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FORMAL MATRICES AND RINGS CLOSE TO REGULAR

A. N. Abyzov and A. A. Tuganbaev UDC 512.552

ABSTRACT. This paper contains new and known results on formal matrix rings close to regular. The main
results are given with proofs.

1. Preliminaries

All rings are assumed to be associative and with nonzero identity element; all modules are assumed
to be unitary. Let Ry, Ra,..., R, be rings and let M;; be (R;, R;)-bimodules such that M;; = R; for all
1 <4,j < n. In addition, let @;;.: M;; ®g, Mj — M;, be (R;, Ry)-bimodule homomorphisms such that
@ii; and ¢;j; are canonical isomorphisms for all 1 <i,j < n. We set aob = ¢;p(a ®b) for a € M;; and
b € M;;. We denote by K the set of all n x n matrices (m;;) with elements m;; € M;; for all 1 <i,j <n.
It is easy to verify that K is a ring with respect to ordinary operations of addition and of multiplication
if and only if ao (boc) = (aob)oc for all a € My, b € My, and c € My;, 1 < i,k,l,j <n. The obtained
ring K is called a formal matriz ring of order n; it is denoted by K ({M;;}: {@ir;}). If

N

are formal matrix rings of order 2, then the ordered family (R, S, M, N, p, ) is called a Morita context
or a pre-equivalence situation.

The formal matrix ring K ({M;;}: {@ir;}) of order n, in which M;; = R for all 1 <i,j < n, is called
a formal matriz ring over R of order n; it is denoted by K,(R) or K, (R: {¢i;}). For a formal matrix
ring K, (R: {¢ijr}) over R of order n, we set n;x = @ip(1 ® 1) for all 1 < 4,5,k < n. Then aob =
@ijr(a ® b) = njpab for all a,b € R. For every a € R, we have anji = pijr(a ® 1) = pijr(1 ® a) = nyjra.
Therefore, n;;, € C(R), and the following conditions hold:

(1) Mg =mij; =1, 1<4,5 <my

(2) nijrnin = Nigimir, 1 < 4,5,k 1 < n.

The first condition holds, since ¢;;; and ¢;;; are canonical isomorphisms. Since the operation o is
associative, we have 1;;, i abc = 151 1,k abe for all a,b,c € R. By setting a = b = ¢ = 1, we obtain
the second condition. For every family {n;jr | 1 < 4,5,k < n} of central elements of R satisfying the
first condition and the second condition, we can set ¢;jx(a ® b) = n;;,ab for all a,b € R. It is directly
verified that K, (R: {@k;}) is a formal matrix ring over R of order n. Therefore, the formal matrix ring
K, (R: {¢ik;}) is uniquely defined by the family {n;;; | 1 <4, j,k < n} of central elements. In this case,
the formal matrix ring K, (R: {¢i;}) is denoted by K, (R: {nx;})-

Let R be a ring and let fq,...,3, € C(R) with n > 2. We define 7;;, for all 1 < 4,4,k < n by the
relation

1 ifi=jorj=k,
Nijk = § B; if 4, 7, k are distinct,
B ifi=k#j.
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It is directly verified that the family {n;x | 1 < 4,7,k < n} satisfies conditions (1) and (2) and,
consequently, defines a formal matrix ring over R of order n. We denote by Mg, g3, (R) the formal
matrix ring K, (R: {¢i;r}) defined by the set {n;;1}. Therefore, Mg, g, (R) coincides with the set of all
matrices of order n over R with ordinary operation of addition and operation of multiplication defined as
follows. For two matrices of order n over R, (a;;) and (b;;),

n
0ij—0ik A1—0;
(aij)(bij) = (Cij)a where Cij = Zﬂl ik L Jkaikbkj.

