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Введение
Карбонатные месторождения углеводородов про-

должают оставаться одним из ключевых объектов 
изучения в нефтегазовой отрасли, поскольку они со-
держат значительные запасы нефти и газа по всему 
миру [Жемчугова, 2014; Dunham, 1962; Nur et al., 
1995]. В то же время карбонатные породы являются 
довольно сложными для освоения объектами. Струк-
турная неоднородность, сложное строение порового 
пространства, наличие естественной трещиновато-
сти оказывают существенное влияние на бурение 
и добычу [Economides et al., 2002]. В Республике Та-
тарстан значительная концентрация месторождений, 
связанных с карбонатными коллекторами, отмечает-
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ся в пределах Южно-Татарского свода и восточно-
го борта Мелекесской впадины. В этих структурах 
карбонатные породы содержат до 35–40% всех раз-
веданных запасов нефти региона. Однако при теку-
щем уровне технологий извлекаемая доля составляет 
всего 10–15% [Мусин и др., 2013]. В таких отложе-
ниях зачастую используют метод гидроразрыва (ГРП) 
для увеличения притока нефти, однако особенности 
строения залежей в карбонатных отложениях нередко 
становятся причиной различных осложнений в про-
цессе его проведения [Салимов и др., 2013]. Для того 
чтобы снизить неуспешные операции гидроразрыва, 
необходимо более подробно изучать физико-механи-
ческие, петрофизические литолого-минералогиче-
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ские свойства пород, слагающих разрез. Это в свою 
очередь будет способствовать построению моделей 
месторождения с высокой точностью и снижению 
неопределенностей при планировании операций по 
увеличению дебита скважин. Важной задачей при из-
учении свойств карбонатных пород является опреде-
ление корреляционно-регрессионных зависимостей 
между различными измеряемыми параметрами по-
род. Существует множество эмпирических уравне-
ний, которые были получены посредством изучения 
кернового материала. Однако подавляющее большин-
ство из них неприменимо к другим месторождениям. 
Поэтому важным является либо установление соб-
ственных зависимостей, либо выбор существующих 
уравнений, которые подходят к изучаемому объекту. 
Еще одной задачей является корректная литологиче-
ская типизация пород, то есть разделение на группы 
по различным параметрам, что зачастую упускается 
при планировании освоения залежей, а карбонатная 
толща рассматривается как единый карбонатный 
пласт с близкими фильтрационно-емкостными и гео-
механическими характеристиками, без учета литоло-
гических и минералогических особенностей отдель-
ных интервалов пород.

В данной работе проведено обобщение всех 
ранее проведенных геомеханических исследова-
ний керна на данном месторождении. Проведен 
статистический анализ данных, построены корре-
ляционно-регрессионные модели по измеренным 
параметрам. Сделана классификация пород по их 
петрофизическим и литолого-стратиграфическим 
параметрам. Результаты проведенных исследований 
рассматриваются с точки зрения применимости для 
дальнейшего построения дизайна ГРП и прогнози-
рования роста трещины.

Объект исследования
Объектом исследования в данной работе является 

нефтяное месторождение, локализованное в регио-

нально нефтеносных отложениях среднего карбона. 
Оно располагается на территории Республики Татар-
стан, в западной части Южно-Татарского свода [Мус-
лимов и др., 2007] (рис. 1). Разрез представлен ком-
плексом осадочных пород девонского, каменноуголь-
ного, пермского и четвертичного возрастов (рис. 2). 

На данном месторождении был отобран и изучен 
керновый материал шести скважин. Всего было изуче-
но более 110 образцов. Все образцы стратиграфически 
приурочены к породам московского и башкирского 
ярусов – перспективным нефтеносным объектам [Мо-
розов, 2006].

