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Спектральные задачи, изучению которых посвящена эта книга,
являются классическими в теории диэлектрических волноводов. Они
привлекают пристальное внимание ученых с середины прошлого века.
Об этом свидетельствуют как ряд фундаментальных и хорошо извест-
ных монографий по физике открытых диэлектрических направляю-
щих структур, так и большое число современных работ. Однако тео-
рия диэлектрических волноводов достаточно полно построена лишь
для направляющих структур специальной геометрии, допускающей
применение метода разделения переменных.

В отличие от традиционных способов изложения, в этой книге за-
дачи о собственных волнах волноводов формулируются по-новому, а
именно на основе методов теории сингулярных интегральных уравне-
ний и метода точных нелокальных граничных условий. Такой подход
позволил изучить качественные свойства спектра всех известных ти-
пов собственных волн, амплитуды которых удовлетворяют парциаль-
ным условиям излучения (поверхностных, комплексных и вытекаю-
щих), с помощью общих результатов спектральной теории операто-
ров, а также построить новые теоретически обоснованные численные
методы решения спектральных задач теории диэлектрических волно-
водов.

Книга состоит из двух разделов. В первом разделе с помощью
метода интегральных уравнений исследуются задачи о собственных
волнах волноводов двух типов, находящихся в однородной окружа-
ющей среде: волноводов с постоянной диэлектрической проницаемо-
стью и произвольным гладким контуром поперечного сечения, а так-
же с переменной и гладкой во всей плоскости поперечного сечения ди-
электрической проницаемостью — волноводов с размытой границей.
Задачи ставятся в наиболее общем виде, и в рамках единых матема-
тических формулировок изучаются свойства спектра поверхностных,
комплексных и вытекающих собственных волн. Рассматривается так-
же задача о собственных волнах волновода в плоско-слоистой окру-
жающей среде.
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Отдельная глава посвящена разработке и обоснованию проекци-
онных методов решения нелинейных спектральных задач, возникаю-
щих при построении математических моделей диэлектрических вол-
новодов с постоянной диэлектрической проницаемостью.

Авторы сочли необходимым начать изложение первого раздела
с главы, где формулируются основные дифференциальные уравне-
ния спектральной теории диэлектрических волноводов, основанные
на уравнениях Максвелла. Подготовленный читатель может пропу-
стить эту главу, обращаясь к ней за справками по мере необходимо-
сти.

Во втором разделе книги предлагается специальный подход, ори-
ентированный на расчет поверхностных собственных волн цилин-
дрических диэлектрических волноводов, находящихся в однородной
окружающей среде. Он основан на сочетании метода точных нело-
кальных граничных условий и метода конечных элементов. Благода-
ря методу точных нелокальных граничных условий исходные задачи,
сформулированные на всей плоскости поперечного сечения волново-
да, удается эквивалентным образом свести к линейным параметри-
ческим спектральным задачам для ограниченных самосопряженных
операторов в круге, целиком содержащем область изменения диэлек-
трической проницаемости. Такие постановки естественны и удобны
для численного решения задач методом конечных элементов.

Во втором разделе на основе метода точных нелокальных гранич-
ных условий формулируются и исследуются две задачи о поверхност-
ных собственных волнах: векторная задача в полной электродинами-
ческой постановке и скалярная задача в приближении слабонаправ-
ляющего волновода. Изучаются вопросы существования и свойства
решений этих задач. Строятся их конечноэлементные аппроксимации.
Получаются оценки точности. Изложение начинается со специальной
главы, содержащей общие результаты, используемые для оценок точ-
ности схем МКЭ.

Последняя глава посвящена описанию результатов вычислитель-
ных экспериментов. Рассматриваются модели однородных оптиче-
ских волноводов различных поперечных сечений, для которых из-
вестны точные решения, либо имеются экспериментальные данные.
Проводится численное исследование точности метода.

Первый раздел книги написан Е.М. Карчевским, второй —
Р.З. Даутовым. Многие вопросы, затронутые в книге, активно обсуж-
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дались с сотрудниками кафедр прикладной и вычислительной мате-
матики Казанского государственного университета. Авторы приносят
им свою искреннюю признательность. Рукопись книги была внима-
тельно прочитана А.С. Ильинским, который взял на себя труд по ее
редактированию. Авторы с благодарностью учли его замечания. Ав-
торы благодарны Г.П. Корнилову, Э.Р. Миниахметову, А.И. Носичу,
С.И. Соловьеву, Е.В. Трифонову, А.Г. Фролову, Д. Хансону за предо-
ставленные теоретические и расчетные материалы.

Работа частично выполнена при финансовой поддержке РФФИ
(Е.М. Карчевский, грант 09-01-97009).



Основные обозначения

Общие обозначения

“:=” — символ, использующийся для определения математических
объектов (определяемый объект стоит слева от этого символа, а вы-
ражение, определяющее объект, — справа).
“=:” — символ, использующийся для определения математических
объектов (определяемый объект стоит справа от этого символа, а вы-
ражение, определяющее объект, — слева).
R — множество всех вещественных чисел.
R+ — множество строго положительных вещественных чисел.
R+ := R+ ∪ {0}.
R2 — плоскость поперечного сечения волновода.
x, y — точки на плоскости R2.
(x1, x2) — декартовы координаты точки x.
(r, ϕ) — полярные координаты точки x.
|x − y| :=

√
(x1 − y1)2 + (x2 − y2)2 — расстояние между точками x

и y.
“·” — скалярное произведение векторов.
“×” — векторное произведение векторов.
Ωi — область поперечного сечения волновода.
γ — граница области Ωi.
Ωi := Ωi ∪ γ.
Ωe := R

2 \ Ωi.
u+ — предельное значение функции u извне контура γ.
u− — предельное значение функции u изнутри контура γ.
∂u/∂ν — производная по нормали к контуру γ, внешней относительно
области Ωi.
∂u/∂τ — производная по касательной к контуру γ, направленной так,
что область Ωi остается слева при обходе ее по контуру γ.
u — функция, комплексно-сопряженная с u.
Ω — открытый круг радиуса R, содержащий область Ωi.
Γ — граница круга Ω.
Ω := Ω ∪ Γ.
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Ω∞ := R2 \ Ω.
ω — частота электромагнитных колебаний.
β — продольная постоянная распространения.
ε0 — электрическая постоянная.
µ0 — магнитная постоянная.
k := ω

√
ε0µ0 — продольное волновое число.

ε — относительная диэлектрическая проницаемость.
n :=

√
ε — показатель преломления.

ε∞ — относительная диэлектрическая проницаемость окружающей
среды.
n∞ :=

√
ε∞ — показатель преломления окружающей среды.

ε+ := max
x∈Ωi

ε(x).

n+ := max
x∈Ωi

n(x).

χ+ :=
√
k2ε+ − β2.

χ∞ :=
√
k2ε∞ − β2.

p :=
√
β2 − k2ε∞ — поперечное волновое число в окружающей среде.

Jn — функция Бесселя порядка n.
Nn — функция Неймана порядка n.
H

(1)
n := Jn + iNn — функция Ханкеля первого рода порядка n.

H
(2)
n := Jn − iNn — функция Ханкеля второго рода порядка n.

In, Kn — модифицированные функции Бесселя порядка n.

Линейные нормированные пространства

H — вещественное пространство Гильберта.
(·, ·) — скалярное произведение в гильбертовом пространстве.
‖ · ‖ := (·, ·)1/2 — норма в гильбертовом пространстве.
a(·, ·): H ×H → R — ограниченная билинейная форма.
Lp(Ω), p > 1, — пространство Лебега функций, измеримых на Ω и
суммируемых со степенью p.

‖u‖p,Ω :=
(∫

Ω

|u|pdx
)1/p

— норма на пространстве Lp(Ω).

ess sup
x∈Ω

|u(x)| — существенная верхняя грань функции u на Ω.

L∞(Ω) — линейное пространство функций с нормой
‖u‖∞,Ω := ess sup

x∈Ω
|u(x)|.
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C(Ω) — линейное пространство непрерывных на Ω функций.
‖u‖C(Ω) := max

x∈Ω
|u(x)| — норма на пространстве C(Ω).

Ck(Ω) — линейное пространство k раз дифференцируемых на облас-
ти Ω функций.
C0,α(γ), 0 < α < 1, — линейное пространство непрерывных по Гель-
деру на контуре γ функций с нормой

‖u‖α := max
x∈γ

|u(x)|+ sup
x,y∈γ, x6=y

|u(x)− u(y)|
|x− y|α .

C1,α(γ), 0 < α < 1, — линейное пространство непрерывно дифферен-
цируемых по Гельдеру на контуре γ функций с нормой

‖u‖1,α := max
x∈γ

|u(x)|+max
x∈γ

|u′(x)|+ sup
x,y∈γ, x6=y

|u′(x)− u′(y)|
|x− y|α .

C∞0 (Ω) — множество бесконечно дифференцируемых финитных на Ω
функций.
C∞

(
Ω
)

— линейное пространство, получаемое сужением на Ω мно-
жества бесконечно дифференцируемых на R2 функций.
W s

p (Ω) — пространство Соболева.

‖u‖s,p,Ω :=
(∫

Ω

∑

|α|6s
|Dαu|p dx

)1/p
— норма на пространстве Соболе-

ва при 1 6 p < ∞. Здесь Dα обозначает обобщенную производную
порядка α = (α1, α2),

Dα :=
∂|α|

∂xα11 ∂x
α2
2

, |α| := α1 + α2, α1, α2 > 0, D(0,0)u = u.

‖u‖s,∞,Ω := max
|α|6s

ess sup
x∈Ω

∣∣Dαu(x)
∣∣ — норма на пространстве Соболева

при p =∞.

|u|s,p,Ω :=
(∫

Ω

∑

|α|=s
|Dαu|pdx

)1/p
— полунормы на пространстве Собо-

лева при 1 6 p <∞.
|u|s,∞,Ω := max

|α|=s
ess sup
x∈Ω

|Dαu(x)| — полунормы на пространстве Собо-

лева при p =∞.
‖ · ‖s,Ω — норма на пространстве W s

2 (Ω).
Hs(Ω) := W s

2 (Ω).

РАЗДЕЛ 1. МЕТОД ИНТЕГРАЛЬНЫХ
УРАВНЕНИЙ

Введение

Интерес к задачам о собственных волнах цилиндрических диэлек-
трических волноводов, находящихся как в однородной, так и в плос-
кослоистой окружающей среде возник в середине прошлого века при
решении задач геологоразведки и стремительно возрастает в связи
с бурным развитием оптических телекоммуникационных технологий
передачи данных на большие расстояния [127] и использованием в
радиоэлектронной промышленности миниатюрных интегрированных
оптических схем вместо классических электрических [122]. Эти зада-
чи являются спектральными задачами теории дифракции, т. е. зада-
чами поиска частных решений уравнений Максвелла в виде бегущих
(собственных) волн в неограниченных областях, удовлетворяющих
условиям сопряжения на границах раздела сред и соответствующим
условиям на бесконечности.

Исчерпывающая информация получена к настоящему времени о
решениях относительно простой задачи о собственных волнах волно-
вода кругового поперечного сечения с постоянной диэлектрической
проницаемостью, находящегося в однородной окружающей среде. Хо-
рошо изучены свойства поверхностных собственных волн такого вол-
новода [75]. Собственные функции задачи (амплитуды собственных
волн) в этом случае отвечают конечному числу собственных зна-
чений (постоянных распространения), принадлежащих ограниченно-
му интервалу вещественной оси. Отличительными особенностями по-
верхностных собственных волн являются экспоненциальное убывание
на бесконечности их амплитуд и симметричность соответствующего
дифференциального оператора.

В работах Б.З. Каценеленбаума [50], Г.И. Веселова, С.Б. Раев-
ского [6] на основе анализа характеристического уравнения, получен-
ного методом разделения переменных, было доказано существование
принципиально других классов собственных волн цилиндрического
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диэлектрического волновода кругового поперечного сечения с посто-
янной вещественной диэлектрической проницаемостью. Они получи-
ли названия вытекаюших и комплексных, соответственно. Амплиту-
ды комплексных собственных волн также экспоненциально убывают.
Вытекающие собственные волны имеют экспоненциально возрастаю-
щие на бесконечности амплитуды. Задачи о комплексных и вытекаю-
щих собственных волнах имеют несимметричные дифференциальные
операторы, а соответствующие постоянные распространения являют-
ся комплексными.

Важно отметить, что постоянные распространения собственных
волн всех типов непрерывно зависят от радиуса волновода, диэлек-
трической проницаемости волновода и окружающей среды, частоты
электромагнитных колебаний [50], [6]. С изменением этих парамет-
ров собственные волны могут трансформироваться из одного типа в
другой.

Однако до настоящего времени не было предложено математиче-
ских формулировок общих задач о собственных волнах цилиндриче-
ских диэлектрических волноводов произвольного поперечного сече-
ния и распределения диэлектрической проницаемости, позволяющих
исследовать качественные свойства всех указанных выше типов соб-
ственных волн: поверхностных, комплексных и вытекающих, строить
на основе таких формулировок теоретически обоснованные числен-
ные методы.

Наиболее полно были изучены свойства решений близких спек-
тральных задач теории дифракции — задач о собственных волнах ще-
левых и полосковых линий. В работах А.С. Ильинского, Ю.Г. Смир-
нова, Ю.В. Шестопалова, Е.В. Чернокожина (см. [33], [153] и цити-
рованную там литературу) указанные задачи формулируются как за-
дачи поиска характеристических чисел фредгольмовых голоморфных
оператор-функций, полученные на основе метода интегральных урав-
нений. В работах этих авторов анализируются качественные свой-
ства характеристического множества: локализация, дискретность, су-
ществование характеристических чисел. Исследования опираются на
общую теорию нелинейных спектральных задач, развитую в работах
И.Ц. Гохберга, М.Г. Крейна [12], Като [48]. Предлагаются и иссле-
дуются проекционные методы расчета волноведущих структур. При
обосновании численных методов используются результаты Г.М. Вай-
никко, О.О. Карма [4], [5] о проекционных методах решения нелиней-
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ных спектральных задач для фредгольмовых операторов.
Спектральные параметры в указанных работах разыскивались на

некоторой поверхности Римана, а собственные функции — в клас-
сах функций, удовлетворяющих на бесконечности парциальным усло-
виям излучения. Парциальные условия излучения были введены
А.Г. Свешниковым в работе [72], сформулированы им для внешней за-
дачи дифракции на регулярном волноводе в статье [73]. Аналогичные
условия применялись для корректной постановки задачи дифракции
в работе H. Reichardt [152].

Парциальным условиям излучения удовлетворяют амплитуды по-
верхностных, комплексных и вытекающих собственных волн цилин-
дрических диэлектрических волноводов, находящихся в однородной
окружающей среде. На это было указано в работе А.И. Носича [148],
посвященной изучению функций Грина задач о собственных волнах
волноводов с компактным поперечным сечением.

Несмотря на то, что задачи о собственных волнах диэлектриче-
ских волноводов, сформулированные в первом разделе книги, близки
к задачам о собственных волнах щелевых и полосковых линий пе-
редач в том смысле, что их операторы имеют комплексные харак-
теристические числа, а собственные функции удовлетворяют парци-
альным условиям излучения, они имеют существенные отличия. Это
связано с тем, что разыскиваемые частные решения уравнений Макс-
велла (уравнения Гельмгольца при упрощающих предположениях о
свойствах среды) должны удовлетворять другим граничным услови-
ям. Следовательно, при построении моделей распространения соб-
ственных волн диэлектрических волноводов возникает необходимость
в применении специальных подходов. Они разработаны в настоящей
книге на основе известных методов решения задач дифракции на про-
ницаемых телах.

Достаточно эффективные и универсальные алгоритмы решения
задач дифракции в неограниченных областях основаны на переходе
к интегральным уравнениям (см., напр., монографии А.С. Ильинско-
го, Ю.Г. Смирнова [32], Д. Колтона, Р. Кресса [54], В.Д. Купрадзе [57],
K. Мюллера [146], Н.Б. Плещинского [68], А.Б. Самохина [71]). С точ-
ки зрения экономии вычислительных ресурсов эффективными явля-
ются интегральные уравнения, основанные на применении потенциа-
лов простого слоя. Например, по сравнению с методом формулы Гри-
на метод потенциалов простого слоя позволяет сократить в два раза
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число искомых функций, порядок системы интегральных уравнений
и, как следствие, размерность соответствующей алгебраической зада-
чи. Этот подход использовался, например, в работах В.В. Дробницы,
В.А. Цецохо [26], С.И. Смагина [74], А.Г. Ярового [89] при решении за-
дач дифракции электромагнитных волн на проницаемых включениях
в плоскослоистой среде; в работах В.П. Шестопалова [87], А.Е. По-
единчука, Ю.А. Тучкина, В.П. Шестопалова [69] — при решении спек-
тральных задач волнового рассеяния на незамкнутых экранах; в рабо-
тах Е.В. Захарова, Ю.В. Пименова [30], А.С. Ильинского, Ю.Г. Смир-
нова [32] — при решении задач дифракции электромагнитных волн на
проводящих тонких экранах.

Значительное внимание привлекают задачи дифракции электро-
магнитных волн на диэлектрических структурах с размытой грани-
цей, т. е. не имеющих четкой границы раздела сред (см. [110], [71] и
цитированную там литературу). В частности, при постановке спек-
тральных задач теории диэлектрических волноводов часто делается
предположение о том, что характеристики волновода плавно перехо-
дят в характеристики окружающей среды (см., напр., [148], [123]). Эта
модель наиболее адекватна для определения собственных волн есте-
ственных природных волноводов и искусственных волноводов, изго-
товленных методом диффузии.

Метод сведения трехмерной задачи дифракции электромагнит-
ных волн на неоднородном теле с размытой границей к интеграль-
ному уравнению Фредгольма второго рода по области неоднородно-
сти был предложен в работе К. Мюллера [146], использован в работе
Д. Колтона, Р. Кресса [110] при анализе существования и единствен-
ности решения задачи дифракции.

Во второй главе книги формулируются нелинейные спектраль-
ные задачи для фредгольмовых голоморфных оператор-функций, со-
держащих контурные сингулярные интегральные операторы, экви-
валентные задачам о собственных волнах волноводов с постоянной
диэлектрической проницаемостью. В третьей главе книги формули-
руются нелинейные спектральные задачи для фредгольмовых голо-
морфных оператор-функций, содержащих слабо сингулярные инте-
гральные операторы по области изменения показателя преломления,
эквивалентные задачам о собственных волнах волноводов с размытой
границей. Во второй главе задачи строятся на основе метода потен-
циалов простого слоя, в третьей — на основе упомянутого выше мето-
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да, предложенного К. Мюллером. Решения сформулированных задач
определяют поверхностные, комплексные и вытекающие собственные
волны диэлектрических волноводов. Доказывается, что для всех до-
пустимых значений неспектральных параметров регулярные множе-
ства оператор-функций не пусты, а характеристические множества
могут состоять лишь из изолированных точек, являющихся характе-
ристическими значениями. Характеристические значения непрерыв-
но зависят от неспектральных параметров, с изменением которых мо-
гут появляться и исчезать лишь на границе области голоморфности
оператор-функций.

При моделировании природных волноводов и интегрированных
оптических схем, т. е. сочетающих цилиндрические и плоскослои-
стые направляющие структуры (см., напр., [122]), возникает задача
о собственных волнах цилиндрического диэлектрического волново-
да в плоскослоистой окружающей среде. Такой характер окружаю-
щей среды существенно усложняет исследование задачи. В работе
A.S. Bonnet-Ben Dhia и P. Joly [102] методами спектральной теории
неограниченных самосопряженных операторов доказано существова-
ние решений задачи в частном случае волновода прямоугольной фор-
мы на бесконечной подложке.

Для численного решения этой задачи широко применяется дву-
мерное сингулярное интегральное уравнение по области поперечного
сечения волновода [92], [96], [141], [154]. В работе H.P. Urbach [156]
установлена нетеровость соответствующего интегрального оператора
в случае однородной окружающей среды, а также доказана непустота
его спектра. В четвертой главе доказывается фредгольмовость этого
оператора в случае плоскослоистой окружающей среды, что исполь-
зуется для обоснования численных методов решения задачи.

В последней, пятой главе первого раздела книги разрабатывает-
ся метод Галеркина решения задач о собственных волнах цилиндри-
ческих диэлектрических волноводов с постоянной диэлектрической
проницаемостью. Доказывается его сходимость. Метод ориентирован
на расчет постоянных распространения и амплитуд собственных волн
всех известных типов. Приводятся результаты расчетов поверхност-
ных и комплексных собственных волн волноводов различных попе-
речных сечений. Результаты сравниваются с известными точными ре-
шениями и экспериментальными данными. Изучается реальная ско-
рость сходимости метода.



Глава 1

ОСНОВНЫЕ УРАВНЕНИЯ ТЕОРИИ
ДИЭЛЕКТРИЧЕСКИХ ВОЛНОВОДОВ

§ 1. Уравнения для амплитуд собственных волн

1. Система уравнений Максвелла. Спектральные задачи
теории диэлектрических волноводов формулируются на основе од-
нородных уравнений Максвелла:

rot E =− µ0
∂H
∂t
, rotH =ε0ε

∂E
∂t
. (1.1)

Здесь введены следующие обозначения (используется декартова си-
стема координат):

E = (E1, E2, E3)T , H = (H1,H2,H3)
T

есть векторы напряженности электрического и магнитного полей с
координатами

Ei = Ei(x1, x2, x3, t), Hi = Hi(x1, x2, x3, t), i = 1, 2, 3.

Через x1, x2, x3 обозначены декартовы координаты точки; t — время;
символами µ0 и ε0 обозначены магнитная и электрическая постоян-
ные; ε — относительная диэлектрическая проницаемость, n =

√
ε —

показатель преломления. Как обычно,

rot E =



∂E3/∂x2 − ∂E2/∂x3
∂E1/∂x3 − ∂E3/∂x1
∂E2/∂x1 − ∂E1/∂x2


 .

Пусть волновод представляет собой бесконечно длинный цилиндр
из диэлектрика, находящийся в неограниченном пространстве с по-
стоянной диэлектрической проницаемостью ε∞. Будем считать, что
образующая волновода параллельна оси 0x3, диэлектрическая прони-
цаемость ε внутри цилиндра не зависит от x3 и является веществен-
ной функцией пространственных переменных x1 и x2. В дальнейшем
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Рис. 1. Поперечное сечение цилиндрического диэлектрического волновода в од-
нородной окружающей среде.

символом x будем обозначать вектор с координатами x1 и x2. Схема-
тическое изображение поперечного сечения волновода приведено на
рис. 1.

Обозначим символом R2 плоскость x3 = const. Пусть Ωi — ограни-
ченная область на плоскости R2, ее граница γ — достаточно гладкая
кривая, Ωi := Ωi∪γ, а Ωe := R

2\Ωi. Область Ωi будем называть обла-
стью поперечного сечения волновода. Относительно диэлектрической
проницаемости ε предположим следующее: ε — гладкая вещественная
функция в Ωi, ε = ε∞ = const при x ∈ Ωe;

ε+ := max
x∈Ωi

ε(x) > ε∞ > 0.

Функция ε может иметь разрыв на контуре γ.
В первом разделе книги исследуются задачи о собственных вол-

нах волноводов двух типов, находящихся в однородной окружающей
среде: волноводов с постоянной в области Ωi диэлектрической прони-
цаемостью и дважды непрерывно-дифференцируемым контуром γ, а
также волноводов с дважды непрерывно дифференцируемой во всей
плоскости поперечного сечения диэлектрической проницаемостью —
волноводов с размытой границей. При этом задачи формулируются в
классическом смысле. Во втором разделе книги используются обоб-
щенные постановки задач и требования гладкости диэлектрической
проницаемости и границы раздела сред снижаются.
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Будем изучать собственные волны, т. е. решения системы уравне-
ний Максвелла (1.1), имеющие вид

[
E
H

]
(x, x3, t) = Re

([
E
H

]
(x)ei(βx3−ωt)

)
. (1.2)

Здесь
E = (E1,E2,E3)

T , H = (H1,H2,H3)
T

есть комплексные амплитуды векторов напряженности электрическо-
го и магнитного полей E и H; ω > 0 — частота электромагнитных
колебаний; β — комплексный параметр, называемый продольной по-
стоянной распространения.

В задачах о собственных волнах диэлектрических волноводов
нужно найти такие значения ω и β, при которых существуют нетри-
виальные решения системы уравнений Максвелла (1.1), имеющие
вид (1.2), удовлетворяющие условиям сопряжения на границах разде-
ла сред и условиям на бесконечности в плоскости поперечного сечения
волновода, которые будут сформулированы ниже.

Построим уравнения, которым удовлетворяют функции E(x)
и H(x). Подставляя векторы E и H вида (1.2) в (1.1), получим си-
стему уравнений

rotβE =iωµ0H, rotβH =− iωε0εE, x ∈ R2 \ γ, (1.3)

где векторная операция rotβ определена равенством

rotβE :=




∂E3/∂x2 − iβE2

iβE1 − ∂E3/∂x1
∂E2/∂x1 − ∂E1/∂x2


 . (1.4)

Пусть F = (F1,F2,F3)
T (x) и u = u(x) — комплекснозначные

вектор-функция и скалярная функция, соответственно. Введем диф-
ференциальные операторы:

divβF := ∂F1/∂x1 + ∂F2/∂x2 + iβF3,

∆u := ∂2u
/
∂x21 + ∂2u

/
∂x22,

gradβu := (∂u/∂x1, ∂u/∂x2, iβu)
T ,

grad u := (∂u/∂x1, ∂u/∂x2, 0)
T .
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Непосредственными вычислениями легко проверить справедливость
следующих равенств:

divβ
(
gradβu

)
= ∆u− β2u, (1.5)

divβ (rotβF) = 0, (1.6)

divβ (uF) = u divβF+F · grad u, (1.7)

rotβ
(
gradβu

)
= 0, (1.8)

rotβ (rotβF) = −∆F+β2F + gradβ (divβF) , (1.9)

∆(divβF) = divβ (∆F) . (1.10)

Здесь и далее символом “·” обозначено скалярное произведение век-
торов.

Утверждение 1.1. Пусть E, H – нетривиальное решение си-
стемы уравнений (1.3). Тогда для всех x ∈ R2 \ γ справедливы следу-
ющие равенства:

rotβ (rotβE) = k2εE, (1.11)

rotβ
(
ε−1rotβH

)
= k2H, (1.12)

divβ (εE) = 0, (1.13)

divβH = 0, (1.14)

где k2 := ε0µ0ω
2 (вещественный параметр k называется продоль-

ным волновым числом).

Доказательство. Равенства (1.11) и (1.12) легко получить,
применив операцию rotβ к правым и левым частям уравнений (1.3).
Для того, чтобы получить равенства (1.13) и (1.14), надо применить
к правым и левым частям уравнений (1.3) операцию divβ и восполь-
зоваться формулой (1.6). ¤

Утверждение 1.2. Пусть E, H — нетривиальное решение си-
стемы уравнений (1.3); диэлектрическая проницаемость ε принима-
ет в области Ωi постоянное значение ε+. Тогда в R2 \ γ функции E
и H удовлетворяют уравнениям Гельмгольца, а именно,

[
∆+

(
k2ε+ − β2

)] [ E
H

]
= 0, x ∈ Ωi, (1.15)

[
∆+

(
k2ε∞ − β2

)] [ E
H

]
= 0, x ∈ Ωe. (1.16)
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Доказательство. Из уравнений (1.11), (1.12) с помощью фор-
мулы (1.9) получаем:

−∆E+ β2E + gradβ (divβE) = k2ε+E, x ∈ Ωi,

−∆H+ β2H+ gradβ (divβH) = k2ε+H, x ∈ Ωi,

−∆E+ β2E + gradβ (divβE) = k2ε∞E, x ∈ Ωe,

−∆H+ β2H+ gradβ (divβH) = k2ε∞H, x ∈ Ωe.

Из этих уравнений, равенства (1.14) и равенства

divβE = 0, x ∈ R2 \ γ,

справедливого в силу уравнения (1.13) при сделанных предположе-
ниях относительно ε, получаем требуемое утверждение. ¤

2. Электромагнитные потенциалы. Для определения ком-
плексных амплитуд собственных волн на плоскости нужно найти
нетривиальные решения системы уравнений (1.3), т. е. определить
шесть скалярных функций, являющихся компонентами векторов E
и H. Во многих случаях оказывается удобным ввести некоторые вспо-
могательные функции, называемые электромагнитными потенциала-
ми, через которые определенным образом выражаются амплитуды
собственных волн. Введем в рассмотрение электромагнитные потен-
циалы и сформулируем, следуя [31], необходимые нам в дальнейшем
утверждения.

Определение 1.1. Вектор-функция Π(x) называется вектором
Герца или поляризационным потенциалом векторного поля {E,H},
если справедливо представление

E =
(
k2ε∞ + gradβdivβ

)
Π, (1.17)

H = −iωε0ε∞rotβΠ. (1.18)

Утверждение 1.3. Для любого нетривиального решения E, H
системы уравнений (1.3) существует поляризационный потенци-
ал Π. Потенциал Π для всех x ∈ R2 \ γ удовлетворяет уравнению

[
∆+

(
k2ε∞ − β2

)]
Π = − 1

ε∞
(ε− ε∞) E. (1.19)
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Определение 1.2. Скалярные функции u(x) и v(x) называются
потенциальными, если справедливы представления

E1 =
i

k2ε− β2

(
µ0ω

∂v

∂x2
+ β

∂u

∂x1

)
,

E2 =
−i

k2ε− β2

(
µ0ω

∂v

∂x1
− β

∂u

∂x2

)
, (1.20)

E3 = u,

H1 =
i

k2ε− β2

(
β
∂v

∂x1
− ε0εω

∂u

∂x2

)
,

H2 =
i

k2ε− β2

(
β
∂v

∂x2
+ ε0εω

∂u

∂x1

)
, (1.21)

H3 = v.

Утверждение 1.4. Пусть диэлектрическая проницаемость ε
принимает в области Ωi постоянное значение ε+, и выполняются
следующие условия:

β2 6= k2ε+, β2 6= k2ε∞. (1.22)

Тогда для любого нетривиального решения E, H системы (1.3) суще-
ствуют потенциальные функции u(x) и v(x). Потенциальные функ-
ции u(x) и v(x) для всех x ∈ R2 \ γ удовлетворяют уравнениям
Гельмгольца

[
∆+

(
k2ε+ − β2

)] [ u
v

]
= 0, x ∈ Ωi, (1.23)

[
∆+

(
k2ε∞ − β2

)] [ u
v

]
= 0, x ∈ Ωe. (1.24)

3. Условия на границах раздела сред. По предположению
на контуре γ диэлектрическая проницаемость ε может иметь разрыв.
Условия сопряжения на гладком контуре γ заключаются в том, что
при переходе через эту границу касательные составляющие векто-
ров E и H должны быть непрерывны (см., напр., [31]):

ν × E+ = ν × E−, x ∈ γ, (1.25)
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ν × H+ = ν × H−, x ∈ γ. (1.26)

Здесь символом “×” обозначено векторное произведение векторов, че-
рез E+(E−) обозначено предельное значение функции E извне (из-
нутри) контура γ, а через ν обозначен вектор единичной нормали к
контуру γ, внешней по отношению к области Ωi.

Сформулируем теперь условия сопряжения, которым должны
удовлетворять потенциальные функции u(x), v(x), определяющие ам-
плитуды собственных волн диэлектрического волновода с постоянной
диэлектрической проницаемостью (см., напр., [67]). Эти условия яв-
ляются следствием условий (1.25), (1.26).

Утверждение 1.5. Пусть диэлектрическая проницаемость ε
принимает в области Ωi постоянное значение ε+, и выполняются
условия

β2 6= k2ε+, β2 6= k2ε∞. (1.27)

Тогда потенциальные функции u(x) и v(x), определяющие по форму-
лам (1.20), (1.21) любые ненулевые комплексные амплитуды E и H
собственной волны E , H вида (1.2), удовлетворяют условиям сопря-
жения

u+ = u−, v+ = v−, x ∈ γ,

1

k2ε+ − β2

(
β
∂v

∂τ
+ ε0ε+ω

∂u−

∂ν

)
=

=
1

k2ε∞ − β2

(
β
∂v

∂τ
+ ε0ε∞ω

∂u+

∂ν

)
, x ∈ γ, (1.28)

1

k2ε+ − β2

(
β
∂u

∂τ
− µ0ω

∂v−

∂ν

)
=

=
1

k2ε∞ − β2

(
β
∂u

∂τ
− µ0ω

∂v+

∂ν

)
, x ∈ γ.

Здесь ∂u/∂ν — производная по нормали к контуру γ, ∂u/∂τ —
производная по касательной к контуру γ. Всюду в книге предполага-
ется, что область Ωi остается слева при обходе ее по контуру γ.
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4. Парциальные условия излучения. Область Ωe являет-
ся неограниченной, следовательно, для того, чтобы полностью сфор-
мулировать задачу о собственных волнах диэлектрического волново-
да, необходимо задать поведение комплексных амплитуд собственных
волн E и H на бесконечности в плоскости поперечного сечения вол-
новода R2.

Определение 1.3. Пусть Λ — поверхность Римана функ-
ции lnχ∞(β), где χ∞(β) =

√
k2ε∞ − β2, Ω :=

{
x ∈ R2 : |x| < R

}
—

открытый круг радиуса R, Γ — граница этого круга, а R0 — мини-
мальная положительная константа, такая, что Ωi целиком лежит в
круге Ω радиуса R0. Будем говорить, что функции E и H, являю-
щиеся решениями уравнения Гельмгольца (1.16), где β ∈ Λ, удовле-
творяют парциальным условиям излучения, если эти функции для
всех |x| > R0 разлагаются в ряды следующего вида:

[
E
H

]
=

∞∑

l=−∞

[
Al

Bl

]
H

(1)
l (χ∞r) e

ilϕ. (1.29)

Здесь H
(1)
l — функции Ханкеля первого рода индекса l (см.,

напр., [88]), (r, ϕ) — полярные координаты точки x.
Общее решение уравнения Гельмогльца (1.16) для |x| > R0 имеет

вид [7]:

[
E
H

]
=

∞∑

l=−∞

[
Al

Bl

]
H

(1)
l (χ∞r) e

ilϕ+

+
∞∑

l=−∞

[
Cl

Dl

]
H

(2)
l (χ∞r) e

ilϕ, (1.30)

где H(2)
l — функции Ханкеля второго рода индекса l (см., напр., [88]).

Для функций E, H, являющихся решениями уравнения Гельмголь-
ца (1.16), ряды (1.29), (1.30) сходятся абсолютно и равномерно во
всякой области вида a 6 r 6 b, где a и b — произвольные числа,
удовлетворяющие условию R0 < a < b < ∞; кроме того, указанные
ряды можно дифференцировать почленно сколько угодно раз [7].

Следовательно, парциальные условия излучения (1.29) опреде-
ленным образом ограничивают множество всех возможных решений
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уравнения Гельмгольца (1.16). Проанализируем строение поверхности
Римана Λ и конкретизируем поведение на бесконечности амплитуд
различных типов собственных волн, отвечающих постоянным распро-
странения β, лежащим на разных листах этой поверхности.

5. Поверхность Римана Λ. Для всех целых l функции Хан-
келя H(1)

l (χ∞(β)r) представимы в виде

H
(1)
l (χ∞(β)r) = c

(1)
l (χ∞(β)r) ln (χ∞(β)r) +R

(1)
l (χ∞(β)r) , (1.31)

где c(1)l (χ∞(β)r) и R(1)
l (χ∞(β)r) — однозначные аналитические функ-

ции комплексного аргумента β (см., напр., [88]). Будем рассматривать
функции H (1)

l (χ∞(β)r) как однозначные аналитические функции на
римановой поверхности Λ функции lnχ∞(β).

Поверхность Римана Λ состоит из бесконечного числа листов и
имеет две точки ветвления β = ±kn∞, где n∞ =

√
ε∞. В силу того,

что функцию χ∞(β) следует рассматривать как однозначную на дву-
листной поверхности Римана, поверхность Λ состоит из бесконечного
числа листов римановой поверхности логарифма Λm, m = 0,±1, ...,
каждый из которых делится на два листа римановой поверхности
квадратного корня χ∞(β): Λ

(1)
m и Λ

(2)
m . Всюду далее будем предпола-

гать, что точки ветвления не принадлежат римановой поверхности Λ.
Обозначим символом Λ

(1)
0 главный лист римановой поверхности Λ,

который определяется следующими условиями:

−π/2 < argχ∞(β) <3π/2, Im (χ∞(β)) > 0. (1.32)

С листом Λ
(1)
0 соединяется лист Λ

(2)
0 , который определяется следую-

щим образом:

−π/2 < argχ∞(β) <3π/2, Im (χ∞(β)) < 0. (1.33)

Все другие пары листов Λ
(1),(2)
m6=0 отличаются от Λ

(1),(2)
0 сдвигом значе-

ний argχ∞(β) на 2πm и удовлетворяют условиям

−π/2 + 2πm < argχ∞(β) <3π/2 + 2πm, Im (χ∞(β)) > 0, β ∈ Λ(1)
m ;

−π/2 + 2πm < argχ∞(β) <3π/2 + 2πm, Im (χ∞(β)) < 0, β ∈ Λ(2)
m .

Лист Λ
(2)
0 соединен с листом Λ

(1)
0 вдоль разреза, выбранным в со-

ответствии с условием Im(χ∞(β)) = 0 на Λ
(1)
0 , т. е. проходящим по
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мнимой оси и интервалу (−kn∞, kn∞) вещественной оси. Листы Λ
(2)
±1

соединяются с листом Λ
(2)
0 вдоль разреза, проходящего по веществен-

ной оси так, что |β| > kn∞.

6. Поверхностные, комплексные и вытекающие волны.
Определение 1.4. Обозначим вещественную ось листа Λ

(1)
0 симво-

лом R(1)
0 , а листа Λ

(2)
0 — символом R(2)

0 . Пусть G — объединение двух
интервалов на оси R(1)

0 :

G :=
{
β ∈ R(1)

0 : kn∞ < |β| < kn+

}
. (1.34)

Символом C
(1)
0 обозначим множество

C
(1)
0 :=

{
β ∈ Λ

(1)
0 : Reβ 6= 0

}
\ R(1)

0 . (1.35)

Поверхностными, комплексными и вытекающими собственными вол-
нами будем называть такие волны, амплитуды которых удовлетво-
ряют парциальным условиям излучения (1.29), а постоянные рас-
пространения β принадлежат множествам G ⊂ Λ

(1)
0 , C(1)

0 ⊂ Λ
(1)
0

и Λ
(2)
0 \ R(2)

0 , соответственно.