k=1
Formal matrix rings and their modules have been intensively studied lately. Modules over formal
matrix rings are considered in [10-13, 16]. Various ring properties of formal matrix rings are studied
in [12,18,19,21]. Grothendieck groups and Whitehead groups of formal matrix rings are studied in [18].
The isomorphism problem for formal matrix rings is studied in [15,21]. The ideal lattice of such rings is

studied in [7].
R M
f=(v5),

Let
X be a right R-module, Y be a right S-module, and let us have an R-module homomorphism
f:Y ®s N — X and an S-module homomorphism g: X®@rM — Y. We set yn:=f(y®@n), zm:=g(x@m)
and require that the relations (yn)m = y(nm) and (zm)n = z(mn) hold for all z € X, y € Y, m € M,
and n € N. In this case, the group of vector rows (X, Y') is naturally provided by the structure of a right
K-module. It is easy to show that any right K-module can be considered as a module of vector rows.
Homomorphisms of K-modules can be considered as pairs consisting of an R-homomorphism and an
S-homomorphism. Namely, if I': (X,Y) — (X', Y”) is a homomorphism, then there exist an R-homomor-
phism a: X — X’ and an S-homomorphism 3: Y — Y’ such that I'(z,y) = (a(z),3(y)). In addition,
the relations a(yn) = B(y)n and B(zm) = a(xz)m hold for all x € X, y € Y, m € M, and n € N.

We recall some constructions from [16]. Let A be a nonzero right R-module. We denote by H(A) the
right K-module (A,HomR(N , A)) such that homomorphisms of module multiplication are the mapping
A®@M — Hompg(N, A), a@m +— (n+— a(mn)) and the mapping Homp(N, A)@N — A, f@n — f(n). We
denote by T'(A) the right K-module (4, A ® M) such that homomorphisms of the module multiplication
are the identity automorphism A ® M — A ® M and the mapping (A® M) ®@ N — A, (a ® m)n = amn.

The Jacobson radical and the largest regular ideal of the ring R is denoted by J(R) and Reg(R),
respectively. For a right R-module M, we denote by J(M) the Jacobson radical of M.

Let
R M
w=(x %)

be a formal matrix ring. A bimodule M is said to be N-regular (right N-fully idempotent) if m € mNm
(respectively, m € mNmS) for every m € M. M-regular bimodules and right M-fully idempotent
bimodules N are similarly defined.

2. Formal Matrix Rings Close to Regular

For a formal matrix ring K = K({M;;}: {@ik;j}) of order n and for each 1 < i,j < n, we denote by
Reg(M;;) the set of the form {m € M;; | m € mMjm}.
Theorem 2.1 ([25]). For a formal matriz ring K = K({M;;}: {@i;}) of order n, we have
Reg(K) = {r € K | Myr;jM;s C Reg(M;s)}.

Corollary 2.2. For a formal matriz ring K = K({M;;}: {@ir;}) of order n, the following conditions are
equivalent:

(1) K is a regular ring;
(2) for each subscript pair 1 <i,j <n and each m € M;j, we have that m € mMjm.
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A ring R is called an Iy-ring if for every arbitrary r € R\ J(R), there exists an element s € R\ {0}
with s = srs.

Theorem 2.3 ([25]). For a formal matriz ring K = K({M;;}: {@irj}) of ordern, the following conditions
are equivalent:

(1) K is an Iy-ring;

(2) for every 1 < i < n, the ring R; is an Iy-ring.

A ring R is said to be right (left) fully idempotent if I? = I for every right (respectively, left) ideal I
of the ring R. If the relation I? = I holds for every ideal I of the ring R, then the ring R is said to
be fully idempotent. An element r of the ring R is said to be right fully idempotent if rR = rRrR. For
aring R, an ideal I of R is said to be right fully idempotent if every element of [ is right fully idempotent.
By [23, 12.17], every ring R has the largest fully idempotent right ideal which is denoted by I(R).

For a formal matrix ring K = K({M;;}: {®ix;}) of order n and for each 1 <4, j < n, we denote by
I(M;j) the set of the form {m € M;; | m € mM;mR;}. We denote by re;; the element of the formal
matrix ring K = K({M;;}: {¢ir;}) such that the component located at the intersection of the ith row
and the jth column is equal to r and the remaining components are equal to zero.