Башкирский ярус представляет собой частое 
переслаивание пород-коллекторов и плотных по-
род с высокой степенью трещиноватости, увели-
чивающейся к нижним горизонтам яруса. Москов-
с-кий ярус включает в себя верейский и каширский 
горизонты. Верейский горизонт московского яруса 
можно условно разделить на карбонатный нижний 
и терригенный верхний слои. В нижнем карбонат-
ном слое верейского горизонта наблюдается чере-
дование продуктивных известняков с глинистыми 
породами и мергелями. В верхней части верейского 
горизонта начинают преобладать глинистые породы, 
иногда с появлением песчаных отложений в обла-
стях развития верейских врезовых тел. Каширский 
горизонт московского яруса представлен известня-
ками и доломитами. Интервал глубин отбора керна 
варьируется в диапазоне от 890 до 1350 м.

Рис. 1. Положение объекта исследований Рис. 2. Фрагмент стратиграфического разреза
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Методы исследований
Литологическая типизация пород осуществлялась 

на основе подробного послойного описания керна. 
Уточнение литотипов и группировка их в фации вы-
полнялись при помощи изучения пород под оптиче-
ским микроскопом, минеральный состав пород кор-
ректировался на основе данных рентгенофазового ана-
лиза на основе состава пород.

Лабораторные исследования включали в себя: 
определение объемной плотности, измерение скоро-
сти прохождения продольной и поперечной ультра-
звуковой волны через образец с вычислением дина-
мических модуля Юнга и коэффициента Пуассона, 
определение модуля упругости и коэффициента Пу-
ассона при псевдотрехосном нагружении, измерение 
прочности породы при одноосном сжатии либо при 
пластовых условиях, измерение прочности на рас-
калывание и параметра трещиностойкости. Помимо 
этого, выполнялось литологическое описание керна. 
Определение объемного веса (плотности породы) об-
разцов проводилось весовым методом при помощи 
лабораторных весов AJH-220CE (ООО «Вибра Рус»). 
Изучение упругих свойств коллекции образцов по-
род выполнено согласно [ГОСТ 21153.7-75, ASTM 
D2845-08]. Лабораторные исследования выполнялись 
на установке «ПИК-УЗ-ЭП» (АО «Геологика», Ново-
сибирск). 

Определение упругих, деформационных и проч-
ностных свойств в условиях трехосного сжатия про-
водилось согласно требованиям [ASTM D7012-14]. 
Для испытания использовались цилиндрические об-
разцы. На 30 образцах были проведены многостадий-
ные испытания на установке для геомеханических 
исследований ГТЯН.441179.050 (НПП «Геотек», Пен-
за). На начальном этапе на образец воздействовали 
всесторонним сжатием с величиной давления 5 МПа. 
Далее осевое напряжение увеличивали с постоянной 
скоростью 0,25 МПа/с до начала разрушения образца, 
при этом осуществлялся контроль по осевой дефор-
мации. После фиксации момента разрушения осевую 
нагрузку снимали, а обжимное давление повышали до 
следующего заданного уровня. Затем цикл нагружения 
повторяли. Всего было выполнено четыре ступени на-
гружения при уровнях обжимного давления 5, 10, 15 и 
20 МПа. На завершающем этапе проводилось полное 
разрушение образца. На всех стадиях эксперимента 
фиксировались значения осевого напряжения, а также 
осевых и радиальных деформаций.

На 60 образцах были проведены трехосные испы-
тания, при которых образец доводился до разрушения 
в одну стадию при обжимном давлении, соответствую-
щем пластовому. Определение упругих, деформацион-
ных параметров выполнялось согласно требованиям 
[ASTM D7012-14].

Определение предела прочности на растяжение при 
раскалывании осуществлялось методом индиректного 
нагружения вдоль диаметра цилиндрического образ-
ца в соответствии с требованиями стандарта [ASTM 
D3967-08]. Для испытаний использовались дискооб-
разные образцы с отношением толщины к диаметру 
(t/D) в диапазоне от 0,2 до 0,75. Расчет прочности на 

растяжение проводился на основе предельной нагруз-
ки согласно методике, изложенной в ASTM D3967 
[ASTM D3967-08].