Конкретизируем поведение амплитуд поверхностных комплекс-
ных и вытекающих собственных волн на бесконечности. Функции
Ханкеля первого рода имеют следующую асимптотику при r → ∞
и −π/2 < argχ∞ <3π/2 и (см., напр., [88]):

H
(1)
l (χ∞r) =

√
2

πχ∞r
ei(χ∞r−lπ/2−π/4)

(
1 +O

(
1

χ∞r

))
. (1.36)

Таким образом, если −π/2 < argχ∞ <3π/2, Im(χ∞) 6= 0, и функ-
ции E и H удовлетворяют парциальным условиям излучения, то эти
функции удовлетворяют следующему условию на бесконечности:

[
E
H

]
= eiχ∞rO

(
1√
r

)
, r →∞. (1.37)

Нетрудно видеть, что для поверхностных и комплексных собственных
волн Im(χ∞) > 0. Следовательно, их амплитуды E,H экспоненциаль-
но убывают на бесконечности как exp (−Im(χ∞)r)r−1/2. Амплитуды E
и H вытекающих собственных волн экспоненциально возрастают на
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бесконечности как exp (−Im(χ∞)r)r−1/2, потому что для них имеет
место неравенство Im(χ∞) < 0.

Для поверхностных собственных волн ряд (1.29) может быть за-
писан в эквивалентном виде

[
E
H

]
=

∞∑

l=−∞

[
Al

Bl

]
Kl (pr) e

ilϕ, (1.38)

где p :=
√
β2 − k2ε∞ — поперечное волновое число в окружающей

среде, а Kl — модифицированные функции Бесселя порядка l [88].
Во втором разделе книги, посвященном исследованию поверхностных
волн, используются разложения вида (1.38), т.к. при β ∈ G пара-
метр p и функции Kl принимают вещественные значения.

7. Волны излучения. Обозначим символом D множество

D :=
{
β ∈ Λ

(1)
0 : Reβ = 0

}
∪
{
β ∈ R(1)

0 : |β| < kn∞
}
. (1.39)

Постоянные распространения волн излучения [144] принадлежат об-
ласти D, а их амплитуды удовлетворяют следующему условию на
бесконечности: [

E
H

]
= O

(
1√
r

)
, r →∞. (1.40)

Парциальные условия излучения (1.29) для всех функций, удо-
влетворяющих уравнению Гельмгольца (1.16) при всех β ∈ D, экви-
валентны условию излучения Зоммерфельда

(
∂

∂r
− iχ∞

)[
E
H

]
= o

(
1√
r

)
, r →∞. (1.41)

Это было доказано в [7]. Кроме того, в [7] было доказано, что усло-
вие (1.41) является более сильным, чем условие (1.40). Следовательно,
амплитуды волн излучения не удовлетворяют парциальным условиям
излучения (1.29).

В дальнейшем мы докажем, что область D не может содержать
собственных значений спектральных задач о собственных волнах,
амплитуды которых удовлетворяют парциальным условиям излуче-
ния (1.29).

28 Глава 1. Основные уравнения

8. Другие типы волн. Функции Ханкеля второго рода имеют
следующую асимптотику при r →∞ и −π/2 < argχ∞ <3π/2 и (см.,
напр., [88]):

H
(2)
l (χ∞r) =

√
2

πχ∞r
e−i(χ∞r−lπ/2−π/4)

(
1 +O

(
1

χ∞r

))
. (1.42)

Из хорошо известного разложения (см., напр., [88])

H
(1)
l

(
χ∞e

i2πmr
)
= α

(m)
l H

(1)
l (χ∞r)+

+ γ
(m)
l H

(2)
l (χ∞r) , α

(m)
l , γ

(m)
l 6= 0,

справедливого для всех m 6= 0, l = 0,±1,±2, . . ., и

β ∈
⋃

m6=0

(
Λ(1)
m ∪ Λ(2)

m

)
,

а также асимптотик (1.36), (1.42) следует, что постоянным распро-
странения β, лежащим на листах Λ

(1)
m , Λ(2)

m , m = ±1,±2, . . ., отвечают
собственные волны, амплитуды которых представляют собой суммы
уходящих на бесконечность и приходящих из бесконечности цилин-
дрических волн.

Распределение постоянных распространения β ∈ Λ обладает сим-
метрией, которая является следствием эквивалентности между поло-
жительным и отрицательным направлениями распространения соб-
ственных волн вдоль продольной оси 0x3, а также положительным и
отрицательным направлениями времени t (см., напр., [147]). А имен-
но, если β — положительная постоянная распространения, и E,H —
амплитуды векторов электрической и магнитной напряженности со-
ответствующей собственной волны, то−β также является постоянной
распространения собственной волны с амплитудами −E,H. Далее, в
силу того, что Imω = 0 и Im ε = 0, комплексно-сопряженные чис-
ла ±β также являются постоянными распространения собственных
волн с амплитудами ∓E,−H. Все эти утверждения могут быть лег-
ко проверены непосредственной подстановкой в дифференциальные
уравнения (1.3), условия сопряжения (1.25), (1.26) и условия на беско-
нечности (1.29). Все упомянутые собственные волны называют пря-
мыми, обратными, сопряженными и обратно-сопряженными волнами,
соответственно (см. [148]).
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§ 2. Скалярное приближение слабонаправляющего
волновода

Приведем теперь уравнения, которым удовлетворяют комплекс-
ные амплитуды собственных волн в приближении слабонаправляю-
щего волновода. Это название носят волноводы со слабо меняющейся
в плоскости поперечного сечения диэлектрической проницаемостью
(см., напр., [75], [9]).

1. Представления для комплексных амплитуд собствен-
ных волн. В случае слабонаправляющего волновода удобно вос-
пользоваться выражением компонент комплексных амплитуд E и H
через составляющие H1 и H2:

E3 =
1

iε0εω

(
∂H1

∂x2
− ∂H2

∂x1

)
, x ∈ R2 \ γ, (1.43)

E1 =
µ0ω

β
H2 −

1

ε0ωβ

∂

∂x1

[
1

ε

(
∂H1

∂x2
− ∂H2

∂x1

)]
, x ∈ R2 \ γ, (1.44)

E2 = −
µ0ω

β
H1 −

1

ε0ωβ

∂

∂x2

[
1

ε

(
∂H1

∂x2
− ∂H2

∂x1

)]
, x ∈ R2 \ γ, (1.45)

H3 =
−1
iβ

(
∂H1

∂x1
+
∂H2

∂x2

)
, x ∈ R2 \ γ. (1.46)

Эти представления легко получить из системы уравнений (1.3), сле-
дуя, например, [9].

2. Дифференциальные уравнения для H1 и H2. Из систе-
мы уравнений (1.3) вытекает (см., напр., [9]), что составляющие H1

и H2 для всех x из R2 \ γ удовлетворяют следующей системе диффе-
ренциальных уравнений:

[
∆+

(
k2ε− β2

)]
H1 =

1

ε

∂ε

∂x2

(
∂H1

∂x2
− ∂H2

∂x1

)
, (1.47)

[
∆+

(
k2ε− β2

)]
H2 = −

1

ε

∂ε

∂x1

(
∂H1

∂x2
− ∂H2

∂x1

)
. (1.48)

Вследствие того, что у слабонаправляющего волновода диэлек-
трическая проницаемость мало меняется в плоскости R2, правыми
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частями в системе (1.47), (1.48) можно пренебречь (см., напр., [9]).
Таким образом, в приближении слабонаправляющего волновода H1

и H2 удовлетворяют уравнению Гельмгольца:

[
∆+

(
k2ε− β2

)] [ H1

H2

]
= 0, x ∈ R2 \ γ. (1.49)

3. Условия сопряжения для H1 и H2. Построим теперь,
следуя [9], условия, которым в приближении слабонаправляющего
волновода должны удовлетворять функции H1, H2 на контуре γ. Из
условий сопряжения (1.25), (1.26) на границе γ для касательных со-
ставляющих векторов комплексных амплитуд E и H вытекают следу-
ющие условия сопряжения для компонент H1 и H2:

H+
1 = H−1 , H+

2 = H−2 , x ∈ γ, (1.50)

∂H+
1

∂ν
− ∂H−1

∂ν
= ν2

ε+ − ε−

ε+

(
∂H+

1

∂x2
− ∂H+

2

∂x1

)
, x ∈ γ, (1.51)

∂H+
2

∂ν
− ∂H−2

∂ν
= −ν1

ε+ − ε−

ε+

(
∂H+

1

∂x2
− ∂H+

2

∂x1

)
, x ∈ γ. (1.52)

В приближении слабонаправляющего волновода правые части в
граничных условиях (1.51), (1.52) можно считать равными нулю [9].
Таким образом, функции H1 и H2 удовлетворяют одним и тем же
условиям сопряжения на γ:

H+
1 = H−1 , H+

2 = H−2 , x ∈ γ, (1.53)

∂H+
1

∂ν
=
∂H−1
∂ν

,
∂H+

2

∂ν
=
∂H−2
∂ν

, x ∈ γ. (1.54)

4. Условия излучения для H1 и H2. Из (1.29) следует, что
функции H1 и H2 на бесконечности должны удовлетворять парциаль-
ным условиям излучения, а именно, для всех x, таких, что |x| > R0,
они должны разлагаться в равномерно и абсолютно сходящиеся ряды:

[
H1

H2

]
=

∞∑

l=−∞

[
B1,l

B2,l

]
H

(1)
l (χ∞r) e

ilϕ. (1.55)

Таким образом, в приближении слабонаправляющего волновода
функции H1 и H2 удовлетворяют одному и тому же уравнению Гельм-
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гольца (1.49), одинаковым условиям сопряжения (1.53), (1.54) и оди-
наковым условиям излучения (1.55) на бесконечности. Следователь-
но, в рассматриваемом приближении H1 и H2 являются решениями
одной и той же задачи.

Подводя итог, еще раз подчеркнем, что скалярное приближение
слабонаправляющего волновода заключается в том, что вместо того,
чтобы разыскивать векторы комплексных амплитуд E и H, ищется
лишь одна скалярная функция u := H1 = H2, удовлетворяющая сле-
дующим условиям:

[
∆+

(
k2ε− β2

)]
u = 0, x ∈ R2 \ γ, (1.56)

u+ = u−, x ∈ γ, (1.57)

∂u+

∂ν
=
∂u−

∂ν
, x ∈ γ, (1.58)

u =
∞∑

l=−∞
alH

(1)
l (χ∞r) e

ilϕ, |x| > R0. (1.59)

Остальные компоненты векторов E и H определяются затем по фор-
мулам (1.43)–(1.46).

§ 3. Волновод кругового поперечного сечения

Рассмотрим частный случай диэлектрического волновода круго-
вого поперечного сечения с функцией ε, принимающей постоянное
значения внутри волновода. В этом случае спектральные задачи (в
полной электродинамической постановке и в приближении слабона-
правляющего волновода) методом разделения переменных сводятся
к семействам трансцендентных уравнений относительно k и β (см.,
напр., [75]).

1. Векторная задача в полной электродинамической по-
становке. Пусть R — радиус волновода, ε∞ > 0 — диэлектрическая
проницаемость окружающей среды и ε+ > ε∞ — диэлектрическая
проницаемость волновода. Согласно утверждению 1.4, для любой соб-
ственной волны существуют потенциальные функции u(x) и v(x),
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определяющие ее амплитуду. Потенциальные функции удовлетворя-
ют уравнениям Гельмгольца:

[
∆+

(
k2ε+ − β2

)] [ u
v

]
= 0, |x| < R,

[
∆+

(
k2ε∞ − β2

)] [ u
v

]
= 0, |x| > R.

Применим для решения этих уравнений метод разделения перемен-
ных. Получим разложения

[
u
v

]
=

∞∑

l=−∞

[
cl
dl

]
Jl (χ+r) e

ilϕ, |x| < R, (1.60)

[
u
v

]
=

∞∑

l=−∞

[
al
bl

]
H

(1)
l (χ∞r) e

ilϕ, |x| > R. (1.61)

Здесь χ+ =
√
k2ε+ − β2; Jn (χ+r) – функции Бесселя порядка l [88].

В этих разложениях учтено, что искомые функции не должны иметь
особенностей, и на бесконечности они удовлетворяют парциальным
условиям излучения (1.29).

Используя (1.60), (1.61) и условия сопряжения (1.28), придем к од-
нородной бесконечной системе линейных алгебраических уравнений
относительно неизвестных al, bl, cl, dl, l = 0,±1,±2, . . . Элементы
матрицы этой системы нелинейно зависят от k и β. Матрица имеет
такую блочно-диагональную структуру, что исходная система рас-
падается на бесконечное количество независимых систем, каждая из
которых содержит четыре уравнения. Если при некоторых k и β опре-
делитель какой-либо из этих систем обращается в нуль, то она имеет
нетривиальное решение, определяющее собственную волну волново-
да. Из условия равенства нулю определителей этих систем вытека-
ет семейство трансцендентных уравнений для определения парамет-
ров k и β:
(
ε+χ∞

J ′l(χ+R)

Jl(χ+R)
− ε∞χ+

H
(1)′

l (χ∞R)

H
(1)
l (χ∞R)

)
×

×
(
χ∞

J ′l(χ+R)

Jl(χ+R)
− χ+

H
(1)′

l (χ∞R)

H
(1)
l (χ∞R)

)
=

(
lβk(ε+ − ε∞)

χ∞χ+R

)2

, l = 0, 1, . . .

(1.62)
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Эти уравнения в теории волноводов носят название характеристиче-
ских (см., напр., [75]).

Важные результаты относительно качественных свойств соб-
ственных волн цилиндрического диэлектрического волновода круго-
вого поперечного сечения были получены в [50] и [6] на основе анализа
характеристических уравнений (1.62) методами теории функций ком-
плексного переменного. В этих статьях было доказано, что при k > 0
у волновода кругового сечения наряду с поверхностными собствен-
ными волнами (см., напр., [75]), отвечающими β ∈ G, существуют
комплексные собственные волны [6], постоянные распространения β

которых принадлежат множеству C
(1)
0 , и вытекающие собственные

волны [50] с β ∈ Λ
(2)
0 \ R(2)

0 .

Рис. 2. Дисперсионные кривые для поверхностных собственных волн цилиндри-
ческого диэлектрического волновода кругового поперечного сечения.

На рисунке 2 показаны дисперсионные кривые для поверхностных
собственных волн цилиндрического диэлектрического волновода кру-
гового поперечного сечения — графики функций β = β(k), где k > 0,
а постоянные распространения β принадлежат интервалу G. Пунк-
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тирными линиями показаны границы области {(k, β) : k > 0, β ∈ G}.
Графики построены на основе поиска корней характеристических
уравнений (1.62). Расчеты проведены для волновода единичного ра-
диуса с диэлектрической проницаемостью ε+ = 2, находящегося в
однородной окружающей среде с ε∞ = 1.

Для любого сколь угодно малого значения k > 0 существуют два
линейно независимых решения задачи. Соответствующие собствен-
ные волны называются фундаментальными, или основными. Диспер-
сионная кривая для основных собственных волн кругового волно-
вода одна, так как они для такого волновода являются вырожден-
ными — одному значению постоянной распространения β соответ-
ствуют две волны с линейно независимыми амплитудами. При лю-
бом k > 0 число решений задачи конечно и стремится к бесконеч-
ности при k →∞. Значения частот электромагнитных колебаний ω,
при которых β = kn∞, называются критическими частотами, а со-
ответствующие значения волновых чисел k — точками отсечки (кри-
тическими точками). Это точки, в которых начинаются дисперсион-
ные кривые для неосновных собственных волн. Дисперсионные кри-
вые при k → ∞ имеют линейную асимптотику, а именно, β/k → n+

при k →∞.

Рис. 3. Дисперсионные кривые для поверхностных, вытекающих и комплексных
собственных волн цилиндрического диэлектрического волновода кругового попе-

речного сечения. Здесь β̃ := β/(kn∞).
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На рисунке 3, следуя [6], приведены дисперсионные кривые для
поверхностных, вытекающих и комплексных собственных волн ци-
линдрического диэлектрического волновода кругового сечения — гра-
фики вещественных (непрерывные линии) и мнимых (пунктирные ли-
нии) частей функций β̃ = β̃(kR), где β̃ := β/(kn∞). С уменьшением
частоты колебаний ω, при переходе через точки отсечки (в этих точ-
ках β̃ = 1), поверхностные волны трансформируются в вытекающие
с комплексными постоянными распространения β ∈ Λ

(2)
0 \R(2)

0 . В рас-
смотренном случае при относительной диэлектрической проницаемо-
сти ε̃ := ε+/ε∞ = 18 в ходе дальнейшего уменьшения ω собственная
волна EH11 трансформируется в комплексную, постоянная распро-
странения β которой принадлежит C (1)

0 . Чем больше значение ε̃, тем
большее количество вытекающих собственных волн преобразуются в
комплексные с уменьшением ω. Так, например, при ε̃ > 50 таких волн
уже две: EH11 и EH12, и так далее [6].

2. Скалярная задача в приближении слабонаправляюще-
го волновода. Рассмотрим теперь задачу для волновода кругового
поперечного сечения радиуса R с постоянной диэлектрической прони-
цаемостью ε+, мало отличающейся от диэлектрической проницаемо-
сти окружающей среды ε∞ < ε+. В этом случае может быть примене-
но приближение слабонаправляющего волновода. Как было показано
в § 2, в этом случае задача сводится к определению функции u, удо-
влетворяющей внутри круга и вне его уравнению Гельмгольца

[
∆+

(
k2ε+ − β2

)]
u = 0, |x| < R,

[
∆+

(
k2ε∞ − β2

)]
u = 0, |x| > R,

а на границе раздела сред условиям сопряжения

u+ = u−,
∂u+

∂r
=
∂u−

∂r
, |x| = R.

Потребуем от функции u(x), чтобы она удовлетворяла на бесконеч-
ности парциальным условиям излучения (1.59).

Поставленная задача может быть решена методом разделения
переменных аналогично векторной задаче, рассмотренной в преды-
дущем пункте. В результате получим семейство характеристических
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уравнений для определения параметров k и β:

χ+
J ′l(χ+R)

Jl(χ+R)
= χ∞

H
(1)′

l (χ∞R)

H
(1)
l (χ∞R)

, l = 0, 1, . . . (1.63)

Подробное изложение свойств различных типов собственных
волн, отвечающих различным значениям β, можно найти, например,
в книге [75]. Уравнение (1.63) имеет решения β, лежащие в области G
листа Λ

(1)
0 римановой поверхности Λ, которым отвечают поверхност-

ные собственные волны и решения β, лежащие на листе Λ
(2)
0 , кото-

рым отвечают вытекающие собственные волны. Однако, как показано
в [75], уравнение (1.63), в отличие от уравнения (1.62) не имеет реше-
ний β, лежащих на листе Λ

(1)
0 вне вещественной оси. Другими слова-

ми, у слабонаправляющих волноводов кругового поперечного сечения
не существует комплексных собственных волн.
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Рис. 4. Дисперсионные кривые для поверхностных и вытекающих собственных
волн слабонаправляющего цилиндрического диэлектрического волновода круго-
вого поперечного сечения. Здесь V := kR

√
ε+ − ε∞, U := kR

√
ε+ − (β/k)2.

На рисунке 4, следуя [75], показаны дисперсионные кривые для
поверхностных и вытекающих собственных волн слабонаправляюще-
го цилиндрического диэлектрического волновода кругового попереч-



§ 3. Волновод кругового поперечного сечения 37

ного сечения — графики вещественных (непрерывные линии) и мни-
мых (пунктирные линии) частей функций U = U(V ), где

U := kR
√
ε+ − (β/k)2, V := kR

√
ε+ − ε∞.

Дисперсионные кривые поверхностных волн лежат на рисунке правее
прямой U = V , графики вещественных частей функции U = U(V )
для вытекающих волн — левее этой прямой.

Для любого сколь угодно малого значения k > 0 существует од-
на поверхностная собственная волна. Она называется основной. При
любом k > 0 число поверхностных собственных волн конечно и стре-
мится к бесконечности при k → ∞. Дисперсионные кривые поверх-
ностных волн при V → ∞ имеют линейную асимптотику, а имен-
но, U → const при V → ∞. Значения частот электромагнитных ко-
лебаний ω, при которых β = kn∞, называются критическими часто-
тами, а соответствующие значения волновых чисел k — точками от-
сечки (критическими точками). В точках отсечки U = V . Это точки,
в которых дисперсионные кривые поверхностных собственных волн с
уменьшением ω трансформируются в кривые вытекающих собствен-
ных волн. При любом k > 0 число вытекающих собственных волн
бесконечно.

Глава 2

ЗАДАЧИ О СОБСТВЕННЫХ ВОЛНАХ
ВОЛНОВОДОВ С ПОСТОЯННОЙ

ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТЬЮ

§ 1. Скалярная задача в приближении
слабонаправляющего волновода

1. Постановка задачи и локализация собственных значе-
ний. Сформулируем задачу о собственных волнах цилиндрическо-
го диэлектрического волновода с произвольным контуром попереч-
ного сечения и постоянной диэлектрической проницаемостью, близ-
кой к диэлектричской проницаемости окружающей среды. Пусть об-
ласть поперечного сечения волновода Ωi ограничена дважды непре-
рывно дифференцируемым контуром γ. Диэлектрическая проница-
емость ε является кусочно-постоянной функцией, а именно, равна
константе ε+ в области Ωi, а в области Ωe := R2 \ Ωi — констан-
те ε∞, где 0 < ε∞ < ε+. Будем считать, что постоянная распро-
странения β — неизвестный комплексный параметр, k > 0 — задан-
ное волновое число. В скалярном приближении слабонаправляющего
волновода (см. § 2 гл. 1) задача сводится к отысканию таких значе-
ний параметра β, при которых существуют нетривиальные решения
уравнения Гельмгольца:

∆u+ χ2
+u = 0, x ∈ Ωi, (2.1)

∆u+ χ2
∞u = 0, x ∈ Ωe, (2.2)

удовлетворяющие условиям сопряжения:

u+ = u−,
∂u+

∂ν
=
∂u−

∂ν
, x ∈ γ. (2.3)

Будем предполагать, что функция u удовлетворяет на бесконечности
парциальным условиям излучения (1.59), с. 31, т. е. при |x| > R0

представима в виде абсолютно и равномерно сходящегося ряда:

u(x) =
∞∑

l=−∞
alH

(1)
l (χ∞r) e

ilϕ. (2.4)



§ 1. Скалярная задача в приближении слабонаправляющего волновода 39

Будем разыскивать ненулевые решения u(x) задачи (2.1)–(2.4) в
классе функций, непрерывных и непрерывно дифференцируемых в Ωi

и Ωe, дважды непрерывно дифференцируемых в Ωi и Ωe. Обозначим
это множество функций через U .

Будем предполагать, что постоянные распространения β принад-
лежат множеству Λ — пересечению римановых поверхностей Λ+ и Λ∞
функций lnχ+(β) и lnχ∞(β), соответственно:

Λ := Λ+ ∩ Λ∞. (2.5)

Строение поверхности Λ∞ подробно рассмотрено в § 1 гл. 1 (там она
была обозначена Λ). Строение поверхности Λ+ абсолютно аналогич-
но. Пусть

Λ
(1)
0 := Λ

(1)
+0 ∩ Λ

(1)
∞0

есть пересечение главных (“физических”) листов этих поверхностей,
определяемых условиями:

−π/2 < argχ+(β) <3π/2, Im (χ+(β)) > 0, β ∈ Λ
(1)
+0, (2.6)

−π/2 < argχ∞(β) <3π/2, Im (χ∞(β)) > 0, β ∈ Λ
(1)
∞0. (2.7)

Всюду в этой главе будем обозначать вещественную ось листа Λ
(1)
0

символом R(1)
0 ,

G :=
{
β ∈ R(1)

0 : kn∞ < |β| < kn+

}
,

D :=
{
β ∈ Λ

(1)
0 : Reβ = 0

}
∪
{
β ∈ R(1)

0 : |β| < kn∞
}
,

C
(1)
0 :=

{
β ∈ Λ

(1)
0 : Reβ 6= 0

}
\ R(1)

0 ,

B :=
{
β ∈ R(1)

0 : |β| > kn+

}
.

Как обычно, n+ =
√
ε+, n∞ =

√
ε∞.

Определение 2.5. Ненулевую функцию u ∈ U , будем называть
собственной функцией задачи (2.1)–(2.4), отвечающей собственному
значению β ∈ Λ, если выполнены условия (2.1)–(2.4).

Теорема 2.1. На Λ
(1)
0 собственные значения задачи (2.1)–(2.4)

могут лежать лишь в области G.
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Доказательство. Множество Λ
(1)
0 является объединением че-

тырех множеств:
Λ
(1)
0 := C

(1)
0 ∪D ∪G ∪B.

Докажем, что множества C (1)
0 , D и B не содержат собственных зна-

чений задачи (2.1)–(2.4).
Предположим, что u — собственная функция задачи (2.1)–(2.4),

отвечающая собственному значению β ∈ D. Введем следующие обо-
значения:

Ω :=
{
x ∈ R2 : |x| < R

}
,

Γ :=
{
x ∈ R2 : |x| = R

}
,

где R > R0. Записывая в областях Ωi и Ω \ Ωi к функциям u и u
(здесь и далее u означает функцию, комплексно-сопряженную с u)
формулу Грина, получаем равенства

∫

Ωi

(u∆u− u∆u)dx =

∫

γ

(
u−
∂u−

∂ν
− u−

∂u−

∂ν

)
dl,

∫

Ω\Ωi

(u∆u− u∆u)dx = −
∫

γ

(
u+
∂u+

∂ν
− u+

∂u+

∂ν

)
dl+

+

∫

Γ

(
u
∂u

∂r
− u

∂u

∂r

)
dl.

При β ∈ D коэффициенты в уравнениях Гельмгольца (2.1), (2.2) —
положительные вещественные числа, следовательно, левые части в
двух последних равенствах обращаются в нуль. Складывая эти ра-
венства почленно и учитывая условия сопряжения (2.3), получаем

∫

Γ

(
u
∂u

∂r
− u

∂u

∂r

)
dl = 0, R > R0.

Отсюда, используя условие (2.4) и ортогональность тригонометриче-
ских функций, для любого R > R0 получим

2πχ∞R
∞∑

l=−∞

[
H

(1)
l (χ∞R)H

(2)′
l (χ∞R)−H

(2)
l (χ∞R)H

(1)′
l (χ∞R)

]
×

× |al|2 = 0.



§ 1. Скалярная задача в приближении слабонаправляющего волновода 41

Хорошо известно (см., напр., [88]), что выражение, стоящее в этой
сумме в квадратных скобках, от l не зависит, а именно,

H
(1)
l (χ∞R)H

(2)′
l (χ∞R)−H

(2)
l (χ∞R)H

(1)′
l (χ∞R) =

4

iπχ∞R
,

где l = 0,±1,±2, . . . Следовательно, для любого |x| > R0 все коэф-
фициенты al в разложении (2.4) обращаются в нуль. А это значит, что
u = 0 при |x| > R0. Функция u удовлетворяет в области Ωe уравне-
нию Гельмгольца (2.2) с постоянным коэффициентом, следовательно,
является аналитической по x в Ωe. Таким образом, u = 0 при x ∈ Ωe;
и u+ = 0, ∂u+/∂ν = 0 на контуре γ.

Применим в области Ωi третью формулу Грина, выражающую
решение уравнения (2.1) в Ωi через предельное значение решения и
его нормальной производной на γ:

u(x) = −
∫

γ

[
u−(y)

∂Φ+(β; x, y)

∂ν(y)
− ∂u−(y)

∂ν(y)
Φ+(β; x, y)

]
dl(y), x ∈ Ωi,

(2.8)
где

Φ+(β; x, y) :=
i

4
H

(1)
0 (χ+(β) |x− y|)

есть фундаментальное решение уравнения Гельмгольца (2.1). Из это-
го представления функции u(x) и условий сопряжения (2.3) заклю-
чаем, что u = 0 и в области Ωi. Итак, мы доказали, что при β ∈ D
функция u обращается в нуль на всей плоскости R2, что противоре-
чит предположению о том, что она является собственной функцией
задачи (2.1)–(2.4). Следовательно, область D свободна от собствен-
ных значений задачи (2.1)–(2.4).

Предположим теперь, что u является собственной функцией за-
дачи (2.1)–(2.4), отвечающей собственному значению β ∈ C

(1)
0 ∪ B.

Применяя в областях Ωi и Ω \ Ωi, R > R0, к функциям u и u форму-
лу Грина, получаем равенства

∫

Ωi

∇u · ∇udx+

∫

Ωi

u∆udx =

∫

γ

u−
∂u−

∂ν
dl,

∫

Ω\Ωi

∇u · ∇udx+

∫

Ω\Ωi

u∆udx = −
∫

γ

u+
∂u+

∂ν
dl +

∫

Γ

u
∂u

∂r
dl,
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где
∇u := (∂u/∂x1, ∂u/∂x2)

T .

Сложим почленно эти равенства, учитывая условия сопряжения (2.3),
и устремим R к бесконечности. При этом надо заметить, что согласно
асимптотике (1.36), с. 26, все подынтегральные выражения во втором
равенстве, зависящие от R, экспоненциально убывают на бесконечно-
сти при любом β ∈ C (1)

0 ∪B. В результате получим
∫

Ωi∪Ωe

|∇u|2dx+

∫

Ωi∪Ωe

(β2 − k2ε)|u|2dx = 0. (2.9)

При вещественных β, лежащих в бесконечном интервале B, ра-
венству (2.9) удовлетворяет лишь нулевая функция u в силу того,
что β2 − k2ε > 0 при β ∈ B.

Возьмем от левой и правой частей равенства (2.9) мнимую часть.
Получим

Im
(
β2
) ∫

Ωi∪Ωe

|u|2dx = 2Re(β)Im(β)

∫

Ωi∪Ωe

|u|2dx = 0.

Заметим, что ни мнимая, ни вещественная части числа β ∈ C
(1)
0 не

обращаются в нуль, следовательно, при β ∈ C
(1)
0 последнему равен-

ству также удовлетворяет лишь нулевая функция u. Таким образом,
мы доказали, что при любом β ∈ C

(1)
0 ∪ B функция u обращается в

нуль на всей плоскости R2. Следовательно, области B и C
(1)
0 также

свободны от собственных значений задачи (2.1)–(2.4). ¤

Отметим, что с помощью равенства (2.9) нельзя доказать отсут-
ствие собственных значений β задачи (2.1)–(2.4) в области G в силу
того, что

β2 − k2ε < 0

при β ∈ G и x ∈ Ωi. Вещественным β ∈ G соответствуют поверхност-
ные волны (u экспоненциально убывает при r → ∞). Теорема 2.1
обобщает результаты [75] о локализации спектра собственных волн
слабонаправляющего диэлектрического волновода кругового сечения,
полученные на основе анализа характеристического уравнения мето-
да разделения переменных (см. п. 2 § 3 гл. 1).
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2. Нелинейная спектральная задача для системы слабо-
сингулярных интегральных уравнений по контуру попереч-
ного сечения волновода. Сведем исходную задачу (2.1)–(2.4) ме-
тодами теории потенциалов к спектральной задаче для интеграль-
ной оператор-функции. Большинство результатов теории потенциа-
лов, которые мы будем использовать, являются классическими и хо-
рошо известны. Их можно найти, например, в книгах [2], [54]. Менее
традиционно изучение поведения потенциалов на бесконечности как
функций, удовлетворяющих парциальным условиям излучения. Ана-
логичные построения содержатся в монографиях [33], [153].

Введем в рассмотрение функции

Φ+ (β; x, y) :=
i

4
H

(1)
0 (χ+ (β) |x− y|) , (2.10)

Φ∞ (β; x, y) :=
i

4
H

(1)
0 (χ∞ (β) |x− y|) . (2.11)

Здесь
|x− y| :=

√
(x1 − y1)2 + (x2 − y2)2,

параметр β предполагается комплексным, принадлежащим множе-
ству Λ, определенному формулой (2.5). Напомним [88], что

H
(1)
0 (z) := J0(z) + iN0(z),

где J0(z) — функция Бесселя нулевого порядка, N0(z) — функция
Неймана нулевого порядка,

J0(z) :=
∞∑

k=0

(−1)k(z/2)2k
(k!)2

,

N0(z) :=
2

π
J0(z)ln

z

2
− 2

π

∞∑

k=0

(−1)k(z/2)2kΨ(k + 1)

(k!)2
,

Ψ(n+ 1) := −C +
n∑

k=1

1

k
, Ψ(1) := −C,

C := lim
n→∞

(
n∑

k=1

1

k
− lnn

)
= 0.5772156649 . . . ,

где Ψ — пси-функция, C — постоянная Эйлера.
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Функции (2.10), (2.11) удовлетворяют уравнениям

∆Φ+ (β; x, y) + χ2
+(β)Φ+ (β; x, y) = 0, (2.12)

∆Φ∞ (β; x, y) + χ2
∞(β)Φ∞ (β; x, y) = 0 (2.13)

как функции переменной x при любой фиксированной точке y 6= x.
При y = x они имеют логарифмическую особенность. Функции (2.10)
и (2.11) называются фундаментальными решениями уравнений (2.12)
и (2.13).

С помощью теоремы сложения Графа (см., напр., [66], с. 201) лег-
ко показать, что функция Φ∞ (β; x, y) при любых β ∈ Λ и y ∈ R2

удовлетворяет условию (2.4):

Φ∞ (β; x, y) =
i

4
H

(1)
0 (χ∞(β) |x− y|) =

=
i

4

∞∑

l=−∞
Jl (χ∞r(y)) e

−ilϕ(y)H(1)
l (χ∞r(x)) e

ilϕ(x). (2.14)

Аналогичному условию удовлетворяет функция Φ+ (β; x, y), опреде-
ленная формулой (2.10):

Φ+ (β; x, y) =
i

4
H

(1)
0 (χ+(β) |x− y|) =

=
i

4

∞∑

l=−∞
Jl (χ+r(y)) e

−ilϕ(y)H(1)
l (χ+r(x)) e

ilϕ(x). (2.15)

Отметим, что в отличие от функций (2.10) и (2.11), другая пара
фундаментальных решений уравнений Гельмгольца (2.12) и (2.13),
а именно функции

Φ
(2)
+ (β; x, y) :=

i

4
H

(2)
0 (χ+ (β) |x− y|) , (2.16)

Φ(2)
∞ (β; x, y) :=

i

4
H

(2)
0 (χ∞ (β) |x− y|) , (2.17)

где H(2)
0 — функция Ханкеля второго рода нулевого порядка, парци-

альным условиям излучения (2.14), (2.15) не удовлетворяют.
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Будем обозначать через C0,α(γ), 0 < α < 1, пространство непре-
рывных по Гельдеру функций, т. е. линейное пространство всех ком-
плекснозначных функций f , определенных на контуре γ и удовлетво-
ряющих условию

|f(x)− f(y)| 6 K|x− y|α ∀x, y ∈ γ,

где K — положительная постоянная, зависящая от f , но не завися-
щая от x и y. Будем обозначать C1,α(γ), 0 < α < 1, пространство
непрерывно дифференцируемых по Гельдеру функций — линейное
пространство всех комплекснозначных функций f , определенных на
контуре γ таких, что их первые производные существуют и принад-
лежат C0,α(γ). Как известно, пространство непрерывных по Гельдеру
функций C0,α(γ) и пространство непрерывно дифференцируемых по
Гельдеру функций C1,α(γ) являются банаховыми пространствами с
нормами

‖f‖α := max
x∈γ

|f(x)|+ sup
x,y∈γ, x6=y

|f(x)− f(y)|
|x− y|α

и

‖f‖1,α := max
x∈γ

|f(x)|+max
x∈γ

|f ′(x)|+ sup
x,y∈γ, x6=y

|f ′(x)− f ′(y)|
|x− y|α ,

соответственно. Будем предполагать, что контур γ задан параметри-
чески r = r(t), t ∈ [0, 2π], и эта параметризация является регуляр-
ной. Функции из C0,α(γ) и C1,α(γ) будем рассматривать также как
непрерывные по Гельдеру и непрерывно дифференцируемые по Гель-
деру 2π-периодические функции параметра t.

Собственные функции задачи (2.1)–(2.4) будем разыскивать в ви-
де потенциалов простого слоя:

u(x) :=

∫

γ

Φ+(β; x, y)f+(y)dl(y), x ∈ Ωi, (2.18)

u(x) :=

∫

γ

Φ∞(β; x, y)f∞(y)dl(y), x ∈ Ωe, (2.19)

с плотностями f+ и f∞, принадлежащими пространству непрерывных
по Гельдеру функций C0,α(γ).
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При всех β ∈ Λ и f+, f∞ ∈ C0,α(γ) функция u, задаваемая равен-
ствами (2.18), (2.19), удовлетворяет требуемым свойствам гладкости
и уравнениям (2.1), (2.2). С помощью разложения (2.14) нетрудно убе-
диться, что функция u удовлетворяет условию (2.4). А именно, при
всех |x| > R0 функция u представима в виде абсолютно и равномерно
сходящегося ряда

u(x) =
∞∑

l=−∞
alH

(1)
l (χ∞r(x)) e

ilϕ(x),

где

al :=
i

4

∫

γ

Jl (χ∞r (y)) e
−ilϕ(y)f∞ (y) dl (y) .

Используя граничные условия (2.3) и предельные свойства потен-
циалов простого слоя и их нормальных производных, получаем нели-
нейную спектральную задачу для системы интегральных уравнений:

A11(β)f+ +A12(β)f∞ = 0, x ∈ γ, (2.20)

A21(β)f+ +A22(β)f∞ = 0, x ∈ γ. (2.21)

Здесь

(A11(β)f+) (x) :=

∫

γ

Φ+(β; x, y)f+(y)dl(y), x ∈ γ,

(A12(β)f∞) (x) := −
∫

γ

Φ∞(β; x, y)f∞(y)dl(y), x ∈ γ,

(A21(β)f+) (x) :=
1

2
f+(x) +

∫

γ

∂Φ+(β; x, y)

∂ν(x)
f+(y)dl(y), x ∈ γ,

(A22(β)f∞) (x) :=
1

2
f∞(x)−

∫

γ

∂Φ∞(β; x, y)

∂ν(x)
f∞(y)dl(y), x ∈ γ.