Theorem 2.4. For an arbitrary formal matriz ring K = K({M;}: {pix;}) of order n, we have

I(K) = {T e K | Mtiriijs C I(Mts)}.
Proof. We denote by I’ the set {r € K | Myr;jM;s C I(Ms)}. It follows from the proof of Theorem 5.3
in [4] that I’ is an ideal of the ring K. We show that I(K) C I'. Since e;;Ke;j;I(K)essKey C I(K), it is

sufficient to show that all components of an arbitrary ideal I(K) are right fully idempotent. Let a € I(R).
Therefore, for each pair of subscripts 4, j, we have

m m m
eiiaejj = eiiaejj ( Z bkeiiaejjck> = eiiaejj ( Z bkeiiaejjckejj> 5 aij = aij ( Z(bk)jiaij(ck)jj> .

k=1 k=1 k=1

We show that I’ C I(K). We assume that the ideal I’ contains an element which is not right
fully idempotent. In I’, we choose an element r such that r is not fully idempotent and the row
T1ls-+-3T1ny---sTnl,---,Tnn has the largest number of the first zeros. Let 7,5, be the first nonzero
element in this row. We have

Tiodo = Tiodo Y WkTiojoDks
k
where ay € Mj;,, by € Rjyj, for every k. Then

Py akCioigThoje = Y Tijeij — < > Tiﬁij) < > ak%m( > :TijeiJ')bkejojo) = gijeijs
k %,

k 1,J 1,J 1]

where g;; = r;j, provided j # jo, and
Gijo = Tijo = Y Tijo@Tinjo -
k

It is clear that g;; = 0 if either i < ig, or ¢ = ig, j < jo, or ¢ = ig, j = jo. Consequently, it follows from
the choice of arbitrary r that the element

r—r E akejoiorbkejojo
k

is right fully idempotent. Then it follows from [4, Lemma 5.2] that any r is fully idempotent; this
contradicts our original assumptions. O
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Corollary 2.5. For a formal matriz ring K = K({M;;}: {@ik;}) of order n, the following conditions are
equivalent:

(1) K is a right fully idempotent ring;

(2) for each subscript pair 1 <i,j <n and any m € M;;, we have m € mMjmR;.

The following assertion follows from Corollaries 2.2 and 2.5.
Corollary 2.6. For a formal matriz ring K = K({M;;}: {¢irj}) of order n such that the ring R; is
commutative for each 1 < i < n, the following conditions are equivalent:

(1) K is a right fully idempotent ring;

(2) K is a left fully idempotent ring;

(3) K is a regular ring.
Corollary 2.7. Let K = K,(R: {nit;}) be a formal matriz ring over R of order n.

(1) If every element of the set {n;y;} is not a zero-divisor, then we have

I(R) I(R) ... I(R)
W 1)~ |10 1R 1) |,
I(R) I(R) ... I(R)
Reg(R) Reg(R) ... Reg(R)
(b) Reg(K) = Reg(R) Reg(R) ... Reg(R)
Reg(R) Reg(R) ... Reg(R)

(2) K is right fully idempotent if and only if R is right fully idempotent and {n;1;} C U(R).
(3) K is regular if and only if R is reqular and {n;} C U(R).
Proof. For arbitrary elements ri,72 € R, we denote by r1 *;;; 72 the expression gf)ijk(rl ® 712).
(1). We show that the relation from (a) holds. We denote by I’ the right part of (a). The inclusion

I(K) C I' directly follows from Theorem 2.4. We show that the converse inclusion holds. Let r € I’. For
arbitrary 1 <1,7,s,t <n and a,b € R, we have the relations

ar;jbnsjiNsijNest = 135005 jtNsijMest Z c1ar;jbnsjiNsijNestdr,
1<I<k

arijbnsjiNsij = arijbnsjinsi; E c1ar;jbnsjiNsijNestdy,
1<I<k

(a *sij 7ij) *sjt b = ((a %555 7ij) *sj¢ b) Z (Cl st (@ *sij Tij) *sjt b))dl~
1<I<k

Then r € I(K) by Theorem 2.4. The relation from (b) is similarly proved.
(2). =. It follows from Corollary 2.5 that for arbitrary 1 < 4,7 < n, we have

1= E Tt *iji St = Niji E T¢S¢.
1<t<k 1<t<k

Therefore, elements of the form 7;j; are invertible in R. For every 1 < k < n, we have 7;;; = 0;jk0jik-
Therefore, {n;z;} C U(R).

