a formal matrix
ring Kn(R : {ϕijk}) over R of order n, we set ηijk = ϕijk(1 ⊗ 1) for all 1 ≤ i, j, k ≤ n. Then a ◦ b =
ϕijk(a ⊗ b) = ηijkab for all a, b ∈ R. For every a ∈ R, we have aηijk = ϕijk(a ⊗ 1) = ϕijk(1 ⊗ a) = ηijka.
Therefore, ηijk ∈ C(R), and the following conditions hold:

(1) ηiij = ηijj = 1, 1 ≤ i, j ≤ n;
(2) ηijkηikl = ηijlηjkl, 1 ≤ i, j, k, l ≤ n.
The first condition holds, since ϕiij and ϕijj are canonical isomorphisms. Since the operation ◦ is

associative, we have ηijk ηikl abc = ηijl ηjkl abc for all a, b, c ∈ R. By setting a = b = c = 1, we obtain
the second condition. For every family {ηijk | 1 ≤ i, j, k ≤ n} of central elements of R satisfying the
first condition and the second condition, we can set ϕijk(a ⊗ b) = ηijkab for all a, b ∈ R. It is directly
verified that Kn(R : {ϕikj}) is a formal matrix ring over R of order n. Therefore, the formal matrix ring
Kn(R : {ϕikj}) is uniquely defined by the family {ηijk | 1 ≤ i, j, k ≤ n} of central elements. In this case,
the formal matrix ring Kn(R : {ϕikj}) is denoted by Kn(R : {ηikj}).

Let R be a ring and let β1, . . . , βn ∈ C(R) with n ≥ 2. We define ηijk for all 1 ≤ i, j, k ≤ n by the
relation

ηijk =

⎧⎪⎨
⎪⎩

1 if i = j or j = k,

βj if i, j, k are distinct,
βiβj if i = k �= j.
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It is directly verified that the family {ηijk | 1 ≤ i, j, k ≤ n} satisfies conditions (1) and (2) and,
consequently, defines a formal matrix ring over R of order n. We denote by Mβ1,...,βn(R) the formal
matrix ring Kn(R : {ϕijk}) defined by the set {ηijk}. Therefore, Mβ1,...,βn(R) coincides with the set of all
matrices of order n over R with ordinary operation of addition and operation of multiplication defined as
follows. For two matrices of order n over R, (aij) and (bij),

(aij)(bij) = (cij), where cij =
n∑

k=1

β
δij−δik
i β

1−δjk
k aikbkj .

Formal matrix rings and their modules have been intensively studied lately. Modules over formal
matrix rings are considered in [10–13, 16]. Various ring properties of formal matrix rings are studied
in [12, 18, 19, 21]. Grothendieck groups and Whitehead groups of formal matrix rings are studied in [18].
The isomorphism problem for formal matrix rings is studied in [15, 21]. The ideal lattice of such rings is
studied in [7].

Let

K =
(

R M
N S

)
,

X be a right R-module, Y be a right S-module, and let us have an R-module homomorphism
f : Y ⊗S N → X and an S-module homomorphism g : X⊗RM → Y . We set yn:=f(y⊗n), xm:=g(x⊗m)
and require that the relations (yn)m = y(nm) and (xm)n = x(mn) hold for all x ∈ X, y ∈ Y , m ∈ M ,
and n ∈ N . In this case, the group of vector rows (X, Y ) is naturally provided by the structure of a right
K-module. It is easy to show that any right K-module can be considered as a module of vector rows.
Homomorphisms of K-modules can be considered as pairs consisting of an R-homomorphism and an
S-homomorphism. Namely, if Γ: (X, Y ) → (X ′, Y ′) is a homomorphism, then there exist an R-homomor-
phism α : X → X ′ and an S-homomorphism β : Y → Y ′ such that Γ(x, y) =

(
α(x), β(y)

)
. In addition,

the relations α(yn) = β(y)n and β(xm) = α(x)m hold for all x ∈ X, y ∈ Y , m ∈ M , and n ∈ N .
We recall some constructions from [16]. Let A be a nonzero right R-module. We denote by H(A) the

right K-module
(
A, HomR(N, A)

)
such that homomorphisms of module multiplication are the mapping

A⊗M → HomR(N, A), a⊗m 
→ (
n 
→ a(mn)

)
and the mapping HomR(N, A)⊗N → A, f⊗n 
→ f(n). We

denote by T (A) the right K-module (A, A ⊗ M) such that homomorphisms of the module multiplication
are the identity automorphism A⊗M → A⊗M and the mapping (A⊗M)⊗N → A, (a⊗m)n = amn.