Переходя к переменной интегрирования t параметрического пред-
ставления контура γ, выделяя явно логарифмическую особенность
ядер Φ+(x, y), Φ∞(x, y), преобразуем систему (2.20), (2.21) к виду

Lp1 +B11(β)p1 +B12(β)p2 = 0, t ∈ [0, 2π], (2.22)
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p2 +B21(β)p1 +B22(β)p2 = 0, t ∈ [0, 2π]. (2.23)

Здесь

p1(τ) := (f+(y)− f∞(y)) |r′(τ)|, p2(τ) := f+(y) + f∞(y),

Lp1 := −
1

2π

2π∫

0

ln | sin t− τ

2
| p1(τ)dτ, t ∈ [0, 2π],

Bij(β)p
(j) :=

1

2π

2π∫

0

hij(β; t, τ)p
(j)(τ)dτ, t ∈ [0, 2π],

h11(β; t, τ) := 2π (G11(β; t, τ) +G12(β; t, τ)) ,

h12(β; t, τ) := 2π (G11(β; t, τ)−G12(β; t, τ)) |r′(τ)|,
h21(β; t, τ) := 4π (G21(β; t, τ) +G22(β; t, τ)) ,

h22(β; t, τ) := 4π (G21(β; t, τ)−G22(β; t, τ)) |r′(τ)|,

G11(β; t, τ) := Φ+(β; x, y) +
1

2π
ln | sin t− τ

2
|,

G12(β; t, τ) := Φ∞(β; x, y) +
1

2π
ln | sin t− τ

2
|,

G21(β; t, τ) :=
∂Φ+(β; x, y)

∂ν(x)
,

G22(β; t, τ) :=
∂Φ∞(β; x, y)

∂ν(x)
,

x = x(t), y = y(τ).

Линейный оператор L : C0,α(γ)→ C1,α(γ) является непрерывным
и непрерывно обратимым (см., напр., [10, c. 10]). При любом β ∈ Λ
операторы

B21(β), B22(β) : C
0,α(γ)→ C0,α(γ),

B11(β), B12(β) : C
0,α(γ)→ C1,α(γ)

вполне непрерывны в силу того, что ядра G21, G22 не имеют осо-
бенности при t = τ , а ядра G11, G12 являются дважды непрерывно
дифференцируемыми по t функциями (t, τ) ∈ [0, 2π]× [0, 2π]. В этом
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нетрудно убедиться, используя свойства функций Ханкеля. Анало-
гичные свойства этих функций получены, например, в [61, с. 93], [140,
с. 211].

Таким образом, система (2.22), (2.23) эквивалентна операторному
уравнению

A(β)w := (I +B(β))w = 0, (2.24)

где
w := (w1, w2)

T ,

w1 := Lp1 ∈ C1,α(γ), w2 := p2 ∈ C0,α(γ),

вполне непрерывный оператор B, действующий в банаховом про-
странстве

W := C1,α(γ)× C0,α(γ),

определен при помощи равенства

Bw :=

[
B11L

−1 B12

B21L
−1 B22

] [
w1

w2

]
, (2.25)

символом I обозначен единичный оператор.

Определение 2.6. Линейный оператор A называется фредголь-
мовым, если он нормально разрешим и его индекс равен нулю [145,
c. 22].

Частным случаем фредгольмового оператора является оператор,
представимый в виде суммы двух операторов, один из которых непре-
рывно обратим, а второй — вполне непрерывен.

Определение 2.7. Оператор-функция A(β) называется голо-
морфной в точке β0 ∈ Λ, если существует такое p > 0, что при лю-
бом β, |β − β0| < p, оператор A(β) : W → W допускает разложение
в сходящийся по норме ряд

A(β) = A(β0) +
∞∑

m=1

(β − β0)
mAm.

Теорема 2.2. Положим R+ := {x ∈ R : x > 0}. При каждом
фиксированном

(β; k, ε+, ε∞) ∈ Λ× R3
+
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оператор A(β; k, ε+, ε∞) : W → W фредгольмов. При каждом фик-
сированном (k, ε+, ε∞) ∈ R3

+ оператор-функция A(β; k, ε+, ε∞) го-
ломорфна по β ∈ Λ. Оператор-функция A(β; k, ε+, ε∞) непрерывна
по (β; k, ε+, ε∞) ∈ Λ× R3

+.

Доказательство. В силу полной непрерывности операто-
ра B(β; k, ε+, ε∞) при любом (β; k, ε+, ε∞) ∈ Λ × R3

+ оператор
A(β; k, ε+, ε∞) фредгольмов. Используя известные свойства функций
Ханкеля (см., напр., [66]), нетрудно убедиться в том, что для каж-
дой точки (t, τ) ∈ [0, 2π] × [0, 2π] функции hij(β; k, ε+, ε∞; t, τ) ана-
литические по β ∈ Λ и непрерывны по (β; k, ε+, ε∞) ∈ Λ × R3

+.
Отсюда следует [33, с. 71], что при каждом фиксированном значе-
нии (k, ε+, ε∞) ∈ R3

+ оператор-функция A(β; k, ε+, ε∞) голоморф-
на по β ∈ Λ и что оператор-функция A(β; k, ε+, ε∞) непрерывна
по (β; k, ε+, ε∞) ∈ Λ× R3

+. ¤

Определение 2.8. Ненулевой элемент w ∈ W будем называть
собственной функцией оператор-функции A(β), отвечающей харак-
теристическому значению β ∈ Λ, если выполнено уравнение (2.24).
Характеристическим множеством оператор-функции A(β) будем на-
зывать множество чисел β ∈ Λ, для которых оператор A(β) не имеет
ограниченного обратного в W (это множество называют также син-
гулярным). Будем обозначать его символом σ(A). Обозначим множе-
ство регулярных точек оператора A(β) через ρ(A) := Λ \ σ(A).

3. Дискретность характеристического множества и зави-
симость характеристических значений от параметров зада-
чи. Изучим качественные свойства характеристического и регуляр-
ного множеств оператор-функции A(β). С этой целью прежде всего
исследуем эквивалентность задач (2.1)–(2.4) и (2.24).

Теорема 2.3. Если функция w является собственной функцией
оператор-функции A(β), отвечающей характеристическому значе-

нию β0 ∈ Λ
(1)
0 \D, то функция u, определяемая равенствами (2.18),

и (2.19), где β := β0,

f+ := w2/2 + L−1w1/(2|r′|), (2.26)

f∞ := w2/2− L−1w1/(2|r′|), (2.27)

является собственной функцией задачи (2.1)–(2.4), отвечающей
собственному значению β0. Любая собственная функция зада-
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чи (2.1)–(2.4), отвечающая собственному значению β0 ∈ Λ
(1)
0 \ D,

может быть представлена в виде потенциалов простого слоя (2.18)
и (2.19) с непрерывными по Гельдеру плотностями f+, f∞, соответ-
ственно. При этом функция

w := (L((f+ − f∞)|r′|), f+ + f∞)

является собственной функцией оператор-функции A(β), отвечаю-
щей характеристическому значению β0.

Доказательство теоремы 2.3 предварим рядом лемм.

Лемма 2.1. Если при некотором β ∈ Λ
(1)
0 потенциал u, задава-

емый соотношением (2.18), равен нулю в Ωi, то его плотность f+
на γ равна нулю.

Доказательство. Предположим, что в Ωi потенциал u равен
нулю. Тогда в силу непрерывности потенциала простого слоя функ-
ция u равна нулю на γ. Потенциал u непрерывен в Ωe, дважды непре-
рывно дифференцируем в Ωe и является решением следующей задачи:

∆u+ χ2
+u = 0, x ∈ Ωe,

u = 0, x ∈ γ,

u(x) =
∞∑

l=−∞
alH

(1)
l (χ+r) e

ilϕ, |x| > R0.

В [64] доказано, что при β ∈ Λ
(1)
0 (т. е. при −π/2 < argχ+ < 3π/2

и Im(χ+) > 0) эта задача имеет лишь тривиальное решение. Исполь-
зуя теорему о скачке нормальной производной потенциала простого
слоя, вследствие которой

∂u+ (x)

∂ν
− ∂u− (x)

∂ν
= −f+ (x) , x ∈ γ,

получаем, что f+ = 0 на γ. ¤

Лемма 2.2. Если при некотором β ∈ Λ
(1)
0 \D потенциал u, зада-

ваемый соотношением (2.19), равен нулю в Ωe, то его плотность f∞
на γ равна нулю.

Доказательство. Предположим, что потенциал u = 0 в обла-
сти Ωe. Тогда в силу непрерывности потенциала простого слоя u = 0
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на γ. Потенциал u непрерывен в Ωi, дважды непрерывно дифферен-
цируем в Ωi и в является решением следующей задачи:

∆u+ χ2
∞u = 0, x ∈ Ωi,

u = 0, x ∈ γ.
При β ∈ Λ

(1)
0 \ D коэффициент χ2

∞ принимает либо комплексное,
либо отрицательное значение, следовательно, эта задача имеет лишь
тривиальное решение. Используя теорему о скачке нормальной про-
изводной потенциала простого слоя, получаем, что f∞ = 0 на γ. ¤

Лемма 2.3. Если для некоторого β ∈ Λ
(1)
0 существует соб-

ственная функция u ∈ U задачи (2.1)–(2.4), то функция u и ее нор-
мальная производная ∂u/∂ν не обращаются тождественно в нуль
на контуре γ. При этом u ∈ C1,α(γ), а ∂u/∂ν ∈ C0,α(γ).

Доказательство. Прежде всего заметим, что поскольку функ-
ция u дважды непрерывно дифференцируема в Ωi, непрерывна,
непрерывно дифференцируема в Ωi и является решением уравне-
ния (2.1), то для любого β ∈ Λ справедлива формула Грина (2.8).
Поскольку функция u дважды непрерывно дифференцируема в Ωe,
непрерывна, непрерывно дифференцируема в Ωe, является решением
уравнения (2.2) и удовлетворяет условию (2.4), то для любого β ∈ Λ
имеет место формула Грина

u(x) =

∫

γ

[
u+(y)

∂Φ∞(β; x, y)

∂ν(y)
− ∂u+(y)

∂ν(y)
Φ∞(β; x, y)

]
dl(y), x ∈ Ωe.

(2.28)
В справедливости формулы Грина (2.28) легко убедиться с помощью
известного равенства [33, с. 35]:

∫

Γ

[
∂u(y)

∂r(y)
Φ∞(β; x, y)−

∂Φ∞(β; x, y)

∂r(y)
u(y)

]
dl(y) = 0, R > R0,

(2.29)
имеющего место для любого β ∈ Λ и функции u, удовлетворяющей
условию (2.4).

Итак, докажем, что если существует собственная функция u зада-
чи (2.1)–(2.4), отвечающая собственному значению β ∈ Λ

(1)
0 , то функ-

ция ∂u/∂ν не обращается тождественно в нуль на γ. Предположим
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противное. Тогда решение задачи (2.1)–(2.4) должно удовлетворять
условиям

∆u+ χ2
∞u = 0, x ∈ Ωe,

∂u

∂ν
= 0, x ∈ γ,

u(x) =
∞∑

l=−∞
alH

(1)
l (χ∞r) e

ilϕ, |x| > R0.

При β ∈ Λ
(1)
0 , т. е. при −π/2 < argχ∞ < 3π/2, Im(χ∞) > 0, эта задача

имеет лишь тривиальное решение [64]. Из формулы Грина (2.8) и
условий сопряжения (2.3) заключаем, что u = 0, x ∈ R2.

Если существует собственная функция u задачи (2.1)–(2.4), отве-
чающая собственному значению β ∈ Λ

(1)
0 , то u не обращается тож-

дественно в нуль на контуре γ. Действительно, если предположить
противное, то решение задачи (2.1)–(2.4) должно удовлетворять усло-
виям

∆u+ χ2
∞u = 0, x ∈ Ωe,

u = 0, x ∈ γ,

u(x) =
∞∑

l=−∞
alH

(1)
l (χ∞r) e

ilϕ, |x| > R0.

В статье [64] доказано, что при β ∈ Λ
(1)
0 эта задача также имеет лишь

тривиальное решение. Из формулы Грина (2.8) и условий сопряже-
ния (2.3) заключаем, что u = 0, x ∈ R2.

Покажем теперь, что если u является собственной функцией зада-
чи (2.1)–(2.4), отвечающей собственному значению β ∈ Λ

(1)
0 , то функ-

ция ∂u/∂ν ∈ C0,α(γ). Возьмем от функций (2.8) и (2.28) производную
по ν и перейдем к пределу, устремляя точку x к контуру γ. Учитывая
условия сопряжения (2.3) и используя предельные свойства потенци-
алов простого и двойного слоя, получаем интегральное соотношение,
связывающие функции u(x) и ∂u(x)/∂ν на γ:

∂u(x)

∂ν
=

∫

γ

u(y)
∂

∂ν(x)

(
∂Φ∞(β; x, y)

∂ν(y)
− ∂Φ+(β; x, y)

∂ν(y)

)
dl(y)−

−
∫

γ

∂u(y)

∂ν(y)

∂

∂ν(x)
(Φ∞(β; x, y)− Φ+(β; x, y)) dl(y), x ∈ γ. (2.30)
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Используя свойства функций Ханкеля, нетрудно убедиться, что
ядро

∂Φ∞(β; x, y)

∂ν(x)
− ∂Φ+(β; x, y)

∂ν(x)

является непрерывной функцией (x, y) ∈ γ × γ при любом β ∈ Λ
(1)
0 ;

ядро
∂

∂ν(x)

(
∂Φ∞(β; x, y)

∂ν(y)
− ∂Φ+(β; x, y)

∂ν(y)

)

является непрерывной функцией (x, y) ∈ {γ × γ} \ {x = y} и имеет
на лини x = y особенность порядка ln |x− y| при любом β ∈ Λ

(1)
0 . По

предположению u непрерывна и непрерывно дифференцируема в Ωi

и Ωe. Следовательно, u ∈ C0,α(γ) на контуре γ и ∂u/∂ν непрерывна
на γ. Из представления (2.30) и известных свойств интегральных опе-
раторов со слабо сингулярным ядром (см., напр., теорему 2.7 из [54])
следует, что функция ∂u/∂ν ∈ C0,α(γ).

Докажем, что если u — собственная функция задачи (2.1)–(2.4),
отвечающая собственному значению β ∈ Λ

(1)
0 , то u ∈ C1,α(γ). Пере-

ходя в выражении (2.8) к пределу, устремляя точку x к контуру γ и
используя предельные свойства потенциалов простого слоя, получаем
интегральное соотношение, связывающие функции u(x) и ∂u(x)/∂ν
на γ:

1

2
u(x) = −

∫

γ

u(y)
∂Φ+(β; x, y)

∂ν(y)
dl(y)+

+

∫

γ

∂u(y)

∂ν(y)
Φ+(β; x, y)dl(y), x ∈ γ. (2.31)

Используя свойства функций Ханкеля, нетрудно убедиться, что
функция

∂Φ+(β; x, y)

∂ν(y)

является непрерывной функцией (x, y) ∈ γ × γ при любом β ∈ Λ
(1)
0 ;

функция Φ+(β; x, y) является непрерывной функцией

(x, y) ∈ {γ × γ} \ {x = y}
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и имеет на линии x = y особенность порядка ln |x − y| при лю-
бом β ∈ Λ

(1)
0 . По предположению u непрерывна и непрерывно диф-

ференцируема в Ωi и Ωe, следовательно, u ∈ C0,α(γ) на контуре γ. В
силу доказанного выше ∂u/∂ν ∈ C0,α(γ). Из представления (2.30) и
известных свойств интегральных операторов, определяемых как пря-
мые значения потенциалов простого и двойного слоя на контуре γ
(см., напр., теоремы 2.30 и 2.31 из [54]), следует, что u ∈ C1,α(γ) на
контуре γ. ¤

Лемма 2.4. Любая собственная функция u задачи (2.1)–(2.4),
отвечающая собственному значению β ∈ Λ

(1)
0 \ D, представима в

области Ωe в виде потенциала простого слоя (2.19) c непрерывной
по Гельдеру плотностью f∞.

Доказательство. В силу леммы 2.3 нормальная производная
любой собственной функции u задачи (2.1)–(2.4), отвечающей соб-
ственному значению β ∈ Λ

(1)
0 \ D, не равна тождественно нулю и

непрерывна по Гельдеру на контуре γ. Пусть g(x) := ∂u(x)/∂ν, x ∈ γ.
Функция u удовлетворяет, таким образом, следующим условиям:

∆u+ χ2
∞u = 0, x ∈ Ωe, (2.32)

∂u

∂ν
= g, x ∈ γ, (2.33)

u(x) =
∞∑

l=−∞
alH

(1)
l (χ∞r) e

ilϕ, |x| > R0, (2.34)

где g ∈ C0,α(γ).
Будем разыскивать решение этой задачи в виде потенциала про-

стого слоя (2.19) c непрерывной по Гельдеру плотностью f∞. Пере-
ходя в (2.19) к пределу, устремляя точку x к контуру γ, получаем
интегральное уравнение

−1

2
f∞(x) +

∫

γ

∂Φ∞(β; x, y)

∂ν(x)
f∞(y)dl(y) = g(x), x ∈ γ. (2.35)

Покажем теперь, что однородное уравнение, соответствующее (2.35),
для любого β ∈ Λ

(1)
0 \ D имеет лишь тривиальное решение. В ста-

тье [64] доказано, что при β ∈ Λ
(1)
0 (т. е. при −π/2 < argχ∞ < 3π/2
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и Im(χ∞) > 0) и g = 0, x ∈ γ, задача Неймана (2.32)–(2.34) име-
ет лишь тривиальное решение. Разыскивая решение однородной за-
дачи Неймана (2.32)–(2.34) при g = 0, x ∈ γ, в виде потенциала
простого слоя (2.19) с непрерывной по Гельдеру плотностью f∞, по-
лучаем однородное уравнение, соответствующее (2.35). Это уравне-
ние может иметь лишь тривиальное решение. Действительно, если
предположить обратное, то представление (2.19) даст нетривиальное
решение однородной задачи Неймана, потому что, если при некото-
ром β ∈ Λ

(1)
0 \D потенциал u, задаваемый соотношением (2.19), равен

нулю в Ωe, то его плотность f∞ = 0 на контуре γ (см. лемму 2.2).
Используя свойства функций Ханкеля, нетрудно убедиться, что

функция
∂Φ∞(β; x, y)

∂ν(x)

является непрерывной функцией (x, y) ∈ γ × γ, а ее производная
по x является непрерывной функцией (x, y) ∈ {γ × γ} \ {x = y}
и имеет на линии x = y особенность порядка ln |x − y| при лю-
бом β ∈ Λ

(1)
0 . Следовательно, интегральный оператор в (2.35) явля-

ется вполне непрерывным оператором, действующим в пространстве
C0,α(γ). В силу альтернативы Фредгольма имеем, что для любой пра-
вой части g ∈ C0,α(γ) уравнение (2.35) имеет решение f∞ ∈ C0,α(γ).
Итак, любая собственная функция задачи (2.1)–(2.4), отвечающая
собственному значению β ∈ Λ

(1)
0 \D, представима в области Ωe в виде

потенциала простого слоя (2.19) с непрерывной по Гельдеру плотно-
стью f∞. ¤

Лемма 2.5. Любая собственная функция задачи (2.1)–(2.4), от-

вечающая собственному значению β ∈ Λ
(1)
0 \ D, представима в об-

ласти Ωi в виде потенциала простого слоя (2.18) с непрерывной по
Гельдеру плотностью f+.

Доказательство. Рассмотрим две внутренние задачи: одно-
родную задачу Дирихле

∆u+ χ2
+u = 0, x ∈ Ωi,

u = 0, x ∈ γ,
и однородную задачу Неймана

∆u+ χ2
+u = 0, x ∈ Ωi,
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∂u

∂ν
= 0, x ∈ γ.

Коэффициент χ2
+ на Λ

(1)
0 \ D принимает положительные значения

при всех β ∈ G, и у этих задач могут существовать нетривиальные
решения. Обозначим через σ(D(+)) и σ(N (+)) множества собственных
чисел задач Дирихле и Неймана, соответственно. Как известно, эти
множества не пересекаются.

Докажем, что если u — собственная функция задачи (2.1)–(2.4),
отвечающая собственному значению β ∈ Λ

(1)
0 \

(
D ∪ σ(N (+))

)
, то

функция u представима в области Ωi в виде потенциала простого
слоя (2.18) с непрерывной по Гельдеру плотностью f+. В силу лем-
мы 2.3 при любом β ∈ Λ

(1)
0 функция ∂u/∂ν не равна тождественно

нулю и непрерывна по Гельдеру на контуре γ. Положим

g(x) = ∂u(x)/∂ν

при x ∈ γ. Функция u должна удовлетворять, таким образом, усло-
виям

∆u+ χ2
+u = 0, x ∈ Ωi, (2.36)

∂u

∂ν
= g, x ∈ γ, (2.37)

где g ∈ C0,α(γ).
Будем разыскивать решение этой задачи в виде потенциала про-

стого слоя (2.18) c непрерывной по Гельдеру плотностью f+. Переходя
в (2.18) к пределу, устремляя точку x к контуру γ, получаем инте-
гральное уравнение

1

2
f+(x) +

∫

γ

∂Φ+(β; x, y)

∂ν(x)
f+(y)dl(y) = g(x), x ∈ γ. (2.38)

Покажем теперь, что однородное уравнение, соответствующее (2.38),
для любого β ∈ Λ

(1)
0 \

(
D ∪ σ(N (+))

)
имеет лишь тривиальное реше-

ние. Однородная задача Неймана (2.36), (2.37) при

β ∈ Λ
(1)
0 \

(
D ∪ σ(N (+))

)

и g = 0, x ∈ γ, имеет лишь тривиальное решение. Разыскивая ре-
шение этой однородной задачи Неймана в виде потенциала простого
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слоя (2.18) с непрерывной по Гельдеру плотностью f+, получаем од-
нородное уравнение, соответствующее (2.38). Это уравнение может
иметь лишь тривиальное решение. Действительно, если предполо-
жить обратное, то представление (2.18) даст нетривиальное решение
однородной задачи Неймана, потому что, если при некотором β ∈ Λ

(1)
0

потенциал u, задаваемый соотношением (2.18), равен нулю в Ωi, то его
плотность f+ = 0 на γ (см. лемму 2.1).

Используя свойства функций Ханкеля, нетрудно убедиться, что
функция

∂Φ+(β; x, y)

∂ν(x)

является непрерывной функцией (x, y) ∈ γ×γ, а ее производная по x
является непрерывной функцией (x, y) ∈ {γ×γ}\{x = y} и имеет на
линии x = y особенность порядка ln |x− y| при любом β ∈ Λ

(1)
0 . Сле-

довательно, интегральный оператор в (2.38) является вполне непре-
рывным оператором, действующим в пространстве C0,α(γ). В силу
альтернативы Фредгольма получаем, что уравнение (2.38) для любой
правой части g ∈ C0,α(γ) имеет решение f+ ∈ C0,α(γ). Таким образом,
любая собственная функция задачи (2.1)–(2.4), отвечающая собствен-
ному значению β ∈ Λ

(1)
0 \

(
D ∪ σ(N (+))

)
, представима в области Ωi

в виде потенциала простого слоя (2.18) с непрерывной по Гельдеру
плотностью f+.

Докажем теперь, что если u ∈ U является собственной функцией
задачи (2.1)–(2.4), отвечающей собственному значению

β ∈ Λ
(1)
0 \

(
D ∪ σ(D(+))

)
,

то функция u представима в области Ωi в виде потенциала простого
слоя (2.18) с непрерывной по Гельдеру плотностью f+. В силу лем-
мы 2.3 при любом β ∈ Λ

(1)
0 функция u не равна тождественно нулю

и непрерывно дифференцируема по Гельдеру на контуре γ. Поло-
жим g(x) = u(x), x ∈ γ. Функция u должна удовлетворять, таким
образом, условиям

∆u+ χ2
+u = 0, x ∈ Ωi, (2.39)

u = g, x ∈ γ, (2.40)

где g ∈ C1,α(γ).
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Будем разыскивать решение этой задачи в виде потенциала про-
стого слоя (2.18) c непрерывной по Гельдеру плотностью f+. Перехо-
дя в (2.18) к пределу, устремляя точку x к γ, получаем интегральное
уравнение ∫

γ

Φ+(β; x, y)f+(y)dl(y) = g(x), x ∈ γ. (2.41)

Переходя к переменной интегрирования t параметрического пред-
ставления контура γ, выделяя логарифмическую особенность ядра,
запишем это уравнение в виде

Lp+B(β)p = f, t ∈ [0, 2π], (2.42)

где

Lp := − 1

2π

∫ 2π

0

ln | sin t− τ

2
|p(τ)dτ, t ∈ [0, 2π],

B(β)p :=
1

2π

∫ 2π

0

h(β; t, τ)p(τ)dτ, t ∈ [0, 2π],

h(β; t, τ) := Φ+(β; x, y) +
1

2π
ln | sin t− τ

2
|,

p(t) := f+(x)|r′(t)| ∈ C0,α(γ), g(t) ∈ C1,α(γ),

x ≡ x(t), y ≡ y(τ).

Оператор L : C0,α(γ)→ C1,α(γ) непрерывно обратим (см., напр., [10,
с. 10]) и, следовательно, если оператор B : C0,α(γ) → C1,α(γ) вполне
непрерывен и однородное уравнение, соответствующее (2.42), имеет
только нулевое решение, то оператор A := L+B : C0,α(γ)→ C1,α(γ)
непрерывно обратим.

Используя свойства функций Ханкеля, нетрудно убедиться, что
функция h(β; t, τ) является дважды непрерывно дифференцируемой
по t функцией (t, τ) ∈ [0, 2π] × [0, 2π] при любом β ∈ Λ

(1)
0 . Следо-

вательно, интегральный оператор B является вполне непрерывным
оператором, действующим из пространства C0,α(γ) в C1,α(γ).

Покажем теперь, что для любого β ∈ Λ
(1)
0 \

(
D ∪ σ(D(+))

)
уравне-

ние (2.42) имеет лишь тривиальное решение при f = 0. Однородная
задача Дирихле (2.39), (2.40) при β ∈ Λ

(1)
0 \

(
D ∪ σ(D(+))

)
и g = 0,
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x ∈ γ, имеет лишь тривиальное решение. Разыскивая решение одно-
родной задачи Дирихле (2.39), (2.40) при g = 0, x ∈ γ, в виде потенци-
ала простого слоя (2.18) с непрерывной по Гельдеру плотностью f+,
получаем однородное уравнение, соответствующее (2.42). Это урав-
нение может иметь лишь тривиальное решение. Действительно, если
предположить обратное, то представление (2.18) даст нетривиальное
решение однородной задачи Дирихле, поскольку, если при некото-
ром β ∈ Λ

(1)
0 потенциал u, задаваемый соотношением (2.18), равен

нулю в Ωi, то его плотность f+ = 0 на γ (см. лемму 2.1).
Итак, для любой правой части g ∈ C1,α(γ) уравнение (2.42) имеет

решение f+ ∈ C0,α(γ), и любая собственная функция задачи (2.1)–
(2.4), отвечающая собственному значению β ∈ Λ

(1)
0 \

(
D ∪ σ(D(+))

)
,

представима в области Ωi в виде потенциала простого слоя (2.18) с
непрерывной по Гельдеру плотностью f+.

Множества σ(D(+)) и σ(N (+)) не пересекаются, поэтому из дока-
занного выше следует, что любая собственная функция задачи (2.1)–
(2.4), отвечающая собственному значению β ∈ Λ

(1)
0 \D, представима

в области Ωi в виде потенциала простого слоя (2.18) с непрерывной
по Гельдеру плотностью f+. ¤

Доказательство теоремы 2.3. Предположим, что w ∈ W
является собственной функцией оператор-функции A(β), отвечаю-
щей характеристическому значению β ∈ Λ

(1)
0 \ D. Функции f+, f∞,

определяемые равенствами (2.26) и (2.27), принадлежат простран-
ству C0,α(γ). Таким образом, функция u, представленная в виде по-
тенциалов простого слоя (2.18), (2.19) с плотностями f+, f∞, принад-
лежит множеству U и удовлетворяет условиям (2.1)–(2.4). Функция u
не может быть нулевой, так как в силу лемм 2.1 и 2.2 в этом случае
плотности f+, f∞ также были бы равны нулю, и, следовательно,

w := (L((f+ − f∞)|r′|), f+ + f∞) = 0,

что противоречит предположению о том, что w является собствен-
ной функцией оператор-функции A(β). Итак, функция u является
собственной функцией задачи (2.1)–(2.4), отвечающей собственному
значению β.

Согласно леммам 2.4 и 2.5 любая собственная функция u зада-
чи (2.1)–(2.4), отвечающая собственному значению β0 ∈ Λ

(1)
0 \ D,

может быть представлена в виде потенциалов простого слоя (2.18),
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(2.19) с непрерывными по Гельдеру плотностями f+, f∞, соответ-
ственно. Отсюда непосредственно следует, что если u является соб-
ственной функцией задачи (2.1)–(2.4), отвечающей собственному зна-
чению β0 ∈ Λ

(1)
0 \D, то указанные плотности удовлетворяют системе

интегральных уравнений (2.20), (2.21) при β = β0. Плотности f+ и f∞
не могут одновременно быть тождественны нулю, так как в этом слу-
чае u ≡ 0, x ∈ R2. Следовательно,

w := (L((f+ − f∞)|r′|), f+ + f∞) ∈ W

является собственной функцией оператор-функции A(β), отвечаю-
щей характеристическому значению β0. ¤

Теорема 2.4. Регулярное множество оператор-функции A(β),

определенной в (2.24), не пусто, а именно, C
(1)
0 ∪B ⊂ ρ(A). Характе-

ристическое множество σ(A) оператор-функции A(β) может со-
стоять лишь из изолированных точек, являющихся характеристи-
ческими значениями оператор-функции A(β). Каждое характери-
стическое значение β оператор-функции A(β) непрерывно зависит
от параметров (k, ε+, ε∞) ∈ R3

+. Кроме того, с изменением пара-
метров (k, ε+, ε∞) ∈ R3

+ характеристические значения оператор-
функции A(β) могут появляться и исчезать только на границе
множества Λ, т. е. в точках ±kn+,±kn∞ и на бесконечности.

Доказательство. В силу фредгольмовости оператора A(β)
при каждом фиксированном (β; k, ε+, ε∞) ∈ Λ×R3

+, установленной в
теореме 2.2, теоремы 2.1 о локализации собственных значений задачи
(2.1)–(2.4) и теоремы 2.3 о связи решений задач (2.1)–(2.4) и (2.24),
оператор A(β; k, ε+, ε∞) обратим для любых

(β; k, ε+, ε∞) ∈ (C
(1)
0 ∪B)× R3

+.

Таким образом, справедливость настоящей теоремы непосред-
ственно следует из свойств оператор-функции A(β; k, ε+, ε∞), уста-
новленных в теореме 2.2, теоремы И.Ц. Гохберга, М.Г. Крейна [12]
об изолированности характеристических значений фредгольмовой го-
ломорфной оператор-функции A(β) при наличии в области ее голо-
морфности хотя бы одной регулярной точки, теоремы S. Steinberg [155]
о поведении характеристических значений такой оператор-функции в
зависимости от изменения вещественного параметра k в случае, если
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оператор-функция является совместно непрерывной функцией β и k.
Отметим, что теорема S. Steinberg справедлива для частного случая,
когда оператор-функция A(β, k) имеет вид A(β, k) := I+B(β, k), где
оператор B(β, k) вполне непрерывен. ¤

§ 2. Векторная задача в полной электродинамической
постановке

1. Постановка задачи и локализация собственных значе-
ний. Сформулируем задачу о собственных волнах цилиндрического
диэлектрического волновода с произвольным контуром поперечного
сечения и постоянной диэлектрической проницаемостью. Пусть об-
ласть поперечного сечения волновода Ωi ограничена дважды непре-
рывно дифференцируемым контуром γ. Диэлектрическая проницае-
мость ε является кусочно-постоянной функцией, а именно, равна кон-
станте ε+ в области Ωi, а в области Ωe := R

2 \Ωi — константе ε∞ > 0;
кроме того, ε∞ < ε+. Будем считать, что постоянная распростра-
нения β — неизвестный комплексный параметр, ω > 0 — заданная
частота электромагнитных колебаний. Задача сводится (см. § 1 гл. 1)
к отысканию таких значений параметра β, при которых существуют
нетривиальные решения E, H системы уравнений:

rotβE =iωµ0H, rotβH =− iωε0εE, x ∈ R2 \ γ, (2.43)

где векторная операция rotβ определена равенством (1.4), с. 19.
Обозначим через U множество функций, непрерывных и непре-

рывно дифференцируемых в Ωi и Ωe, дважды непрерывно диффе-
ренцируемых в Ωi и Ωe. Будем разыскивать нетривиальные реше-
ния {E,H} системы (2.43) в пространстве U 6, где U 2 = U × U .

Потребуем, чтобы на контуре γ векторы E, H удовлетворяли усло-
виям сопряжения (см. § 1 гл. 1), которые заключаются в том, что при
переходе через эту границу касательные составляющие векторов E, H
непрерывны:

ν × E+ = ν × E−, x ∈ γ, (2.44)

ν × H+ = ν × H−, x ∈ γ. (2.45)

Будем предполагать, что функции E, H удовлетворяют парциаль-
ным условиям излучения, т. е. существует такая константа R0, что
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для всех x : |x| > R0 функции E, H разлагаются в равномерно и
абсолютно сходящиеся ряды:

[
E
H

]
=

∞∑

l=−∞

[
Al

Bl

]
H

(1)
l (χ∞r) e

ilϕ. (2.46)

При этом будем предполагать, что постоянные распространения β
принадлежат множеству Λ — пересечению римановых поверхно-
стей Λ+ и Λ∞ функций lnχ+(β) и lnχ∞(β), соответственно.

Определение 2.9. Ненулевой вектор {E,H} ∈ U 6 будем на-
зывать собственным вектором задачи (2.43)–(2.46), отвечающим соб-
ственному значению β ∈ Λ, если выполнены условия (2.43)–(2.46).

Теорема 2.5. Мнимая и вещественная оси листа Λ
(1)
0 , за ис-

ключением множества G, не содержат собственных значений за-
дачи (2.43)–(2.46).

Доказательство. Вещественная и мнимая оси листа Λ
(1)
0 пред-

ставляют собой объединение трех множеств B, D и G. Докажем,
что B и D не содержат собственных значений задачи (2.43)–(2.46).
Предположим, что {E,H} — собственный вектор задачи (2.43)–(2.46),
отвечающий собственному значению β ∈ B ∪D. Согласно утвержде-
нию 1.1, с. 20, для всех x из R2 \ γ имеет место равенство

rotβ (rotβE) = k2εE. (2.47)

Введем следующие обозначения:

Ω :=
{
x ∈ R2 : |x| < R

}
,

Γ :=
{
x ∈ R2 : |x| = R

}
,

где R > R0. Умножая скалярно обе части уравнения (2.47 ) на E, ин-
тегрируя по области Ω, применяя формулу интегрирования по частям
и используя граничные условия (2.44), (2.45), получаем∫

Ω

|rotβE|2 dx+

∫

Γ

ν × rotβE · E dx = k2
∫

Ω

ε |E|2 dx. (2.48)

Для любой функции E, разлагающейся в ряд (2.46), и β ∈ D (т. е.
при χ∞ > 0) имеем:

Im

∫

Γ

ν × rotβE · E dx = −4
∞∑

l=−∞
|Al|2 . (2.49)



§ 2. Векторная задача в полной электродинамической постановке 63

В этом нетрудно убедиться непосредственными вычислениями. Из
двух последних равенств следует, что Al = 0 для всех l и R > R0.
Следовательно, E = 0 при |x| > R0. Как было доказано в утвер-
ждении 1.2, с. 20, функция E удовлетворяет в области Ωe уравнению
Гельмгольца (1.16) с постоянным коэффициентом, следовательно, яв-
ляется аналитической по x в Ωe. Таким образом,

E = 0, x ∈ Ωe, (2.50)

следовательно,

H = 1/(iωµ0)rotβE = 0, x ∈ Ωe. (2.51)

Докажем теперь, что вектор {E,H} равен нулю и в области Ωi.
Согласно утверждению 1.4, с. 22, все компоненты этого вектора в
рассматриваемом случае выражаются через две функции E3 и H3,
удовлетворяющие в области Ωi уравнению Гельмгольца (1.23), с. 22,
с постоянным коэффициентом. Из (2.50), (2.51) и условий сопряже-
ния (1.28), с. 23, получаем

E3
− = 0,

∂E3

∂ν

−
= 0, H3

− = 0,
∂H3

∂ν

−
= 0, x ∈ γ. (2.52)

Применяя в области Ωi к функциям E3 и H3 третью формулу Гри-
на (2.8), с. 41, заключаем, что E3 = 0 и H3 = 0 в области Ωi. Ис-
пользуя представления (1.20), (1.21), с. 22, для остальных компонент
вектора {E,H}, заключаем, что он равен нулю в Ωi. В силу предпо-
ложения о гладкости {E,H} этот вектор равен нулю и на контуре γ.
Итак, мы доказали, что при β ∈ D вектор {E,H} обращается в нуль
на всей плоскости R2. Следовательно, множество β ∈ D свободно от
собственных значений задачи (2.43)–(2.46).

Для любого β ∈ B и любой функции E, разлагающейся в
ряд (2.46), в силу асимптотики (1.36), с. 26, подынтегральные вы-
ражения в равенстве (2.48) экспоненциально убывают при |x| → ∞.
Переходя в (2.48) к пределу при R→∞, получаем следующее равен-
ство: ∫

Ωi∪Ωe

|rotβE|2 dx = k2
∫

Ωi∪Ωe

ε |E|2 dx. (2.53)

Используя уравнения (1.9) и (1.13), с. 20, формулу интегрирования
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по частям и условие сопряжения (2.44), получаем равенство
∫

Ωi∪Ωe

|rotβE|2 dx =

∫

Ωi∪Ωe

|∇E|2 dx+ β2

∫

Ωi∪Ωe

|E|2 dx. (2.54)

Объединяя (2.53) и (2.54), получаем неравенство
∫

Ωi∪Ωe

|∇E|2 dx+ (β2 − k2ε+)

∫

Ωi∪Ωe

|E|2 dx 6 0. (2.55)

Для любого β ∈ B коэффициент при втором слагаемом в неравен-
стве (2.55) больше нуля, следовательно,

E = 0, H = 1/(iωµ0) rotβE = 0, x ∈ R2.

Таким образом, множество B свободно от собственных значений за-
дачи (2.43)–(2.46). ¤

Отметим, что доказать отсутствие собственных значений β зада-
чи (2.43)–(2.46) в области G с помощью неравенства (2.55) нельзя в
силу того, что для любого β ∈ G коэффициент при втором слагае-
мом в неравенстве (2.55) меньше нуля. Также нельзя доказать с помо-
щью этого неравенства и отсутствие собственных значений вне веще-
ственной оси листа Λ

(1)
0 , так как формула (2.54), из которой вытекает

неравенство (2.55), справедлива лишь для вещественных β ∈ B. Ве-
щественным β ∈ G соответствуют поверхностные волны. Комплекс-
ным значениям β ∈ C

(1)
0 отвечают комплексные собственные волны.

Теорема 2.5 обобщает результаты [50] и [6] о локализации спектра
собственных волн диэлектрического волновода кругового сечения, по-
лученные на основе анализа характеристического уравнения метода
разделения переменных (см. п. 1 § 3 гл. 1).