<=. This implication directly follows from the first part of the original theorem.

(3). The proof is similar to the proof of (2). O

3. Formal Matrix Rings Which Are Semi-Artinian or max-Rings

A ring R is said to be right semi-Artinian if every nonzero right R-module contains a simple sub-
module. If every nonzero right R-module contains a maximal submodule, then the ring R is called a right
max-ring.

607



Theorem 3.1 ([2, Theorem 4.2]). For a formal matrixz ring

R M
(v )

the following conditions are equivalent:
(1) K is a right semi-Artinian ring;
(2) R and S are right semi-Artinian rings.

Proof. (1) = (2). Let A be a nonzero right R-module. It follows from the assumption that the right
K-module H(A) = (A,Homp(N, A)) contains a simple submodule (X,Y). If X = 0, then f(N) = fN =0
for every f € Y. Consequently, Y = 0, which is impossible. Therefore, X # 0 and it follows from simplicity
of the module (X, Y") that X is a simple submodule of the R-module A. It follows from the above argument
that every nonzero right R-module contains a simple submodule; consequently, R is a right semi-Artinian
ring. With the use of a similar argument, we can show that S is a right semi-Artinian ring.

(2) = (1). Let (A, B) be a right K-module and let (Ag, By) be a nonzero submodule in (A, B).
Without loss of generality, we can assume that Ag # 0. Since R and S are right semi-Artinian rings,
Soc(A) is essential in A and Soc(B) is essential in B. Then the module Ay contains a simple submodule
aR, where a € Ay. If aRM = aM = 0, then (aR,0) is a simple submodule of the K-module (Ag, By). If
aM # 0, then it follows from the essentiality of the submodule Soc(B) in the module B that the S-module
aM contains a simple submodule bS, where b € By. It is clear that the element b has the form b = am,
where m € M. If bN = 0, then (0, bS5) is a simple submodule of the K-module (Ag, Bp). If bN # 0, then
bN = amN C aM N is a nonzero submodule of the simple module aR. Consequently, bN = aR. Since
aRM = bNM and the module bS is simple, we have aRM = bS. Since aR is a simple R-module, bS
is a simple S-module and aRM = bS, bSN = aR, we have that (aR,bS) is a simple submodule in the
K-module (A[), Bo) L]

Theorem 3.2 ([2, Theorem 4.3]). For a formal matriz ring

R M
(v )

the following conditions are equivalent:
(1) K is a right max-ring;
(2) R and S are right max-rings.

Proof. (1) = (2). Let A be a nonzero right R-module. It follows from the assumption of (1) that the
right K-module T'(A) = (A, A® M) contains a maximal submodule (X,Y"). If X = A, then it is clear that
Y = A® M, which is impossible. Therefore, X # A. It follows from the maximality of the submodule
(X,Y) that X is a maximal submodule of the R-module A. It follows from the above argument that
every nonzero right R-module contains a maximal submodule; consequently, R is a right max-ring. By
the use of a similar argument, we can show that S is a right max-ring.

(2) = (1). Let (A, B) be a nonzero right K-module and let (X,Y’) be a proper submodule of the
module (A4, B). Since R and S are right max-rings, nonzero factor modules of the modules A and B
contain maximal submodules. If (A/X)M # B/Y, then B has a maximal submodule Y’ such that
(A/X)M C Y'/Y. In this case, it is easy to see that the module (4/X,Y’/Y) is a maximal submodule of
the module (A/X,B/Y). If (B/Y )M # A/X, then we can use a similar argument to show that the module
(A/X,B/Y) contains a maximal submodule. We assume that (A/X)M = B/Y and (B/Y)N = A/X.
The module A has a maximal submodule Ag with X C Ag. In the module B, we consider a submodule By
such that