The Jacobson radical and the largest regular ideal of the ring R is denoted by J(R) and Reg(R),
respectively. For a right R-module M , we denote by J(M) the Jacobson radical of M .

Let

K =
(

R M
N S

)

be a formal matrix ring. A bimodule M is said to be N -regular (right N -fully idempotent) if m ∈ mNm
(respectively, m ∈ mNmS) for every m ∈ M . M -regular bimodules and right M -fully idempotent
bimodules N are similarly defined.

2. Formal Matrix Rings Close to Regular

For a formal matrix ring K = K({Mij} : {ϕikj}) of order n and for each 1 ≤ i, j ≤ n, we denote by
Reg(Mij) the set of the form {m ∈ Mij | m ∈ mMjim}.
Theorem 2.1 ([25]). For a formal matrix ring K = K({Mij} : {ϕikj}) of order n, we have

Reg(K) = {r ∈ K | MtirijMjs ⊂ Reg(Mts)}.
Corollary 2.2. For a formal matrix ring K = K({Mij} : {ϕikj}) of order n, the following conditions are
equivalent :

(1) K is a regular ring ;
(2) for each subscript pair 1 ≤ i, j ≤ n and each m ∈ Mij, we have that m ∈ mMjim.
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A ring R is called an I0-ring if for every arbitrary r ∈ R \ J(R), there exists an element s ∈ R \ {0}
with s = srs.

Theorem 2.3 ([25]). For a formal matrix ring K = K({Mij} : {ϕikj}) of order n, the following conditions
are equivalent :

(1) K is an I0-ring ;
(2) for every 1 ≤ i ≤ n, the ring Ri is an I0-ring.

A ring R is said to be right (left) fully idempotent if I2 = I for every right (respectively, left) ideal I
of the ring R. If the relation I2 = I holds for every ideal I of the ring R, then the ring R is said to
be fully idempotent. An element r of the ring R is said to be right fully idempotent if rR = rRrR. For
a ring R, an ideal I of R is said to be right fully idempotent if every element of I is right fully idempotent.
By [23, 12.17], every ring R has the largest fully idempotent right ideal which is denoted by I(R).

For a formal matrix ring K = K({Mij} : {ϕikj}) of order n and for each 1 ≤ i, j ≤ n, we denote by
I(Mij) the set of the form {m ∈ Mij | m ∈ mMjimRj}. We denote by reij the element of the formal
matrix ring K = K({Mij} : {ϕikj}) such that the component located at the intersection of the ith row
and the jth column is equal to r and the remaining components are equal to zero.

Theorem 2.4. For an arbitrary formal matrix ring K = K({Mij} : {ϕikj}) of order n, we have

I(K) = {r ∈ K | MtirijMjs ⊂ I(Mts)}.
Proof. We denote by I ′ the set {r ∈ K | MtirijMjs ⊂ I(Mts)}. It follows from the proof of Theorem 5.3
in [4] that I ′ is an ideal of the ring K. We show that I(K) ⊂ I ′. Since eiiKejjI(K)essKett ⊂ I(K), it is
sufficient to show that all components of an arbitrary ideal I(K) are right fully idempotent. Let a ∈ I(R).
Therefore, for each pair of subscripts i, j, we have

eiiaejj = eiiaejj

( m∑
k=1

bkeiiaejjck

)
= eiiaejj

( m∑
k=1

bkeiiaejjckejj

)
, aij = aij

( m∑
k=1

(bk)jiaij(ck)jj

)
.