Оценка параметра трещиностойкости выполнялась 
на полудисковых образцах диаметром 62 мм. Процесс 
подготовки образцов к испытаниям соответствовал ре-
комендациям [ISRM]. Диаметр образца (D = 2R) дол-
жен как минимум в 10 раз превышать средний размер 
зерен в породе или быть не менее 76 мм. Минимальная 
толщина образца должна составлять более 0,4D или не 
менее 30 мм; в данном исследовании использовалась 
толщина 25 мм. Надрез – инициатор трещины – на-
носился поперек слоистости при помощи алмазного 
отрезного диска толщиной 1 мм на глубину 15 мм. 
Торцевые поверхности образцов были отшлифованы 
с точностью не хуже 0,01 мм. 

Результаты исследований
На основе лабораторных испытаний керна была 

проведена статистическая обработка геомеханических 
параметров, сгруппированных по стратиграфическому 
признаку (башкирский и московский ярусы). Полу-
ченные результаты позволяют оценить как диапазоны 
значений, так и вариативность основных физических 
и механических характеристик пород.

Московский ярус. Породы обладают средней 
плотностью 2,42 г/см3 (от 2,12 до 2,67 г/см3), ско-
рость продольной волны равна 4778 м/с (от 3400 до 
5891 м/с). Все измеренные геомеханические параме-
тры в среднем немного ниже, чем у пород башкир-
ского яруса.

Башкирский ярус. Наблюдается большой разброс 
значений по большинству параметров. Средняя плот-
ность равна 2,46 г/см3 (от 1,94 до 2,72 г/см3), скорость 
продольной волны равна 5187 м/с (от 3711 до 6471 м/с). 
Модуль Юнга и прочность в пластовых условиях так-
же выше, чем у пород московского яруса.

Таким образом, уже на этапе описательной стати-
стики прослеживаются существенные различия меж-
ду стратиграфическими группами по ключевым гео-
механическим параметрам. Это говорит о возможной 
необходимости разделения данных при дальнейшем 
корреляционно-регрессионном анализе. Для оцен-
ки характера распределения геомеханических пара-
метров горных пород были применены два стати-
стических критерия: тест Колмогорова–Смирнова 
(К- С- тест) в модификации Лиллиефорса, который 
более чувствителен при неизвестных параметрах рас-
пределения (что характерно для реальных данных), 
и тест Шапиро–Уилка (Ш-У). Проверка проводилась 
для основных параметров, полученных в результате 
лабораторных испытаний: объемная плотность, ско-
рость прохождения продольной ультразвуковой вол-
ны через образец, статические модуль Юнга и коэф-
фициент Пуассона, прочность на сжатие в пластовых 
условиях. Каждый из параметров был стандартизиро-
ван перед применением теста Колмогорова–Смирно-
ва, чтобы обеспечить корректное сравнение с теоре-
тическим нормальным распределением. Результаты 
тестов представлены в виде p-значений (табл. 1), ин-
терпретируемых следующим образом:
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– при p > 0,05 гипотеза о нормальности распреде-
ления не отвергается, то есть данные могут быть опи-
саны нормальным законом распределения;

– при p < 0,05 гипотеза отвергается и распределе-
ние параметра считается отличным от нормального.

Применение двух различных критериев позволило 
повысить надежность проверки. Результаты показали, 
что для параметров плотности, статического модуля 
Юнга и прочности на сжатие распределения отклоня-
ются от нормального. Следовательно, для части пара-
метров и групп следует применять непараметрические 
методы анализа, особенно при сравнении между стра-
тиграфическими группами. Это важно учитывать при 
построении моделей и проверке гипотез.