By/Y ={b€ B/Y | bN C Ay/X}.
It is clear that By/Y # B/Y and (Ag/X)M C By/Y. We show that By is a maximal submodule of the
S-module B. Let b ¢ By/Y. Then bN ¢ Ay/X; consequently,

bN + Ag/X = A/X, bNM + (Ag/X)M = (A/X)M = BJY.
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Therefore, the relation bS + By/Y = B/Y holds for any arbitrary b € (B/Y) \ (Bo/Y); consequently,
(B/Y)/(Bp/Y) is a simple S-module. Since

(A()/X)MCB()/Y, (Bo/Y)NCAo/X,

we have that (Ag/X, By/Y) is a submodule of the T-module (A/X,B/Y). It is easy to see that the

right K-module ((4/X)/(Ao/X),(B/Y)/(By/Y)) has length at most two. Consequently, the submodule

(X,Y) is contained in a maximal submodule of the module (A, B). O
In [16], right perfect formal matrix rings

(¥ 5)

are described in the case where M N = 0 and NM = 0; in [19], these rings are described in the case where
the right modules Mg and Npg are finitely generated.

Corollary 3.3. The following assertions hold.
(1) A formal matriz ring K = K({M;;}: {@ir;}) of order n is right semi-Artinian (right max-ring)
if and only if R; is a right semi-Artinian ring (right max-ring) for every 1 <i < n.
(2) A formal matriz ring K = K({M;;}: {pir;}) of order n is right perfect if and only if R; is a right
perfect ring for every 1 < i <n.

Proof. (1). The assertion directly follows from Theorems 3.1 and 3.2.
(2). The assertion follows from [23, 6.48] and Theorem 3.1. O

4. Formal Matrix Rings Which Are V-Rings or SV-Rings

A ring over which every simple right module is injective is called a right V-ring. A right semi-Artinian,
right V-ring is called a right SV-ring.
R M
k=3 %)

be a formal matriz ring, the module M be a right N-fully idempotent, and let the module N be right
M -fully idempotent.
(1) If (Ao, Bo) is a submodule of the K-module (A, B), then the following conditions are equivalent:
(a) (Ao, Bo) is an essential submodule in the K-module (A, B);
(b) the submodule Ag is essential in the R-module A and the submodule By is essential in the
S-module B.
(2) If A is a simple right R-module, then the right K-module T'(A) is simple.
(3) If A is a simple right R-module and T(A) is an injective right K-module, then the module A is
mjective.

Lemma 4.1. Let

Proof. (1). (a) = (b). Let a be a nonzero element of the module A. Since (Ao, By) is an essential
submodule of K-module (A, B), for some arbitrary

-

@0) (1 ™) & Co. B\ (0,00

Then ar € Ay and am € By. If ar # 0, then aR N Ag # 0. We assume that ar = 0. Then am # 0. It
follows from the assumption of (1) that m € mNmS. Therefore, amN # 0. Since BoN C Ay, we have
that amN C AgNaR. It follows from the above argument that a RN Ag # 0. Therefore, the submodule Ag
is essential in the module A. It is similarly proved that the submodule By is essential in the module B.

of K, we have that
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(b) = (a). This implication is directly verified.

(2). Let A =aR. We show that T'(aR) is a simple right K-module. If aR ® M = 0, then it is clear
that the module T'(aR) is simple. We assume that aR ® M # 0. We show that aR ® M = a ® M is
a simple right S-module. Let a ® m be an arbitrary nonzero element of a ® M. If (a ® m)N = 0, then
amN = 0. Since M is right N-fully idempotent, we have that

k
m=m E n;ms;,
i=1

where s; € S, n; € N for every 1 <i < k. Then

k k
a@m=a® (m Z nimsi) = (amn; ® ms;) = 0,
i=1 i=1

which contradicts the choice of an arbitrary a @ m. Thus, (a®@m)N # 0 and it follows from the simplicity
of the module aR that

aR=(a®@m)N =amN, aRQM =amN M =a®@mNM C a®msS.