We show that I ′ ⊂ I(K). We assume that the ideal I ′ contains an element which is not right
fully idempotent. In I ′, we choose an element r such that r is not fully idempotent and the row
r11, . . . , r1n, . . . , rn1, . . . , rnn has the largest number of the first zeros. Let ri0j0 be the first nonzero
element in this row. We have

ri0j0 = ri0j0

∑
k

akri0j0bk,

where ak ∈ Mj0i0 , bk ∈ Rj0j0 for every k. Then

r − r
∑

k

akej0i0rbkej0j0 =
∑
i,j

rijeij −
(∑

i,j

rijeij

)( ∑
k

akej0i0

(∑
i,j

rijeij

)
bkej0j0

)
=

∑
i,j

gijeij ,

where gij = rij , provided j �= j0, and

gij0 = rij0 −
∑

k

rij0akri0j0bk.

It is clear that gij = 0 if either i < i0, or i = i0, j < j0, or i = i0, j = j0. Consequently, it follows from
the choice of arbitrary r that the element

r − r
∑

k

akej0i0rbkej0j0

is right fully idempotent. Then it follows from [4, Lemma 5.2] that any r is fully idempotent; this
contradicts our original assumptions.
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Corollary 2.5. For a formal matrix ring K = K({Mij} : {ϕikj}) of order n, the following conditions are
equivalent :

(1) K is a right fully idempotent ring ;
(2) for each subscript pair 1 ≤ i, j ≤ n and any m ∈ Mij, we have m ∈ mMjimRj.

The following assertion follows from Corollaries 2.2 and 2.5.

Corollary 2.6. For a formal matrix ring K = K({Mij} : {ϕikj}) of order n such that the ring Ri is
commutative for each 1 ≤ i ≤ n, the following conditions are equivalent :

(1) K is a right fully idempotent ring ;
(2) K is a left fully idempotent ring ;
(3) K is a regular ring.

Corollary 2.7. Let K = Kn(R : {ηikj}) be a formal matrix ring over R of order n.
(1) If every element of the set {ηikj} is not a zero-divisor, then we have

(a) I(K) =

⎛
⎜⎜⎝

I(R) I(R) . . . I(R)
I(R) I(R) . . . I(R)
. . . . . . . . . . . .

I(R) I(R) . . . I(R)

⎞
⎟⎟⎠;

(b) Reg(K) =

⎛
⎜⎜⎝

Reg(R) Reg(R) . . . Reg(R)
Reg(R) Reg(R) . . . Reg(R)

. . . . . . . . . . . .
Reg(R) Reg(R) . . . Reg(R)

⎞
⎟⎟⎠.

(2) K is right fully idempotent if and only if R is right fully idempotent and {ηikj} ⊂ U(R).
(3) K is regular if and only if R is regular and {ηikj} ⊂ U(R).

Proof. For arbitrary elements r1, r2 ∈ R, we denote by r1 ∗ijk r2 the expression φijk(r1 ⊗ r2).
(1). We show that the relation from (a) holds. We denote by I ′ the right part of (a). The inclusion

I(K) ⊂ I ′ directly follows from Theorem 2.4. We show that the converse inclusion holds. Let r ∈ I ′. For
arbitrary 1 ≤ i, j, s, t ≤ n and a, b ∈ R, we have the relations

arijbηsjtηsijηtst = arijbηsjtηsijηtst

∑
1≤l≤k

clarijbηsjtηsijηtstdl,

arijbηsjtηsij = arijbηsjtηsij

∑
1≤l≤k

clarijbηsjtηsijηtstdl,

(a ∗sij rij) ∗sjt b =
(
(a ∗sij rij) ∗sjt b

) ∑
1≤l≤k

(
cl ∗tst

(
(a ∗sij rij) ∗sjt b

))
dl.

Then r ∈ I(K) by Theorem 2.4. The relation from (b) is similarly proved.
(2). =⇒. It follows from Corollary 2.5 that for arbitrary 1 ≤ i, j ≤ n, we have

1 =
∑

1≤t≤k

rt ∗iji st = ηiji

∑
1≤t≤k

rtst.

Therefore, elements of the form ηiji are invertible in R. For every 1 ≤ k ≤ n, we have ηiji = ηijkηjik.
Therefore, {ηikj} ⊂ U(R).

⇐=. This implication directly follows from the first part of the original theorem.
(3). The proof is similar to the proof of (2).

3. Formal Matrix Rings Which Are Semi-Artinian or max-Rings

A ring R is said to be right semi-Artinian if every nonzero right R-module contains a simple sub-
module. If every nonzero right R-module contains a maximal submodule, then the ring R is called a right
max-ring.
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Theorem 3.1 ([2, Theorem 4.2]). For a formal matrix ring

K =
(

R M
N S

)
,

the following conditions are equivalent :
(1) K is a right semi-Artinian ring ;
(2) R and S are right semi-Artinian rings.