2. Нелинейная спектральная задача для системы сингу-
лярных интегральных уравнений по контуру поперечного
сечения волновода. Сведем теперь задачу (2.43)–(2.46) к нели-
нейной спектральной задаче для системы сингулярных интеграль-
ных уравнений по контуру поперечного сечения волновода. Пусть
вектор {E,H} является собственным вектором задачи (2.43)–(2.46),
отвечающим собственному значению β ∈ Λ. Напомним, что точки
ветвления β = ±kn+, β = ±kn∞ не принадлежат поверхности Λ.
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Следовательно, как было доказано в утверждении 1.4, с. 22, суще-
ствуют функции u, v ∈ U такие, что

E1 =
i

k2ε− β2

(
µ0ω

∂v

∂x2
+ β

∂u

∂x1

)
,

E2 =
−i

k2ε− β2

(
µ0ω

∂v

∂x1
− β

∂u

∂x2

)
, (2.56)

E3 = u,

H1 =
i

k2ε− β2

(
β
∂v

∂x1
− ε0εω

∂u

∂x2

)
,

H2 =
i

k2ε− β2

(
β
∂v

∂x2
+ ε0εω

∂u

∂x1

)
, (2.57)

H3 = v.

Потенциальные функции u(x) и v(x) для всех x ∈ R2 \ γ удовлетво-
ряют уравнениям Гельмгольца

[
∆+

(
k2ε+ − β2

)] [ u
v

]
= 0, x ∈ Ωi, (2.58)

[
∆+

(
k2ε∞ − β2

)] [ u
v

]
= 0, x ∈ Ωe. (2.59)

Как было доказано в утверждении 1.5, с. 23, на контуре γ должны
выполняться условия сопряжения

u+ = u−, v+ = v−, x ∈ γ,

1

k2ε+ − β2

(
β
∂v

∂τ
+ ε0ε+ω

∂u−

∂ν

)
=

=
1

k2ε∞ − β2

(
β
∂v

∂τ
+ ε0ε∞ω

∂u+

∂ν

)
, x ∈ γ, (2.60)

1

k2ε+ − β2

(
β
∂u

∂τ
− µ0ω

∂v−

∂ν

)
=

=
1

k2ε∞ − β2

(
β
∂u

∂τ
− µ0ω

∂v+

∂ν

)
, x ∈ γ.
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Из разложения (2.46) следует, что для всех x : |x| > R0 функ-
ции u, v разлагаются в равномерно и абсолютно сходящиеся ряды

[
u
v

]
=

∞∑

l=−∞

[
A3,l

B3,l

]
H

(1)
l (χ∞r) e

ilϕ. (2.61)

Очевидно, что если при некотором β0 ∈ Λ будет найдено нетри-
виальное решение {u, v} ∈ U 2 задачи (2.58)–(2.61), то вектор, постро-
енный по формулам (2.56), (2.57), будет собственным вектором за-
дачи (2.43)–(2.46), отвечающим собственному значению β0. Решения
задачи (2.58)–(2.61) будем разыскивать в виде потенциалов простого
слоя

[
u(x)

v(x)

]
:=

∫

γ

Φ+(β; x, y)

[
f+(y)

g+(y)

]
dl(y), x ∈ Ωi, (2.62)

[
u(x)

v(x)

]
:=

∫

γ

Φ∞(β; x, y)

[
f∞(y)

g∞(y)

]
dl(y), x ∈ Ωe, (2.63)

с плотностями f+, f∞, g+, g∞, принадлежащими пространству непре-
рывных по Гельдеру функций C0,α(γ). Здесь

Φ+ (β; x, y) :=
i

4
H

(1)
0 (χ+ (β) |x− y|) , (2.64)

Φ∞ (β; x, y) :=
i

4
H

(1)
0 (χ∞ (β) |x− y|) . (2.65)

При всех β ∈ Λ и f+, f∞, g+, g∞ ∈ C0,α(γ) функции u, v, задава-
емые равенствами (2.62), (2.63), удовлетворяют условиям гладкости
и уравнениям (2.58), (2.59). С помощью разложения (2.14) нетрудно
убедиться, что функции u, v удовлетворяют условию (2.61).

Используем теперь граничные условия (2.60) для того, чтобы све-
сти задачу (2.58)–(2.61) к нелинейной спектральной задаче для си-
стемы интегральных уравнений. Граничные условия (2.60) содержат
предельные значения касательных производных функций u, v на кон-
туре γ. По аналогии с [65, с. 56], можно показать, что для β ∈ Λ
касательные производные потенциалов простого слоя (2.62) с непре-
рывными по Гельдеру плотностями при x → z ∈ γ представимы
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сингулярными интегралами с ядром Коши:

lim
x→z∈γ

∂u(x)

∂τ
=

∫

γ

∂

∂τ(x)
Φ+(β; z, y)f+(y)dl(y), z ∈ γ,

lim
x→z∈γ

∂v(x)

∂τ
=

∫

γ

∂

∂τ(x)
Φ+(β; z, y)g+(y)dl(y), z ∈ γ.

Используя граничные условия (2.60), предельные свойства потенциа-
лов простого слоя, а также их нормальных и касательных производ-
ных, получаем нелинейную спектральную задачу для системы инте-
гральных уравнений:

(A(β)f) (x) = 0, x ∈ γ. (2.66)

Здесь

Af :=




A11 A12 0 0
0 0 A23 A24

A31 A32 A33 0
A41 0 A43 A44







f+
f∞
g+
g∞


 ,

(A11(β)f+) (x) :=

∫

γ

Φ+ (β; x, y) f+ (y) dl (y) , x ∈ γ,

(A12(β)f∞) (x) := −
∫

γ

Φ∞ (β; x, y) f∞ (y) dl (y) , x ∈ γ,

(A23(β)g+) (x) :=

∫

γ

Φ+ (β; x, y) g+ (y) dl (y) , x ∈ γ,

(A24(β)g∞) (x) := −
∫

γ

Φ∞ (β; x, y) g∞ (y) dl (y) , x ∈ γ,

(A31(β)f+) (x) :=

:=
ε0ε+ω

χ2
+(β)


f+(x)

2
+

∫

γ

∂Φ+ (β; x, y)

∂ν (x)
f+ (y) dl (y)


 , x ∈ γ,
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(A32(β)f∞) (x) :=

:= −ε0ε∞ω
χ2
∞(β)


−f∞(x)

2
+

∫

γ

∂Φ∞ (β; x, y)

∂ν (x)
f∞ (y) dl (y)


 , x ∈ γ,

(A33(β)g+) (x) :=

:=

(
β

χ2
+(β)

− β

χ2
∞(β)

)∫

γ

∂Φ+ (β; x, y)

∂τ (x)
g+ (y) dl (y), x ∈ γ,

(A41(β)f+) (x) :=

:=

(
β

χ2
+(β)

− β

χ2∞(β)

)∫

γ

∂Φ+ (β; x, y)

∂τ (x)
f+ (y) dl (y), x ∈ γ,

(A43(β)g+) (x) :=

:= − µ0ω

χ2
+(β)


g+(x)

2
+

∫

γ

∂Φ+ (β; x, y)

∂ν (x)
g+ (y) dl (y)


 , x ∈ γ,

(A44(β)g∞) (x) :=

:=
µ0ω

χ2∞(β)


−g∞(x)

2
+

∫

γ

∂Φ∞ (β; x, y)

∂ν (x)
g∞ (y) dl (y)


 , x ∈ γ.

Функции Φ+(β; x, y), Φ∞(β; x, y) имеют логарифмическую особен-
ность при x = y. Ядра интегральных операторов, содержащих нор-
мальные производные этих функций, непрерывны. Операторы, яд-
ра которых содержат касательные производные функций Φ+(β; x, y)
и Φ∞(β; x, y), — сингулярные интегральные операторы с ядром Коши.
Пусть контур γ задан параметрически r = r(t), t ∈ [0, 2π]. Перехо-
дя к переменной интегрирования t и выделяя явно особенности ядер,
преобразуем систему (2.66) к виду

(C(β)w)( t) + (B(β)w)( t) = 0, t ∈ [0, 2π]. (2.67)
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Здесь вектор w = (wj)
4
j=1,

w1(t) := (f+(x)− f∞(x))|r′(t)|,

w2(t) := (g+(x)− g∞(x))|r′(t)|,
w3(t) := f+(x)|r′(t)|,
w4(t) := g+(x)|r′(t)|.

Интегральный оператор C(β) определяется следующим образом:

C(β)w :=




I 0 0 0
0 I 0 0

c31(β)I c32(β)S c33(β)I c34(β)S
c41(β)S c42(β)I c43(β)S c44(β)I







w1

w2

w3

w4


 , (2.68)

где I — единичный оператор в пространстве C0,α(γ),

Su :=
1

2π

2π∫

0

ctg
τ − t

2
u(τ)dτ +

i

2π

2π∫

0

u(τ)dτ, t ∈ [0, 2π], (2.69)

а функции cij(β) имеют вид

c31(β) :=
ωε0ε∞
χ2
∞ (β)

, c32(β) := c41(β) :=
β

χ2
∞ (β)

,

c33(β) :=
ωε0ε+
χ2
+ (β)

+
ωε0ε∞
χ2
∞ (β)

, c34(β) := c43(β) :=
β

χ2
+ (β)

− β

χ2
∞ (β)

,

c42(β) := −
ωµ0
χ2
∞ (β)

, c44(β) := −
ωµ0
χ2
+ (β)

− ωµ0
χ2
∞ (β)

.

Интегральный оператор B(β) в (2.67) имеет представление

B(β)w :=




B11 (β) 0 B13 (β) 0
0 B22 (β) 0 B24 (β)

B31 (β) B32 (β) B33 (β) B34 (β)
B41 (β) B42 (β) B43 (β) B44 (β)







w1

w2

w3

w4


 , (2.70)

элементы которого с помощью оператора

Lu := − 1

2π

2π∫

0

ln |sin t− τ

2
|u(τ)dτ, t ∈ [0, 2π], (2.71)
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определяются следующим образом:

B11 (β) := B22 (β) := L−1B(1)
∞ (β) ,

B13 (β) := B24 (β) := L−1
(
B

(1)
+ (β)−B(1)

∞ (β)
)
,

B31 (β) := −
ωε0ε∞
χ2∞ (β)

B(2)
∞ (β) ,

B32 (β) := B41 (β) :=
β

χ2
∞ (β)

B(3)
∞ (β) ,

B33(β) := −
ωε0ε+
χ2
+ (β)

B
(2)
+ (β)− ωε0ε∞

χ2
∞ (β)

B(2)
∞ (β) ,

B34(β) := B43(β) :=
β

χ2
+ (β)

B
(3)
+ (β)− β

χ2∞ (β)
B(3)
∞ (β) ,

B42(β) :=
ωµ0
χ2
∞ (β)

B(2)
∞ (β) ,

B44(β) :=
ωµ0
χ2
+ (β)

B
(2)
+ (β) +

ωµ0
χ2
∞ (β)

B(2)
∞ (β) .

Здесь

B
(k)
+/∞(β)u :=

1

2π

2π∫

0

h
(k)
+/∞(β; t, τ)u(τ)dτ, t ∈ [0, 2π], k = 1, 2, 3,

h
(1)
+/∞(β; t, τ) := 2πΦ+/∞(β; x, y) + ln |sin t− τ

2
|,

h
(2)
+/∞(β; t, τ) := 4π|r′(τ)| ∂Φ+/∞(β; x, y)

∂ν(x)
,

h
(3)
+/∞(β; t, τ) := 2|r′(τ)|

∂h
(1)
+/∞(β; t, τ)

∂τ(x)
− i,

x = x(t), y = y(τ).

Линейный непрерывный оператор L : C0,α(γ) → C1,α(γ), опреде-
ленный равенством (2.71), непрерывно обратим (см., напр., [10, c. 10]).
При любом β ∈ Λ операторы

B
(1)
+/∞(β) : C

0,α(γ)→ C1,α(γ),
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B
(2)
+/∞(β), B

(3)
+/∞(β), : C

0,α(γ)→ C0,α(γ),

вполне непрерывны в силу того, что ядра h(2)+/∞, h(3)+/∞ не имеют осо-

бенностей при t = τ , а ядра h
(1)
+/∞ являются дважды непрерывно

дифференцируемыми по t функциями (t, τ) ∈ [0, 2π]× [0, 2π]. В этом
нетрудно убедиться, используя свойства функций Ханкеля. Следо-
вательно, для любого β ∈ Λ оператор B(β), определенный равен-
ством (2.70), является вполне непрерывным оператором, действую-
щим в банаховом пространстве W := [C0,α(γ)]4.

Линейный непрерывный оператор S : C0,α(γ) → C0,α(γ), опре-
деленный равенством (2.69), непрерывно обратим, и S−1 = −S (см.,
напр., [65, с. 118]). Точки ветвления β = ±kn+, β = ±kn∞ не принад-
лежат поверхности Λ. Следовательно, линейный непрерывный опе-
ратор C : W → W , определенный равенством (2.68), непрерывно
обратим в W при любом значении β ∈ Λ.

Таким образом, система интегральных уравнений (2.67) эквива-
лентна операторному уравнению

A(β)w := (I +B(β))w = 0, (2.72)

где вполне непрерывный оператор B, действующий в банаховом про-
странстве W , определяется при помощи равенства

B(β) := C−1(β)B(β),

а I — единичный оператор в W .

Теорема 2.6. При каждом фиксированном

(β; k, ε+, ε∞) ∈ Λ× R3
+

оператор A(β; k, ε+, ε∞) : W → W фредгольмов. При каждом фик-
сированном (k, ε+, ε∞) ∈ R3

+ оператор-функция A(β; k, ε+, ε∞) голо-
морфна по β ∈ Λ. Оператор-функция A(β; k, ε+, ε∞) непрерывна по
(β; k, ε+, ε∞) ∈ Λ× R3

+.

Доказательство этой теоремы аналогично доказательству теоре-
мы 2.2, с. 48.

Таким образом, задача (2.72) является спектральной задачей для
фредгольмовой голоморфной оператор-функции.
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3. Дискретность характеристического множества и зави-
симость характеристических значений от параметров. От-
носительно эквивалентности задач (2.43)–(2.46) и (2.72) справедлива
следующая теорема, доказательство которой аналогично доказатель-
ству теоремы 2.3, с. 49.

Теорема 2.7. Если w — собственная функция оператор-
функции A(β), отвечающая характеристическому значению

β0 ∈ Λ
(1)
0 \D,

то вектор {E,H}, построенный по формулам (2.56), (2.57), где
функции u, v определяются равенствами (2.62), (2.63), β := β0,

f+ := w3/|r′|,

f∞ := (w3 − w1) /|r′|,
g+ := w4/|r′|,

g∞ := (w4 − w2) /|r′|,
является собственным вектором задачи (2.43)–(2.46), отвечающим
собственному значению β0. Если вектор {E,H} является собствен-
ным вектором задачи (2.43)–(2.46), отвечающим собственному зна-

чению β0 ∈ Λ
(1)
0 \ D, то функции u := E3 и v := H3 могут быть

представлены в виде потенциалов простого слоя (2.62) и (2.63) с
непрерывными по Гельдеру плотностями f+, f∞ и g+, g∞, соответ-
ственно. При этом функция

w := ((f+ − f∞)|r′|, (g+ − g∞)|r′|, f+|r′|, g+|r′|) ∈ W

является собственной функцией оператор-функции A(β), отвечаю-
щей характеристическому значению β0.

Из теорем 2.5, 2.6, 2.7, теоремы И.Ц. Гохберга, М.Г. Крей-
на [12] об изолированности характеристических значений фредголь-
мовой голоморфной оператор-функции A(β) при наличии в обла-
сти ее голоморфности хотя бы одной регулярной точки, и теоремы
S. Steinberg [155] о поведении характеристических значений такой
оператор-функции в зависимости от изменения вещественного па-
раметра ω в случае, если оператор-функция является непрерывной
функцией β и ω, непосредственно следует
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Теорема 2.8. Регулярное множество оператор-функции A(β),
определенной в (2.72), не пусто, а именно, B ⊂ ρ(A). Характе-
ристическое множество σ(A) оператор-функции A(β) может со-
стоять лишь из изолированных точек, являющихся характеристи-
ческими значениями оператор-функции A(β). Каждое характери-
стическое значение β оператор-функции A(β) непрерывно зависит
от параметров (k, ε+, ε∞) ∈ R3

+. Кроме того, с изменением пара-
метров (k, ε+, ε∞) ∈ R3

+ характеристические значения оператор-
функции A(β) могут появляться и исчезать только на границе Λ,
т. е. в точках ±kn+,±kn∞ и на бесконечности.

Глава 3

ЗАДАЧИ О СОБСТВЕННЫХ ВОЛНАХ
ВОЛНОВОДОВ С РАЗМЫТОЙ ГРАНИЦЕЙ

§ 1. Скалярная задача в приближении
слабонаправляющего волновода

1. Постановка задачи и локализация собственных зна-
чений. Сформулируем задачу о собственных волнах цилиндриче-
ского диэлектрического волновода с размытой границей, имеющего
переменную диэлектрическую проницаемость, близкую к диэлектри-
ческой проницаемости окружающей среды. Обозначим через C 2(R2)
пространство комплекснозначных дважды непрерывно дифференци-
руемых в R2 функций. Пусть область Ωi поперечного сечения вол-
новода является ограниченной, не обязательно односвязной. Всюду
в этой главе будем предполагать, что диэлектрическая проницае-
мость ε — вещественная функция из пространства C2(R2), равная
константе ε∞ вне Ωi. Указанное свойство гладкости функции ε ис-
пользуется в следующем параграфе при решении векторной задачи
о собственных волнах. Результаты настоящего параграфа справедли-
вы [44] для более общего случая: ε ∈ C1(Ωi), граница γ области Ωi —
липшицева кривая, на γ функция u ∈ U удовлетворяет условиям со-
пряжения (2.3), с. 38. Однако, в целях единства изложения материала
во всей главе, ограничимся предположением, что ε ∈ C2(R2) и в на-
стоящем параграфе. В скалярном приближении слабонаправляющего
волновода (см. § 2 гл. 1) задача сводится к отысканию таких значе-
ний параметра β, при которых существуют нетривиальные решения
уравнения Гельмгольца:

[
∆+

(
k2ε− β2

)]
u = 0, x ∈ R2. (3.1)

Будем предполагать, что функция u удовлетворяет на бесконеч-
ности парциальным условиям излучения (1.59), с. 31, т. е. при доста-
точно большом R0 для всех |x| > R0 представима в виде абсолютно
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и равномерно сходящегося ряда

u(r, ϕ) =
∞∑

l=−∞
alH

(1)
l (χ∞r) e

ilϕ. (3.2)

Всюду в этой главе будем предполагать, что постоянные распро-
странения β принадлежат поверхности Римана Λ функции lnχ∞(β).
Строение поверхности Λ подробно рассмотрено в § 1 гл. 1.

Определение 3.10. Ненулевую функцию u ∈ C2(R2) будем на-
зывать собственной функцией задачи (3.1), (3.2), отвечающей соб-
ственному значению β ∈ Λ, если выполнены условия (3.1), (3.2).

Теорема 3.9. На Λ
(1)
0 собственные значения задачи (3.1), (3.2)

могут принадлежать лишь множеству G.

Доказательство. Пусть u — собственная функция задачи
(3.1), (3.2), отвечающая собственному значению β ∈ D. Применим
в открытом круге Ω радиуса R > R0, к функциям u и u формулу
Грина ∫

Ω

(u∆u− u∆u)dx =

∫

Γ

(
u
∂u

∂r
− u

∂u

∂r

)
dl,

где Γ — граница круга Ω. Получим равенство:
∫

Γ

(
u
∂u

∂r
− u

∂u

∂r

)
dl = 0, R > R0,

так как k2ε > β2 при β ∈ D. Отсюда, используя условие (3.2) и
ортогональность тригонометрических функций, для любого R > R0

получим

2πχ∞R
∞∑

l=−∞

[
H

(1)
l (χ∞R)H

(2)′
l (χ∞R)−H

(2)
l (χ∞R)H

(1)′
l (χ∞R)

]
×

× |al|2 = 0,

где al — коэффициенты ряда (3.2). Хорошо известно (см., напр., [88]),
что выражение, стоящее в этой сумме в квадратных скобках, от l не
зависит, а именно

H
(1)
l (χ∞R)H

(2)′
l (χ∞R)−H

(2)
l (χ∞R)H

(1)′
l (χ∞R) =

4

iπχ∞R
,

76 Глава 3. Волноводы с размытой границей

где l = 0,±1,±2, . . . Следовательно, для любого |x| > R0 все коэф-
фициенты al в разложении (3.2) обращаются в нуль. А это значит,
что u = 0 при |x| > R0. Пусть Φ(β; x, y) — фундаментальное решение
уравнения Гельмгольца (3.1) [31]. Используя третью формулу Грина,
выражающую решение уравнения (3.1) в Ω через значение решения
и его нормальной производной на Γ,

u(x) = −
∫

Γ

[
u−(y)

∂Φ(β; x, y)

∂ν(y)
− ∂u−(y)

∂ν(y)
Φ(β; x, y)

]
dl(y), x ∈ Ω,

(3.3)
найдем, что u = 0 при x ∈ Ω. Итак, задача (3.1), (3.2) при β ∈ D
имеет только тривиальное решение.

При остальных β ∈ Λ
(1)
0 из условий (3.1), (3.2) и асимптотической

формулы (1.36), с. 26, нетрудно получить равенство∫

R2

|∇u|2dx+

∫

R2

(β2 − k2ε)|u|2dx = 0. (3.4)

Для этого надо применить в круге Ω радиуса R формулу Грина∫

Ω

∇u · ∇udx+
∫

Ω

u∆udx =

∫

Γ

u
∂u

∂r
dl

и устремить R к бесконечности. Согласно асимптотике (1.36), с. 26,
все подынтегральные выражения в этой формуле экспоненциально
убывают на бесконечности при β ∈ Λ

(1)
0 \ D. При вещественных β,

лежащих в интервале B, равенству (3.4) удовлетворяет лишь нуле-
вая функция u. Действительно, если β ∈ B и |β| > kn+, то из этого
равенства сразу вытекает, что u = 0 на всей плоскости. Если β ∈ B
и |β| = kn+, то из него следует, что ∇u = 0 в R2, т. е. u всюду прини-
мает постоянное значение. Но из асимптотики (1.36), с. 26, вытекает,
что на бесконечности u обращается в нуль. Значит u равняется ну-
лю всюду. Возьмем от левой и правой частей равенства (3.4) мнимую
часть, получим

Im(β2)

∫

R2

|u|2dx = 0.

Следовательно, собственные значения β задачи (3.1), (3.2) на Λ
(1)
0 не

могут иметь одновременно мнимую и вещественную части отличные
от нуля, т. е. принадлежать множеству Λ

(1)
0 \ (B ∪D ∪G). ¤
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2. Нелинейная спектральная задача для интегрального
уравнения по области поперечного сечения волновода. Для
изучения качественных свойств спектра сведем задачу (3.1), (3.2) к
спектральной задаче для интегральной фредгольмовой голоморфной
по β ∈ Λ и непрерывной по (β;ω, n∞) ∈ Λ× R2

+ оператор-функции.

Лемма 3.6. Если u — собственная функция задачи (3.1), (3.2),
отвечающая собственному значению β ∈ Λ, то

u(x) = (B(β)u) (x), x ∈ R2, (3.5)

где (B(β)u) (x) :=

∫

Ωi

Φ∞ (β; x, y) p(y)u(y)dy, p(y) := k2 (ε(y)− ε∞) ,

Φ∞ (β; x, y) :=
i

4
H

(1)
0 (χ∞(β) |x− y|) , x ∈ R2, y ∈ Ωi.

Доказательство. Запишем уравнение (3.1) в виде
[
∆+

(
k2ε∞ − β2

)]
u = −pu.

Далее рассуждения проводятся на основе стандартного метода (см.,
напр., [25]) построения интегрального представления решения неод-
нородного уравнения Гельмгольца с помощью формулы Грина. При-
менить этот метод для всех β ∈ Λ можно в силу равенства (2.29),
с. 51, справедливого для любого β ∈ Λ и произвольной u ∈ C2(R2),
удовлетворяющей условию (3.2). ¤

При фиксированном β ∈ Λ положим

(K(β)v) (x) :=

∫

Ωi

Φ∞(β; x, y)
√
p(x)p(y)v(y)dy. (3.6)

Будем рассматривать оператор K(β) как оператор, действующий в
пространстве комплекснозначных функций L2(Ωi). Пусть

A(β) := I −K(β),

где I — единичный оператор в L2(Ωi). При всех β ∈ Λ ядро операто-
ра K(β) слабополярно, следовательно, оператор A(β) фредгольмов.
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3. Дискретность характеристического множества и за-
висимость характеристических значений от параметров.
Сформулируем и докажем теорему о спектральной эквивалентности
задачи (3.1), (3.2) о собственных волнах слабонаправляющего волно-
вода и спектральной задачи

A(β)v = 0 (3.7)

для оператор-функции A(β) : L2(Ωi)→ L2(Ωi).

Теорема 3.10. Если функция u является собственной функци-
ей задачи (3.1), (3.2), отвечающей собственному значению β0 ∈ Λ,
то

v := p1/2u ∈ L2(Ωi)

есть собственная функция оператор-функции A(β), отвечающая
характеристическому значению β0. Если v ∈ L2(Ωi) является соб-
ственной функцией оператор-функции A(β), отвечающей характе-
ристическому значению β0 ∈ Λ, то

u := B(β0)
(
p−1/2v

)
∈ C2(R2)

есть собственная функция задачи (3.1), (3.2), отвечающая соб-
ственному значению β0.

Доказательство. Первое утверждение теоремы непосред-
ственно следует из леммы 3.6. Докажем второе утверждение. Пусть
функция v ∈ L2 (Ωi) — собственная функция оператор-функцииA(β),
отвечающая характеристическому значению β0 ∈ Λ. Ядро Φ∞(β; x, y)
слабополярно при любом β ∈ Λ. Следовательно, функция

u := B(β0)
(
p−1/2v

)

непрерывна в Ωi (см., напр., [8, с. 327]). В силу известных свойств по-
тенциала площади (см., напр., [8, с. 463]) функция u дважды непре-
рывно дифференцируема в R2; число β0 и функция u удовлетво-
ряют уравнению (3.1). С помощью теоремы сложения Графа (см.,
напр., [66, с. 201]) нетрудно убедиться, что число β0 и функция u
удовлетворяют условию (3.2). ¤



§ 1. Скалярная задача в приближении слабонаправляющего волновода 79

Теорема 3.11. Регулярное множество оператор-функции A(β),

определенной в (3.7), не пусто, а именно, Λ
(1)
0 \ G ⊂ ρ(A). Харак-

теристическое множество оператор-функции A(β) может состо-
ять лишь из изолированных точек, являющихся характеристиче-
скими значениями оператор-функции A(β). Каждое характеристи-
ческое значение β оператор-функции A(β) непрерывно зависит от
параметров (k, ε∞) ∈ R2

+. Кроме того, с изменением (k, ε∞) ∈ R2
+

характеристические значения оператор-функции A(β) могут появ-
ляться и исчезать только на границе поверхности Λ, т. е. в точ-
ках ±kn∞ и на бесконечности.

Доказательство. Рассуждая аналогично [33, с. 71], нетрудно
показать, что оператор-функция A(β) голоморфна по β ∈ Λ и непре-
рывна как функция β ∈ Λ, k > 0 и ε∞ > 0. В силу фредгольмовости
оператора A(β), теоремы 3.9 о локализации собственных значений
задачи (3.1), (3.2) и теоремы 3.10 о спектральной эквивалентности
задач (3.1), (3.2) и (3.7) оператор A(β) обратим для любых k, ε∞ > 0

и β ∈ Λ
(1)
0 \ G. Таким образом, справедливость теоремы вытекает

из теоремы И.Ц. Гохберга, М.Г. Крейна [12] об изолированности ха-
рактеристических значений фредгольмовой голоморфной оператор-
функции A(β) при наличии в области ее голоморфности хотя бы од-
ной регулярной точки, и теоремы S. Steinberg [155] о поведении ха-
рактеристических значений такой оператор-функции в зависимости
от изменения вещественного параметра k в случае, если оператор-
функция является совместно непрерывной функцией β и k.

4. Существование собственных значений. Относительно
существования собственных значений задачи (3.1), (3.2) справедли-
ва следующая

Теорема 3.12. Задача (3.1), (3.2) имеет по крайней мере од-
но простое положительное собственное значение β, принадлежа-
щее множеству G, которому отвечает положительная собствен-
ная функция.

Доказательство. Пусть оператор K(β) при фиксированных
значениях β ∈ G определяется равенством (3.6) и рассматривается
как действующий в пространстве вещественных функций L2(Ωi). При
фиксированных β ∈ G введем в рассмотрение задачу

v = γK(β)v.
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Ясно, что, если при некотором β0 ∈ G функция v является соб-
ственной функцией оператора K(β), отвечающей характеристическо-
му значению γ = 1, то v является собственной функцией оператор-
функции A(β), отвечающей характеристическому значению β0.

Заметим, что K(β) при любом β ∈ G является интегральным
оператором с симметричным слабополярным положительным ядром
(см., напр., [8, с. 327]). При фиксированном положительном β ∈ G
оператор K(β) имеет счетное множество положительных характери-
стических значений. Для минимального из них справедливо равен-
ство (см., напр., [8, с. 326])

γ1(β) = inf
f∈L2(Ωi)

(f, f)

(K(β)f, f)
, (3.8)

где (·, ·) — скалярное произведение в L2(Ωi). Покажем теперь, что су-
ществует такое β ∈ G, при котором γ1(β) = 1. В силу непрерывной
зависимости Φ∞(β; x, y) от β ∈ Λ функция γ1 = γ1(β) непрерыв-
на. Из (3.8) и того, что Φ∞(β; x, y) → ∞ при β → kn∞, получаем,
что γ1(β)→ 0 при β → kn∞.

Докажем, что γ1(kn+) > 1. Пусть v ∈ L2 (Ωi) — собственная функ-
ция оператора K(β), отвечающая характеристическому значению γ1
при β = kn+. Для функции u := γ1B (kn+)

(
p−1/2v

)
, рассуждая так

же, как и при доказательстве теорем 3.9, 3.10, получаем равенство
∫

R2

|∇u|2 dx+ k2 (ε+ − ε∞)

∫

R2

|u|2 dx− γ1

∫

Ωi

p |u|2 dx = 0.

Очевидно, что при γ1 6 1 функция u может быть только нулевой.
Поэтому γ1(kn+) > 1.

Обозначим через β1 решение уравнения γ1(β) = 1. По теореме
Ентча (см., напр., [8, с. 329]) γ1(β1) есть простое характеристическое
значение, и ему отвечает положительная собственная функция v1.
Следовательно, β1 является простым собственным значением зада-
чи (3.1), (3.2), которому отвечает положительная собственная функ-
ция u1 := B (β1)

(
p−1/2v1

)
. ¤

Положительное значение β ∈ G и отвечающая ему собственная
функция u, существование которых доказано в этой теореме, опреде-
ляют собственную волну, которая в теории волноводов носит название
основной.
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§ 2. Векторная задача в полной электродинамической
постановке

1. Постановка задачи и локализация собственных значе-
ний. Сформулируем задачу о собственных волнах цилиндрического
диэлектрического волновода с размытой границей и произвольной пе-
ременной диэлектрической проницаемостью. Задача сводится (см. § 1
гл. 1) к отысканию таких значений параметра β, при которых суще-
ствуют нетривиальные решения E, H системы уравнений

rotβE =iωµ0H, rotβH =− iωε0εE, x ∈ R2, (3.9)

где векторная операция rotβ определена равенством (1.4), с. 19. Бу-
дем разыскивать нетривиальные решения {E,H} системы (3.9) в про-
странстве [C2(R2)]6.

Будем предполагать, что функции E, H удовлетворяют парциаль-
ным условиям излучения, т. е. существует такая константаR0, что для
всех x таких, что |x| > R0, функции E, H разлагаются в равномерно
и абсолютно сходящиеся ряды

[
E
H

]
=

∞∑

l=−∞

[
Al

Bl

]
H

(1)
l (χ∞r) e

ilϕ. (3.10)

При этом будем предполагать, что постоянные распространения β
принадлежат римановой поверхности Λ функции lnχ∞(β). Строение
поверхности Λ подробно рассмотрено в § 1 гл. 1.

Определение 3.11. Ненулевой вектор {E,H} ∈
[
C2(R2)

]6
будем

называть собственным вектором задачи (3.9), (3.10), отвечающим соб-
ственному значению β ∈ Λ, если выполнены условия (3.9), (3.10).

Пусть известен собственный вектор {E,H} задачи (3.9), (3.10),
отвечающий собственному значению β ∈ Λ. Тогда собственная вол-
на волновода определяется по формуле (1.2), с. 19. Следовательно,
поиск собственных волн сводится к решению нелинейной векторной
спектральной задачи (3.9), (3.10).

Теорема 3.13. Области B и D листа Λ
(1)
0 римановой поверх-

ности Λ не содержат собственных значений задачи (3.9), (3.10).

Доказательство. Пусть {E,H} — собственный вектор зада-
чи (3.9), (3.10), отвечающий собственному значению β ∈ B. Тогда
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выполнено равенство (1.12), с. 20. Умножим его скалярно на H и про-
интегрируем по R2. Мы имеем право это делать в силу условия (3.10)
и асимптотики (1.36), с. 26. В результате получим

k2
∫

R2

|H|2dx =

∫

R2

(
rotβ

(
ε−1rotβH

))
· Hdx =

=

∫

R2

(
ε−1rotβH

)
· rotβHdx >

>
1

ε+

∫

R2

rotβH · rotβHdx =

=
1

ε+

∫

R2

(rotβ (rotβH)) · Hdx.

Используя равенство (1.14), формулу (1.9), с. 20, и формулу интегри-
рования по частям, получим

k2
∫

R2

|H|2dx > 1

ε+

∫

R2

(
−∆H+ β2H

)
· Hdx =

=
1

ε+

∫

R2

|∇H|2dx+
β2

ε+

∫

R2

|H|2dx.

В итоге получаем неравенство

(
β2 − k2ε+

) ∫

R2

|H|2dx+

∫

R2

|∇H|2dx 6 0.

Из этого неравенства следует, что значениям β ∈ B отвечает толь-
ко нулевое решение задачи (3.9), (3.10). Действительно, если β ∈ B
и |β| > kn+, то H = 0 в R2. Следовательно, и

E = −1/(iωε0ε)rotβH = 0

в R2. Если же β ∈ B и |β| = kn+, то функция H принимает постоянное
значение в R2. Но из условия излучения (3.10) и асимптотики (1.36),
с. 26, для любого β ∈ B следует, что H обращается в нуль на беско-
нечности. Значит, H = 0 в R2, и E = 0 в R2 при β ∈ B. Следовательно,
область B свободна от собственных значений задачи (3.9), (3.10).
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Пусть {E,H} — собственный вектор задачи (3.9), (3.10), отве-
чающий собственному значению β ∈ D. Тогда имеет место равен-
ство (1.11), с. 20. Умножим его скалярно на E и проинтегрируем по
кругу Ω радиуса R > R0. Для всех |x| > R0 справедливо разложе-
ние (3.10). Поэтому, используя формулу (1.9), формулу интегрирова-
ния по частям и равенство (1.13), получим

k2
∫

Ω

ε |E|2dx =

∫

Ω

(rotβ (rotβE)) · Edx =

=

∫

Ω

(
−∆E+ β2E + gradβ (divβE)

)
· Edx =

= −
∫

Ω

|divβE|2dx+

∫

Ω

|∇E|2dx−
∫

Γ

∂E

∂r
· Edx+ β2

∫

Ω

|E|2dx.

Возьмем от левой и правой частей полученного равенства мнимую
часть

Im

∫

Γ

∂E

∂r
· Edx = 0.

Отсюда, используя условие (3.10) и ортогональность тригонометри-
ческих функций, для любого R > R0 получим

2πχ∞R
∞∑

l=−∞
Im
[
H

(2)
l (χ∞R)H

(1)′

l (χ∞R)
]
|Al|2 = 0.

Мнимая часть выражения, стоящего в этой сумме в квадратных скоб-
ках, не зависит от l, а именно:

Im
[
H

(2)
l (χ∞R)H

(1)′

l (χ∞R)
]
=

2

πχ∞R
, l = 0,±1,±2, . . .

Следовательно, для любого |x| > R0 все коэффициенты Al в разло-
жении (3.10) функции E обращаются в нуль. А это значит, что E = 0
при |x| > R0. В силу гладкости диэлектрической проницаемости ε
функция E должна обращаться в нуль всюду в R2 [121, с. 190]. Зна-
чит, и

H = 1/(iωµ0)rotβE = 0

в R2. Итак, значениям β ∈ D отвечает только нулевое решение зада-
чи (3.9), (3.10). Следовательно, область D свободна от собственных
значений задачи (3.9), (3.10). ¤
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2. Нелинейная спектральная задача для системы слабо-
сингулярных интегральных уравнений по области попереч-
ного сечения волновода. Сведем задачу (3.9), (3.10) к спектраль-
ной задаче для интегральной оператор-функции. При этом мы будем
использовать электромагнитные потенциалы, введенные в § 1 гл. 1.

Лемма 3.7. Пусть {E,H} — собственный вектор задачи (3.9),
(3.10), отвечающий собственному значению β ∈ Λ. Тогда

E(x) = (B(β)E) (x), x ∈ R2, (3.11)

где

(B(β)E) (x) := k2
∫

Ωi

(ε(y)− ε∞) Φ∞(β; x, y)E(y)dy+

+ gradβ

∫

Ωi

(
E · gradε

ε

)
(y)Φ∞(β; x, y)dy, (3.12)

Φ∞ (β; x, y) :=
i

4
H

(1)
0 (χ∞(β) |x− y|) , x ∈ R2, y ∈ Ωi.

Доказательство. Вектор Герца Π удовлетворяет неоднород-
ному уравнению Гельмгольца (1.19), с. 21. Следовательно, рассуждая
аналогично доказательству леммы 3.6, запишем решение этого урав-
нения в виде

Π(x) =
1

ε∞

∫

Ωi

(ε(y)− ε∞) Φ∞(β; x, y)E(y)dy, x ∈ R2.

Отсюда и из равенства (1.17), с. 21, для x ∈ R2 получим

E(x) =
(
k2ε∞ + gradβdivβ

) 1

ε∞

∫

Ωi

(ε(y)− ε∞) Φ∞(β; x, y)E(y)dy.

