TOPOLOGY OF STEADY HEAT CONDUCTION IN A SOLID SLAB SUBJECT TO A NONUNIFORM BOUNDARY

CONDITION: THE CARSLAW–JAEGER SOLUTION REVISITED. R. G. KASIMOVA, 1 and YU. V. OBNOSOV, 2

(Received 7 June, 2012; revised 19 October, 2012; first published online 18 February, 2013)

Abstract

Temperature distributions recorded by thermocouples in a solid body (slab) subject to surface heating are used in a mathematical model of two-dimensional heat conduction. The corresponding Dirichlet problem for a holomorphic function (complex potential), involving temperature and a heat stream function, is solved in a strip. The Zhukovskii function is reconstructed through singular integrals, involving an auxiliary complex variable. The complex potential is mapped onto an auxiliary half-plane. The flow net (orthogonal isotherms and heat lines) of heat conduction is compared with the known Carslaw–Jaeger solution and shows a puzzling topology of three regimes of energy fluxes for temperature boundary conditions common in passive thermal insulation. The simplest regime is realized if cooling of a shaded zone is mild and heat flows in a slightly distorted "resistor model" flow tube. The second regime emerges when cooling is stronger and two disconnected separatrices demarcate the back-flow of heat from a relatively hot segment of the slab surface to the atmosphere through relatively cold parts of this surface. The third topological regime is characterized by a single separatrix with a critical point inside the slab, where the thermal gradient is nil. In this regime the back-suction of heat into the atmosphere is most intensive. The closed-form solutions obtained can be used in assessment of efficiency of thermal protection of buildings.

2010 Mathematics subject classification: primary 35J25; secondary 65E04, 80A05.

Keywords and phrases: two-dimensional heat conduction, Laplace's equation, heat

lines, isotherms, complex potential, conformal mappings.

1. Introduction

Analytical solutions for heat conduction in solid bodies are needed in different engineering designs involving heat transfer [3]. Steady conduction can be quantified

1 German University of Technology in Oman, Muscat, Sultanate of Oman;

e-mail: rouzalia.kasimova@gutech.edu.om.

2 Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia; e-mail: yurii.obnosov@gmail.com.

c Australian Mathematical Society 2013, Serial-fee code 1446-1811/2013 \$16.00