Очевидно, что внутри некоторых стратиграфиче-
ских групп наблюдается большой разброс значений, 
обусловленный в первую очередь литологией и харак-
тером насыщения. В связи с этим дополнительно был 
проведен анализ различий геомеханических параме-
тров между группами, сформированными по признаку 
«стратиграфия + литология + насыщение». Для анали-
за были выделены следующие группы пород, или ме-
ханофации: 

– фация 1 – плотные породы московского яруса;
– фация 2 – нефтенасыщенные карбонатные поро-

ды московского и башкирского ярусов;
– фация 3 – плотные породы башкирского яруса.
Можно предложить следующее определение: 

к одной геомеханической фации относятся породы, 
которые с точностью, необходимой для решения 
конкретной задачи, могут быть описаны едиными 
зависимостями между прочностными свойствами, 
статическими и динамическими упругими модулями, 
с одной стороны, и параметрами, определяющими их 
внутреннюю структуру, состав и строение, с другой 
стороны.

Для определения статистически значимых разли-
чий между механическими фациями по геомеханиче-

ским параметрам был применен критерий Краскела–
Уоллиса – непараметрический аналог однофакторного 
дисперсионного анализа. Метод позволяет выявить 
наличие существенных различий между несколькими 
независимыми группами при отсутствии нормального 
распределения. Результаты представлены в табл. 2. 

Эти результаты указывают на обоснованность раз-
деления пород на три группы. В ряде случаев различия 
между литолого-насыщающими типами оказываются 
даже более выраженными, чем между стратиграфиче-
скими группами, что делает данный классификацион-
ный признак важным фактором группирования. Со-
вмещенный литологический и геомеханический ана-
лиз позволяет описать три ранее выделенные фации. 

Фация 1 – плотные породы московского яруса
К данной группе пород относятся плотные светло-

серые, иногда заглинизированные известняки с мас-
сивной текстурой (рис. 3). По данным оптико-микро-
скопических исследований шлифов, структура пород 
зернистая, текстура однородная. Порода на 75–80% 
состоит из органических остатков, на 20–25% – из це-
ментирующего материала. Согласно литологическим 
данным, породы обладают пористостью ниже 5%, 
поры межзерновые, чаще всего несвязанные [Кольчу-
гин и др., 2022]. Упругопрочностные характеристики 
пород ниже, чем у фации 3 (плотные породы башкир-
ского яруса), и выше, чем у фации 2 (нефтенасыщен-
ные карбонатные породы московского и башкирского 
ярусов) (табл. 3).

Фация 2 – нефтенасыщенные породы
московского и башкирского ярусов

Породы представляют собой равномерно нефте-
насыщенные известняки. Согласно результатам опти-
ко-микроскопических исследований структура пород 
биоморфная, текстура однородная (рис. 3). Известняки 
на 80– 85% состоят из органических остатков, на 15–
20% – из цементирующего вещества. Пористость под 

Таблица 1

Результаты проверки нормальности распределения основных параметров,
полученных в результате лабораторных испытаний

Параметр Кол-во 
значений

К-С 
p-значение

Ш-У 
p-значение

Нормальность 
распределения

Плотность объемная, г/см3 131 p < 0,05 p < 0,05 Отличное от нормального
Скорость продольной волны, м/с 127 p > 0,05 p > 0,05 Нормальное
Статический модуль Юнга, ГПа 91 p < 0,05 p < 0,05 Отличное от нормального

Статический коэффициент Пуассона 91 p > 0,05 p > 0,05 Нормальное
Прочность на сжатие

в пластовых условиях, МПа 61 p < 0,05 p < 0,05 Отличное от нормального

Таблица 2

Результаты применения критерия Краскела–Уоллиса для механофаций

Параметр p-значение Вывод
Плотность p < 0,05 Есть различия

Скорость продольной волны p < 0,05 Есть различия
Статический модуль Юнга p < 0,05 Есть различия

Статический коэффициент Пуассона p > 0,05 Нет значимых различий
Прочность на сжатие в пластовых условиях p < 0,05 Есть различия
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микроскопом оценена в 20–23%. Межзерновые поры 
равномерно распределены в объеме породы и связаны 
между собой поровыми каналами [Кольчугин и др., 
2022; Зиганшин и др., 2023]. По геомеханическим 
свойствам породы более «мягкие» и пластичные, по 
сравнению с фациями 1 и 3 (табл. 3).