Воспользуемся теперь теоремой о дивергенции [110]:

divβ

∫

Ωi

(ε(y)− ε∞) Φ∞(β; x, y)E(y)dy =

=

∫

Ωi

divβ [(ε(y)− ε∞) E(y)] Φ∞(β; x, y)dy, x ∈ R2, (3.13)
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и следующей очевидной формулой

divβ ((ε− ε∞) E) = ε∞E · (n−2gradε). (3.14)

В итоге получим требуемое равенство. ¤

При фиксированном β ∈ Λ будем рассматривать оператор B(β),
определенный равенством (3.12), как оператор, действующий в про-
странстве комплекснозначных функций [L2(Ωi)]

3. Пусть

A(β) := I −B(β), (3.15)

где I — единичный оператор в [L2(Ωi)]
3. При всех β ∈ Λ ядро операто-

ра B(β) слабополярно, следовательно, оператор A(β) фредгольмов.

3. Дискретность характеристического множества и за-
висимость характеристических значений от параметров.
Сформулируем и докажем теорему о спектральной эквивалентности
задачи (3.9), (3.10) о собственных волнах волновода с размытой гра-
ницей и спектральной задачи

A(β)F = 0 (3.16)

для оператор-функции A(β) : [L2(Ωi)]
3 → [L2(Ωi)]

3.

Теорема 3.14. Если вектор {E,H} является собственным
вектором задачи (3.9), (3.10), отвечающим собственному значе-
нию β0 ∈ Λ, то

F := E ∈ [L2(Ωi)]
3

есть собственный вектор оператор-функции A(β), отвечающий ха-
рактеристическому значению β0. Если F является собственным
вектором оператор-функции A(β), отвечающим характеристиче-
скому значению β0 ∈ Λ, и это β0 не является собственным значе-
нием задачи (3.1), (3.2), то вектор {E,H},

E := B(β0)F, H := (iωµ0)
−1rotβ0E,

есть собственный вектор задачи (3.9), (3.10), отвечающий соб-
ственному значению β0.

Доказательство. Первое утверждение теоремы непосред-
ственно следует из леммы 3.7. Докажем второе утверждение. Пусть
вектор F ∈ [L2 (Ωi)]

3 — собственный вектор оператор-функции A(β),
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отвечающий характеристическому значению β ∈ Λ. Ядро интеграль-
ного оператора B(β) слабополярно при любом β ∈ Λ. Следовательно,
вектор E := B(β)F принадлежит пространству [C(Ωi)]

3 (см., напр., [8,
с. 327]). В силу известных свойств потенциала площади (см., напр., [8,
с. 463]) вектор E принадлежит пространству [C2(R2)]3.

По построению вектор E удовлетворяет равенству (3.11). Приме-
няя к левой и правой частям этого равенства операцию rotβ, учитывая
формулу (1.5), с. 20, и теорему о дивергенции (3.13), получим

divβE(x) = k2
∫

Ωi

divβ [(ε(y)− ε∞) E(y)] Φ∞(β; x, y)dy+

+
(
∆− β2

) ∫

Ωi

(
E · gradε

ε

)
(y)Φ∞(β; x, y)dy, x ∈ R2. (3.17)

Добавляя и вычитая из правой части этого равенства слагаемое

k2ε∞

∫

Ωi

(
E · gradε

ε

)
(y)Φ∞(β; x, y)dy

и учитывая формулу Пуассона для потенциала площади

[
∆+ (k2ε∞ − β2)

] ∫

Ωi

(
E · gradε

ε

)
(y)Φ∞(β; x, y)dy =

= −
(
E · gradε

ε

)
(x), x ∈ R2, (3.18)

получим, что

divβE(x) = k2
∫

Ωi

divβ [(ε(y)− ε∞) E(y)] Φ∞(β; x, y)dy−

−k2ε∞
∫

Ωi

(
E · gradε

ε

)
(y)Φ∞(β; x, y)dy−

(
E · gradε

ε

)
(x), x ∈ R2.

(3.19)

Далее, в силу линейности операции divβ и формулы (1.7), с. 20, имеем

divβ [(ε− ε∞) E] = divβ (εE)− ε∞divβE,
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E · gradε
ε

= ε−1divβ (εE)− divβE.

Используя два предыдущих равенства и равенство (3.19), нетрудно
видеть, что функция u = ε−1divβ (εE) удовлетворяет уравнению (3.5).

В пункте 2 было показано, что если β не является собственным
значением задачи (3.1), (3.2), то u = 0 в R2. Итак, мы получили, что
для вектора E справедлива формула

divβ (εE) = 0, x ∈ R2, (3.20)

и уравнение (3.11) может быть переписано в виде

E(x) = k2
∫

Ωi

(ε(y)− ε∞) Φ∞(β; x, y)E(y)dy−

− gradβ

∫

Ωi

Φ∞(β; x, y)divβE(y)dy, x ∈ R2. (3.21)

Пусть вектор H определяется следующим равенством (т. е. векто-
ры E и H удовлетворяют первому из уравнений (3.9)):

H := (iωµ0)
−1rotβ0E, x ∈ R2.

Из уравнения (3.21) и формулы (1.8), с. 20, имеем

H(x) = −iωε0rotβ
∫

Ωi

(ε(y)− ε∞) Φ∞(β; x, y)E(y)dy, x ∈ R2.

(3.22)
Отсюда следует, что если E ∈ [C2(R2)]3, то и H ∈ [C2(R2)]3. Дока-
жем, что векторы E и H удовлетворяют второму из уравнений (3.9).
Применим к обеим частям уравнения (3.22) операцию rotβ и полу-
ченное равенство почленно сложим с равенством (3.21), умноженным
предварительно на iωε0ε∞. Получим

rotβH+iωε0ε∞E = −iωε0rotβrotβ
∫

Ωi

(ε(y)− ε∞) Φ∞(β; x, y)E(y)dy+

+ iωε0ε∞k
2

∫

Ωi

(ε(y)− ε∞) Φ∞(β; x, y)E(y)dy−

− iωε0ε∞gradβ

∫

Ωi

Φ∞(β; x, y)divβE(y)dy, x ∈ R2. (3.23)
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Используя формулу (1.9), с. 20, и теорему о дивергенции (3.13), имеем

rotβH+iωε0ε∞E =

= iωε0
[
∆+ (k2ε∞ − β2)

] ∫

Ωi

(ε(y)− ε∞) Φ∞(β; x, y)E(y)dy−

− iωε0gradβ

∫

Ωi

divβ [(ε(y)− ε∞) E(y)] Φ∞(β; x, y)dy−

− iωε0ε∞gradβ

∫

Ωi

Φ∞(β; x, y)divβE(y)dy, x ∈ R2. (3.24)

Из этого равенства, уравнения (3.20) и формулы Пуассона (3.18) окон-
чательно получаем

rotβH+iωε0ε∞E = −iωε0 (ε− ε∞) E, x ∈ R2.

Следовательно, векторы E и H удовлетворяют второму из уравне-
ний (3.9). Из (3.21), (3.22) с помощью теоремы сложения Графа легко
получить, что векторы E и H удовлетворяют парциальным условиям
излучения (3.10). ¤

Теорема 3.15. Регулярное множество оператор-функции A(β),
определенной в (3.16), не пусто, а именно, B ∪ D ⊂ ρ(A). Харак-
теристическое множество оператор-функции A(β) может состо-
ять лишь из изолированных точек, являющихся характеристиче-
скими значениями оператор-функции A(β). Каждое характеристи-
ческое значение β оператор-функции A(β) непрерывно зависит от
параметров (k, ε∞) ∈ R2

+. Кроме того, с изменением (k, ε∞) ∈ R2
+

характеристические значения оператор-функции A(β) могут появ-
ляться и исчезать только на границе Λ, т. е. в точках ±kn∞ и на
бесконечности.

Доказательство. Рассуждая аналогично [33, с. 71], нетрудно
показать, что оператор-функция A(β) голоморфна по β ∈ Λ и непре-
рывна как функция β ∈ Λ, ε∞ > 0 и k > 0. В силу фредгольмовости
оператора A(β), теоремы 3.13 о локализации спектра задачи (3.9),
(3.10) и теоремы 3.14 о спектральной эквивалентности задач (3.9),
(3.10) и (3.16) оператор A(β) обратим для любых ε∞ > 0, k > 0 и
β ∈ B ∪D. Таким образом, справедливость настоящей теоремы сле-
дует из результатов [12] и [155] . ¤



Глава 4

ЗАДАЧА О СОБСТВЕННЫХ ВОЛНАХ
ЦИЛИНДРИЧЕСКОГО ДИЭЛЕКТРИЧЕСКОГО
ВОЛНОВОДА В ПЛОСКОСЛОИСТОЙ СРЕДЕ

§ 1. Спектральная задача для сингулярного интегрального
уравнения

Сформулируем задачу о собственных волнах цилиндрического
диэлектрического волновода в плоскослоистой среде. Схематическое
изображение поперечного сечения такого волновода приведено на
рис. 5.

Рис. 5. Поперечное сечение цилиндрического диэлектрического волновода в плос-
кослоистой окружающей среде.

Пусть все трехмерное пространство

{(x1, x2, x3) : −∞ < x1, x2, x3 <∞}

занято изотропной средой без источников, и пусть диэлектриче-
ская проницаемость ε = ε(x) является положительной вещественной
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функцией, не зависящей от координаты x3. Пусть существует огра-
ниченная область Ωi на плоскости x3 = const такая, что

ε(x) = ε∞(x2), x ∈ Ωe = R
2 \ Ωi,

где ε∞(x2) зависит только от координаты x2 и является кусочно-
постоянной функцией. Для определенности положим

ε∞(x2) :=




ε1, x2 > d,
ε2, 0 < x2 < d,
ε3, x2 < 0.

Можно предположить без потери общности рассуждений, что

ε2 > ε3 > ε1 > 0.

Обозначим через ε+ максимум функции ε в области Ωi и предполо-
жим, что ε+ > ε2. Введем следующие обозначения:

Ω1 := {(x1, x2) : −∞ < x1 <∞, x2 > d},

Ω2 := {(x1, x2) : −∞ < x1 <∞, 0 < x2 < d},
Ω3 := {(x1, x2) : −∞ < x1 <∞, x2 < 0}.
Γ1 := {(x1, x2) : −∞ < x1 <∞, x2 = d},
Γ2 := {(x1, x2) : −∞ < x1 <∞, x2 = 0}.

Предположим, что Ωi ⊂ Ω2 и также, что ε(x) является непрерыв-
ной функцией в бесконечной области Ω2, т. е., что волновод имеет
размытую границу.

Для простоты рассуждений мы рассматриваем здесь трехслой-
ную среду, где возмущение диэлектрической проницаемости находит-
ся целиком в центральном слое, но, в действительности, методами,
используемыми в этой главе, может быть исследована задача с про-
извольным конечным числом параллельных слоев, если возмущение
целиком находится в одном из них и волновод имеет размытую гра-
ницу.

Задача о собственных волнах цилиндрического диэлектрическо-
го волновода в плоскослоистой среде может быть сформулирована
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как векторная спектральная задача для системы уравнений Максвел-
ла (1.1), с. 17, в предположении, что векторы напряженности электри-
ческого и магнитного поля имеют вид (1.2), с. 19. Для полей, имеющих
форму (1.2), система уравнений Максвелла (1.1) принимает вид

rotβE = iωµ0H, x ∈ R2 \ (Γ1 ∪ Γ2) , (4.1)

rotβH = −iωε0εE, x ∈ R2 \ (Γ1 ∪ Γ2) , (4.2)

где векторная операция rotβ определена равенством (1.4), с. 19.
Обозначим через U множество функций, непрерывных и непре-

рывно дифференцируемых в Ω1, Ω2 и Ω3, дважды непрерывно диф-
ференцируемых в Ω1, Ω2 и Ω3, а также экспоненциально убывающих
при |x| → ∞ по любому направлению, не параллельному прямым Γj,
и ограниченных при |x| → ∞ параллельно прямым Γj. Будем разыс-
кивать нетривиальные решения {E,H} системы уравнений (4.1), (4.2)
в пространстве U 6. На границах раздела сред векторы E и H должны
удовлетворять условиям сопряжения (см. § 1 гл. 1)

ν × E+ = ν × E−, ν × H+ = ν × H−, x ∈ Γj, j = 1, 2. (4.3)

Здесь ν – вектор нормали к Γj, f+(f−) – предел функции f сверху
(снизу) прямой Γj, j = 1, 2.

Обозначим символом Λ
(1)
0 главный лист римановой поверхности

функции lnχ(β), где χ(β) :=
√
k2ε2 − β2, который определяется сле-

дующими условиями:

−π/2 < argχ(β) < 3π/2, Im(χ(β)) > 0.

Определение 4.12. Ненулевой вектор {E,H} ∈ U 6 будем назы-
вать собственным вектором задачи (4.1)–(4.3), отвечающим собствен-
ному значению

β ∈ Λ̂
(1)
0 := {β ∈ Λ

(1)
0 : Imβ = 0, |β| > kn2},

если выполнены условия (4.1)–(4.3).

Получим интегральное представление для любого собственного
вектора {E,H} задачи (4.1)–(4.3), отвечающего собственному значе-
нию β ∈ Λ̂

(1)
0 . Это представление будет использовано для сведения

задачи (4.1)–(4.3) к нелинейной спектральной задаче для двумерного
сингулярного интегрального уравнения.
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Определение 4.13. Вектор-функция Π называется вектором
Герца, или поляризационным потенциалом векторного поля {E,H},
если для x ∈ R2 \ (Γ1 ∪ Γ2) справедливо следующее представление:

E =
(
k2ε∞ + gradβdivβ

)
Π, (4.4)

H = −iωε0ε∞rotβΠ. (4.5)

Лемма 4.8. Для любого собственного вектора {E,H} зада-

чи (4.1)–(4.3), отвечающего собственному значению β ∈ Λ̂
(1)
0 , су-

ществует поляризационный потенциал Π ∈ U 3, который для всех
значений x ∈ R2 \ (Γ1 ∪ Γ2) удовлетворяет уравнению

[
4+

(
k2ε∞ − β2

)]
Π = − 1

ε∞
(ε− ε∞) E, (4.6)

и для x ∈ Γ1∪Γ2 удовлетворяет следующим условиям сопряжения:

Π+
l = NΠ−l , l = 1, 2, 3, (4.7)

∂Π+
l

∂x2
= N

∂Π−l
∂x2

, l = 1, 2, (4.8)
(
∂Π+

2

∂x2
− ∂Π−2
∂x2

)
= (1−N)

(
∂Π−1
∂x1

+ iβΠ−3

)
, (4.9)

где N := εi+1/εi для x ∈ Γi. Для x ∈ R2 поляризационный потенци-
ал Π имеет следующее интегральное представление:

Π(x) =
1

ε∞

∫

Ωi

(ε(y)− ε∞)G(β; x, y)E(y)dy, (4.10)

где

G(β; x, y) := Φ (β; x, y) +Gs(β; x, y),

Φ (β; x, y) :=
i

4
H

(1)
0 (χ(β) |x− y|) ,

Gs (β; x, y) :=



Gn (β; x, y) ∂Gc (β; x, y) /∂x1 iβGc (β; x, y)

0 Gt (β; x, y) 0
0 0 Gt (β; x, y)


 ,

Gα (β; x, y) :=
1

2π

∞∫

−∞

Rα (β; x2, y2;λ)
exp (iλ (x1 − y1))

2
√
λ2 + β2 − k2ε2

dλ,
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α = t, n, c.

Функции Rα определяются геометрией задачи и для трехслойной
окружающей среды представлены в приложении А, с. 100.

Доказательство. Существование вектора Π такого, что пред-
ставление (4.4), (4.5) и уравнение (4.6) справедливы, хорошо извест-
но (см., напр., [109]). Если поляризационный потенциал Π удовле-
творяет условиям (4.7)–(4.9), то векторы E и H, имеющие представ-
ление (4.4), (4.5), удовлетворяют условиям (4.3). Задача (4.6)–(4.9)
имеет решение в виде (4.10) (см., напр., [92]). Функция G(β; x, y) —
хорошо известная тензорная функция Грина для поляризационного
потенциала [93]. Используя представление (4.10) для поляризацион-
ного потенциала Π, можно доказать, что Π ∈U 3 для любого β ∈ Λ̂

(1)
0 .

¤

Используя (4.4) и (4.10), получаем интегральное представление
для любого собственного вектора {E,H} задачи (4.1)–(4.3), отвечаю-
щего собственному значению β ∈ Λ̂

(1)
0 :

E(x) =
(
k2ε∞ + gradβdivβ

) 1

ε∞

∫

Ωi

(ε(y)− ε∞)G(β; x, y)E(y)dy,

(4.11)

H(x) = −iωε0rotβ
∫

Ωi

(ε(y)− ε∞)G(β; x, y)E(y)dy,

где x ∈ R2 \ (Γ1 ∪ Γ2). Отметим, что свойства тензорной функции
Грина G(β; x, y) обеспечивают требуемое поведение векторов E и H
на бесконечности [93].

Сведем теперь задачу (4.1)–(4.3) к нелинейной спектральной зада-
че для двумерного сингулярного интегрального уравнения. Это урав-
нение часто используется на практике (см., напр., [92], [96], [141], [154])
потому, что оно точно учитывает поведение поля в окружающей сло-
истой среде.

Лемма 4.9. Если {E,H} является собственным вектором за-

дачи (4.1)–(4.3), отвечающим собственному значению β ∈ Λ̂
(1)
0 , то

(Q(β)E) (x) = 0, x ∈ Ωi, (4.12)
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где

(Q(β)E) (x) := E(x) +
1

2
η(x)E(x)−

−
∫

Ωi

T (β; x, y)

((
ε(y)

ε∞
− 1

)
E(y)

)
dy−

−
∫

Ωi

T1 (x, y)

((
ε(y)

ε∞
− 1

)
E(y)

)
dy−

−
∫

Ωi

L (β; x, y)

((
ε(y)

ε∞
− 1

)
E(y)

)
dy,

TF :=




(KF)1 + iβF3∂Φ/∂x1
(KF)2 + iβF3∂Φ/∂x2

iβF1∂Φ/∂x1 + iβF2∂Φ/∂x2 +
(
k2ε∞ − β2

)
F3Φ


 ,

T1F :=
2∑

l=1




Fl∂
2Φ1/∂xl∂x1

Fl∂
2Φ1/∂xl∂x2

0


,

η(x) :=



ε(x)Áε∞ − 1 0 0

0 ε(x)Áε∞ − 1 0
0 0 0


 ,

K(β; x, y)F(y) := k2ε∞F(y)Φ(β; x, y) +
2∑

l=1

[
Fl∂

2Φ0/∂xl∂x1
Fl∂

2Φ0/∂xl∂x2

]
,

Φ1(x, y) := −
1

2π
ln |x− y| ,

Φ0(β; x, y) := Φ(β; x, y)− Φ1(x, y),

L(β; x, y)F(y) :=
(
k2ε∞ + gradβdivβ

)
Gs(β; x, y)F(y),

F := (F1,F2)
T .

Утверждение леммы доказывается непосредственными вычисле-
ниями. Для этого надо внести оператор gradβdivβ под знак интегра-
ла в соотношении (4.11) и использовать правило дифференцирования
слабо сингулярных интегралов (см., напр, [145, с. 242]). Отметим, что
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применение этих преобразований законно, так как плотности возни-
кающих сингулярных интегралов равны нулю вне области Ωi и при-
надлежат пространству L2(Ωi) в силу гладкости функций E и n. От-
метим также, что для любого β ∈ Λ̂

(1)
0 и y ∈ Ωi функции Gs(β; x, y)

и Φ0(β; x, y) дважды непрерывно дифференцируемы по x ∈ Ωi.
Для β ∈ Λ̂

(1)
0 оператор Q(β), определенный равенством (4.12), бу-

дем рассматривать как оператор в пространстве комплекснозначных
функций [L2(Ωi)]

3. Для всех β ∈ Λ̂
(1)
0 оператор Q(β) имеет сингуляр-

ное ядро T1(x, y).

§ 2. Фредгольмовость сингулярного интегрального
оператора

Теорема 4.16. При любом β ∈ Λ̂
(1)
0 оператор Q(β) фредгольмов.

Доказательство. Пусть β ∈ Λ̂
(1)
0 . Через Q∗(β) обозначим

оператор, сопряженный с Q(β). Непосредственными вычислениями
для x ∈ Ω получаем

(Q∗(β)E) (x) = E(x) +
1

2
η(x)E(x)−

−
(
ε(x)

ε∞
− 1

)∫

Ω

T p (β; x, y) E(y)dy−

−
(
ε(x)

ε∞
− 1

)∫

Ωi

T1 (x, y) E(y)dy−

−
(
ε(x)

ε∞
− 1

)∫

Ω

Lp (β; x, y) E(y)dy, (4.13)

T pF :=




(KF)1 + iβF1∂Φ/∂x1
(KF)2 + iβF2∂Φ/∂x2

iβF3∂Φ/∂x1 + iβF3∂Φ/∂x2 +
(
k2ε∞ − β2

)
F3Φ


 ,

LpF :=
(
k2ε∞ + gradβdivβ

)
Gs(β; y, x)

T
F(y),

где gradβ и divβ означает, что множитель iβ заменяется множите-
лем −iβ; GT — матрица, транспонированная к G.
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Заметим, что ядро T1(x, y) сингулярное, симметричное и не зави-
сит от β; ядра T (β; x, y), T p (β; x, y) слабо полярные для β ∈ Λ̂

(1)
0 ;

ядра L (β; x, y) и Lp (β; x, y) непрерывны по x, y ∈ Ω для β ∈ Λ̂
(1)
0 .

Докажем теперь, что оператор Q(β) фредгольмов. Будем исполь-
зовать общие результаты теории многомерных интегральных сингу-
лярных матричных операторов (см., напр., [145]) и методику [71]. По-
ложим

(D(β)E) (x) := E(x) +
1

2
η(x)E(x)−

− p(x)

∫

R2

(T (β; x, y) + L (β; x, y))

((
ε(y)

ε∞
− 1

)
E(y)

)
dy−

−
∫

R2

T1 (x, y)

((
ε(y)

ε∞
− 1

)
E(y)

)
dy, (4.14)

где x ∈ R2, p(x) — бесконечно дифференцируемая вещественнознач-
ная функция, имеющая компактный носитель в R2, и тождественно
равная единице для x ∈ Ωi. Для всех β ∈ Λ̂

(1)
0 оператор D(β) бу-

дем рассматривать как оператор в пространстве комплекснозначных
функций [L2(R

2)]3. Непосредственными вычислениями для x ∈ R2

получаем

(D∗(β)E) (x) = E(x) +
1

2
η(x)E(x)−

−
(
ε(x)

ε∞
− 1

)∫

R2

p(y) (T p (β; x, y) + Lp (β; x, y)) E(y)dy−

−
(
ε(x)

ε∞
− 1

)∫

R2

T1 (x, y) E(y)dy. (4.15)

Интегральные операторы, определенные третьими слагаемыми в пра-
вых частях равенств (4.14) и (4.15), в силу гладкости их ядер для
всех β ∈ Λ̂

(1)
0 вполне непрерывны в [L2(R

2)]3. Обозначим их через C(β)
и C∗(β), соответственно. Положим при x ∈ R2

(SE) (x) := E(x) +
1

2
η(x)E(x)−

∫

R2

T1 (x, y)

((
ε(y)

ε∞
− 1

)
E(y)

)
dy,
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тогда

(S∗E) (x) = E(x) +
1

2
η(x)E(x)−

(
ε(x)

ε∞
− 1

)∫

R2

T1 (x, y) E(y)dy

и
D(β) = C(β) + S, D∗(β) = C∗(β) + S∗,

где оператор S∗ — матричный интегральный оператор:

S∗ :=
[
S∗l,m

]3
l,m=1

.

Непосредственными вычислениями для x ∈ R2, l,m = 1, 2, получаем

(
S∗l,mEm

)
(x) =

(
1 +

1

2

(
ε(x)

ε∞
− 1

))
δl,mEm(x)−

−
(
ε(x)

ε∞
− 1

)∫

R2

(2αl(ϕ)αm(ϕ)− δl,n)
Em(y)

2π |x− y|2
dy,

(
S∗3,3E3

)
(x) = E3(x),(

S∗l,3E3

)
(x) = 0,

(
S∗3,mEm

)
(x) = 0,

где δl,m — символ Кронекера; α1(ϕ) и α2(ϕ) — декартовы координаты
точки α := (y − x) / |x− y|, α1(ϕ) = cosϕ, α2(ϕ) = sinϕ, где ϕ —
полярный угол точки α (точка α принадлежит единичной окружно-
сти Θ с центром в x).

Функция ε непрерывна в Ω2, и ε(x) = ε∞ для x ∈ R2 \ Ωi. Следо-
вательно, характеристики операторов S∗l,n [145] непрерывны в R2 и не
зависят от x для x ∈ R2\Ωi. Непосредственными вычислениями полу-
чаем представление матричного символа Ψ∗(x, α) оператора S∗ [145]:

Ψ∗(x, α) =




1 +
(
ε(x)
ε∞
− 1
)
α2
1(ϕ)

(
ε(x)
ε∞
− 1
)
α1(ϕ)α2(ϕ) 0(

ε(x)
ε∞
− 1
)
α1(ϕ)α2(ϕ) 1 +

(
ε(x)
ε∞
− 1
)
α2
2(ϕ) 0

0 0 1




для x ∈ R2, α ∈ Θ. Функция n вещественна, следовательно, матрич-
ный символ Ψ(x, α) сингулярного интегрального оператора S равен
символу Ψ∗(x, α),

Ψ(x, α) = Ψ∗(x, α), x ∈ R2, α ∈ Θ.
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Легко проверяется, что имеют место следующие неравенства:

inf
x∈R2, α∈Θ

|detΨ(x, α)| > 0,

inf
x∈R2, α∈Θ

∣∣∣∣det
(

Ψ1,1(x, α) Ψ1,2(x, α)
Ψ2,1(x, α) Ψ2,2(x, α)

)∣∣∣∣ > 0,

inf
x∈R2, α∈Θ

|Ψ1,1(x, α)| > 0.

Следовательно, (см., напр, [145, с. 368]) оператор D(β) фредгольмов.
Докажем теперь, что индекс оператора Q(β) равен индексу опе-

ратора D(β) для всех β ∈ Λ̂
(1)
0 . Пусть вектор-функция W(x), x ∈ R2,

принадлежит множеству N(D) нулей оператора D(β). Нетрудно ви-
деть, что для всех x ∈ Ωi справедливо равенство

(D(β)W)(x) = (Q(β)W)(x) = 0. (4.16)

Следовательно, для всех x ∈ Ωi вектор-функция W(x) совпадает с
некоторой вектор-функцией V(x), x ∈ R2, принадлежащей множе-
ству N(Q) нулей оператора Q(β):

W(x) = V(x), x ∈ Ωi.

По определению оператора D(β) имеем для всех x ∈ R2 следующее
равенство:

(D(β)W) (x) = W(x) +
1

2
η(x)W(x)−

− p(x)

∫

R2

(T (β; x, y) + L (β; x, y))

((
ε(y)

ε∞
− 1

)
W(y)

)
dy−

−
∫

R2

T1 (x, y)

((
ε(y)

ε∞
− 1

)
W(y)

)
dy.

Из двух последних равенств, учитывая то, что функция n(x) = n∞
при x ∈ Ωe, получаем представление вектор-функции W(x) че-
рез V(x) для x ∈ Ωe:

W(x) = p(x)

∫

Ω

(T (β; x, y) + L (β; x, y))

((
ε(y)

ε∞
− 1

)
V(y)

)
dy+

+

∫

Ω

T1 (x, y)

((
ε(y)

ε∞
− 1

)
V(y)

)
dy.
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Таким образом, нули оператора D(β) линейно и взаимно однознач-
но связаны с нулями оператора Q(β), и, следовательно, размерности
множеств нулей этих операторов совпадают:

dimN(D) = dimN(Q). (4.17)

Пусть теперь вектор-функция W∗(x), x ∈ R2, принадлежит мно-
жеству N(D∗) нулей оператора D∗(β). Учитывая явный вид (4.15)
этого оператора, получаем следующее равенство:

(D∗(β)W∗) (x) = W∗(x) = 0, x ∈ Ωe. (4.18)

Из этого равенства и равенств (4.15), (4.13) имеем

(D∗(β)W∗) (x) = (Q∗(β)W∗) (x) = 0, x ∈ Ωi.

Следовательно, для всех x ∈ Ωi вектор-функция W∗(x) совпадает с
некоторой вектор-функцией V∗(x), x ∈ R2, принадлежащей множе-
ству N(Q∗) нулей оператора Q∗(β):

W∗(x) = V∗(x), x ∈ Ωi. (4.19)

Таким образом, нули оператора D∗(β) линейно и взаимно однозначно
связаны с нулями оператора Q∗(β), и, следовательно, размерности
множеств нулей этих операторов совпадают:

dimN(D∗) = dimN(Q∗). (4.20)

Окончательно, используя (4.17) и (4.20), для всех β ∈ Λ̂
(1)
0 имеем

равенство индексов оператора Q(β) и оператора D(β):

IndD = dimN(D)− dimN(D∗) = dimN(Q)− dimN(Q∗) = IndQ.

Согласно доказанному выше индекс оператора D(β) равен нулю. Сле-
довательно, равен нулю и индекс оператора Q(β).

Оператор D(β) фредгольмов, а значит, нормально разрешим. До-
кажем теперь, что оператор Q(β) также нормально разрешим. Рас-
смотрим уравнение

(Q(β)W)(x) = W0(x), x ∈ Ωi, (4.21)

где вектор правой части W0 ортогонален множеству N(Q∗) нулей
оператора Q∗(β). Пусть вектор-функция U0 ∈ [L2(R

2)]3 совпадает
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с вектор-функцией W0(x) для всех x ∈ Ωi и тождественно равна
нулю в Ωe. Учитывая представления (4.18), (4.19) для нулей опера-
тора D∗(β), приходим к заключению, что вектор-функция U0 орто-
гональна множеству нулей оператора D∗(β). Следовательно, в силу
фредгольмовости оператора D(β) существует решение U ∈ [L2(R

2)]3

уравнения
(D(β)U)(x) = U0(x), x ∈ R2. (4.22)

Представим вектор-функцию U(x) в виде суммы двух вектор-
функций

U(x) := V(x) +W(x), x ∈ R2,

где V(x) = 0 при x ∈ Ωi, а W(x) = 0 при x ∈ Ωe. Заметим, что для
такой вектор-функции W(x) справедливо равенство (4.16), а вектор-
функция U(x) удовлетворяет уравнению (4.22). Следовательно, име-
ем цепочку равенств

W0(x) = U0(x) =

= (D(β)U)(x) = (D(β)W)(x) = (Q(β)W)(x), x ∈ Ωi.

Таким образом, для любой вктор-функции W0, ортогональной
множеству N(Q∗) нулей оператора Q∗(β), существует решение W
уравнения (4.21), принадлежащее пространству [L2(Ωi)]

3. А это зна-
чит, что оператор Q(β) нормально разрешим для всех β ∈ Λ̂

(1)
0 . Итак,

для всех β ∈ Λ̂
(1)
0 оператор Q(β) нормально разрешим, индекс его ра-

вен нулю, следовательно, по определению 2.6, с. 48, он фредгольмов.
¤

Теорема 4.17. Пусть {E,H} — собственный вектор зада-

чи (4.1)–(4.3), отвечающий собственному значению β0 ∈ Λ̂
(1)
0 . Тогда

вектор F := E, x ∈ Ωi, является собственным вектором оператор-
функции Q(β), отвечающим тому же самому характеристическо-
му значению β0.

Утверждение теоремы непосредственно следует из леммы 4.9.
Приложение А. Приведем явный вид функций

Rα (β; x2, y2;λ) , α = t, n, c.

Способ их построения методом преобразования Фурье изложен, на-
пример, в статье [119]. Для трехслойной геометрии и (x, y) ∈ Ω2

2 имеем
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следующие представления:

Rt :=
R1
t e
p2(x2−y2) +R2

t e
−p2(x2−y2) +R3

t e
p2(x2+y2) +R4

t e
−p2(x2+y2)

ZH
, (4.23)

Rn :=
R1
ne

p2(x2−y2) +R2
ne
−p2(x2−y2) +R3

ne
p2(x2+y2) +R4

ne
−p2(x2+y2)

ZE
,

(4.24)

Rc :=
R1
ce
p2(x2−y2) +R2

ce
−p2(x2−y2) +R3

ce
p2(x2+y2) +R4

ce
−p2(x2+y2)

ZEZH
. (4.25)

Для многозначных функций pj :=
√
λ2 + β2 − k2εj выбираются такие

ветви, что Re(pj) > 0. Функции, входящие в знаменатели выражений
(4.23)–(4.25), имеют следующий вид:

ZH (β, λ) :=

(
1 +

p3
p2

)(
1 +

p1
p2

)
e2p2d −

(
1− p3

p2

)(
1− p1

p2

)
,

ZE (β, λ) :=

(
1 +

p3
p2N32

)(
1 +

p1
p2N12

)
e2p2d−

−
(
1− p3

p2N32

)(
1− p1

p2N12

)
,

где Nij := εi/εj при i, j = 1, 2, 3. Функции, входящие в числитель
выражения (4.23), представляются следующим образом:

R1
t (β, λ) := R2

t (β, λ) :=

(
1− p3

p2

)(
1− p1

p2

)
,

R3
t (β, λ) :=

(
1 +

p3
p2

)(
1− p1

p2

)
,

R4
t (β, λ) :=

(
1− p3

p2

)(
1 +

p1
p2

)
e2p2d.

Для функций, стоящих в числителе выражения (4.24), справедливы
следующие представления:

R1
n (β, λ) := R2

n (β, λ) :=

(
1− p3

p2N32

)(
1− p1

p2N12

)
,

R3
n (β, λ) :=

(
1 +

p3
p2N32

)(
1− p1

p2N12

)
,
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R4
n (β, λ) :=

(
1− p3

p2N32

)(
1 +

p1
p2N12

)
e2p2d.

Числитель выражения (4.25) определяется следующими функци-
ями:

R1
c (β, λ) := e2p2d

2 (1−N23)

p2

(
1 +

p1
p2

)(
1− p1

p2N12

)
−

− e2p2d
2 (1−N21)

p2

(
1 +

p3
p2N32

)(
1− p3

p2

)
,

R2
c (β, λ) := e2p2d

2 (1−N23)

p2

(
1− p1

p2

)(
1 +

p1
p2N12

)
−

− e2p2d
2 (1−N21)

p2

(
1− p3

p2N32

)(
1 +

p3
p2

)
,

R3
c (β, λ) :=

2 (1−N23)

p2

(
1− p1

p2

)(
1− p1

p2N12

)
−

− e2p2d
2 (1−N21)

p2

(
1 +

p3
p2

)(
1 +

p3
p2N32

)
,

R4
c (β, λ) :=

2 (1−N23)

p2

(
1 +

p1
p2

)(
1 +

p1
p2N12

)
e4p2d−

− e2p2d
2 (1−N21)

p2

(
1− p3

p2

)(
1− p3

p2N32

)
.

Приведем явный вид функций Rα (β; x2, y2;λ) , α = t, n, c, для
трехслойной геометрии и y ∈ Ω2, x ∈ Ω1:

Rt := e−p1(x2−d)
(
e−p2y2 +

1

Rt
32

ep2y2
)

1

T t
12F

t

(
Rt

21 +
1

Rt
12

)
ep2d,

Rn := e−p1(x2−d)N21e
p2y2

(
e−p2d + Λn

33e
p2d

Fn
+ e−p2d

)
+

+ e−p1(x2−d)N21e
−p2y2ep2d

(1 + Λn
11)

Fn
,
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Rc := e−p1(x2−d)
(
ep2y2C1 + e−p2y2C2

)
.

Функции, входящие в эти представления, имеют следующий вид:

C1 :=
N21

Fn

(
aep2d (1 + Λn

11) + b
1

Rt
32

(
1 + Λn

33e
2p2d
))

,

C2 :=
N21

Fn

(
ae3p2d

1

Rt
12

(1 + Λn
11) +

(
1 + Λn

33e
2p2d
))

,

F t := e2p2d
1

Rt
32

1

Rt
12

− 1, Fn := e2p2dΛn
33Λ

n
11 − 1,

a :=
(N32 − 1)

(
p2+p3
p2−p3 +

p3−p2
p3+p2

)

2p3
p3+p2

F t (N32p2 − p3)
, b :=

N12 (N21 − 1)
(

2p2
p2−p1

)
ep2d

F t (p2N12 − p1)
,

Λn
33 :=

N32p2 + p3
N32p2 − p3

, Λn
11 :=

N12p2 + p1
N12p2 − p1

, T t
ij :=

2Nijpi
pi + pj

, Rt
ij :=

pj − pi
pj + pi

.

Глава 5

ПРОЕКЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ
ЗАДАЧ О СОБСТВЕННЫХ ВОЛНАХ

ВОЛНОВОДОВ С ПОСТОЯННОЙ
ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТЬЮ

§ 1. Проекционные методы решения нелинейных
спектральных задач

Для численного решения задач на собственные значения с нели-
нейным вхождением спектральных параметров в интегральные опе-
раторы (2.24) и (2.72) будем применять метод Галеркина. Теоретиче-
ское обоснование сходимости метода проведем на основе общих ре-
зультатов статьи [5], посвященной исследованию сходимости проек-
ционных методов решения нелинейных спектральных задач вида

A(β)u = 0, A : U → V,

где U и V — банаховы пространства, а оператор-функция A(β) явля-
ется голоморфной и фредгольмовой при каждом β.

Приведем некоторые определения и необходимые нам формули-
ровки теорем из этой работы. Пусть даны комплексные банаховы про-
странства U и Un, n ∈ N , где N — множество всех натуральных чи-
сел. ЧерезN ′, N ′′ и т. д. будем обозначать бесконечные подмножества
множества натуральных чисел N . Под сходимостью zn → z, n ∈ N ′,
будем понимать сходимость при n → ∞, когда индекс n пробегает
множество N ′. Пусть операторы pn : U → Un, n ∈ N , удовлетворяют
условиям

‖pnu‖Un
→ ‖u‖U , n ∈ N, ∀u ∈ U, (5.1)

‖pn(αu+ α′u′)− (αpnu+ α′pnu
′)‖Un

→ 0, n ∈ N, ∀u, u′ ∈ U, (5.2)

где α, α′ — произвольные комплексные числа.
Последовательность {un}n∈N ′, где un ∈ U , называется дискретно

сходящейся к пределу u ∈ U , если ‖un − pnu‖ → 0, n ∈ N ′. Будем
обозначать это так: un → u, n ∈ N ′.



§ 1. Проекционные методы решения нелинейных спектральных задач 105

Последовательность {un}n∈N ′ называется дискретно компактной
или P -компактной, если для каждого N ′′ ⊆ N ′ существует такое под-
множество N ′′′ ⊆ N ′′, что последовательность {un}n∈N ′′′ дискретно
сходится к некоторому пределу u ∈ U .