Proof. (1) =⇒ (2). Let A be a nonzero right R-module. It follows from the assumption that the right
K-module H(A) =

(
A, HomR(N, A)

)
contains a simple submodule (X, Y ). If X = 0, then f(N) = fN = 0

for every f ∈ Y . Consequently, Y = 0, which is impossible. Therefore, X �= 0 and it follows from simplicity
of the module (X, Y ) that X is a simple submodule of the R-module A. It follows from the above argument
that every nonzero right R-module contains a simple submodule; consequently, R is a right semi-Artinian
ring. With the use of a similar argument, we can show that S is a right semi-Artinian ring.

(2) =⇒ (1). Let (A, B) be a right K-module and let (A0, B0) be a nonzero submodule in (A, B).
Without loss of generality, we can assume that A0 �= 0. Since R and S are right semi-Artinian rings,
Soc(A) is essential in A and Soc(B) is essential in B. Then the module A0 contains a simple submodule
aR, where a ∈ A0. If aRM = aM = 0, then (aR, 0) is a simple submodule of the K-module (A0, B0). If
aM �= 0, then it follows from the essentiality of the submodule Soc(B) in the module B that the S-module
aM contains a simple submodule bS, where b ∈ B0. It is clear that the element b has the form b = am,
where m ∈ M . If bN = 0, then (0, bS) is a simple submodule of the K-module (A0, B0). If bN �= 0, then
bN = amN ⊂ aMN is a nonzero submodule of the simple module aR. Consequently, bN = aR. Since
aRM = bNM and the module bS is simple, we have aRM = bS. Since aR is a simple R-module, bS
is a simple S-module and aRM = bS, bSN = aR, we have that (aR, bS) is a simple submodule in the
K-module (A0, B0).

Theorem 3.2 ([2, Theorem 4.3]). For a formal matrix ring

K =
(

R M
N S

)
,

the following conditions are equivalent :
(1) K is a right max-ring ;
(2) R and S are right max-rings.

Proof. (1) =⇒ (2). Let A be a nonzero right R-module. It follows from the assumption of (1) that the
right K-module T (A) = (A, A⊗M) contains a maximal submodule (X, Y ). If X = A, then it is clear that
Y = A ⊗ M , which is impossible. Therefore, X �= A. It follows from the maximality of the submodule
(X, Y ) that X is a maximal submodule of the R-module A. It follows from the above argument that
every nonzero right R-module contains a maximal submodule; consequently, R is a right max-ring. By
the use of a similar argument, we can show that S is a right max-ring.

(2) =⇒ (1). Let (A, B) be a nonzero right K-module and let (X, Y ) be a proper submodule of the
module (A, B). Since R and S are right max-rings, nonzero factor modules of the modules A and B
contain maximal submodules. If (A/X)M �= B/Y , then B has a maximal submodule Y ′ such that
(A/X)M ⊂ Y ′/Y . In this case, it is easy to see that the module (A/X, Y ′/Y ) is a maximal submodule of
the module (A/X, B/Y ). If (B/Y )M �= A/X, then we can use a similar argument to show that the module
(A/X, B/Y ) contains a maximal submodule. We assume that (A/X)M = B/Y and (B/Y )N = A/X.
The module A has a maximal submodule A0 with X ⊂ A0. In the module B, we consider a submodule B0

such that
B0/Y = {b̄ ∈ B/Y | b̄N ⊂ A0/X}.

It is clear that B0/Y �= B/Y and (A0/X)M ⊂ B0/Y . We show that B0 is a maximal submodule of the
S-module B. Let b̄ /∈ B0/Y . Then b̄N � A0/X; consequently,

b̄N + A0/X = A/X, b̄NM + (A0/X)M = (A/X)M = B/Y.
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Therefore, the relation b̄S + B0/Y = B/Y holds for any arbitrary b̄ ∈ (B/Y ) \ (B0/Y ); consequently,
(B/Y )/(B0/Y ) is a simple S-module. Since

(A0/X)M ⊂ B0/Y, (B0/Y )N ⊂ A0/X,

we have that (A0/X, B0/Y ) is a submodule of the T -module (A/X, B/Y ). It is easy to see that the
right K-module

(
(A/X)/(A0/X), (B/Y )/(B0/Y )

)
has length at most two. Consequently, the submodule

(X, Y ) is contained in a maximal submodule of the module (A, B).