For arbitrary nonzero element a®m of right S-module a® M, we have that a® M = a®m.S. Consequently,
the module a® M is simple. Since (a®@ M)N = aR, we have that (aR)M = aR® M and T'(aR) is a simple
right K-module.

(3). Let B be a right R-module, which is an essential extension of the module A. The embedding
e: A — B of the module A into the module B induces the homomorphism of K-modules T'(¢): T'(A) —
T(B). It follows from (2) that T'(A) is a simple module and T'(¢) # 0. Therefore, T'(¢) is a monomorphism.
By the assumption of (3), T'(A) is an injective right K-module. Therefore, T'(A) is a direct summand of
the module T'(B). Then A is a direct summand of the module B; consequently, A = B. Therefore, A is
an injective module. O

(5

be a formal matrix ring. Then the following conditions are equivalent:
(1) K is a right V-ring;
(2) R and S are right V-rings, the module M is right N-fully idempotent, and the module N is right
M -fully idempotent.

Theorem 4.2. Let

Proof. (1) = (2). The property that the module M is a right N-fully idempotent and the module N is
right M-fully idempotent follows from [4, Corollaries 6.9 and 7.8].

Let A be a simple right R-module. It follows from Lemma 4.1 that the right K-module T'(A4) is
simple. Since K is a right V-ring, T'(A) is an injective module. Then it follows from Lemma 4.1 that the
R-module A is injective. Therefore, R is a V-ring. It can be similarly proved that S is a V-ring.

(2) = (1). Let (B, B2) be a K-module and let (Aj, A2) be a simple essential submodule in (By, Bs).
Then it follows from Lemma 4.1 that A; is an essential submodule of the module B; and A; is either a simple
module or the zero module for every 1 <14 < 2. Then it follows from the assumption of (2) that Ay = By
and As = Bsy. Therefore, K is a right V-ring. O

- (5

be a formal matrix ring. If R and S are commutative rings, then the following conditions are equivalent:
(1) K is a right V-ring;
(2) K is a regular ring.

Corollary 4.3. Let
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Proof. (1) = (2). It follows from Theorem 4.2 and [22, 22.4] that R and S are regular rings, the
module M is right N-fully idempotent, and the module N is right M-fully idempotent. For an arbitrary
element m € M, we have

k k k
m=1m Z n;ms; =m Z S;n;m = m(z SZ"I’L@‘) m,
i=1 i=1 i=1
where s; € S, n; € N for every 1 < i < k. Therefore, the module M is N-regular. We can similarly show
that the module N is M-regular. Then it follows from Corollary 2.2 that K is a regular ring.

(2) = (1). The implication follows from Theorem 4.2 and [22, 22.4]. O

Theorem 4.4. Let
R M
= (% %)

be a formal matriz ring. Then the following conditions are equivalent:
(1) K is a right SV-ring;
(2) R and S are right SV-rings, the module M is N -regular, and the module N is M -regular;
(3) R and S are right SV-rings, the module M s right N -fully idempotent, and the module N is right
M -fully idempotent.

Proof. (1) = (2). It follows from Theorems 3.1 and 4.2 that R and S are right SV-rings. It follows
from [5, Theorem 2.7] that K is a regular ring. Consequently, the module M is N-regular and the
module N is M-regular.

(2) = (3). This assertion is directly verified.

(3) = (1). The implication follows from Theorems 3.1 and 4.2. O

Remark. Theorems 4.2 and 4.4 were first published in [1].