Пусть даны банаховы пространства V и Vn, n ∈ N , и операто-
ры qn : V → Vn, удовлетворяющие условиям

‖qnv‖Vn
→ ‖v‖V , n ∈ N, ∀v ∈ V, (5.3)

‖qn(αv + α′v′)− (αqnv + α′qnv
′)‖Vn

→ 0, n ∈ N, ∀v, v′ ∈ V, (5.4)

где α, α′ — произвольные комплексные числа. Аналогично приве-
денным выше определениям вводятся понятия Q-сходимости и Q-
компактности.

Пусть даны линейные операторы A : U → V и An : Un → Vn.
Будем говорить, что последовательность операторов {An}n∈N ′ соб-
ственно сходится к оператору A, если выполнены условия

un → u, n ∈ N ′ ⇒ Anun → Au, n ∈ N ′, (5.5)

‖un‖ 6 const, {Anun}n∈N ′ Q-компактна ⇒ {un}n∈N ′ P -компактна.
(5.6)

Пусть ρ(A) := {β : β ∈ Λ, ∃A(β)−1 : V → U} — множество
регулярных точек оператора A(β), σ(A) := Λ \ ρ(A) — множество
сингулярных точек оператора A(β);

ρ(An) := {β : β ∈ Λ, ∃An(β)
−1 : Vn → Un}, σ(An) := Λ \ ρ(An).

Справедливы следующие теоремы [5].

Теорема 5.18. Предположим, что при n ∈ N выполнены усло-
вия:

1. Операторы pn : U → Un, qn : V → Vn удовлетворяют услови-
ям (5.1), (5.2) и (5.3), (5.4).

2. Λ — область (открытое связное множество) в комплексной
плоскости, A(β) : U → V и An(β) : Un → Vn — голоморфные на Λ
оператор-функции.

3. При каждом фиксированном β ∈ Λ операторы A(β), An(β)
фредгольмовы, а именно представимы в виде суммы двух операто-
ров, один из которых непрерывно обратим, а второй вполне непре-
рывен (конечномерен).
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4. An(β)→ A(β) собственно ∀β ∈ Λ.
5. Нормы ‖An(β)‖ ограничены равномерно по n и β на каждом

компакте Λ0 ⊂ Λ.
6. Множество ρ(A) 6= ∅, т. е. σ(A) 6= Λ.
Пусть β0 ∈ σ(A), тогда существует такая последовательность

точек {βn}n∈N , βn ∈ σ(An), что βn → β0, n ∈ N . Пусть {βn}n∈N —
некоторая последовательность точек из Λ, такая что βn ∈ σ(An)
и βn → β0 ∈ Λ. Тогда β0 ∈ σ(A).

Теорема 5.19. Предположим, что выполнены условия 1 — 6
теоремы 5.18. Пусть {βn}n∈N — некоторая последовательность то-
чек из Λ и {un}n∈N — некоторая последовательность нормирован-
ных векторов, ‖un‖ = 1, таких что βn ∈ σ(An), An(βn)un = 0
и βn → β0 ∈ Λ, un → u0. Тогда β0 ∈ σ(A) и A(β0)u0 = 0, ‖u0‖ = 1.

Отметим, что эти результаты носят локальный характер и, сле-
довательно, справедливы и в том случае, когда Λ — не область ком-
плексной плоскости, а риманова поверхность.

§ 2. Метод Галеркина решения задач о собственных волнах

1. Метод Галеркина решения задачи со слабосингуляр-
ным оператором. Опишем численный метод решения задачи
(2.24), с. 48. При построении и исследовании численного метода опе-
раторное уравнение (2.24) удобно трактовать как уравнение в гиль-
бертовом пространстве

H := W 1
2 × L2.

При этом будем использовать известное (см., напр., [10, с. 10]) выра-
жение для оператора L−1 : W 1

2 → L2:

L−1(u; t) :=
c0(u)

ln 2
+ 2

∞∑

k=−∞
|k|ck(u)eikt, u ∈ W 1

2 , (5.7)

где

ck(u) :=
1

2π

2π∫

0

u(τ)e−ikτdτ
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есть коэффициенты Фурье функции u. Отметим, что (см., напр., [10,
с. 10])

‖L−1‖ = 2. (5.8)

Приближенное решение wn := (w
(1)
n , w

(2)
n ) уравнения (2.24) будем

искать в виде

w(j)
n (t) :=

n∑

k=−n
α
(j)
k eikt, n ∈ N, j = 1, 2.

Коэффициенты α
(j)
k будем определять с помощью метода Галеркина,

т. е. с помощью следующих уравнений:

2π∫

0

(Awn)
(k)(t)e−ijtdt = 0, j = −n, ..., n, k = 1, 2. (5.9)

В силу (5.7) имеем

L−1(w(1)
n ; t) =

α
(1)
0

ln 2
+ 2

n∑

k=−n
|k|α(1)

k eikt,

поэтому равенства (5.9) можно записать в виде системы линейных
алгебраических уравнений

α
(1)
j +

n∑

k=−n
h
(1,1)
jk (β)djα

(1)
k +

n∑

k=−n
h
(1,2)
jk (β)α

(2)
k = 0, j = −n, ..., n, (5.10)

α
(2)
j +

n∑

k=−n
h
(2,1)
jk (β)djα

(1)
k +

n∑

k=−n
h
(2,2)
jk (β)α

(2)
k = 0, j = −n, ..., n. (5.11)

Здесь dj := {1/ ln 2 при j = 0, 2|j| при j 6= 0},

h
(l,m)
jk (β) :=

1

4π2

2π∫

0

2π∫

0

h(l,m)(β; t, τ)e−ijteikτdtdτ.

Напомним, что ядра h(l,m) не имеют особенности при t = τ . Таким об-
разом, применение метода Галеркина с тригонометрическим базисом
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позволяет обратить главную часть сингулярных операторов аналити-
чески.

Пусть HT
n — множество всех тригонометрических полиномов по-

рядка не выше n. Обозначим через Hn подпространство H элементов
вида (w

(1)
n , w

(2)
n ), w(1)

n , w
(2)
n ∈ HT

n . Введем в рассмотрение оператор
проектирования pn : H → Hn:

pnw := (Φnw
(1), Φnw

(2)), w := (w(1), w(2)) ∈ H, (5.12)

где Φn — оператор Фурье,

Φn(u; t) :=
n∑

k=−n
ck(u)e

ikt.

Нетрудно проверить, что

‖pn‖ = 1. (5.13)

Система линейных алгебраических уравнений (5.10), (5.11) экви-
валентна линейному операторному уравнению

An(β)wn ≡ pnA(β)wn ≡ (I + pnB(β))wn ≡ (I +Bn(β))wn = 0. (5.14)

Здесь An : Hn → Hn, I — единичный оператор в пространстве Hn.
Обозначим σ(An) множество сингулярных точек оператораAn(β).

Приближенные значения βn постоянных распространения β будем ис-
кать как сингулярные точки оператора An(β). Относительно сходи-
мости описанного метода справедлива следующая теорема.

Теорема 5.20. Если β0 ∈ σ(A), то существует такая после-
довательность чисел {βn}n∈N , βn ∈ σ(An), что βn → β0, n ∈ N .
Если {βn}n∈N — некоторая последовательность точек из Λ, такая,
что βn ∈ σ(An), βn → β0 ∈ Λ, то β0 ∈ σ(A). Пусть {βn}n∈N —
некоторая последовательность точек из Λ и {wn}n∈N — некото-
рая последовательность нормированных векторов, ‖wn‖ = 1, та-
кие, что βn ∈ σ(An), An(βn)wn = 0, βn → β0 ∈ Λ, wn → w0. То-
гда β0 ∈ σ(A) и A(β0)w0 = 0, ‖w0‖ = 1.

Доказательство. Доказательство теоремы заключается в про-
верке условий 1 — 6 теорем 5.18 и 5.19 в рассматриваемом случае.

1. Оператор pn : H → Hn обладает свойствами (5.1), (5.2). Первое
свойство выполняется в силу очевидных предельных соотношений

‖Φnu‖ → ‖u‖, n ∈ N, u ∈ L2, W
1
2 .
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Второе — очевидное следствие линейности оператора pn.
2. Оператор-функции A(β) и An(β) голоморфны на Λ. Голоморф-

ность оператор-функции A(β) доказана в теореме 2.2. Следовательно,
в силу линейности и ограниченности оператора pn таким же свой-
ством обладает и An(β) = pnA(β).

3. При любом β ∈ Λ операторы A(β) и An(β) фредгольмовы. Это
непосредственно вытекает из полной непрерывности оператора

B(β) : H → H

и конечномерности оператора Bn(β) при β ∈ Λ.
4. Для любого β ∈ Λ последовательность операторов {An(β)}n∈N

собственно сходится к оператору A(β). Для доказательства этого
утверждения проверим выполнение условий (5.5), (5.6).

Верна оценка
‖A(β)‖ 6 c(β), β ∈ Λ, (5.15)

где c(β) — непрерывная в области Λ функция:

c(β) := 1+2(c211(β)+d
2
11(β))

1/2+(c212(β)+d
2
12(β))

1/2+2c21(β)+ c22(β).

Здесь

c2ij(β) :=
1

4π2

2π∫

0

2π∫

0

|h(i,j)(β; t, t0)|2dtdt0, i, j = 1, 2,

d21j(β) :=
1

4π2

2π∫

0

2π∫

0

| d
dt
h(1,j)(β; t, t0)|2dtdt0, j = 1, 2.

Справедливость оценки (5.15) следует из неравенства

‖A(β)‖ 6 1+(‖B(1,1)(β)‖+‖B(2,1)(β)‖)‖L−1‖+‖B(1,2)(β)‖+‖B(2,2)(β)‖,
равенства (5.8) и очевидных оценок

‖B(2,j)(β)‖ 6 c2,j(β), B
(2,j)(β) : L2 → L2,

‖B(1,j)(β)‖2 6 c21,j(β) + d21,j(β), B
(1,j)(β) : L2 → W 1

2 , j = 1, 2.

Из определения оператора An(β) и равенства (5.13) вытекает
оценка

‖An(β)‖ 6 ‖A(β)‖, n ∈ N, β ∈ Λ. (5.16)
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P -сходимость {wn}n∈N к w ∈ H означает, что

‖wn − pnw‖ → 0, n ∈ N.

Справедливость условия (5.5) вытекает, таким образом, из оценки

‖Anwn − pnAw‖ 6 ‖An‖‖wn − pnw‖+ ‖pn‖‖A‖‖pnw − w‖, n ∈ N,

оценок (5.15), (5.16), равенства (5.13) и очевидного предельного соот-
ношения

‖pnw − w‖ → 0, n ∈ N.
Проверим условие (5.6). P -компактность последовательности век-

торов {Anwn}n∈N означает, что для любого N ′ ⊆ N существует та-
кое N ′′ ⊆ N ′, что последовательность {Anwn = wn + Bnwn}n∈N ′′ P -
сходится к z ∈ H. Если ‖wn‖ 6 const, n ∈ N ′′, то существует сла-
бо сходящаяся подпоследовательность {wn}n∈N ′′′, N ′′′ ⊂ N ′′. Вполне
непрерывный оператор B, как известно, переводит ее в сильно сходя-
щуюся:

‖Bwn − u‖ → 0, n ∈ N ′′′, u ∈ H.
Отсюда в силу неравенства

‖Bnwn − pnu‖ 6 ‖pn‖‖Bwn − u‖

и равенства (5.13) следует, что последовательность {Bnwn}n∈N ′′′ P -
сходится к u ∈ H. Таким образом, {wn}n∈N ′′′ P -сходится к векто-
ру w = z − u ∈ H, и условие (5.6) выполнено.

5. Нормы ‖An(β)‖ ограничены равномерно по n и β на каждом
компакте Λ0 ⊂ Λ. Справедливость этого утверждения непосредствен-
но следует из оценок (5.15) и (5.16).

6. Множество ρ(A) не пусто, т. е. σ(A) 6= Λ. Справедливость этого
утверждения доказана в теореме 2.4, с. 60. ¤

Численный алгоритм поиска характеристических значений βn и
отвечающих им собственных векторов wn оператор-функции An(β)
будет описан в третьем пункте настоящего параграфа.

2. Метод Галеркина решения задачи с ядром Гильберта.
Опишем теперь численный метод решения задачи (2.72), с. 71. При
построении и исследовании численного метода операторное уравне-
ние (2.72) удобно трактовать как уравнение в гильбертовом простран-
стве H := [L2]

4. Уравнение (2.72) по сравнению с уравнением (2.24),
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помимо интегральных операторов с гладкими ядрами, оператора L
с логарифмической особенностью ядра, содержит оператор S с яд-
ром Гильберта (2.69). Будем использовать известное выражение (см.,
напр., [11]) для оператора S−1 : L2 → L2:

S−1(u; t) := −i
∞∑

k=−∞
sign(k)ck(u)e

ikt, u ∈ L2, (5.17)

где

ck(u) :=
1

2π

2π∫

0

u(τ)e−iktτdτ

есть коэффициенты Фурье функции u. При этом мы полагаем,
что sign(0) = 1. Известно также (см., напр., [11]), что

S−1 = −S, ‖S−1‖ = ‖S‖ = 1. (5.18)

Приближенное решение wn := (w
(1)
n , w

(2)
n , w

(3)
n , w

(4)
n ) уравне-

ния (2.72) будем искать в виде

w(j)
n (t) :=

n∑

k=−n
α
(j)
k eikt, n ∈ N, j = 1, 2, 3, 4.

Коэффициенты α
(j)
k будем определять с помощью метода Галеркина,

2π∫

0

(Awn)
(j)(t)e−iktdt = 0, k = −n, ..., n, j = 1, 2, 3, 4. (5.19)

В силу (5.7) и (5.17) действие операторов L−1 и S−1 на базисные функ-
ции выражается в явном виде (тригонометрические функции являют-
ся собственными функциями этих операторов, отвечающими извест-
ным собственным значениям). Равенства (5.19) представляют собой
систему линейных алгебраических уравнений относительно неизвест-
ного вектора {α(j)

k }, k = −n, ..., n, j = 1, 2, 3, 4. Элементы матри-
цы этой системы определяются собственными значениями операто-
ров L−1 и S−1 и интегралами вида

1

4π2

2π∫

0

2π∫

0

h
(l)
+/∞(β; t, τ)e

−ijteikτdtdτ, l = 1, 2, 3.
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Отметим, что функции h(l)+/∞(β; t, τ) не имеют особенности при t = τ .
Исследуем сходимость метода Галеркина. Обозначим через Hn

подпространство H элементов (w
(1)
n , w

(2)
n , w

(3)
n , w

(4)
n ), где каждая из

функций w(1)
n , w

(2)
n , w

(3)
n , w

(4)
n принадлежитHT

n — множеству всех три-
гонометрических полиномов порядка не выше n. Введем в рассмот-
рение оператор проектирования pn : H → Hn:

pnw := (Φnw
(1), Φnw

(2), Φnw
(3), Φnw

(4)),

w := (w(1), w(2), w(3), w(4)) ∈ H,
где Φn — оператор Фурье

Φn(u; t) :=
n∑

k=−n
ck(u)e

ikt.

Ясно, что
‖pn‖ = 1.

Система уравнений метода Галеркина (5.19) эквивалентна линей-
ному операторному уравнению

An(β)wn ≡ pnA(β)wn ≡ (I + pnB(β))wn ≡ (I +Bn(β))wn = 0. (5.20)

Здесь An : Hn → Hn, I — единичный оператор в пространстве Hn.
Приближенные значения βn постоянных распространения β бу-

дем искать как сингулярные точки оператора An(β). Относительно
сходимости описанного метода справедлива следующая теорема, до-
казательство которой аналогично доказательству теоремы 5.20.

Теорема 5.21. Если β0 ∈ σ(A), то существует такая после-
довательность чисел {βn}n∈N , βn ∈ σ(An), что βn → β0, n ∈ N .
Если {βn}n∈N — некоторая последовательность точек из Λ, такая,
что βn ∈ σ(An), βn → β0 ∈ Λ, то β0 ∈ σ(A). Пусть {βn}n∈N —
некоторая последовательность точек из Λ и {wn}n∈N — некото-
рая последовательность нормированных векторов, ‖wn‖ = 1, та-
кие, что βn ∈ σ(An), An(βn)wn = 0, βn → β0 ∈ Λ, wn → w0. То-
гда β0 ∈ σ(A) и A(β0)w0 = 0, ‖w0‖ = 1.
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3. Метод обратных итераций с невязкой решения нели-
нейных конечномерных спектральных задач. В предыдущем
параграфе были построены конечномерные нелинейные спектраль-
ные задачи (5.14), (5.20) вида

A(β)u = 0, (5.21)

где A — матрица, элементы которой являются комплекснозначными
функциями комплексного параметра β, u — искомый вектор с ком-
плексными компонентами. Такие задачи можно решать с помощью
варианта метода обратных итераций с невязкой, предложенного в ра-
боте [149]. Приведем алгоритм этого метода.

Пусть известно некоторое приближение σ ∈ Λ (где Λ — область
на комплексной плоскости) к искомому характеристическому значе-
нию β такое, что матрица A(σ) обратима, а также начальное при-
ближение u(0) к собственному вектору. Обозначим ‖u‖ — максимум
норму вектора u, e(u) — единичный вектор с единицей в позиции мак-
симального по модулю значения вектора u. Алгоритм приближенного
решения нелинейной спектральной задачи (5.21) состоит в следую-
щем.

Очередное приближение βl+1 к характеристическому значению β
вычисляется как ближайший к βl корень уравнения

(
e(u(l)), A−1(σ)A(βl+1)u

(l)
)
= 0.

Далее вычисляется невязка r(l) = A(βl+1)u
(l) и решается система ли-

нейных алгебраических уравнений A(σ)û(l) = r(l). Затем по форму-
лам ū(l+1) = u(l) − û(l), u(l+1) = ū(l+1)/‖ū(l+1)‖ вычисляется очередное
приближение u(l+1) к собственному вектору u. Итерационный про-
цесс останавливается, если относительная ошибка характеристиче-
ского значения достигает заданной точности ε.

Относительно сходимости этого метода справедлива следующая
теорема [149].

Теорема 5.22. Пусть элементы матрицы A(β) являются два-
жды непрерывно дифференцируемыми функциями параметра β ∈ Λ.
Пусть вектор u является нормализованным собственным векто-
ром, отвечающим простому изолированному характеристическому
значению β задачи (5.21). Тогда метод обратных итераций с невяз-
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кой решения задачи (5.21) сходится для любого начального прибли-
жения σ, достаточно близкого к β. Справедливы следующие оценки
скорости сходимости:

‖u(l+1) − u‖/‖u(l) − u‖ = O (σ − β) , |βl+1 − β| = O
(
‖u(l) − u‖

)
.

Отметим, что эти результаты носят локальный характер и, сле-
довательно, справедливы и в том случае, когда Λ — не область ком-
плексной плоскости, а риманова поверхность. В рассматриваемых на-
ми случаях решения задач (2.1)–(2.4), с. 38, и (2.43)–(2.46), с. 61, опи-
санным методом, элементы матрицы A(β) являются аналитическими
функциями параметра β на римановой поверхности Λ. Следователь-
но, предположение теоремы 5.22 о гладкости элементов матрицыA(β)
выполняется.

В теореме 5.22 доказана сходимость метода в случае поиска соб-
ственного вектора, отвечающего простому изолированному характе-
ристическому значению β задачи (5.21). Однако метод обратных ите-
раций с невязкой мы применяли и для поиска собственных векто-
ров, отвечающих характеристическим значениям β кратности, рав-
ной двум. Такая ситуация возникает, когда одному значению посто-
янной распространения β соответствуют две собственные волны. Это
справедливо, например, для основных волн волноводов кругового и
квадратного поперечного сечений. Хотя в этих случаях теорема 5.22
и не гарантирует сходимости, наблюдалась устойчивая сходимость
метода. При этом на первом шаге алгоритма выбирались два ортого-
нальных друг другу начальных приближения.

§ 3. Численные эксперименты

Приведем результаты численного решения ряда конкретных спек-
тральных задач теории диэлектрических волноводов, подтверждаю-
щие практическую эффективность предлагаемых методов.

Задача (2.43)–(2.46), с. 61, решалась для волноводов кругового и
квадратного сечений, т. е. для таких волноводов, для которых либо
известны точные решения, либо имеются экспериментальные данные,
либо результаты вычислений, полученные другими методами.

Ранее метод интегральных уравнений для численного решения за-
дачи (2.43)–(2.46) применялся в работах [29] и [62] в частном случае
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поиска поверхностных собственных волн, амплитуды которых экспо-
ненциально затухают на бесконечности, а постоянные распростране-
ния β лежат в интервале (kn∞, kn+). Для аппроксимации построен-
ных с помощью формулы Грина систем интегродифференциальных
уравнений с логарифмической особенностью ядер в [29], [62] приме-
нялся метод механических квадратур. При вычислении несобствен-
ных интегралов в [62] особенности ядер выделялись аналитически, а
в [29] — численно, путем сгущения сетки. В качестве тестового при-
мера в [29], [62] решалась задача о поиске постоянных распростране-
ния поверхностных собственных волн волновода кругового сечения.
В этом случае точные значения постоянных распространения β опре-
деляются как корни характеристических уравнений (1.62), с. 32.

В наших расчетах значения параметров задачи были выбраны
такими же, как в [29]: ε+ = 2, ε∞ = 1, kR = 4. В этом случае уравне-
ния (1.62) имеют корни β ∈ (kn∞, kn+) лишь при l = 0, 1, 2. Всего
таких корней пять. Результаты вычислений h := β/k представлены в
таблице.

l 0 0 1 1 2
1.200026 1.164818 1.020626 1.320590 1.167256

h 1.200026 1.164819 1.020628 1.320590 1.167256
1.1995 1.1643 1.0216 1.3202 1.1870

В первой строке таблицы помещены номера l уравнений (1.62),
во второй — корни этих уравнений, в третьей — решения, получен-
ные с помощью метода Галеркина (5.19), в четвертой — результаты
работы [29]. Результаты наших вычислений, представленные в таб-
лице, получены при использовании пяти базисных функций в методе
Галеркина (5.19). Дальнейшее увеличение их числа не привело к из-
менению сходимости. Отметим, что в [29] вычисления фактически
сводились к поиску характеристических значений задачи вида (5.21)
с матрицей размерности, равной 64, в наших расчетах матрица име-
ет размерность, равную 20. В [62] точность аналогичных вычислений
составила 0,1 процента.

Решение задачи (2.43)–(2.46) для волновода квадратного сечения
было основано на аппроксимации контура Γ кривой (см., напр., [114]):

r(t) :=

((
cos t

a

)2m

+

(
sin t

a

)2m
)−1/2m

, t ∈ [0, 2π]. (5.22)
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При m = 1 эта кривая представляет собой окружность радиуса a, а
при m→∞ она стремится к квадрату со стороной 2a.

Результаты расчетов сравнивались с экспериментальными данны-
ми из работы [35]. Как и в [35], были получены дисперсионные кри-
вые, показывающие зависимость величины h := β/k от p := ka/π
при фиксированных ε+ = 2.08, ε∞ = 1. Результаты расчетов пред-
ставлены на рис. 6, с. 118, сплошной линией. Квадратиками на рис. 6
обозначены экспериментальные данные из работы [35].

Разыскивались также собственные векторы задачи (2.43)–(2.46)
отвечающие комплексным собственным значениям β ∈ C (1)

0 . Для вол-
новода кругового поперечного сечения радиуса R результаты сравни-
вались с результатами, полученными в статье [123]. В этой работе
применялся итерационный метод, предложенный в [124], суть кото-
рого заключается в том, что приближенное решение задачи ищется в
виде разложения по собственным векторам симметричной части со-
ответствующего ей дифференциального оператора.

Следуя [123], были построены дисперсионные кривые для ком-
плексных собственных значений — графики зависимости веществен-
ной и мнимой части параметра h := β/(kn∞) от V := kR

√
ε+ − ε∞

при фиксированном значении (ε+ − ε∞)/(2ε∞) = 30. Результаты вы-
числений представлены на рис. 7, с. 118. Непрерывными линиями
изображены точные решения, полученные как корни уравнения (1.62)
с номером l = 1 (верхний график — Im(h), нижний — Re(h)). Кру-
жочками на рис. 7 отмечены результаты наших вычислений, которые
с графической точностью совпали с результатами работы [123]. На
рис. 8 и 9 изображены линии уровня функций |E3| и |H3|, соответ-
ственно, при V = 2.

Помимо комплексных собственных волн волновода кругового по-
перечного сечения, для демонстрации эффективности предлагаемо-
го метода разыскивались также комплексные собственные волны
диэлектрического волновода квадратного поперечного сечения. На
рис. 7 квадратиками отмечены значения Im(h) и Re(h), а на рис. 10
и 11 при V = 2 изображены линии уровня функций |E3| и |H3| для
волновода квадратного сечения.

Для демонстрации сходимости метода было изучено поведение
функции

e(M) :=
‖α(M)− α(M + 10)‖

‖α(M + 10)‖ ,
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где α — вектор коэффициентов метода Галеркина (5.19), M — число
базисных функций этого метода. На рис. 12 для различных значе-
ний параметра m, определяющего степень аппроксимации квадрата
гладкой кривой (5.22), изображены графики функции

max
h

e(M),

где максимум брался по параметру h, принадлежавшему множеству
тех значений h, для которых были получены дисперсионные кривые,
изображенные на рис. 6 и 7.

Отметим, что все остальные вычисления, а именно, вычисление
коэффициентов метода Галеркина (5.19) методом механических квад-
ратур, вычисление характеристических значений и собственных век-
торов конечномерных нелинейных спектральных задач методом об-
ратных итераций с невязкой проводились с точностью 10−9. Резуль-
таты вычислений для волновода квадратного поперечного сечения,
изображенные на рис. 6, 7, 10 и 11, получены при m = 20 и M = 201.
Отметим также, что результаты вычислений для волновода круго-
вого поперечного сечения, изображенные на рис. 7, 8 и 9, получены
при M = 3, а дальнейшее увеличение M не повлияло на точность
вычислений.
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Рис. 6. Дисперсионные кривые для поверхностных собственных волн волново-
да квадратного поперечного сечения, h := β/k, p := ka/π. Сплошные линии —
результаты расчетов методом Галеркина. Квадратиками обозначены эксперимен-
тальные данные [35].

Рис. 7. Дисперсионные кривые для комплексных собственных волн, h := β/(kn∞),
а V := kR

√
ε+ − ε∞ (верхний график — Im(h), нижний — Re(h)). Сплошные ли-

нии — точные решения для волновода кругового сечения. Кружочками и квад-
ратиками обозначены результаты расчетов методом Галеркина для волноводов
кругового и квадратного поперечного сечения, соответственно.
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Рис. 8. Линии уровня функции |E3| для волновода кругового поперечного сече-
ния.

Рис. 9. Линии уровня функции |H3| для волновода кругового поперечного сече-
ния.
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Рис. 10. Линии уровня функции |E3| для волновода квадратного поперечного
сечения.

Рис. 11. Линии уровня функции |H3| для волновода квадратного поперечного
сечения.
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Рис. 12. Зависимость относительной ошибки e метода Галеркина от числа базис-
ных функций M и параметра m, определяющего “гладкость” контура Γ.

РАЗДЕЛ 2. ТОЧНЫЕ НЕЛОКАЛЬНЫЕ
ГРАНИЧНЫЕ УСЛОВИЯ

Введение

В данном разделе книги предлагается и исследуется численный
метод, ориентированный на расчет поверхностных собственных волн
цилиндрических диэлектрических волноводов, находящихся в одно-
родной окружающей среде. Он основан на сочетании метода точных
нелокальных граничных условий и метода конечных элементов. Как
и в первом разделе, будем использовать классическую модель, соглас-
но которой волновод предполагается неограниченным и линейно изо-
тропным, то есть относительная диэлектрическая проницаемость ε
волновода не меняется вдоль оси Ox3 и является достаточно гладкой
функцией поперечных координат. Будем для определенности считать,
что поперечное сечение волновода Ωi является односвязной ограни-
ченной областью в R2 и имеет кусочно-гладкую границу γ := ∂Ωi,

ε := ε∞ = const > 0 в Ωe, ε+ := max
x∈Ωi

ε(x) > ε∞, min
x∈Ωi

ε(x) > ε∞ 1),

где Ωe := R2\Ωi. Магнитная проницаемость волновода всюду пред-
полагается равной магнитной проницаемости свободного простран-
ства µ0. Будем также предполагать, что постоянная распростране-
ния β является вещественной и положительной.

Амплитуды собственных волн в R2 удовлетворяют следующим
уравнениям (см. с. 19):2)

(PEH) rotβE =iωµ0H, rotβH =− iωε0εE.

1)Рассмотрение многосвязных и несвязных областей Ωi, так же как и волново-
дов с размытой границей (в этом случае необходимо писать знак > вместо > в
последнем условии), не вносит дополнительных трудностей.

2)A также условиям сопряжения на границе γ, см. с. 22. Здесь мы их не указы-
ваем, поскольку для рассматриваемых операторов они являются естественными.
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Кроме того, для поверхностных волн имеет место неравенство
∫

R2

(
|E|2 + |H|2

)
dx < +∞.

Дифференциальные операции с индексом β введены на с. 19.
В предыдущем разделе было показано, что из этой системы вы-

текают следующие уравнения для определения H (см. утв. 1.1, с. 20):

(PH) rot β
(
ε−1 rot β H

)
= k2H, divβ H = 0,

а также система уравнений для определения поля E:

(PE) rot β
(
rot β E

)
= k2εE, divβ(εE) = 0.

Здесь k := (ε0µ0)
1/2 ω — продольное волновое число. Также было по-

казано, что для существования поверхностных волн (амплитуды кото-
рых экспоненциально убывают на бесконечности) необходимо, чтобы

(β, k) ∈ Λ, Λ := {(β, k) : β/√ε+ < k < β/
√
ε∞, β > 0}.

Если (β, k) ∈ Λ, то поперечное волновое число p := (β2 − k2ε∞)1/2

является вещественным, положительным и определяет скорость за-
тухания амплитуд собственных волн на бесконечности. Точнее, E и H
убывают на бесконечности как exp(−p |x|)/

√
|x| (см. с. 26).

Уравнений (PH) достаточно для нахождения пар чисел (β, k) и
соответствующих им ненулевых вектор-функций H с компонентами
из пространства Лебега L2(R

2). По найденному H поле E определяет-
ся из второго уравнения системы (PEH). Аналогично из системы (PE)
можно найти (β, k,E), а для вычисления H использовать первое урав-
нение в (PEH).

Сравним между собой системы уравнений (PEH), (PH) и (PE) с
точки зрения их численного решения. С нашей точки зрения для
численного решения более подходящей является система (PH). Дей-
ствительно, по сравнению с (PEH) она содержит существенно мень-
ше неизвестных. Далее, несмотря на внешнее сходство систем (PH) и
(PE), их решения обладают в общем случае различной гладкостью:
векторное поле H, в отличие от E, не может иметь разрывов первого
рода и, следовательно, является более удобным для аппроксимации.
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В частности, H ∈ [H1(R2)]3, т. е. компоненты поля H являются эле-
ментами H1(R2) — пространства Соболева комплекснозначных ска-
лярных функций, имеющих конечную норму

‖ϕ‖21,R2 =
∫

R2

(
|∇ϕ|2 + |ϕ|2

)
dx.

Дополнительный и весьма важный аргумент в пользу систе-
мы (PH) состоит в том, что она эквивалентна одному уравнению

(P) rot β
(
ε−1 rot β H

)
− ε−1∞ gradβ (divβ H) = k2H.

Ясно, что с точки зрения аппроксимации уравнение (P) существенно
проще системы (PH). Эти утверждения основаны на следующей тео-
реме, доказанной в [94] (для удобства читателей мы приводим этапы
доказательства).

Теорема. Следующие утверждения эквивалентны:
(i) (E,H) есть нетривиальное решение (PEH) и E,H ∈ [L2(R

2)]3.
(ii) H есть нетривиальное решение (P) и H ∈ [H1(R2)]3.

Доказательство. Если имеет место (i), то имеет место так-
же (PH). Из вторых уравнений систем (PEH) и (PH) следует, что до-
полнительно к H ∈ [L2(R

2)]3 имеем также, что rot β H ∈ [L2(R
2)]3

и divβ H ∈ L2(R
2). Отсюда выводится, что H ∈ [H1(R2)]3. Ясно, что

если H — решение системы (PH), то H удовлетворяет также (P).
Обратно, пусть имеет место (ii). Положим ϕ = divβ H. Приме-

няя divβ к обеим частям (P), получим −ε−1∞ divβ(gradβ ϕ) = k2ϕ,
что равносильно уравнению −4ϕ + (β2 − k2ε∞)ϕ = 0 в R2. Так
как ϕ ∈ L2(R

2), то отсюда следует, что ϕ = 0, т. е. divβ H = 0 в R2.
¤

Из текста “доказательства” видно, что постоянную ε−1∞ в уравне-
нии (P) можно было бы заменить на произвольную положительную
постоянную. Выбор этой константы объясняется тем, что уравнение
(P) в области Ωe, в которой ε = ε∞, сводится к однородному уравне-
нию Гельмгольца

−∆H+ p2H = 0, p2 := β2 − k2ε∞,

поскольку (см. с. 20),

rotβ (rotβH) = −∆H+β2H+ gradβ (divβH) .
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Этот факт в дальнейшем будет играть важную роль.
Итак, исходную задачу о собственных волнах цилиндрических ди-

электрических волноводов сформулируем следующим образом.

Найти (β, k) ∈ Λ и ненулевые функции H ∈ [H1(R2)]3 такие,
что в R2 справедливо уравнение (P).

Вопросы разрешимости сформулированной нами задачи, а также
качественные свойства дисперсионных кривых впервые были иссле-
дованы в работе [94]. В ней задача естественным образом сводится к
спектральной задаче вида A(β)H = k2H в пространстве [H1(R2)]3. Бо-
лее точно, для каждого заданного β > 0 отыскиваются собственные
числа k2 = k2(β) и собственные функции H = H(β) оператора A(β).
Показывается, что A(β) — неограниченный, самосопряженный и по-
ложительно определенный оператор. Он порождается левой частью
уравнения (P) и квадратично зависит от параметра β. В работе [94]
доказано, что при произвольной ε, удовлетворяющей условиям, сфор-
мулированным на с. 122, свойства решений задачи качественно такие
же, как и для задачи о собственных волнах волновода кругового попе-
речного сечения с постоянной диэлектрической проницаемостью (эта
задача была подробно рассмотрена ранее на с. 31). А именно, при
любом β > 0 существует конечное число (не меньше двух) собствен-
ных чисел k2(β), образующих дискретный спектр A(β), и соответ-
ствующие им собственные подпространства функций H(β) конечной
размерности. Число решений возрастает с ростом β и стремится к бес-
конечности при β →∞. Кроме того, все числа k2 > β2/ε∞ образуют
непрерывный спектр оператора A(β). Функции β → k(β), называе-
мые дисперсионными кривыми, являются возрастающими, имеют ли-
нейную асимптотику, а именно, k(β)/β → ε

1/2
+ при β →∞. Значения

частот электромагнитных колебаний ω, при которых k2(β) = β2/ε∞,
называются критическими частотами, а соответствующие значения
волновых чисел k — точками отсечки. Благодаря монотонной зави-
симости k от β эти результаты легко интерпретировать в терминах
зависимости β от k (или от ω), более полезной с точки зрения прак-
тических приложений.

Эти результаты дают достаточно полное представление о каче-
ственных свойствах спектра собственных волн, однако для расчета
спектральных характеристик волноводов требуется привлечение со-
ответствующих численных методов (см. обзоры [53], [102]). Отметим
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две особенности рассматриваемых задач, которые являются суще-
ственными с точки зрения численных методов.

1. Исходная задача формулируется на всей плоскости R2. При
численном решении обычно необходимы те или иные дополнительные
меры по ограничению области интегрирования.

2. Исходная задача представляет собой параметрическую спек-
тральную задачу, которая, кроме конечного дискретного спектра,
имеет также полуограниченный непрерывный спектр, что характер-
но для задач в неограниченных областях. При численном решении
обычно необходимы дополнительные меры по отсеиванию “ложных”
приближенных решений, соответствующих непрерывной части спек-
тра (напомним, что его положение известно точно).

Одним из эффективных численных методов является метод ко-
нечных элементов (МКЭ), который активно применяется для числен-
ного анализа спектральных характеристик диэлектрических волново-
дов с 70-х годов прошлого столетия (см., например, обзорные статьи
[53], [102]). Его развитие во многом определяется разработкой новых
конечных элементов, а также методов, позволяющих свести задачу в
неограниченной области к новой задаче в ограниченной области. В
этих методах вводится искусственная граница Γ, разбивающая плос-
кость на две части: конечную расчетную область Ω, и неограниченную
область Ω∞. На Γ ставятся некоторые граничные условия, учитыва-
ющие поведение амплитуд собственных волн на бесконечности.

Краевые условия на искусственной границе Γ, предложенные к
началу 90-х годов прошлого столетия, являлись локальными и при-
ближенными (подробный обзор см. в статье [53]). Их основной недо-
статок с практической точки зрения заключался в том, что на ча-
стотах, близких к критическим, размер расчетной области Ω прихо-
дилось выбирать слишком большим. С начала 90-х годов получил
распространение иной подход, основанный на использовании точных
нелокальных условий, позволяющих эквивалентным образом свести
исходную задачу к задаче в ограниченной области Ω. Обзор результа-
тов, полученных на основе этого подхода, содержится в работе [102].
Точные условия на контуре Γ имеют вид LΓu + SΓu = 0, где LΓ —
дифференциальный оператор естественного краевого условия, а SΓ —
некоторый нелокальный (интегральный) оператор. Для построения
оператора SΓ в явном виде используются два метода: граничных ин-
тегральных уравнений и разделения переменных.
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Метод граничных интегральных уравнений оказывается эффек-
тивным в случае плоскопараллельной слоистой окружающей сре-
ды (функция ε∞ является кусочно-постоянной). Функция Грина для
уравнения Гельмгольца в этом случае хорошо известна, и на ее ос-
нове строится представление решения задачи в области Ω∞. Такой
подход комбинирования метода конечных элементов с методом инте-
гральных уравнений был использован в статье [103] для численного
решения задачи о собственных волнах слабонаправляющего диэлек-
трического волновода на подложке.

Для волновода в однородной окружающей среде более эффектив-
ным является метод разделения переменных. В связи с этим отметим
работу [126], в которой предполагалась переменной также магнитная
проницаемость µ волновода, а исходная задача формулировалась в
терминах поля E:

rotβ
(
µ−1 rot β E

)
= ω2ε0εE, divβ(εE) = 0.