In [16], right perfect formal matrix rings (
R M
N S

)

are described in the case where MN = 0 and NM = 0; in [19], these rings are described in the case where
the right modules MS and NR are finitely generated.

Corollary 3.3. The following assertions hold.
(1) A formal matrix ring K = K({Mij} : {ϕikj}) of order n is right semi-Artinian (right max-ring)

if and only if Ri is a right semi-Artinian ring (right max-ring) for every 1 ≤ i ≤ n.
(2) A formal matrix ring K = K({Mij} : {ϕikj}) of order n is right perfect if and only if Ri is a right

perfect ring for every 1 ≤ i ≤ n.

Proof. (1). The assertion directly follows from Theorems 3.1 and 3.2.
(2). The assertion follows from [23, 6.48] and Theorem 3.1.

4. Formal Matrix Rings Which Are V-Rings or SV-Rings

A ring over which every simple right module is injective is called a right V-ring. A right semi-Artinian,
right V-ring is called a right SV-ring.

Lemma 4.1. Let

K =
(

R M
N S

)

be a formal matrix ring, the module M be a right N -fully idempotent, and let the module N be right
M -fully idempotent.

(1) If (A0, B0) is a submodule of the K-module (A, B), then the following conditions are equivalent :
(a) (A0, B0) is an essential submodule in the K-module (A, B);
(b) the submodule A0 is essential in the R-module A and the submodule B0 is essential in the

S-module B.
(2) If A is a simple right R-module, then the right K-module T (A) is simple.
(3) If A is a simple right R-module and T (A) is an injective right K-module, then the module A is

injective.

Proof. (1). (a) =⇒ (b). Let a be a nonzero element of the module A. Since (A0, B0) is an essential
submodule of K-module (A, B), for some arbitrary(

r m
n s

)

of K, we have that

(a, 0)
(

r m
n s

)
∈ (A0, B0) \ {(0, 0)}.

Then ar ∈ A0 and am ∈ B0. If ar �= 0, then aR ∩ A0 �= 0. We assume that ar = 0. Then am �= 0. It
follows from the assumption of (1) that m ∈ mNmS. Therefore, amN �= 0. Since B0N ⊂ A0, we have
that amN ⊂ A0∩aR. It follows from the above argument that aR∩A0 �= 0. Therefore, the submodule A0

is essential in the module A. It is similarly proved that the submodule B0 is essential in the module B.
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(b) =⇒ (a). This implication is directly verified.
(2). Let A = aR. We show that T (aR) is a simple right K-module. If aR ⊗ M = 0, then it is clear

that the module T (aR) is simple. We assume that aR ⊗ M �= 0. We show that aR ⊗ M = a ⊗ M is
a simple right S-module. Let a ⊗ m be an arbitrary nonzero element of a ⊗ M . If (a ⊗ m)N = 0, then
amN = 0. Since M is right N -fully idempotent, we have that

m = m
k∑

i=1

nimsi,

where si ∈ S, ni ∈ N for every 1 ≤ i ≤ k. Then

a ⊗ m = a ⊗
(

m
k∑

i=1

nimsi

)
=

k∑
i=1

(amni ⊗ msi) = 0,

which contradicts the choice of an arbitrary a⊗m. Thus, (a⊗m)N �= 0 and it follows from the simplicity
of the module aR that

aR = (a ⊗ m)N = amN, aR ⊗ M = amN ⊗ M = a ⊗ mNM ⊂ a ⊗ mS.

For arbitrary nonzero element a⊗m of right S-module a⊗M , we have that a⊗M = a⊗mS. Consequently,
the module a⊗M is simple. Since (a⊗M)N = aR, we have that (aR)M = aR⊗M and T (aR) is a simple
right K-module.