Corollary 4.5. Let
R M
K= (3 §)

be a formal matrixz ring. If K is a reqular ring, then the following conditions are equivalent:

(1) K is a right SV-ring;

(2) R and S are right SV-rings.
Corollary 4.6. Let P be a finitely generated, projective, right R-module and S = Endgr(P). Then the
following assertions hold:

(1) if R is a right V-ring, then S is a right V-ring;
(2) if R is a right max-ring, then S is a right max-ring;
(3) if R is a right SV-ring, then S is a right SV-ring;
(4) if R is a right semi-Artinian ring, then S is a right semi-Artinian ring.
Proof. (1). There exists a projective right R-module P’ such that there exists an isomorphism R" = P& P’
for some positive integer n. Therefore, for some idempotent e € M,,(R), we have the ring isomorphism
eM,,(R)e = S. Since the property to be a right V-ring is invariant in the sense of Morita, M,,(R) is a right
V-ring. Then it follows from Theorem 4.2 that S is a right V-ring.

The proofs of assertions of (2), (3), and (4) are similar to the proof of (1) and use of Theorems 3.2,
4.4, and 3.1, respectively. O

Corollary 4.7. Let K = K,(R: {nit;}) be a formal matriz ring over R of order n. Then
(1) K is a right V-ring if and only if R is a right V-ring and {n;;} C U(R);
(2) K is a right semi-Artinian ring if and only if R is a right semi-Artinian ring;
(3) K is a right max-ring if and only if R is a right max-ring;
(4) K is a right SV-ring if and only if R is a right SV-ring and {n;,;} C U(R).
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If M is a right R-module, then we denote by

(3 Mttt )

the formal matrix ring such that the bimodule homomorphisms ¢: Homg(M, R) ® gna,nyM — R,
¢: M®grHomp(M, R) — Endgr(M) are defined by the relations m® f +— (m’ — mf(m’)), f@m — f(m),
respectively.

Corollary 4.8. Let R be a right SV-ring and let M be a finitely generated right R-module. Then the
following conditions are equivalent:
_ (R Hompg(M,R)
(1) K= <M End (M)
(2) M is a projective right R-module.

Proof. (1) = (2). It follows from Theorem 4.4 that the module M is Homp(M, R)-regular. Then it
follows from [24, Corollary 1.7] that M is a projective module.

(2) = (1). It follows from [5, Theorem 2.7] that R is a regular ring. Since the module M is finitely
generated, it follows from the assumption of (2) that Hompg(M, R) is a projective left R-module. Conse-
quently, it follows from [24, Theorem 2.8] that the right R-module M and the left R-module Hompz (M, R)
are regular. It follows from the canonical isomorphism of right R-modules M = Homg(Hompg(M, R), R)
that the module M is Hompg(M, R)-regular and the module Homp(M, R) is M-regular. Then it follows
from Corollary 4.6 and Theorem 4.4 that K is a right SV-ring. O

> is a right SV-ring;

5. Clean Rings and the Isomorphism Problem for Formal Matrix Rings

A ring A is said to be clean if any element of A is a sum of an invertible element and an idempotent.
A ring R is said to be strongly clean (uniquely strongly clean) if every element r of R can be represented
(respectively, uniquely represented) in the form r = e + u, where e = €2, u € U(R), eu = ue. A ring R is
said to be strongly nil-clean if every element 7 of R can be written in the form r = e + n, where e = €2,
n is a nilpotent element, and en = ne. It follows from [9, Propositions 2.5 and 2.6 and Corollaries 3.11

and 3.26] that every strongly nil-clean ring is a uniquely strongly clean ring.

Theorem 5.1. Let F' be a field. Then a formal matriz ring K = K,(F': {n;x;}) is nil-clean if and only
if F Ry

Proof. Tt is easy to show that K/J(K) = My, (F) X --- x M, (F), where nj + --- + ny = n. Then the
assertion of the original theorem follows from [6, Theorem 3] and [9, Theorem 3.15]. O

Theorem 5.2. Let R be an arbitrary ring. Then a formal matriz ring K = K,(R: {ni;}) is strongly
nil-clean if and only if R is a strongly nil-clean ring and every element of the set {m;j; | 1 <i,j <mn, i # j}
1$ nilpotent.

Proof. =. Since every strongly nil-clean ring is a uniquely strongly clean ring, it follows from [8, Corol-
lary 18] that K/J(K) is a Boolean ring and, consequently, {n;;; | 1 <4,j <n, i # j} C J(R). It follows
from [9, Corollary 3.26] that R is a strongly nil-clean ring. In addition, it follows from [9, Corollary 3.17]
that J(R) is a nil-ideal.