На основе метода разделения переменных в ней сформулированы точ-
ные нелокальные краевые условия в случае круговой области Ω. В
итоге получается нелинейная спектральная задача относительно ω,
в операторной постановке имеющая вид A(β, ω)H = ω2BH. Здесь A
и B — самосопряженные операторы, действующие в гильбертовом
пространстве вектор-функций, удовлетворяющих, в частности, огра-
ничению divβ(εE) = 0. Для аппроксимации этой задачи указываются
специальные конечные элементы, а также приводится итерационный
метод решения конечномерной задачи.

Оператор SΓ = SΓ(p) точного нелокального краевого условия для
задачи (P) в явном виде был построен в работе [15] для круговой
области Ω, используя также метод разделения переменных (p — по-
перечное волновое число). В операторной постановке эквивалентная
задача в круге имеет вид A(β, k)H = k2BH, где A и B — самосо-
пряженные операторы в гильбертовом пространстве [H1(Ω)]3, причем
оператор B является компактным. Для аппроксимации этой задачи
можно использовать традиционные конечные элементы, однако для
решения соответствующих конечномерных задач, как и в [126], тре-
буются специальные итерационные методы, учитывающие нелиней-
ное вхождение спектрального параметра. Теория и практика таких
методов на сегодняшний день недостаточно разработаны, а эффек-
тивность имеющихся оставляет желать лучшего.
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В данном разделе мы развиваем подход, предложенный в статье
[22], и эквивалентным образом сводим исходную задачу (P) к линей-
ной обобщенной задаче на собственные значения относительно пер-
вых двух компонент H поля H вида A(p)H = β2B(p)H. Здесь A(p) —
ограниченный, а B(p) — компактный самосопряженные операторы в
гильбертовом пространстве [H1(Ω)]2, нелинейно зависящие от пара-
метра p (Ω — круг, p — поперечное волновое число). Для аппрокси-
мации этой задачи также можно использовать традиционные конеч-
ные элементы. Квадраты постоянных распространения собственных
волн (β2) мы получаем, решая задачу при p > 0, а квадраты точек
отсечки (β02) — при p = 0. По точкам отсечки β0 легко вычисляются
критические частоты ω0.

Поперечное волновое число широко используется в качестве одной
из спектральных характеристик диэлектрических волноводов (см.,
например, монографию [75] и обзорные статьи [9], [53]). Традицион-
но в инженерной и физической литературе изучается зависимость
волнового числа p от частоты электромагнитных колебаний ω (зная
эту зависимость, легко восстановить зависимость постоянной распро-
странения β от ω). Мы же предлагаем искать дисперсионные кривые
в параметрическом виде p→ (β(p), ω(p)). Благодаря тому, что конеч-
номерная задача вычисления функции p→ β2(p) является стандарт-
ной и для ее реализации имеются эффективные численные методы, в
итоге получаем экономичный метод вычисления дисперсионных кри-
вых и собственных волн.

Вкратце содержание настоящего раздела книги таково. Шестая
глава содержит абстрактные результаты, необходимые для исследо-
вания существования решений и оценок точности схем МКЭ, констру-
ируемых в седьмой и восьмой главах. Седьмая глава посвящена реше-
нию скалярной задачи, а восьмая — векторной задачи (P). Скалярная
задача рассматривается как модельная. Методика ее изучения позво-
ляет легко понять все элементы предлагаемого подхода и напрямую
обобщается на векторный случай. Обе задачи эквивалентным образом
сводятся к спектральным задачам для самосопряженных операторов
в круге Ω. Изучаются вопросы существования и свойства решений
полученных задач. Строятся их конечноэлементные аппроксимации
и получаются оценки точности. В девятой главе описываются резуль-
таты вычислительных экспериментов с целью практической оценки
точности предлагаемых методов.



Глава 6

ЗАДАЧИ НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ
И МЕТОД ГАЛЕРКИНА С ВОЗМУЩЕНИЯМИ

Здесь рассматриваются обобщенные задачи на собственные зна-
чения в гильбертовом пространстве и изучается метод Галеркина с
возмущениями для их приближенного решения. Этот метод широ-
ко и успешно используется в практике вычислений. Материал главы
является основой как исследований вопросов существования поверх-
ностных собственных волн цилиндрических диэлектрических волно-
водов, так и для анализа методов их приближенного определения,
рассматриваемых в следующих главах.

§ 1. Обобщенная задача на собственные значения

Пусть V — бесконечномерное вещественное гильбертово про-
странство с нормой ‖ · ‖ и скалярным произведением (·, ·); A, B —
ограниченные самосопряженные операторы в V . Рассмотрим задачу
на собственные значения: найти такие λ ∈ R и ненулевые u ∈ V ,
что

Au = λBu, (6.1)

или, на языке симметричных билинейных форм этих операторов,

(Pλ) a(u, v) = λb(u, v) ∀ v ∈ V .

Дополнительно будем предполагать, что оператор B является
компактным, размерность образа B равна бесконечности 1),

mA‖u‖2 6 a(u, u) 6MA‖u‖2, 0 6 b(u, u) 6MB‖u‖2, u ∈ V, (6.2)

где mA > 0. Кратко условия (6.2) будем записывать в виде 2)

mAI 6 A 6MAI, 0 6 B 6MBI.

1)Образ B := ImB := {f ∈ V : f = Bu, u ∈ V }.
2)I обозначает тождественный оператор в V . Оценки снизу в (6.2) означают,

что A — положительно определенный оператор, а B — неотрицательный.
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Отметим, что из условий на формы a и b следует, что

|a(u, v)| 6MA‖u‖ ‖v‖, |b(u, v)| 6MB‖u‖ ‖v‖, u, v ∈ V.

Пара (λ, u), u 6= 0, удовлетворяющая (Pλ), называется собствен-
ной парой; λ — собственным числом; u — собственным элементом,
соответствующим λ. Множество U(λ) := ker(A − λB), состоящее из
собственных элементов, соответствующих λ, называется собственным
подпространством, а его размерность (dimU(λ)) — кратностью λ 1).
В дальнейшем задачу вида (6.1), как это принято, будем понимать
как задачу нахождения пар (λ, U(λ)).

Нетрудно видеть, что элементы из kerB не могут быть собствен-
ными элементами, а собственные числа λ являются положительными.
Ясно также, что задача на собственные значения Bu = µAu или

(Pµ) b(u, v) = µa(u, v) ∀ v ∈ V, u 6= 0,

имеет собственное число µ = 0, которому соответствует собственное
подпространство kerB, причем пара (µ, u), µ > 0, является собствен-
ной парой задачи (Pµ) тогда и только тогда, когда (λ, u) — собствен-
ная пара (Pλ) и λ = 1/µ.

Задача (Pµ) равносильна задаче на собственные значения

Tu = µu, T := A−1B. (6.3)

Оператор T как произведение ограниченного и компактного опера-
торов является компактным. Кроме того, он является самосопряжен-
ным в гильбертовом пространстве VA 2). Из теории компактных опе-
раторов непосредственно следует (см., напр., [70, c. 245])

Теорема 6.23. Существует счетное множество положитель-
ных чисел λK, K = 1, 2, . . ., с единственной точкой накопления +∞,
образующих полный набор собственных чисел задачи (Pλ). Cоответ-
ствующие им собственные подпространства UK, K > 1, — конеч-

номерны, VA =
∞⊕
K=1

UK ⊕ kerB3).

1)kerA := ker a := {u ∈ V : a(u, u) = 0}.
2)Элементами VA являются элементы V , форма a определяет скалярное про-

изведение в нем. В силу (6.2) норма ‖ · ‖A := a1/2(·, ·) в VA эквивалентна норме V .
3)⊕ означает прямую сумму пространств. Если V = U⊕W , то U = V ªW = W⊥

есть ортогональное дополнение W .
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Пусть µK := 1/λK . Тогда (µK , UK), K > 1, — решения задачи (Pµ).
Введем другую нумерацию собственных чисел λK , K = 1, 2, . . .

(нумерацию по возрастанию с учетом кратности). А именно, прону-
меруем их по возрастанию,

0 < λ1 6 λ2 6 λ3 6 . . . ,

указывая каждое число λK в этом ряду столько раз, какова его крат-
ность. Известно следующее вариационное описание этих чисел (ми-
нимаксный принцип Куранта — Фишера):

1

λi
= µi = max

Vi⊂V
min

v∈Vi\{0}
R(v), i = 1, 2, . . . , R(v) :=

b(v, v)

a(v, v)
.

Здесь максимум берется по всем подпространствам V размерности i;
функционал R называется отношением Рэлея.

Далее будем считать, что rK есть кратность λK , а k означает
такой номер, соответствующий K, что

λK = λk, λk−1 < λk = λk+1 = . . . = λk+rK−1 < λk+rK
.

Соответственно, полагая µi = 1/λi, i = 1, 2, . . ., получим 1):

0 < . . . 6 µ3 6 µ2 6 µ1,

µK = µk, µk+rK
< µk+rK−1 = . . . = µk+1 = µk < µk−1. (6.4)

В каждом пространстве UK фиксируем некоторый ортонормирован-
ный в VA базис так, что (span означает линейную оболочку)

UK = span{uk, uk+1, . . . , uk+rK−1}. (6.5)

Тогда последовательности λi (или µi), i = 1, 2, . . ., будет поставлена в
соответствие ортонормированная в VA последовательность собствен-
ных элементов, образующих базис в VA ª kerB:

u1, u2, u3, . . . , a(ui, uj) = δij, b(ui, uj) = µiδij, i, j = 1, 2, . . .

Произвольный элемент v ∈ V представим в виде

v = v0 +
∞∑

i=1

ciui, v0 ∈ kerB, ci = a(v, ui).

1)В (6.4) нужно опустить правое неравенство при k = 1, как и левое — в (6.23).
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Отметим, что a(v0, ui) = λib(v0, ui) = 0 для всех i > 1. Кроме того,

a(v, v) = c20 +
∞∑

i=1

c2i , b(v, v) =
∞∑

i=1

µic
2
i , c20 = a(v0, v0).

§ 2. Метод Галеркина с возмущениями

1. Описание метода. Пусть h ∈ R+ — малый параметр,
а {Vh}h — предельно плотная последовательность конечномерных
подпространств V , т. е.

(H1) Vh ⊆ V ; ∀u ∈ V : inf
vh∈Vh

‖u− vh‖ → 0 при h→ 0. 1)

Введем симметричные билинейные формы ah и bh, являющиеся воз-
мущениями (аппроксимациями) форм a и b на Vh×Vh. Будем считать,
что для любого v ∈ Vh справедливы оценки

(H2) ma‖v‖2 6 ah(v, v) 6Ma‖v‖2, 0 6 bh(v, v) 6Mb‖v‖2,
где постоянные ma, Ma и Mb не зависят от h, ma > 0.

Рассмотрим аппроксимацию задачи (Pµ) методом Галеркина с
возмущениями: найти (µh, y) ∈ R× Vh \ {0} такие, что

(P h
µ ) bh(y, v) = µhah(y, v) ∀ v ∈ Vh.
Пусть h фиксировано, Nh есть размерность пространства Vh, a

элементы ϕ1, ϕ2, . . ., ϕNh
определяют в нем базис. Тогда задача (P h

µ )
эквивалентна алгебраической задаче на собственные значения

Bhx = µhAhx, 0 6= x ∈ RNh. (6.6)

Здесь x есть вектор коэффициентов разложения y по указанному ба-
зису, а симметричные матрицы Ah и Bh имеют следующие элементы:

aij := ah(ϕi, ϕj), bij := bh(ϕi, ϕj), i, j = 1, 2, . . . , Nh.

1)В теории аппроксимации, как правило, вместо малого параметра h исполь-
зуется “большой” параметр n, указывающий на размерность подпространства.
Параметр h общепринят в теории МКЭ и обозначает максимальный размер ко-
нечных элементов. Использование h вместо n существенно облегчит нам даль-
нейшие ссылки.
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Из условий (H2) следует, что Ah является положительно определен-
ной матрицей, а Bh — неотрицательно определенной. Ясно, что за-
дача (6.6) имеет нулевое собственное число кратности dim (kerBh) и,
скажем, nh положительных собственных чисел µhK , суммарной крат-
ности, равной N b

h := Nh − dim (kerBh), nh 6 N b
h

1). Как и в исходной
задаче (Pµ) занумеруем положительные собственные числа в убыва-
ющем порядке с учетом кратности:

0 < µhN b
h
6 . . . 6 µh2 6 µh1 .

Поставим им в соответствие собственные элементы

yN b
h
, . . . , y2, y1, ah(yi, yj) = δij, i, j = 1, 2, . . . , N b

h.

Тогда любой элемент vh ∈ Vh представим в виде

vh = y0 +

N b
h∑

i=1

ciyi, y0 ∈ kerBh, ci = ah(vh, yi). (6.7)

Отметим, что ah(y0, yi) = 0, 1 6 i 6 N b
h. Кроме того,

ah(vh, vh) = c20 +

N b
h∑

i=1

c2i , bh(vh, vh) =

N b
h∑

i=1

µhi c
2
i , c20 = ah(y0, y0). (6.8)

Аппроксимацию собственного подпространства UK , K > 1, за-
дачи (Pµ), соответствующего собственному числу µK кратности rK ,
определим следующим образом (см. (6.5)):

UK
h := span(yk, yk+1, . . . , yk+rK−1),

а числа µhk+rK−1 , . . . , µ
h
k+1, µ

h
k будем рассматривать как приближе-

ния собственного числа µK . Здесь k связано с K согласно (6.4).
Прежде чем перейти к рассмотрению вопросов, касающихся схо-

димости и точности описанных приближений, определим способ из-
мерения близости собственных подпространств UK и UK

h посредством
величины, называемой раствором между подпространствами. Дадим
его определение.

1)Далее мы наложим дополнительные ограничения на формы ah и bh (см. усло-
вие (H3)). В этом случае N b

h →∞ при h→ 0.
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Пусть H — гильбертово пространство с нормой ‖·‖H и скалярным
произведением (·, ·)H , U — его подпространство. Оператор P называ-
ется ортопроектором в H на U , если Pu есть такой элемент U , что

‖u− Pu‖H := inf
v∈U
‖u− v‖H , u ∈ H,

или, эквивалентно,

(u− Pu, v)H = 0 ∀ v ∈ U, u ∈ H.

Ясно, что P является линейным оператором и ‖Pu‖H 6 ‖u‖H .
Пусть теперь U и Uh — конечномерные подпространства H оди-

наковой размерности. Раствор между ними определяется следующим
образом (см., напр., [56, с. 195]):

ΘH(U,Uh) := max
u∈U,‖u‖H=1

‖u− Phu‖H := max
y∈Uh,‖y‖H=1

‖y − Py‖H ,

где P и Ph — ортопроекторы в H на U и Uh, соответственно.
Имеют место равенства

min
u∈U,‖u‖H=1

‖Phu‖2H = min
y∈Uh,‖y‖H=1

‖Py‖2H = 1−Θ2
H(U,Uh). (6.9)

Отметим, что из оценки ΘV (U
K , UK

h ) 6 ε следует, что для любого
элемента y ∈ UK

h , ‖y‖ = 1, найдется такой u ∈ UK , что ‖y − u‖ 6 ε.
Ясно также, что

c−1ΘV (U
K , UK

h ) 6 ΘVA
(UK , UK

h ) 6 cΘV (U
K , UK

h )

при c = (MA/mA)
1/2. Для заданных форм d и dh положим

Ed(ϕh) := sup
vh∈Vh,‖vh‖=1

|d(ϕh, vh)− dh(ϕh, vh)|, ϕh ∈ Vh.

Следующие величины характеризуют максимально возможные воз-
мущения форм a и b, соответственно:

sup
v∈Vh, ‖v‖=1

Ea(v), sup
v∈Vh, ‖v‖=1

Eb(v).

Далее нам понадобится также функционал

Eab(v) := Ea(v) + Eb(v), v ∈ Vh.
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2. Сходимость и точность метода. В контексте предыду-
щих определений введем дополнительные обозначения. Во-первых,
отметим, что оператор T : V → V в (6.3) на языке билинейных форм
определяется так, что Tf есть решение уравнения

a(Tf, v) = b(f, v) ∀ v ∈ V.

Аналогично введем оператор Th:

Th : Vh → Vh, ah(Thfh, v) = bh(fh, v) ∀ v ∈ Vh.

Приближенная задача (P h
µ ) теперь может быть записана в виде

Thy = µhy. (6.10)

Введем также оператор T h : Vh → Vh так, что

a(T hfh, v) = b(fh, v) ∀ v ∈ Vh.

Легко видеть, что T h = PhT , где Ph — ортопроектор в VA на Vh.
Дискретная задача: найти (µh, y) ∈ R× Vh \ {0} такие, что

T hy = µhy, (6.11)

определяет метод Галеркина для задачи (6.3).
Изучению сходимости и оценкам точности метода Галеркина и

метода Галеркина с возмущениями посвящено множество работ. В
первую очередь, отметим здесь результаты, представленные в мо-
нографиях [56], [34], относящиеся к 60-м годам прошлого века (см.
также цитированную там литературу). В них изучается близость ре-
шений задач (6.10), (6.11) к решениям (6.3) в общей ситуации, когда
оператор T — произвольный компактный оператор, действующий в
банаховом пространстве. Получены следующие условия:

‖T − PhT‖ → 0, ‖Th − T h‖ → 0 при h→ 0, (6.12)

которые являются достаточными для сходимости µhk → µk при h→ 0
и k = 1, 2, . . . (см., напр., [56, c. 257–261]) 1). Кроме того, при есте-
ственном предположении о малости h (т. е. при h меньших некоторого

1)Из условий (6.12) следует, что ‖T − Th‖ → 0 при h → 0. Поэтому имеет
место предел N b

h := dimVh − dim(kerBh) = dim(ImTh) → ∞ при h → 0, так
как dim(ImT ) =∞.
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фиксированного h0) получены оценки, которые в наших обозначениях
имеют вид 1):

|µk − µhk| 6 ck (ε
2
h + ‖Th − T h‖), k = 1, 2, . . . , (6.13)

ΘV (U
K , UK

h ) 6 cK (εh + ‖Th − T h‖), K = 1, 2, . . . (6.14)

Здесь величина
εh := max

u∈UK , ‖u‖=1
‖u− Phu‖

характеризует погрешность приближения собственных элементов
элементами из Vh. Оценка величины εh является стандартной зада-
чей в теории проекционных методов (в частности, в теории метода
конечных элементов). Отметим, что оценка (6.13) используется при
доказательстве (6.14).

Обсудим условия (6.12). Из эквивалентности норм в VA и V сле-
дует, что проектор Ph ограничен в V и для любого u ∈ V

‖(I − Ph)u‖ = ‖u− Phu‖ 6 c inf
vh∈Vh

‖u− vh‖ → 0 при h→ 0

в силу условия (H1). Поэтому ‖T−PhT‖ = ‖(I−Ph)T‖ → 0 при h→ 0
(см., напр., [56, лемма 15.4, с. 202]). Таким образом, первое условие в
(6.12) выполняется, если справедливо предположение (H1).

Малость величины ‖Th − T h‖ зависит от малости возмущения
форм a и b. Действительно, поскольку для любых f, v ∈ Vh имеет
место представление

ah(T
hf − Thf, v) =

= [a(T hf, v)− ah(Thf, v)] + [ah(T
hf, v)− a(T hf, v)] =

= [b(f, v)− bh(f, v)] + [ah(T
hf, v)− a(T hf, v)],

а T h = PhT , то |ah(T hf−Thf, v)| 6 (Eb(f)+Ea(PhTf))‖v‖. Полагая
здесь v = T hf − Thf и учитывая условия (H2), получим

‖T h − Th‖ 6 c sup
f∈Vh, ‖f‖=1

(Eb(f) + Ea(PhTf)).

Таким образом, условий (H1), (H2) и условия

1)Здесь и далее буквой c, возможно с индексом, обозначаются различные по-
ложительные постоянные, не зависящие от h.
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(H3) sup
f∈Vh, ‖f‖=1

(Eb(f) + Ea(PhTf))→ 0 при h→ 0

достаточны для сходимости µhk → µk при h→ 0, k = 1, 2, . . .
Оценки (6.13), (6.14) являются неулучшаемыми для метода Га-

леркина (в этом случае Th = T h), но не всегда являются таковыми
для метода Галеркина с возмущениями. Дело здесь в том, что по-
грешность возмущений в этих оценках оценивается на самом “плохом”
элементе Vh.

Уточнениям и упрощениям доказательств отмеченных выше оце-
нок было посвящено множество работ (см., напр., [106], [150], [157],
[112], [113], [108], [91], [95], [143], [158], [76]). Особо выделим среди
них работы Дж. Осборна (J. Osborn) и его коллег. В разработанной
ими методике сначала оценивается точность собственных элементов,
а лишь затем — собственных чисел. Например, в [150] были получе-
ны абстрактные оценки точности, приводящие к оптимальным оцен-
кам спектральных аппроксимаций задач на собственные значения для
дифференциальных или интегральных операторов (не обязательно
самосопряженных). В [95] получены аналогичные оценки, приводя-
щие к оптимальным оценкам, в частности, в методе конечных элемен-
тов с численным интегрированием. Например, там получена оценка
(ср. с (6.14))

ΘV (U
K , UK

h ) 6 cK (εh + ‖(Th − T h)|UKh
‖), (6.15)

где (Th−T h)|UKh
есть сужение оператора Th−T h на UKh — собственное

подпространство в методе Галеркина (без возмущений), определяемое
аналогично UK

h .
На наш взгляд, наиболее естественные и удобные для применения

в разнообразных приложениях оценки точности метода Галеркина с
возмущениями получены в [76], [77], [78] (для самосопряженных поло-
жительно определенных операторов A и B в гильбертовом простран-
стве). В этих работах доказан следующий аналог оценки (6.15):

ΘV (U
K , UK

h ) 6 cK (εh + max
u∈UK ,‖u‖=1

Eab(Phu)).

Ниже мы получим обобщение этих результатов на случай неотрица-
тельно определенного оператора B.
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3. Оценки точности. Исследуем близость решений задач (Pµ)
и (P h

µ ). Пусть (µK , UK) — решение задачи (Pµ), rK — кратность µK

при K > 1. Пусть далее µhk+rK−1, . . . , µ
h
k+1, µ

h
k и UK

h — их аппрокси-
мации, определенные выше в п. 1. Положим

εh(u) := inf
vh∈Vh

‖u− vh‖+ Eab(Phu), u ∈ V,

Σh(y) := |a(y, y)− ah(y, y)|+ |b(y, y)− bh(y, y)|, y ∈ Vh,

через Ph обозначим ортопроектор в VA на Vh. По определению

a(u− Phu, v) = 0 ∀ v ∈ Vh, u ∈ V.

Из условия (6.2) следует, что

‖u− Phu‖ 6 c inf
v∈Vh

‖u− v‖ 6 c εh(u), c = (MA/mA)
1/2.

Будем предполагать, что выполнены условия (H1)–(H3). Как было
показано выше, эти условия обеспечивают сходимость приближенных
собственных чисел: µhk → µk при h→ 0, k = 1, 2, . . .

Теорема 6.24. Пусть выполнены условия (H1)–(H3). Тогда при
достаточно малых h справедлива оценка

ΘV (U
K , UK

h ) 6 cK max
u∈UK , ‖u‖=1

εh(u), K > 1.

Здесь постоянная cK зависит от µK, но не зависит от h.

Доказательство. Пусть u ∈ UK — собственный элемент. По-
ложим y := Phu и разложим y по системе {yi} (см. (6.7)). Имеем

y = y0 +

N b
h∑

i=1

ciyi =: vh +Qhu+ wh,

vh := y0 +

N b
h∑

i=k+rK

ciyi, Qhu :=

k+rK−1∑

i=k

ciyi ∈ UK
h , wh :=

k−1∑

i=1

ciyi.

Рассмотрим величину

σh(y) := sup
ηh∈Vh,‖ηh‖=1

|bh(y, ηh)− µkah(y, ηh)|.
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Так как a(y, ηh) = a(Phu, ηh) = a(u, ηh) = 1/µKb(u, ηh), то

bh(y, ηh)− µKah(y, ηh) =

= [bh(y, ηh)− b(y, ηh)] + µK [a(y, ηh)− ah(y, ηh)] + b(y − u, ηh).

Отсюда при c := max{1, µK ,MB} имеем

σh(y) 6 c
(
Eab(y) + ‖u− Phu‖

)
= c εh(u).

Докажем, что справедливы оценки

‖vh‖ 6 cK σh(y), ‖wh‖ 6 cK σh(y). (6.16)

Тогда ‖Phu−Qhu‖ = ‖vh + wh‖ 6 cKσh(y) 6 cK εh(u),

ΘV (U
K , UK

h ) 6 max
u∈UK , ‖u‖=1

‖u−Qhu‖ 6 max
u∈UK , ‖u‖=1

(
‖u− Phu‖+

+ ‖Phu−Qhu‖
)
6 cK max

u∈UK , ‖u‖=1
εh(u),

т. е. утверждение теоремы будет доказано.
Получим сначала первую оценку в (6.16). Пусть ρK характеризует

отделенность собственного числа µK , т. е.

ρK := max
µi:µi 6=µk

|µk − µi|−1.

Поскольку µhk → µk при h→ 0, то для достаточно малых h имеем

µk − µhk+rK
> c (µk − µk+rK

), µhk−1 − µk > c (µk−1 − µk) (6.17)

с некоторой постоянной c ∈ (0, 1). Так как система {yi} является ah-
ортогональной, то из определения vh и (6.8) вытекает, что

ah(y, vh) = ah(vh, vh), bh(y, vh) = bh(vh, vh),
bh(vh, vh) 6 µhk+rK

ah(vh, vh).
(6.18)

Из (6.18), (6.17) и (H2) имеем

− bh(y, vh) + µKah(y, vh) =

= −bh(vh, vh) + µkah(vh, vh) > (µk − µhk+rK
)ah(vh, vh) >

> cma(µk − µk+rK
)‖vh‖2 > cmaρ

−1
K ‖vh‖2.
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Отсюда следует первая оценка в (6.16).
Докажем вторую оценку в (6.16). Аналогично (6.18) имеем

ah(y, wh) = ah(wh, wh), bh(y, wh) = bh(wh, wh),

bh(wh, wh) > µhk−1ah(wh, wh).

Таким образом,

bh(y, wh)− µkah(y, wh) = bh(wh, wh)− µkah(wh, wh) >

> (µhk−1 − µk)ah(wh, wh) > cmaρ
−1
K ‖wh‖2. ¤

Теорема 6.25. Пусть выполнены условия (H1)–(H3) и

max
u∈UK , ‖u‖=1

εh(u)→ 0, h→ 0.

Тогда при достаточно малых h справедлива оценка

|µK − µhi | 6 cK max
u∈UK ,‖u‖=1

(
ε2h(u) + Σh(Phu)

)
, i = k, . . . , k + rK − 1,

где K > 1, постоянная cK зависит от µK, но не зависит от h.

Доказательство. Непосредственно проверяется, что для лю-
бых u ∈ UK , y ∈ Vh имеет место следующее равенство (µi = µK

при i = k, . . . , k + rK − 1):

(µhi − µK)ah(y, yi) = b(y − u, yi − u)− µia(y − u, yi − u)+

+ [bh(y, y)− b(y, y)]− µi[ah(y, y)− a(y, y)]+

+ [bh(y, yi − y)− b(y, yi − y)]− µi[ah(y, yi − y)− a(y, yi − y)],

где yi — собственный элемент, соответствующий µhi , ‖yi‖A = 1. По-
этому

|µK−µhi ||ah(y, yi)| 6 cK
(
‖y−u‖‖yi−u‖+Σh(y)+Eab(y)‖yi− y‖

)
6

6 cK
(
‖y − u‖‖yi − u‖+ Σh(y) + Eab(y)(‖yi − u‖+ ‖y − u‖)

)
.

Выберем здесь u = PKyi (PK — ортопроектор в VA на UK), поло-
жим y = Phu и учтем, что

‖y − u‖ := ‖Phu− u‖ 6 c εh(u), Eab(y) 6 εh(u),
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‖yi − u‖ 6 c ‖yi − u‖A 6 c sup
y∈UK

h , ‖y‖A=1

‖y − PKy‖A =:

=: cΘVA
(UK , UK

h ) 6 cΘV (U
K , UK

h ) 6 cK max
u∈UK ,‖u‖=1

εh(u).

В результате будем иметь

|µK − µhi | |ah(Phu, yi)| 6 cK max
u∈UK ,‖u‖=1

(
ε2h(u) + Σh(Phu)

)
.

Из этой оценки будет следовать утверждение теоремы, если будет
показано, что

ah(Phu, yi) > c = const > 0. (6.19)

Докажем (6.19). Пусть ψh := ah(Phu, yi)− a(Phu, yi). Поскольку

‖PKyi‖A 6 ‖yi‖A := 1,

|ψh| 6 cEa(Phu)‖yi‖A 6 cEab(Phu) 6 c εh(u),

то

ah(Phu, yi) = a(Phu, yi) + ψh = a(u, yi) + ψh = a(u, PKyi) + ψh =

= ‖PKyi‖2A + ψh > 1−Θ2
VA
(UK , UK

h )− c εh(u) > 1− cK εh(u).

Здесь мы воспользовались свойством ортопроектора (6.9). Отсюда
следует (6.19) при достаточно малом h. ¤

§ 3. Параметрическая задача на собственные значения

Задачи, которые мы будем изучать в последующих двух главах,
могут быть сформулированы в следующем общем виде.

Пусть R+ := {x ∈ R : x > 0} и задано семейство самосопряжен-
ных ограниченных операторов A(p) и B(p), p ∈ R+

1), действующих
в вещественном бесконечномерном гильбертовом пространстве V с
нормой ‖ · ‖ и скалярным произведением (·, ·). При заданном p ∈ R+

требуется найти такие λ ∈ R и ненулевые u ∈ V , что

(P) A(p)u = λB(p)u,

1)Или, равносильно, самосопряженные оператор-функции p→ A(p) и p→ B(p)
на R+
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или, на языке симметричных билинейных форм, порождаемых этими
операторами,

a(p, u, v) = λb(p, u, v) ∀ v ∈ V.
В данном параграфе нас будут интересовать ответы на следующие
вопросы:

(i) сколько решений (λ, u) имеет задача при заданном p и как соб-
ственные числа λ зависят от p ?

(ii) сколько имеется решений (λ, u) c заданным λ при различных зна-
чениях параметра p ?

Мы исследуем эти вопросы для таких классов операторов, которые
возникают в приложениях, рассматриваемых в следующих главах.

В связи с этим напомним некоторые определения. Говорят, что
самосопряженная оператор-функция p→ C(p), p ∈ R+, является
(a) непрерывной на R+, если ‖C(p)− C(p̄)‖ → 0 при p̄→ p ∈ R+ ;
(b) локально липшиц-непрерывной на R+, если для любого замкну-
того отрезка ω ⊂ R+ найдется такая постоянная LC(ω), что 1)

‖C(p)− C(p̄)‖ 6 LC(ω)|p− p̄ |, p, p̄ ∈ ω ;

(c) дифференцируемой на R+, если существует такая самосопряжен-
ная оператор-функция p→ C ′(p), определенная на R+, что

∥∥∥∥
1

p− p̄

(
C(p)− C(p̄)

)
− C ′(p)

∥∥∥∥→ 0 при p̄→ p ∈ R+ ;

(d) аналитической на R+, если в некоторой окрестности произвольной
точки p0 ∈ R+ она представляется сходящимся рядом

C(p) =
∞∑

n=0

Cn(p0) (p− p0)
n ,

имеющим ненулевой радиус сходимости, где Cn — самосопряженные
операторы;
(e) возрастающей (убывающей, неубывающей, невозрастающей), ес-
ли функция p → c(p, u, u) является возрастающей (убывающей,
неубывающей, невозрастающей) при каждом фиксированном u ∈ V .
Здесь c(p, u, u) := (C(p)u, u) — билинейная форма оператора C(p).

1)Если LC(ω) не зависит от ω, то C(p) является липшиц-непрерывной.
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Отметим также, что

‖C(p)‖ = sup
u∈V

|c(p, u, u)|
‖u‖2 = sup

u∈V, ‖u‖=1

|c(p, u, u)| .

Ясно, что дифференцируемая оператор-функция является локально
липшиц-непрерывной и, тем более, непрерывной. Далее, если функ-
ция p → c(p, u, u) является дифференцируемой при каждом фикси-
рованном u ∈ V и

∣∣∣∣
d

dp
c(p, u, u)

∣∣∣∣ 6M(p)‖u‖2,

где M — локально ограниченная функция 1), то C(p) является диф-
ференцируемой и

(C ′(p)u, u) =
d

dp
c(p, u, u) ∀u ∈ V.

Определение 6.14. Оператор-функции со свойствами a) и b)
отнесем к множеству L(R+, V ). ¤

Определим класс рассматриваемых задач. Будем считать, что:

A1) 0 6 A(p) 6 MA(p)I, 0 6 B(p) 6 MBI при p ∈ R+, где MA —
локально ограниченная функция;

A2) r0 := dim(kerA(0)) ∈ [1,∞). При каждом p ∈ R+: B(p) — ком-
пактный оператор, kerB(p) = kerB(0), dim(ImB(p)) =∞;

A3) A(p) +B(p) > mABI при p ∈ R+, mAB > 0;

A4) отнoшение Рэлея R(p, u) := a(p, u, u)/b(p, u, u) возрастает по
p ∈ R+ при фиксированном u ∈ Ṽ , где Ṽ есть ортогональное
дополнение kerB(0) до пространства VA(p)+B(p);

A5) оператор-функцииA(p) иB(p) принадлежат множеству L(R+, V ).

Отметим, что независимость величин MB и mAB от p не является
для дальнейшего существенным.

Изучим по отдельности вопросы (i) и (ii), поставленные выше.

1)Ограниченная на каждом компакте из R+.
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1. Bопросы (i). На часть вопросов отвечает

Теорема 6.26. При каждом p ∈ R+ существует счетное мно-
жество чисел λK(p), K > 1, с единственной точкой накопле-
ния +∞, образующих полный набор собственных чисел задачи (P).
Cоответствующие им собственные подпространства UK(p) конеч-

номерны при K > 1, VA(p)+B(p) =
∞⊕
k=1

UK(p)⊕ kerB(0). Кроме того,

λ1(0) := min
K>1

λK(0) = 0, dimU 1(0) = r0.

Доказательство. Задача (P) при фиксированном p является
обобщенной задачей на собственные значения. Преобразуем ее к виду

Ã(p)u = λ̃B(p)u, u ∈ V \ {0}. (6.20)

Здесь Ã(p) := A(p) +B(p), λ̃ := λ+ 1. Нетрудно видеть, что

mABI 6 Ã(p) 6 M̃A(p)I, M̃A(p) :=MA(p) +MB.

При фиксированном p задача (6.20) была рассмотрена нами ранее.
Существование пар

(
λK(p), UK(p)

)
непосредственно следует из тео-

ремы 6.23. Заключительные утверждения являются очевидными, так
как kerA(0) ∩ kerB(0) = {0} (см. A3). ¤

Следствие 6.1. Задача (P) эквивалентна задаче нахождения

при каждом p ∈ R+ таких чисел λ ∈ R+ и ненулевых u ∈ Ṽ , что

a(p, u, v) = λb(p, u, v) ∀ v ∈ Ṽ . ¤

Рассмотрим зависимость собственных чисел от параметра p. Для
этого при K = 1, 2, . . . на плоскости с осями (p, λ) при каждом p ∈ R+

отметим точки (p, λK(p)). Совокупность этих точек при фиксирован-
ном K образует на плоскости некоторую кривую (см. далее теоре-
му 6.27), которую принято называть дисперсионной. Каждой точке
такой кривой, например (p, λK(p)), соответствует собственное подпро-
странство UK(p), размерность которого (кратность λK(p)) обозначим
через rK(p).

Чтобы изучить свойства дисперсионных кривых, нам будет удоб-
но использовать нумерацию чисел λK(p) с учетом кратности. А имен-
но, пронумеруем их по возрастанию,

0 6 λ1(p) 6 λ2(p) 6 λ3(p) 6 . . . , λn(p)→∞ при n→∞,
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указывая каждое число λK(p) в этом ряду столько раз, какова его
кратность. Ясно, что функции λi = λi(p), p ∈ R+, i > 1, в совокупно-
сти полностью определяют дисперсионные кривые.

Как и в предыдущем параграфе, номеру K числа λK(p) поставим
в соответствие целое k по правилу: λk(p) = λK(p),

λk−1(p) < λk(p) = . . . = λk+rK(p)−1(p) < λk+rK(p)(p), (6.21)

а в каждом пространстве UK(p) фиксируем некоторый ортонормиро-
ванный в VA(p)+B(p) базис так, что

UK(p) = span{uk(p), uk+1(p), . . . , uk+rK(p)−1(p)}. (6.22)

Тогда при каждом p ∈ R+ последовательности λi(p), i = 1, 2, . . .,
будет поставлена в соответствие (неоднозначно) последовательность
собственных элементов ui(p).

Теорема 6.27. При каждом i > 1 функция p→ λi(p)
a) является неотрицательной и возрастающей;
b) непрерывна в нуле, локально липшиц-непрерывна на R+.
Кроме того, λi(p)↘ +0 при p→ +0, i = 1, . . . , r0; λr0+1(0) > 0.

Доказательство. При каждом p ∈ R+ и всех i > 1 чис-
ла λi(p)+1 являются собственными числами задачи (6.20). Учитывая
следствие 6.1 и используя минимаксный принцип Куранта — Фишера,
получим

1

λi(p) + 1
= max

Vi⊂Ṽ
min

v∈Vi\{0}
R̃(p, v), (6.23)

где максимум берется по всем подпространствам Ṽ размерности i,

R̃(p, v) :=
b(p, v, v)

a(p, v, v) + b(p, v, v)
=

1

a(p, v, v)/b(p, v, v) + 1
.

Из условия A4 заключаем, что R̃(p, v) убывает по p при фиксирован-
ном v ∈ Ṽ ; поэтому утверждение a) следует из (6.23).

Пусть p, p̄ ∈ R+, a(p) = a(p, v, v), b(p) = b(p, v, v). Имеем

R(p, v)−R(p̄, v) =
(b(p)− b(p̄))a(p̄) + (a(p̄)− a(p))b(p̄)

(a(p) + b(p))(a(p̄) + b(p̄))
.
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Рис. 13. На левом рисунке изображена часть плоскости (p, λ) и гладкие дисперси-
онные кривые, занумерованные по возрастанию с учетом кратности. В точках 0
и B рождаются по две кривых кратности 1, в D — одна кривая кратности 3; в
точке A кривые пересекаются, в C — расщепляются. На правом рисунке исполь-
зована другая нумерация этих же кривых (также с учетом кратности).

Отсюда легко выводится оценка |R(p, v)−R(p̄, v)| = ε(p, p̄), где

ε(p, p̄) := c(p̄)
(
‖A(p)− A(p̄)‖+ ‖B(p)−B(p̄)‖

)
,

c(p̄) := m−2
AB

(
MA(p̄) +MB

)
.