(3). Let B be a right R-module, which is an essential extension of the module A. The embedding
ε : A → B of the module A into the module B induces the homomorphism of K-modules T (ε) : T (A) →
T (B). It follows from (2) that T (A) is a simple module and T (ε) �= 0. Therefore, T (ε) is a monomorphism.
By the assumption of (3), T (A) is an injective right K-module. Therefore, T (A) is a direct summand of
the module T (B). Then A is a direct summand of the module B; consequently, A = B. Therefore, A is
an injective module.

Theorem 4.2. Let

K =
(

R M
N S

)

be a formal matrix ring. Then the following conditions are equivalent :
(1) K is a right V-ring ;
(2) R and S are right V-rings, the module M is right N -fully idempotent, and the module N is right

M -fully idempotent.

Proof. (1) =⇒ (2). The property that the module M is a right N -fully idempotent and the module N is
right M -fully idempotent follows from [4, Corollaries 6.9 and 7.8].

Let A be a simple right R-module. It follows from Lemma 4.1 that the right K-module T (A) is
simple. Since K is a right V-ring, T (A) is an injective module. Then it follows from Lemma 4.1 that the
R-module A is injective. Therefore, R is a V-ring. It can be similarly proved that S is a V-ring.

(2) =⇒ (1). Let (B1, B2) be a K-module and let (A1, A2) be a simple essential submodule in (B1, B2).
Then it follows from Lemma 4.1 that Ai is an essential submodule of the module Bi and Ai is either a simple
module or the zero module for every 1 ≤ i ≤ 2. Then it follows from the assumption of (2) that A1 = B1

and A2 = B2. Therefore, K is a right V-ring.

Corollary 4.3. Let

K =
(

R M
N S

)

be a formal matrix ring. If R and S are commutative rings, then the following conditions are equivalent :
(1) K is a right V-ring ;
(2) K is a regular ring.
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Proof. (1) =⇒ (2). It follows from Theorem 4.2 and [22, 22.4] that R and S are regular rings, the
module M is right N -fully idempotent, and the module N is right M -fully idempotent. For an arbitrary
element m ∈ M , we have

m = m

k∑
i=1

nimsi = m
k∑

i=1

sinim = m

( k∑
i=1

sini

)
m,

where si ∈ S, ni ∈ N for every 1 ≤ i ≤ k. Therefore, the module M is N -regular. We can similarly show
that the module N is M -regular. Then it follows from Corollary 2.2 that K is a regular ring.

(2) =⇒ (1). The implication follows from Theorem 4.2 and [22, 22.4].

Theorem 4.4. Let

K =
(

R M
N S

)

be a formal matrix ring. Then the following conditions are equivalent :
(1) K is a right SV-ring ;
(2) R and S are right SV-rings, the module M is N -regular, and the module N is M -regular ;
(3) R and S are right SV-rings, the module M is right N -fully idempotent, and the module N is right

M -fully idempotent.

Proof. (1) =⇒ (2). It follows from Theorems 3.1 and 4.2 that R and S are right SV-rings. It follows
from [5, Theorem 2.7] that K is a regular ring. Consequently, the module M is N -regular and the
module N is M -regular.

(2) =⇒ (3). This assertion is directly verified.
(3) =⇒ (1). The implication follows from Theorems 3.1 and 4.2.

Remark. Theorems 4.2 and 4.4 were first published in [1].

Corollary 4.5. Let

K =
(

R M
N S

)

be a formal matrix ring. If K is a regular ring, then the following conditions are equivalent :
(1) K is a right SV-ring ;
(2) R and S are right SV-rings.

Corollary 4.6. Let P be a finitely generated, projective, right R-module and S = EndR(P ). Then the
following assertions hold :

(1) if R is a right V-ring, then S is a right V-ring ;
(2) if R is a right max-ring, then S is a right max-ring ;
(3) if R is a right SV-ring, then S is a right SV-ring ;
(4) if R is a right semi-Artinian ring, then S is a right semi-Artinian ring.

Proof. (1). There exists a projective right R-module P ′ such that there exists an isomorphism Rn ∼= P⊕P ′
for some positive integer n. Therefore, for some idempotent e ∈ Mn(R), we have the ring isomorphism
eMn(R)e ∼= S. Since the property to be a right V-ring is invariant in the sense of Morita, Mn(R) is a right
V-ring. Then it follows from Theorem 4.2 that S is a right V-ring.