Фация 3 – плотные породы башкирского яруса
В основном породы представлены плотными из-

вестняками светло-серой окраски, иногда с псевдо-
брекчированной текстурой, обусловленной глинисты-
ми прослоями, сине-зеленой окраски (рис. 3). По дан-
ным оптико-микроскопического изучения, породы 
практически нацело представлены микрозернистым 
кальцитом с размером зерен менее 0,005 мм, участка-
ми перекристаллизованным до тонкомелкозернистой 
структуры. В зернистой массе до 10% присутствуют 
включения органических остатков, представленных 
фрагментами водорослей, кальцисферами, раковина-
ми остракод, единичными фораминиферами. Пустот-
но-поровое пространство под микроскопом практиче-
ски неразличимо и представлено единичными несвя-
занными порами. Пористость, оцененная под микро-
скопом, не превышает 2–3% [Зиганшин и др., 2023]. 
По своим механическим параметрам данная группа 
пород обладает самыми высокими значениями по 
сравнению с другими выделенными фациями (табл. 3).

С учетом того, что результаты статистического 
анализа показали отличие отдельных распределений 
внутри фации от нормальных, было выполнено более 
детальное, количественное исследование эксперимен-
тальных данных. В работе [Elderton et al., 1969] был 
представлен математический аппарат использования 
семейства частотных распределений Пирсона для опи-
сания изменчивости отдельных механических свойств 
пород, принадлежащих к одной фации. Такой анализ 
позволяет говорить о значимости устанавливаемых 
корреляционных связей и необходимости и достаточ-
ности выделенного набора геомеханических фаций.

Распределения семейства Пирсона представляют 
собой семейство частотных распределений с функци-
ей плотности вероятности f(σ) (σ – рассматриваемое 
механическое свойство), удовлетворяющих дифферен-
циальному уравнению:

,

где a, b0, b1 и b2 – параметры, которые могут быть 
в явном виде рассчитаны по известным централь-
ным моментам. В зависимости от этих параметров 
уравнение (14) может иметь формы решения, отве-
чающие различным типам распределений Пирсона. 
В данной работе будут рассмотрены только основ-
ные три типа:

где κ является параметром, определяющим существова-
ние вещественных корней уравнения b0 + b1σ +b2σ

2 = 0 
и их знаки:

,

причем μi является i-м центральным моментом распре-
деления механического свойства σ. Все переменные 
в этих уравнениях могут быть определены по первым 
четырем центральным моментам (μ1 = 0 по определе-
нию) [Elderton et al., 1969].

Статистический анализ был проведен для основ-
ных параметров, используемых при одномерном гео-
механическом моделировании, – статических модуля 
Юнга и коэффициента Пуассона. Были выполнены 
исследования для всех фаций в совокупности, а также 
для каждой фации по отдельности.

В табл. 4 представлены результаты количественной 
оценки параметров, входящих в уравнения, указанные 
выше. Отрицательные значения параметра κ свиде-
тельствуют о том, что все полученные зависимости 
могут быть описаны с использованием распределения 
Пирсона I типа. По известным выражениям [Elderton 
et al., 1969] были рассчитаны значения параметров, 
входящих в функцию плотности вероятности.