<. It is clear that

JJR) R ... R
S
R R ... JR)

By [9, Corollary 3.17] J(R) is a nil-ideal and every element of the set {n;;; | 1 < 4,5 < n, i # j} is
nilpotent. Therefore, it is easy to see that every matrix in J(K) is a nilpotent. Since

K/J(K)=ZR/J(R) x---x R/J(R),
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we have that K/J(K) is a strongly nil-clean ring, and it follows from [9, Corollary 3.22] that K is a strongly
nil-clean ring. O

The following hypothesis is proved in [20] for n = 2.

Hypothesis. Let R be a commutative local ring. If every element of the set {n;;; | 1 <i,5 <n, i # j}
is nilpotent, then the formal matrix ring K = K, (R: {n;;}) is strongly clean.

The isomorphism problem for formal matrix rings has been intensively studied lately; the problem
has the following formulation. For two given families {01, 2, ..., Bn} and {y1,72,...,7} of elements of
the commutative ring R, find conditions under which we have the isomorphism

M, y.....80 (B) = My s,y (R)-
The study of the isomorphism problem is initiated in [15]. The following theorem is proved in this
paper.
Theorem 5.3. Let R be a commutative ring and let s and t be two elements in R such that at least one

of the elements is not a zero-divisor. The rings Ky and K; are isomorphic to each other if and only if
there exist an invertible element v € R and an automorphism « of the ring R such that t = va(s).

The isomorphism problem is studied in [2,3,17,19-21]. Below, we provide results for formal matrix
rings of the form Mg, 3, . g, (R) obtained in [2].

Theorem 5.4. Let R be a commutative ring, n > 3, B,71,...,7% € R, and let anng(3) C J(R). Then
Mg o,... 0(R) =My, 5 . (R)
—_———

n

if and only if v = a(B)via; for all i = 1,n, where a € Aut(R), v; € U(R), and 1 = ay +as + -+ + a,, s
the decomposition of the identity element into a sum of orthogonal idempotents a;.

Corollary 5.5. Let R be a commutative ring, n > 3, 8,71, .--,Vn € R and let
Mﬂ, 0,... ,O(R) = My, o, 7m (R).
———

Then the following assertions hold.

(1) If B is not a zero-divisor in the ring R, then there exrist o € Aut(R), v1,...,v, € U(R), and the
decomposition of the identity element 1 = aj + as + - - - + ay, such that ~; = a(B)via;, i = 1,n.

(2) If R is a domain, then there exist o € Aut(R) and v € U(R) such that v; = a(B)v and v; = 0 if
1 #£ j for some 1l <i<n.

Theorem 5.6. Let R be a commutative ring, n >3, 3,71,...,7 € R, and anng(5%) C J(R). Then
Mﬂ, G,... ,ﬂ(R) = My vz, (1)
————

n

if and only if v; = a(B)v; for all i = 1,n, where o € Aut(R) and v; € U(R).
Theorem 5.7. Let R be a commutative ring such that Z(R) C J(R), n > 3, and B,71,...,7% € R. Then
M@ ﬁ, L. ’ﬁ(R) = M%,'yz,...,vn (R)
—_——

if and only if v; = a(B)v; for all i = 1,n, where a € Aut(R) and v; € U(R).
Corollary 5.8 ([21, Theorem 18]). Let R be a commutative ring with Z(R) C J(R) and let n > 3. Then
Mﬁ’ ﬁ, PR ,ﬂ(R) = M’Yv’Yﬂ""’Y(R)
—_———

n

if and only if v = a(B)v, where o € Aut(R) and v € U(R).
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Hypothesis. Let R be a division ring and let K = K, (R: {ny;}) be an arbitrary formal matrix ring
over R. Then we have the isomorphism

K = Ky(R: {0ikj}),

where {0;;} C {0,1}.

—_

[\

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.
20.

21.
22.
23.
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