The proofs of assertions of (2), (3), and (4) are similar to the proof of (1) and use of Theorems 3.2,
4.4, and 3.1, respectively.

Corollary 4.7. Let K = Kn(R : {ηikj}) be a formal matrix ring over R of order n. Then
(1) K is a right V-ring if and only if R is a right V-ring and {ηikj} ⊂ U(R);
(2) K is a right semi-Artinian ring if and only if R is a right semi-Artinian ring ;
(3) K is a right max-ring if and only if R is a right max-ring ;
(4) K is a right SV-ring if and only if R is a right SV-ring and {ηikj} ⊂ U(R).
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If M is a right R-module, then we denote by(
R HomR(M, R)
M EndR(M)

)

the formal matrix ring such that the bimodule homomorphisms ϕ : HomR(M, R) ⊗ EndR(M)M → R,
ψ : M⊗RHomR(M, R) → EndR(M) are defined by the relations m⊗f 
→ (

m′ 
→ mf(m′)
)
, f⊗m 
→ f(m),

respectively.

Corollary 4.8. Let R be a right SV-ring and let M be a finitely generated right R-module. Then the
following conditions are equivalent :

(1) K =
(

R HomR(M, R)
M EndR(M)

)
is a right SV-ring ;

(2) M is a projective right R-module.

Proof. (1) =⇒ (2). It follows from Theorem 4.4 that the module M is HomR(M, R)-regular. Then it
follows from [24, Corollary 1.7] that M is a projective module.

(2) =⇒ (1). It follows from [5, Theorem 2.7] that R is a regular ring. Since the module M is finitely
generated, it follows from the assumption of (2) that HomR(M, R) is a projective left R-module. Conse-
quently, it follows from [24, Theorem 2.8] that the right R-module M and the left R-module HomR(M, R)
are regular. It follows from the canonical isomorphism of right R-modules M ∼= HomR(HomR(M, R), R)
that the module M is HomR(M, R)-regular and the module HomR(M, R) is M -regular. Then it follows
from Corollary 4.6 and Theorem 4.4 that K is a right SV-ring.

5. Clean Rings and the Isomorphism Problem for Formal Matrix Rings

A ring A is said to be clean if any element of A is a sum of an invertible element and an idempotent.
A ring R is said to be strongly clean (uniquely strongly clean) if every element r of R can be represented
(respectively, uniquely represented) in the form r = e + u, where e = e2, u ∈ U(R), eu = ue. A ring R is
said to be strongly nil-clean if every element r of R can be written in the form r = e + n, where e = e2,
n is a nilpotent element, and en = ne. It follows from [9, Propositions 2.5 and 2.6 and Corollaries 3.11
and 3.26] that every strongly nil-clean ring is a uniquely strongly clean ring.

Theorem 5.1. Let F be a field. Then a formal matrix ring K = Kn(F : {ηikj}) is nil-clean if and only
if F ∼= F2.

Proof. It is easy to show that K/J(K) ∼= Mn1(F ) × · · · × Mnk
(F ), where n1 + · · · + nk = n. Then the

assertion of the original theorem follows from [6, Theorem 3] and [9, Theorem 3.15].

Theorem 5.2. Let R be an arbitrary ring. Then a formal matrix ring K = Kn(R : {ηikj}) is strongly
nil-clean if and only if R is a strongly nil-clean ring and every element of the set {ηiji | 1 ≤ i, j ≤ n, i �= j}
is nilpotent.

Proof. =⇒. Since every strongly nil-clean ring is a uniquely strongly clean ring, it follows from [8, Corol-
lary 18] that K/J(K) is a Boolean ring and, consequently, {ηiji | 1 ≤ i, j ≤ n, i �= j} ⊂ J(R). It follows
from [9, Corollary 3.26] that R is a strongly nil-clean ring. In addition, it follows from [9, Corollary 3.17]
that J(R) is a nil-ideal.

⇐=. It is clear that

J(K) =

⎛
⎜⎜⎝

J(R) R . . . R
R J(R) . . . R
. . . . . . . . . . . .
R R . . . J(R)

⎞
⎟⎟⎠ .