Рис. 3. Фотографии образцов пород и их шлифов для различных фаций

фация 1 фация 2 фация 3
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Таблица 3

Статистические характеристики геомеханических параметров по фациям

Параметр Фация Кол-во Среднее Медиана Минимум Максимум

Плотность объемная, г/см3
1 37 2,50 2,50 2,12 2,67
2 53 2,28 2,27 1,94 2,64
3 41 2,59 2,62 2,40 2,72

Скорость продольной волны, м/с
1 34 5000 5175 3400 5891
2 54 4573 4636 3500 6043
3 39 5613 5686 4534 6471

Скорость поперечной волны, м/с
1 34 2827 2942 2128 3221
2 54 2545 2488 2143 3273
3 39 3015 3052 2350 3347

Динамический модуль Юнга, ГПа
1 34 51,5 55,4 25,5 68,7
2 54 38,9 37,3 24,8 72,9
3 39 61,4 63,0 34,4 78,3

Динамический коэффициент Пуассона, д. ед.
1 34 0,259 0,26 0,18 0,31
2 54 0,27 0,275 0,19 0,36
3 39 0,295 0,3 0,21 0,34

Статический модуль Юнга, ГПа
1 25 19,0 19,6 8,3 30,7
2 39 13,0 13,5 5,8 25,3
3 27 23,1 23,4 10,6 32,0

Статический коэффициент Пуассона, д. ед.
1 25 0,26 0,26 0,13 0,42
2 39 0,263 0,27 0,08 0,48
3 27 0,247 0,25 0,18 0,35

Прочность на одноосное сжатие, МПа
1 17 93,7 83,2 44,1 158,8
2 9 57,1 55,8 30,1 88,0
3 3 95,7 107,1 55,3 124,7

Прочность на раскалывание, МПа
1 22 5,4 4,0 0,9 14,5
2 12 4,0 3,5 2,1 6,2
3 4 3,3 3,3 2,0 4,4

Трещиностойкость, МПа*см0,5
1 20 0,720 0,689 0,268 1,474
2 22 0,621 0,649 0,265 0,996
3 14 0,911 0,929 0,450 1,176

Таблица 4

Количественный анализ статистических параметров механических свойств по фациям

Параметр Фация μ2 μ3 μ4 β1 β2 κ Плотность вероятности

Модуль 
Юнга, ГПа

Общая 12,7 4,6 367 0,01 2,3 -0,005 ( )
1,3 1,7

12 1 1
8 10

f σ σ⎛ ⎞ ⎛ ⎞σ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 13,7 -0,6 411 0,00 2,2 -0,000 ( )
1,2 1,2

3 1 1
9 8

f σ σ⎛ ⎞ ⎛ ⎞σ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2 6,6 -0,6 106 0,00 2,4 -0,001 ( )
2,9 2,7

8 1 1
8 7

f σ σ⎛ ⎞ ⎛ ⎞σ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

3 7,9 -14,8 193 0,45 3,1 -0,337 ( )
5,7 1,2

4 1 1
17 4

f σ σ⎛ ⎞ ⎛ ⎞σ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

К-т 
Пуассона, 

д. ед.

Общая 6,9 5,3 142 0,09 3,0 -0,224 ( )
10,0 26,6

17 1 1
10 27

f σ σ⎛ ⎞ ⎛ ⎞σ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 10,7 14,5 286 0,17 2,5 -0,087 ( )
0,8 2,3

4 1 1
4 12

f σ σ⎛ ⎞ ⎛ ⎞σ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2 6,7 -4,8 103 0,08 2,3 -0,038 ( )
1,8 0,9

7 1 1
8 4

f σ σ⎛ ⎞ ⎛ ⎞σ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

3 2,5 1,5 16 0,15 2,6 -0,096 ( )
1,6 3,8

7 1 1
3 7

f σ σ⎛ ⎞ ⎛ ⎞σ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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На рис. 4 показаны функции плотности вероят-
ности для модуля Юнга (а) и коэффициента Пуассо-
на (б). Каждая кривая соответствует своей фации: 
черным цветом показаны обобщающие плотности 
вероятности, которые были бы получены для данных 
лабораторных исследований без разделения на фации, 
а цветами показаны плотности вероятности, построен-
ные для конкретных фаций: красным цветом показаны 
результаты, полученные для образцов, относящихся 
к первой фации; синим цветом – для второй фации; 
оранжевым – для третьей.