By [9, Corollary 3.17] J(R) is a nil-ideal and every element of the set {ηiji | 1 ≤ i, j ≤ n, i �= j} is
nilpotent. Therefore, it is easy to see that every matrix in J(K) is a nilpotent. Since

K/J(K) ∼= R/J(R) × · · · × R/J(R),
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we have that K/J(K) is a strongly nil-clean ring, and it follows from [9, Corollary 3.22] that K is a strongly
nil-clean ring.

The following hypothesis is proved in [20] for n = 2.

Hypothesis. Let R be a commutative local ring. If every element of the set {ηiji | 1 ≤ i, j ≤ n, i �= j}
is nilpotent, then the formal matrix ring K = Kn(R : {ηikj}) is strongly clean.

The isomorphism problem for formal matrix rings has been intensively studied lately; the problem
has the following formulation. For two given families {β1, β2, . . . , βn} and {γ1, γ2, . . . , γn} of elements of
the commutative ring R, find conditions under which we have the isomorphism

Mβ1,β2,...,βn(R) ∼= Mγ1,γ2,...,γn(R).

The study of the isomorphism problem is initiated in [15]. The following theorem is proved in this
paper.

Theorem 5.3. Let R be a commutative ring and let s and t be two elements in R such that at least one
of the elements is not a zero-divisor. The rings Ks and Kt are isomorphic to each other if and only if
there exist an invertible element v ∈ R and an automorphism α of the ring R such that t = vα(s).

The isomorphism problem is studied in [2, 3, 17, 19–21]. Below, we provide results for formal matrix
rings of the form Mβ1,β2,...,βn(R) obtained in [2].

Theorem 5.4. Let R be a commutative ring, n ≥ 3, β, γ1, . . . , γn ∈ R, and let annR(β) ⊆ J(R). Then

Mβ, 0, . . . , 0︸ ︷︷ ︸
n

(R) ∼= Mγ1,γ2,...,γn(R)

if and only if γi = α(β)viai for all i = 1, n, where α ∈ Aut(R), vi ∈ U(R), and 1 = a1 + a2 + · · · + an is
the decomposition of the identity element into a sum of orthogonal idempotents ai.

Corollary 5.5. Let R be a commutative ring, n ≥ 3, β, γ1, . . . , γn ∈ R and let

Mβ, 0, . . . , 0︸ ︷︷ ︸
n

(R) ∼= Mγ1,γ2,...,γn(R).

Then the following assertions hold.
(1) If β is not a zero-divisor in the ring R, then there exist α ∈ Aut(R), v1, . . . , vn ∈ U(R), and the

decomposition of the identity element 1 = a1 + a2 + · · · + an such that γi = α(β)viai, i = 1, n.
(2) If R is a domain, then there exist α ∈ Aut(R) and v ∈ U(R) such that γi = α(β)v and γj = 0 if

i �= j for some 1 ≤ i ≤ n.

Theorem 5.6. Let R be a commutative ring, n ≥ 3, β, γ1, . . . , γn ∈ R, and annR(β2) ⊆ J(R). Then

Mβ, β, . . . , β︸ ︷︷ ︸
n

(R) ∼= Mγ1,γ2,...,γn(R)

if and only if γi = α(β)vi for all i = 1, n, where α ∈ Aut(R) and vi ∈ U(R).

Theorem 5.7. Let R be a commutative ring such that Z(R) ⊆ J(R), n ≥ 3, and β, γ1, . . . , γn ∈ R. Then

Mβ, β, . . . , β︸ ︷︷ ︸
n

(R) ∼= Mγ1,γ2,...,γn(R)

if and only if γi = α(β)vi for all i = 1, n, where α ∈ Aut(R) and vi ∈ U(R).

Corollary 5.8 ([21, Theorem 18]). Let R be a commutative ring with Z(R) ⊆ J(R) and let n ≥ 3. Then

Mβ, β, . . . , β︸ ︷︷ ︸
n

(R) ∼= Mγ,γ,...,γ(R)

if and only if γ = α(β)v, where α ∈ Aut(R) and v ∈ U(R).
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Hypothesis. Let R be a division ring and let K = Kn(R : {ηikj}) be an arbitrary formal matrix ring
over R. Then we have the isomorphism

K ∼= Kn(R : {θikj}),
where {θikj} ⊂ {0, 1}.

This study is supported by the Russian Science Foundation (project 16-11-10013).
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