Ярко заметно разделение фаций по статическому 
модулю Юнга: нефтенасыщенные породы обладают 
существенно более низким модулем Юнга по сравне-
нию с плотными породами обоих ярусов; плотные по-
роды башкирского яруса характеризуются высокими 
значениями модуля Юнга. Плотные породы москов-
ского яруса могут быть описаны практически теми же 
самыми статистическими законами, что и результаты 
всех экспериментов без разделения на механические 
фации. Это означает, что попытки построения геоме-
ханической модели без предварительного разделения 
на фации не позволили бы выявить особенности рас-
пределения напряжений в слоях. Распределение на-
пряжений было бы близко к линейному и полученные 
результаты не могли бы быть использованы для реше-
ния таких задач, как прогноз геометрии трещины ги-
дроразрыва пласта.

Статистический анализ данных по определению 
коэффициента Пуассона не позволяет выявить таких 
явных закономерностей. Как было отмечено выше, 
вся совокупность данных о коэффициенте Пуассона 
действительно может быть с достаточно высокой сте-
пенью достоверности описана нормальным законом. 
Об этом также свидетельствуют высокие степени и 
коэффициенты в выражениях для функции плотности 
вероятности, указанные в табл. 4. Однако разделение 
на фации явно демонстрирует невозможность исполь-
зования нормального закона распределения для описа-
ния каждого типа пород по отдельности. Ярким при-
мером являются результаты измерений коэффициента 
Пуассона образцов третьей фации (плотные породы 

башкирского яруса). Видно, что дисперсия существен-
но ниже именно для этих пород по сравнению с дру-
гими фациями. Меньшими (по сравнению со случаем 
объединенных фаций) дисперсиями обладают и дан-
ные, характеризующие образцы первой и третьей фа-
ций.

Для выявления устойчивых взаимосвязей между 
физико-механическими параметрами керна были по-
строены парные графики для наиболее значимых со-
четаний для всей имеющейся совокупности. При по-
строении одномерной геомеханической модели до-
вольно часто приходится вычислять геомеханические 
параметры (статический модуль Юнга и коэффициент 
Пуассона, прочность на сжатие и раскалывание, тре-
щиностойкость) из данных плотности (плотностной 
каротаж) и скорости продольной волны (акустический 
каротаж). В связи с этим были получены линейные 
регрессионные модели измеренных параметров от 
скорости продольной волны и объемной плотности. 
Зависимость между скоростью и статическим коэф-
фициентом Пуассона не наблюдалась. В связи с этим 
данные зависимости не строились. Предлагается при 
построении коэффициента Пуассона использовать су-
ществующие эмпирические уравнения, которые будут 
корректироваться по данным керновых исследований.

Для оценки влияния плотности и скорости про-
дольной волны на статический модуль Юнга была 
построена множественная линейная регрессионная 
модель. В качестве зависимой переменной использо-
вался статический модуль Юнга (МПа), а в качестве 
независимых – объемная плотность породы (г/см3) 
и скорость продольной волны (м/с).

Полученная модель имеет следующий вид:

E = −39,21 + 11,67 * ρ + 0,0057 * Vp,

где E – статический модуль Юнга, ГПа, ρ – объемная 
плотность в г/см3, Vp – скорость продольной волны, 
м/с.

Коэффициенты модели статистически значимы 
(p < 0,001). Модель объясняет 71,6% дисперсии зави-
симой переменной (R2 = 0,716). Стандартная ошибка 
оценки – 3,65 МПа.

Рис. 4. Функции плотности вероятности 
для модуля Юнга (а) и коэффициента 
Пуассона (б)

а б
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Для оценки зависимости прочности на одноосное 
сжатие (UCS) от объемной плотности была построена 
простая линейная регрессионная модель, так как зна-
чимой зависимости прочности от скорости продоль-
ной волны выявлено не было:

UCS = −344,14 + 174,69 * ρ, где ρ – объемная плот-
ность в г/см3, UCS – прочность в МПа.

Модель демонстрирует высокую объясняющую 
способность: коэффициент детерминации R2 = 0,66. 
Стандартная ошибка оценки модели равна 21,02 МПа.

Аналогично была построена модель зависимости 
прочности на раскалывание (TSTR) от объемной плот-
ности:

TSTR = −13,77 + 7,62 * ρ, где ρ – объемная плот-
ность в г/см3.

Коэффициент детерминации R2 = 0,15 указывает на 
слабую объясняющую способность модели. Это мо-
жет объясняться тем, что определение прочности на 
раскалывание выполняется в атмосферных условиях 
и отсутствие ограничивающего давления способству-
ет получению большого разброса значений. В дан-
ном случае авторы считают необходимым проведение 
большего количества тестов.

Для анализа зависимости параметра трещиностой-
кости (KIC) от объемной плотности была также по-
строена простая линейная регрессионная модель:

KIC = −2,15 + 1,18 * ρ, где ρ – объемная плотность, 
в г/см3.

Модель демонстрирует хорошую объясняющую 
способность: коэффициент детерминации R2 = 0,46. 
Стандартная ошибка оценки модели составила 0,208.

Результаты исследования могут быть использованы 
для повышения точности геомеханического моделиро-
вания, оценки устойчивости горных пород при разра-
ботке месторождений, построения дизайна гидрораз-
рыва пород в карбонатных отложениях.

Заключение
Проведенный анализ лабораторных данных керна 

позволил всесторонне охарактеризовать геомеханиче-
ские свойства пород в разрезе двух стратиграфических 
горизонтов и литолого-насыщающих типов. Сравнение 
между стратиграфическими и литолого-насыщающими 
группами показало, что геомеханические параметры 
существенно зависят не только от глубины и возраста 
пород, но и от их литологической природы и насыще-
ния. На основе стратифицированного подхода выявле-
ны устойчивые зависимости между физико-механиче-

скими параметрами, такими как прочность на сжатие, 
прочность на раскалывание, трещиностойкость, объем-
ная плотность, скорость продольной волны и статиче-
ский модуль Юнга. Предложенный подход может быть 
масштабирован и адаптирован к другим месторождени-
ям с аналогичным геологическим строением.

Наиболее прочные и упругие свойства наблюда-
ются в плотных карбонатах – они рекомендованы 
для опорных зон при проектировании гидроразрыва 
и интерпретации устойчивости. Нефтенасыщенные 
известняки демонстрируют пониженную прочность 
и повышенную вариативность параметров, что важно 
учитывать при планировании интенсификации добычи 
и выборе интервалов перфорации.

Представленный в работе математический аппарат 
дает возможность использовать статистические мето-
ды при создании геомеханических моделей. Явный вид 
функций плотности вероятности для базовых параме-
тров, использующихся для построения моделей меха-
нических свойств, позволяет применять стохастический 
подход, в рамках которого упругие модули задаются 
случайным образом, подчиняясь определенным зако-
нам распределения. Важным следствием этого резуль-
тата является то, что установленные корреляционные 
зависимости могут быть применимы в рамках допусти-
мых погрешностей. При этом корректное выделение 
механических фаций остается критически важным эта-
пом, существенно снижающим погрешность результа-
тов геомеханического моделирования. Точность оценки 
напряжений в рамках стандартных подходов к построе-
нию одномерных геомеханических моделей является 
вопросом, требующим дальнейшего, более детального 
рассмотрения в рамках отдельного исследования.
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