Таким образом, R(p, v)− ε(p, p̄) 6 R(p̄, v) 6 R(p, v) + ε(p, p̄); поэтому
из принципа Куранта — Фишера имеем

λi(p)− ε(p, p̄) 6 λi(p̄) 6 λi(p) + ε(p, p̄),

или |λi(p) − λi(p̄)| 6 ε(p, p̄). Отсюда следуют требуемые утвержде-
ния b), поскольку при p̄ = 0 имеем (см. условие A5):

ε(p, 0) = c(0)
(
‖A(p)− A(0)‖+ ‖B(p)−B(0)‖

)
→ 0 при p→ 0,

а для всех p, p̄ ∈ ω := [ω1, ω2] ⊂ R+,

ε(p, p̄) 6 cω
(
LA(ω) + LB(ω)

)
|p− p̄ |,

где cω есть верхняя грань c(p) на ω.
Наконец, число λ1(0) = 0 имеет кратность r0 (см. теорему 6.26).

Поэтому λi(0) = 0, i 6 r0, и заключительное утверждение теоремы
следует из монотонности и непрерывности функций λi в нуле. ¤

Замечание 6.1. Утверждение о локальной липшицевости функций λi(p)
не может быть усилено, даже если дисперсионные кривые являются бесконечно
дифференцируемыми. Нетрудно видеть, что это связано с возможным пересече-
нием кривых (см. левый рис. 13; функция λ3(p) не имеет производной в точке,
соответствующей точке A).
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2. Bопросы (ii). Посмотрим на задачу (P) с другой точки зре-
ния. Будем считать неотрицательное λ фиксированным и искать та-
кие (p, u) ∈ R+ × V \ {0}, что

A(p)u = λB(p)u.

Эта задача существенно сложнее, чем (P), поскольку она представ-
ляет собой нелинейную (относительно p) задачу на собственные зна-
чения. Тем не менее, благодаря монотонной зависимости отношения
Рэлея от p оказывается возможным дать конструктивный ответ на
вопрос (ii). C этой целью рассмотрим “линейную” задачу

A(0)u = λ0B(0)u, u ∈ V \ {0}. (6.24)

Эта задача на собственные значения была изучена нами выше. Она
имеет счетное множество неотрицательных собственных чисел λ0K ,
которые пронумеруем по возрастанию с учетом кратности:

0 = λ01 = λ02 = . . . = λ0r0 < λ0r0+1 6 λ0r0+2 6 . . . , λ0n →∞ при n→∞.

Числа λ0i , i > 1 будем называть критическими, а на задачу (6.24)
будем ссылаться как на задачу определения критических чисел.

Определим на полуоси R+ ступенчатую функцию, непрерывную
слева, неубывающую и принимающую целые значения:

n(x) := max{i : λ0i 6 x, i = 1, 2, . . .}.
Отметим, что точками разрыва этой функции являются числа λ0K ,
на множестве [0, λ0r0+1) ее значения равны r0.

Теорема 6.28. При каждом λ ∈ R+ существует в точно-
сти n(λ) таких неотрицательных чисел pi(λ) (необязательно раз-
личных) и соответствующих им элементов ui(λ) (одинаковым pi
соответствуют линейно-независимые ui), что (λ, ui(λ)) есть ре-
шение задачи (P) при p = pi(λ).

Доказательство. Пусть задано неотрицательное число λ,
а (λi(p), ui(p)), i = 1, 2, . . . — решения задачи (P). Поскольку функ-
ции p→ λi(p) возрастают, то алгебраическое уравнение

λi(p) = λ

при фиксированном i > 1 либо имеет одно решение pi = pi(λ) (ес-
ли λi(0) 6 λ), либо не имеет решения. Из определения функции n(x)
следует, что в точности n(λ) таких уравнений имеют решение. ¤
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§ 4. Метод Галеркина с возмущениями для
параметрической задачи

1. Дискретная задача. Пусть, как и в § 2, {Vh}h — предельно
плотная последовательность конечномерных подпространств V , сим-
метричные билинейные формы ah(p, ·, ·) и bh(p, ·, ·) есть возмущения
(аппроксимации) форм a(p, ·, ·) и b(p, ·, ·) на Vh×Vh при фиксирован-
ных h и p. Рассмотрим аппроксимацию задачи (P) методом Галер-
кина с возмущениями: при каждом p ∈ R+ найти такие λh ∈ R и
ненулевые y ∈ Vh, что

(Ph) ah(p, y, v) = λhbh(p, y, v) ∀ v ∈ Vh.
Пусть h и p фиксированы, Nh есть размерность пространства Vh,

a элементы ϕ1, ϕ2, . . ., ϕNh
определяют в нем базис. Тогда задача (Ph)

сводится к алгебраической задаче на собственные значения

Ah(p)x = λhBh(p)x, 0 6= x ∈ RNh.

Здесь x есть вектор коэффициентов разложения y по указанному ба-
зису, симметричные матрицы Ah(p) и Bh(p) имеют элементы

aij(p) := ah(p, ϕi, ϕj), bij(p) := bh(p, ϕi, ϕj), i, j = 1, 2, . . . , Nh.

Будем говорить, что вектор x соответствует элементу y, а матри-
ца Ah(p) (Bh(p)) порождается формой ah (bh).

Определение 6.15. Матричная функция p→ Ch(p), p > 0,
(a) является непрерывной в нуле, если

‖Ch(p)− Ch(0)‖ → 0 при p→ +0;

(b) является локально липшиц-непрерывной на R+, если для любого
замкнутого отрезка ω ⊂ R+ найдется такая постоянная Lc(ω), что

‖Ch(p)− Ch(p̄)‖ 6 Lc(ω)|p− p̄ |, p, p̄ ∈ ω, u ∈ Vh.

Симметричные матричные функции со свойствами (a) и (b) отнесем
к множеству L(R+, Vh).

Наложим следующие ограничения на формы ah и bh:

Ah
1) |ah(p, u, u)| 6 Ma(p)‖u‖21,Ω, 0 6 bh(p, u, u) 6 Mb‖u‖21,Ω, p ∈ R+,

u ∈ Vh, где Ma — локально ограниченная функция;
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Ah
2) kerBh(p) = kerBh(0) при каждом p ∈ R+;

Ah
3) Ah(p) +Bh(p) > mabIh при p ∈ R+, mab > 0;

Ah
4) отнoшение Рэлея ah(p, u, u)/bh(p, u, u) возрастает по p при любом

фиксированном u ∈ Ṽh, где Ṽh есть ортогональное дополнение
kerBh(0) до пространства Vh,Ah(p)+Bh(p)

1);

Ah
5) матричные функции Ah(p) и Bh(p) принадлежат множеству
L(R+, Vh).

Здесь величины Ma, Mb и mab считаются не зависящими от h.
Положим N b

h := Nh − dim ( kerBh(0)).

Теорема 6.29. При каждом p ∈ R+ задача (Ph) имеет конечное
число (скажем nh(p)) собственных чисел λhK(p) суммарной кратно-
сти N b

h и соответствующих им собственных подпространств

UK
h (p), Vh,Ah(p)+Bh(p) =

nh(p)⊕

K=1

UK
h (p)⊕ kerBh(0).

Кроме того, если λh1(p) 6 λh2(p) 6 . . . 6 λh
N b

h

(p) есть собственные

числа, занумерованные с учетом кратности, то функции p→ λhi (p),
i = 1, 2, . . . , N b

h, являются непрерывными в нуле, локально липшиц-
непрерывными на R+ и возрастающими.

Доказательство. Размерность пространства Ṽh равна N b
h. По-

скольку kerBh(p) = kerBh(0) при всех p ∈ R+, а по условию Ah
3

имеем kerAh(0) ∩ kerBh(0) = {0}, то элементы из kerBh(0) не могут
быть собственными элементами. Преобразуем задачу (Ph) к виду

ãh(p, y, v) = λ̃hbh(p, y, v), v ∈ Ṽh,

где ãh := ah + bh, λ̃h := λh + 1. Обе формы ãh и bh положительно
определены на Ṽh. Отсюда следует существование пар (λhK(p), UK

h (p))
и свойства пространств UK

h (p).
Доказательство остальных утверждений теоремы проводится со-

вершенно аналогично доказательству соответствующих утверждений
теоремы 6.27. ¤

1)Символом Vh,Ah(p)+Bh(p) обозначено пространство Vh со скалярным произве-
дением ah(p, ·, ·) + bh(p, ·, ·).
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Замечание 6.2. Сопоставим условия A1–A5 и Ah
1–A

h
5 . Видим, что формы

ah и bh наследуют свойства невозмущенных форм a и b, кроме условия неотри-
цательности формы a. Если условия Ah

1–A
h
5 дополнить условием

Ah
0) Ah(p) > 0, r0 := dim(kerAh(0)),

то можно утверждать также, что1) λh
i (p) → 0 при p → +0, i = 1, 2, . . . , r0,

и λh
r0+1

(0) > 0.

2. Оценки точности. Пусть K > 1, λK(p) — собствен-
ное число кратности rK(p) задачи (P); UK(p) — соответствующее
ему собственное подпространство (см. (6.22)); целое k связано с K
согласно (6.21). Пусть далее λhi (p), i = 1, . . . , N b

h — упорядочен-
ные по возрастанию с учетом кратности собственные числа зада-
чи (Ph), yhi (p) — соответствующие им собственные элементы. Чис-
ла λhk(p), λ

h
k+1(p) , . . . , λ

h
k+rK(p)−1(p) будем рассматривать как при-

ближения собственного числа λK(p), а пространство

UK
h (p) := span{yhk(p), yhk+1(p) , . . . , y

h
k+rK(p)−1(p)},−

как аппрокcимацию собственного подпространства UK(p).
Введем обозначения. Для заданных форм d и dh положим

Ed(ϕh) := sup
vh∈Vh,‖vh‖=1

|d(p, ϕh, vh)− dh(p, ϕh, vh)|, ϕh ∈ Vh,

через Ph обозначим ортопроектор в VA(p)+B(p) на Vh. Пусть

εh(u) := inf
vh∈Vh

‖u− vh‖+ Ea(Phu) + Eb(Phu), u ∈ V,

Σh(y) := |a(p, y, y)− ah(p, y, y)|+ |b(p, y, y)− bh(p, y, y)|, y ∈ Vh.
Дополнительно к условиям Ah

1 − Ah
5 предположим, что

Ah
6) sup

f∈Vh, ‖f‖=1

(Eb(f)+Eb(PhT (p)f)+Ea(PhT (p)f))→ 0 при h→ 0,

где T (p) :=
(
A(p) +B(p)

)−1
B(p).

Теорема 6.30. Пусть выполнены условия (H1), A1-A5, A
h
1−Ah

6 ,
кроме того, maxu∈UK , ‖u‖=1 εh(u) → 0 при h → 0. Тогда при доста-

точно малом h для любого p ∈ R+ и K > 1 имеют место оценки

ΘV (U
K(p), UK

h (p)) 6 cK max
u∈UK(p), ‖u‖=1

εh(u),

|λK(p)− λhi (p)| 6 cK max
u∈UK(p),‖u‖=1

(
ε2h(u) + Σh(Phu)

)
,

1)См. аналогичное утверждение теоремы 6.27.
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где постоянная cK зависит от λK(p) и p, но не зависит от h.

Доказательство. Воспользуемся результатами § 2. Исходную
задачу (P) представим в виде

b(p, u, v) = µã(p, u, v) ∀ v ∈ V,

где ã := a + b, µ := (λ + 1)−1. При фиксированном p это задача
типа (Pµ). Задачу (Ph) представим в виде ее аппроксимации (P h

µ ):

bh(p, y, v) = µhãh(p, y, v) ∀ v ∈ Vh,

где ãh := ah + bh, µh := (λh + 1)−1. Из условий Ah
2 , A

h
3 и Ah

6 следует,
что выполнены условия (H2) и (H3). Поэтому можно воспользоваться
теоремой 6.24, из которой следует первая оценка теоремы.

Из теоремы 6.25 вытекает, что

|µK(p)− µhi (p)| 6 cK max
u∈UK(p),‖u‖=1

(
ε2h(u) + Σh(Phu)

)
.

Отсюда следует вторая оценка, поскольку при достаточно малом h

|λK(p)− λhi (p)| = |1/µK(p)− 1/µhi (p)| 6 cK |µK(p)− µhi (p)|. ¤

Глава 7

СКАЛЯРНАЯ ЗАДАЧА О ПОВЕРХНОСТНЫХ
СОБСТВЕННЫХ ВОЛНАХ

Данная глава посвящена решению задачи о поверхностных соб-
ственных волнах цилиндрических диэлектрических волноводов, на-
ходящихся в однородной окружающей среде, в приближении слабо-
направляющего волновода. Исходная задача формулируется следую-
щим образом: требуется найти пары чисел (β, k) ∈ Λ и ненулевые
вещественные u ∈ H1(R2), удовлетворяющие в R2 \ γ уравнению

−∆u+ β2u = k2εu, (7.1)

и условиям сопряжения

u+ = u−, ∂u+/∂ν = ∂u−/∂ν, x ∈ γ. (7.2)

Здесь функция ε и граница волновода γ удовлетворяют условиям,
сформулированным во введении, с. 122. Напомним, что

Λ := {(β, k) : β/√ε+ < k < β/
√
ε∞, β > 0},

функция ε равна постоянной ε∞ вне волновода Ωi. Отметим, что в
области Ωe := R

2\Ωi уравнение (7.1) имеет вид

−∆u+ p2u = 0, (7.3)

где p := (β2 − k2ε∞)1/2 > 0 — поперечное волновое число.
Далее мы будем рассматривать обобщенную формулировку зада-

чи:

(P∞)
∫

R2

(
∇u · ∇v + β2uv

)
dx = k2

∫

R2

εuv dx ∀ v ∈ H1(R2).

На эту задачу можно смотреть как на параметрическую спектраль-
ную задачу, считая параметром либо β, либо k.
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§ 1. Постановка задачи в ограниченной области

Введем новую пару неизвестных параметров (β, p), предполагая,
что p и k связаны равенством

p = (β2 − k2ε∞)
1/2, (7.4)

и множество

K := {(β, p) : β > 0, 0 < p <
√

(ε+ − ε∞)/ε+β}.

Легко проверяется, что формула (7.4) устанавливает взаимно одно-
значное соответствие между Λ и K 1).

Укажем два метода, каждый из которых позволяет свести исход-
ную задачу в неограниченной области (на плоскости) к одной и той же
задаче в ограниченной области (в круге). Первый метод основывается
на дифференциальном уравнении (7.1), а второй — на слабой форме
(P∞). Второй метод далее будет использован нами при рассмотрении
векторной задачи.

1. Первый метод. Рассмотрим новую задачу: найти пары чи-
сел (β, p) ∈ K и ненулевые u ∈ H1(R2), удовлетворяющие в R2 \ γ
уравнению

−∆u+ p2σu = β2(σ − 1)u, σ = ε/ε∞, (7.5)

а также условиям сопряжения (7.2). Легко заметить, что уравне-
ние (7.5) переходит в (7.1) при условии (7.4) и наоборот. Поэтому
эти задачи эквивалентны в том смысле, что между их решениями
имеется взаимно однозначное соответствие: (β, k, u) — решение зада-
чи (7.1) тогда и только тогда, когда (β, p, u) — решение (7.5). Сведем
задачу (7.5) к задаче в ограниченной области, предполагая, что на-
чало координат находится в Ωi.

Пусть BR0 := {x : |x| < R0} — круг минимального радиуса R0

такой, что Ωi ⊆ BR0. Выберем число R, большее или равное R0, и
положим Ω := BR, Γ := ∂Ω, Ω∞ := R2 \ Ω (см. рис. 14).

Решение задачи (7.5) удовлетворяет уравнению (7.3) вне Ωi и по-
этому является там гладким. Обозначим через up (u) его сужение

1)Достаточно заметить, что лучи {k = k0β, β ∈ R+}, лежащие в Λ, преобразу-
ются в лучи {p = p0β, β ∈ R+} из K, p20 = 1− k20ε∞.
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Рис. 14. Разбиение плоскости.

на область Ω∞ (Ω). Тогда up удовлетворяет уравнению (7.3), а на Γ
справедливы равенства

up = u, up ν = uν.

Здесь ν — единичная нормаль к Γ, внешняя по отношению к Ω, uν —
производная u в направлении ν. Функция up как решение внешней
краевой задачи

−∆up + p2up = 0, x ∈ Ω∞, up = u, x ∈ Γ,

легко находится методом разделения переменных. Имеем

up =
∞∑

n=−∞

Kn(pr)

Kn(pR)
an(u) e

inϕ, an(u) :=
1

2π

2π∫

0

u
∣∣
r=R

e−inϕ dϕ. (7.6)

Здесь (r, ϕ) — полярные координаты с началом в центре BR, Kn(r) —
модифицированная функция Бесселя порядка n. Таким образом, для
определения (β, p, u) получим следующую задачу в круге, в которую
параметр p нелинейно входит в нелокальное краевое условие

−∆u+ p2σu = β2(σ − 1)u, x ∈ Ω, (7.7)

uν + SΓ(p)u = 0, x ∈ Γ.

Здесь

SΓ(p)u := −up ν =
1

R

∞∑

n=−∞
Kn(Rp) an(u) e

inϕ, Kn(r) := −r
K ′
n(r)

Kn(r)
.
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Эта задача и есть искомая задача в ограниченной области.
Далее мы исследуем обобщенную разрешимость задачи (7.7), а

также построим и изучим численный метод ее решения на основе
метода конечных элементов. Для этого нам понадобится ее обобщен-
ная (слабая) формулировка. Она получается стандартным способом:
уравнение (7.7), предварительно умноженное на произвольно выбран-
ную функцию v ∈ V := H1(Ω), интегрируется по области Ω, а затем
используется формула интегрирования по частям и учитывается кра-
евое условие на Γ. В результате приходим к обобщенной формулиров-
ке задачи (7.7): найти (β, p, u) ∈ K × V \ {0} такие, что

(P) a(p, u, v) = β2b(u, v) ∀ v ∈ V,
где

a(p, u, v) := a0(p, u, v) + s∞(p, u, v),

s∞(p, u, v) := 2π
∞∑

n=−∞
Kn(pR) an(u) an(v), (7.8)

a0(p, u, v) :=

∫

Ω

(∇u · ∇v + p2σuv) dx, b(u, v) :=

∫

Ω

(σ − 1)uv dx.

Замечание 7.3. Свойства форм a0 и b (такие как ограниченность, зна-
коопределенность) являются очевидными. Свойства s∞ определяются как ско-
ростью убывания коэффициентов Фурье an(u), u ∈ V , так и свойствами функ-
ций r → Kn(r) при целых n. Далее мы покажем, в частности, что Kn(r) > |n| при
всех r > 0 и n и Kn(r) < |n|+ r при n 6= 0. Отметим также, что в силу равенства
Парсеваля

2π
∞∑

n=−∞

|an(u)|2 =
1

R

∫

Γ

u2dΓ. (7.9)

Замечание 7.4. Условие (β, p) ∈ K в формулировке задачи (P) не является
ограничением. Действительно, множествоK допускает следующее эквивалентное
определение:

K := {(β, p) : p > 0, β > (ε+/(ε+ − ε∞))
1/2p}.

Напомним, что 1 6 σ 6 ε+/ε∞. Если (β, p, u) удовлетворяет тождеству (P), то
нетрудно видеть, что

∫

Ω

(|∇u|2 + β2u2) dx+ s∞(p, u, u) =

∫

Ω

σ(β2 − p2)u2 dx.
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Так как s∞(p, u, u) > 0 отсюда следует неравенство β2 > p2, а также оцен-
ка β2 < ε+/ε∞(β

2 − p2), равносильная оценке β > (ε+/(ε+ − ε∞))
1/2p; следо-

вательно, (β, p) ∈ K. Поэтому задачу (P) можно рассматривать как задачу на
собственные значения относительно β2, а p > 0 — считать параметром. Задачи
такого типа были рассмотрены нами в предыдущей главе.

Прежде чем перейти к второму методу вывода задачи (P), рас-
смотрим эквивалентные нормировки пространства H1/2(Γ) и укажем
гладкие продолжения функций из H1(Ω) с сохранением класса. На
этой основе мы получим другое представление формы s∞.

2. Пространство H1/2(Γ). Используем общепринятое обозна-
чение H1/2(Γ) для пространства следов на Γ функций из H1(R2) (см.,
напр., [60, с. 55]); через u|Γ будем обозначать след функции u на Γ 1).
Норма в H1/2(Γ) может быть определена следующими двумя эквива-
лентными способами 2):

‖u‖1/2,Γ := inf
v∈H1(Ω), v|Γ=u

‖v‖1,Ω, |u|1/2,Γ := inf
v∈H1(Ω∞), v|Γ=u

‖v‖1,Ω∞
.

Известно, что H1/2(Γ) ⊂ L2(Γ), бесконечно-дифференцируемые
функции образуют плотное подмножество в H1/2(Γ). В частности,
ряд Фурье функции u ∈ H1/2(Γ),

∞∑

n=−∞
an(u) e

inϕ, an(u) =
1

2π

2π∫

0

u(Rϕ) e−inϕdϕ, (7.10)

сходится к u, т. е. если uN есть отрезок ряда Фурье,

uN =
N∑

n=−N
an(u) e

inϕ,

то ‖u − uN‖1/2,Γ → 0 при N → ∞. Отметим, что поскольку uN —
вещественная функция, то

uN = ūN =
N∑

n=−N
an(u) e

−inϕ.

1)Понятие следа обобщает понятие сужения. Для непрерывных функций
из H1(R2) эти понятия совпадают.

2)Две нормы ‖ · ‖(1) и ‖ · ‖(2) эквивалентны на V , если c1‖u‖(2) 6 ‖u‖(1) 6

c2‖u‖(2) ∀u ∈ V , c1 > 0. Числа c1 и c2 называют постоянными эквивалентности.



§ 1. Постановка задачи в ограниченной области 157

0 1 2 3

1

2

3

r

n=0

n=1

n=2

n=3
n=4

n=5

0 1 2 3 4 5

1

1.25

1.5

r

n=0n=1

n=2

n=4

n=3

n=5

Рис. 15. На левом рисунке представлены графики функций Kn(r) − n для ряда
значений n, на правом — функций Kn(r)/In(r).

Лемма 7.10. Пусть In(r), Kn(r) — модифицированные функции
Бесселя порядка n,

In(r) := r
I ′n(r)

In(r)
, Kn(r) := −r

K ′
n(r)

Kn(r)
, r ∈ R+,

функция u ∈ H1/2(Γ) представлена рядом Фурье (7.10). Тогда

‖u‖21/2,Γ = 2π
∞∑

n=−∞
In(R) |an(u)|2, |u|21/2,Γ = 2π

∞∑

n=−∞
Kn(R) |an(u)|2.

Доказательство. Вычислим норму ‖u‖1/2,Γ. Пусть uN — от-
резок ряда Фурье функции u,

‖ũN‖21,Ω = inf
v∈H1(Ω), v|Γ=uN

{
‖v‖21,Ω :=

∫

Ω

(|∇v|2 + |v|2) dx
}
.

Хорошо известно, что ũN является решением следующей краевой за-
дачи1):

−4ũN + ũN = 0, x ∈ Ω, ũN
∣∣
Γ
= uN .

Ее решение находится методом разделения переменных:

ũN =
N∑

n=−N

In(r)

In(R)
an(u) e

inϕ.

1)Решение этой задачи бесконечно дифференцируемо в Ω.
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Таким образом, используя интегрирование по частям, имеем

‖uN‖21/2,Γ := ‖ũN‖21,Ω =

∫

Ω

(−4ũN + ũN)ũN dx+

∫

Γ

∂ũN
∂r

uN ds =

=

∫

Γ

∂ũN
∂r

ūN ds = 2π
N∑

n=−N
In(R) |an(u)|2.

Переходя здесь к пределу при N → ∞, получим первую формулу.
Аналогично получается вторая формула. При этом внутренняя кра-
евая задача заменяется на внешнюю (в области Ω∞), а функция Бес-
селя In — на Kn. ¤

Замечание 7.5. Для функций R → In(R) и R → Kn(R), R > 0, можно
получить вариационное описание. Из леммы 7.10 вытекает, что

2π
∞∑

n=−∞

In(R) |an(u)|2 = inf
v∈H1(BR), v|∂BR

=u

{ ∫

BR

(|∇v|2 + |v|2) dx
}
. (7.11)

Выберем здесь u =
(
eikϕ + e−ikϕ

)
/2 = cos(kϕ). Тогда левая часть в (7.11) будет

равна ckIk(R), где все ck = π, кроме c0 = 2π (поскольку I−n(R) = In(R), см. далее).
В правой части сделаем замену переменных в интеграле (r := r/R), переходя к
единичному кругу B1. В результате получим для любого целого k следующую
формулу:

Ik(R) =
1

ck
inf

v∈H1(B1), v|∂B1
=cos(kϕ)

{∫

B1

(|∇v|2 +R2|v|2) dx
}
.

Обозначая через B∞
1 дополнение B1 до R2, аналогично получим

Kk(R) =
1

ck
inf

v∈H1(B∞
1
), v|∂B∞

1
=cos(kϕ)

{ ∫

B∞
1

(|∇v|2 +R2|v|2) dx
}
.

Отсюда следует, в частности, что функция r → Kn(r) (как и r → In(r)) возрастает
при всех целых n и Kk(R) 6 (R/R0)

2Kk(R0) при R > R0.

Лемма 7.11. Для всех целых n справедливы оценки

In(r) 6 Kn(r) 6 c20(r) In(r), r ∈ R+,

где c0 — непрерывная на R+ невозрастающая функция; кроме то-
го, c0(r)→ +∞ при r → 0.
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Доказательство. Модифицированные функции Бесселя In(z)
и Kn(z)

1) являются линейно независимыми решениями уравнения

z2w′′ + z w′ − (z2 + n2)w = 0.

Ясно, что K−n(z) = Kn(z) и I−n(z) = In(z). Следовательно, по опре-
делению имеем K−n(z) = Kn(z) и I−n(z) = In(z). Поэтому далее мож-
но ограничиться неотрицательными n.

Учитывая асимптотические формулы при малых z 2)

K0(z) ≈ ln
(1
z

)
, Kn(z) ≈

(n− 1)!

2

(2
z

)n
, In(z) ≈

1

n!

(z
2

)n
, (7.12)

нетрудно получить, что Kn(0) = In(0) = n, n > 0. Для определителя
Вронского справедлива формула

W (Kn, In) := −K ′
n(z)In(z) +Kn(z)I

′
n(z) = 1/z,

откуда следует, что Kn(r) + In(r) = 1/Kn(r)In(r). Продифференци-
руем это тождество:

K′n(r) + I
′
n(r) =

Kn(r)− In(r)
rKn(r)In(r)

.

Полагая здесь a(r) := (rKn(r)In(r))
−1, f(r) := 2K′n(r), для определе-

ния y(r) := Kn(r)− In(r) получим задачу

y′(r) + a(r)y(r) = f(r), r > 0, y(0) = 0.

Так как функции a и f являются неотрицательными (In и Kn — по-
ложительны, Kn(r) — возрастает по r согласно замечанию 7.5), то y
также является неотрицательной, т. е. In(r) 6 Kn(r).

Получим вторую оценку. Из рекуррентных соотношений

−K ′
n(z) = Kn−1(z) +

n

z
Kn(z), −K ′

n(z) = Kn+1(z)−
n

z
Kn(z)

следуют другие формулы для Kn:

Kn(z) = n+ z
Kn−1(z)

Kn(z)
= −n+ z

Kn+1(z)

Kn(z)
. (7.13)

1)Относительно свойств этих функций см., напр., [88, c. 247], [1, c. 374]. Далее
z означает комплексную переменную, w′(z) := dw(z)/dz; r ∈ R+.

2)f(z) ≈ g(z), если f(z) = g(z) + o(g(z)).
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Рис. 16. Графики функций (n2 + r2)1/2/In(r) для ряда значений n.

Поскольку 0 < Kn−1(r) < Kn(r) при n > 1 и r > 0, то

n 6 Kn(r) 6 n+ r, Kn(r) > r − n, n > 1, r ∈ R+.

Аналогичные рассуждения приводят к оценкам

In(r) = n+ r
In+1(r)

In(r)
> n, In(r) = −n+ r

In−1(r)

In(r)
> r − n,

так как In(r) 6 In−1(r) при n > 1. Следовательно,

Kn(r) 6 n+ r 6 2n+ In(r) 6 3 In(r), n = 1, 2, . . .

Нетрудно убедиться, что функция

C0(r) :=
K0(r)

I0(r)
=
K1(r)

K0(r)

I0(r)

I1(r)

убывает на R+ (а именно, каждая дробь убывает по r) и C0(r)→ +∞
при r → +0, C0(r)→ 1 при r → +∞. Полагая c20(r) = max{C0(r), 3},
получим искомую оценку Kn(r) 6 c20(r) In(r), n > 0, r ∈ R+. ¤

Замечание 7.6. Графики функций Kn(r)/In(r) для ряда значений n изоб-
ражены на правом рис. 15. Вычисления показывают, что при больших значениях
r они монотонно стремятся к единице, сохраняя порядок, c20(r) = C0(r). Отметим,
что C0(r) ≈ 2/

(
ln(1/r)r2

)
при малых r.

Следствие 7.2. Нормы ‖ ·‖1/2,Γ и |u|1/2,Γ эквивалентны; точнее

‖u‖1/2,Γ 6 |u|1/2,Γ 6 c0‖u‖1/2,Γ, u ∈ H1/2(Γ).

Здесь постоянная c0 := c0(R0) зависит лишь от R0
1).

1)Напомним, что Ω есть круг радиуса R > R0, Γ := ∂Ω.
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Доказательство. Требуемые оценки непосредственно вытека-
ют из лемм 7.10, 7.11, если учесть, что c0(R) 6 c0(R0). ¤

Следствие 7.3. Для любой функции u ∈ H1(Ω)

|u|1/2,Γ 6 c0‖u‖1,Ω, c0 := c0(R0).

Доказательство. Из определения следует справедливость
неравенства ‖u‖1/2,Γ 6 ‖u‖1,Ω. Поэтому имеем следующие оценки
сверху и снизу: |u|1/2,Γ 6 c0‖u‖1/2,Γ 6 c0‖u‖1,Ω. ¤

Замечание 7.7. Норма ‖ · ‖1/2,Γ, введенная выше, имеет два важных свой-
ства, не зависящих от радиуса R области Ω:

‖u‖1/2,Γ 6 ‖u‖1,Ω, u ∈ H1(Ω), ‖u‖1/2,Γ 6 ‖u‖1,Ω∞ , u ∈ H1(Ω∞).

Вторая оценка следует из неравенств ‖u‖1/2,Γ 6 |u|1/2,Γ 6 ‖u‖1,Ω∞ . Учитывая
следующие оценки, на доказательстве которых мы не будем останавливаться (см.
рис. 16):

1 6 (n2 + r2)1/2/In(r) 6 C2(r), r ∈ R+, n = 0,±1,±2, . . .

придем к третьей эквивалентной нормировке пространства H1/2(Γ):

»» u ¹¹21/2,Γ:=
∞∑

n=−∞

(n2 +R2)1/2|an(u)|2. (7.14)

Имеем ‖u‖1/2,Γ 6»» u ¹¹1/2,Γ6 C(r)‖u‖1/2,Γ. Здесь C2(r) := r/I0(r) — убывающая
функция (см. кривую n = 0 на рис. 16), C2(r) ≈ 2/r при малых r. Ясно, что
можно принять R = 1 в (7.14) (при этом изменятся лишь постоянные эквива-
лентности). Норма (7.14) с R = 1 наиболее часто используется для нормировки
пространства H1/2(Γ) (см., напр., [59, c. 29]).

3. Cвойства функций Kn. Зафиксируем свойства функ-
ций r → Kn(r), отмеченные в ходе доказательства леммы 7.11, а
также укажем некоторые новые.

Лемма 7.12. При каждом целом n функция z → Kn(z) являет-
ся аналитической 1) в правой полуплоскости C+ := {r + iy : r > 0}
и непрерывной в C+ := {r + iy : r > 0}. Кроме того,

Kn(z̄) = Kn(z), Kn(z) = K−n(z), Kn(0) = |n|; (7.15)

|K̃n(z)/z| 6 1, |K′n(z)| 6 2(|n|+ |z|), z ∈ C+, n 6= 0, (7.16)

1)Дифференцируемой в смысле комплексного анализа.
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где K̃n(z) = Kn(z)−Kn(0). При малых z справедливы формулы

K̃0(z) ≈ ln−1
(1
z

)
, K̃±1(z) =

z2

K̃0(z)
, K̃n(z) ≈

z2

2(|n| − 1)
. (7.17)

При r ∈ R+ и n 6= 0 имеем: |n| 6 Kn(r) 6 |n|+ r, 0 6 K′n(r) 6 2|n|;
кроме того, K0(0) = 0, K′0(r) > 0 при r > 0.

Доказательство. Известно, что при целых n модифициро-
ванная функция Бесселя Kn является аналитической на z-плоскости
с разрезом вдоль отрицательной вещественной оси, причем в C+ она
не имеет нулей (см., напр., [1, c. 377]). Поскольку

Kn(z) := −zK ′
n(z)/Kn(z) = Kn(0) + zKn−1(z)/Kn(z),

то отсюда следует, что Kn является аналитической в C+ и непрерыв-
ной в C+ \ {0}. Непрерывность в нуле следует из асимптотик (7.17),
которые легко вывести из асимптотик в нуле функций Kn (см. (7.12)).
Равенства (7.15), как и оценки |n| 6 Kn(r) 6 |n|+ r при n 6= 0, были
установлены в лемме 7.11.

Докажем первую оценку в (7.16). Функция φ(z) := K̃n(z)/z рав-
на Kn−1(z)/Kn(z) (см. (7.13)) и является аналитической в C+. Поэто-
му максимум ее модуля достигается либо на мнимой оси, либо в бес-
конечно удаленной точке. Поскольку Kn(z̄) = Kn(z), то достаточно
ограничиться рассмотрением мнимой полуоси {0+iy, y > 0}. В беско-
нечно удаленной точке |Kn−1(z)/Kn(z)| = 1, поскольку при |z| → ∞

Kn(z) = (2/πz)1/2e−z
(
1 +O(z−1)

)
.

Пусть z = iy, y > 0. По определению Kn(z) имеем в этом случае

Kn−1(z)/Kn(z) = iH
(1)
n−1(y)/H

(1)
n (y),

где H(1)
n (y) = Jn(y)+ iYn(y) — функция Ханкеля порядка n. Поэтому

|φ(z)| := |K̃n(z)/z| =
J2
n−1(y) + Y 2

n−1(y)

J2
n(y) + Y 2

n (y)
6 1,

так как согласно формуле Николсона [3, c. 444]

J2
n(y) + Y 2

n (y) =
8

π2y

∞∫

0

K0

(
2y sh(t)

)
ch(2nt) dt↗ n.
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Докажем теперь вторую оценку в (7.16). Дифференцируя функ-
цию Kn := −zK ′

n/Kn и используя равенство (zK ′
n)
′ = (z2 + n2)Kn/z,

легко вычислить, что

K′n(z) =
(
K2
n(z)− z2 − n2

)
/z.

Отсюда при вещественных z = r получим K′n(r) 6 2|n| при n 6= 0,
поскольку Kn(r) 6 |n|+ r. При z ∈ C+ и n 6= 0 имеем

Kn(z) =: |n|+ zφ(z),

где |φ(z)| 6 1. Поэтому

K′n(z) = 2|n|φ(z) + (φ2(z)− 1)z.

Отсюда следует требуемая оценка: |K′n(z)| 6 2(|n|+ |z|). ¤

Графики функций r → Kn(r)−Kn(0) для ряда значений n приве-
дены на рис. 15 (напомним, что Kn(0) = n для неотрицательных n).
Отметим качественное различие свойств кривых при n = 0 и n 6= 0.
Оно в основном объясняется формулами (7.17).

4. Метагармоническое продолжение функции. Положим

H1
0(Ω∞) := {v ∈ H1(Ω∞) : v|Γ = 0},

произвольно фиксируем вещественное p, p > 0, и определим функции

1x := min{1, x2}, 1x := max{1, x2}, x ∈ R.

Отметим, что 1x → 0 при x→ 0.

Определение 7.16. Функцию up назовем метагармонической в
области D ⊂ R2, если −∆up + p2up = 0 в D.

Определение 7.17. Функцию up ∈ H1(R2) назовем метагар-
моническим продолжением функции u ∈ H1(Ω), если up является
метагармонической в области Ω∞ и up

∣∣
Ω
= u.

Отметим, что cправедливо тождество
∫

Ω∞

(
∇up · ∇v + p2up v

)
dx = 0 ∀ v ∈ H1

0(Ω∞). (7.18)
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Лемма 7.13. Метагармоническое продолжение up произволь-
ной функции u ∈ H1(Ω) существует, единственно и

‖up‖1,R2 6 c(p)‖u‖1,Ω,

где c — локально ограниченная функция на R+. Кроме того, сим-
метричная неотрицательная форма

s∞(p, u, v) :=

∫

Ω∞

(
∇up · ∇vp + p2up vp

)
dx, u, v ∈ H1(Ω),

совпадает с формой (7.8) и является ограниченной на H1(Ω):

0 6 s∞(p, u, u) 6Ms(p)‖u‖21,Ω, Ms(p) := c20(R0) 1
p. (7.19)

Доказательство. Определим на H1(Ω∞) функционал

|u|21,p :=
∫

Ω∞

(|∇u|2 + p2u2) dx.

По определению −4up + p2up = 0 в Ω∞, up
∣∣
Γ
= u. Поэтому up

∣∣
Ω∞

является решением задачи минимизации

|up|21,p = min
v∈H1(Ω∞):v|Γ=u

|v|21,p .

Хорошо известно, что решение этой задачи существует и единственно,
поскольку квадратичный функционал u→ |u|21,p является ограничен-
ным и коэрцитивным:

1p ‖u‖21,Ω∞

6 |u|21,p 6 1p ‖u‖21,Ω∞

.

Функционал |up|21,p нетрудно вычислить в терминах коэффициен-
тов Фурье функции u

∣∣
Γ
. Рассуждая так же, как при доказательстве

леммы 7.10, получим

s∞(p, u, u) := |up|21,p = 2π
∞∑

n=−∞
Kn(pR) |an(u)|2 ∀u ∈ V.

Положим здесь u := u + tv, t ∈ R, v ∈ V , и вычислим производную
по t от обеих частей при t = 0. В результате придем к формуле (7.8).
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Принимая во внимание следствие 7.3, теперь имеем

s∞(p, u, u) := |up |21,p 6 1p min
v∈H1(Ω∞):v|Γ=u

‖v‖21,Ω∞

=:

=: 1p |u|21/2,Γ 6 c20(R0) 1
p ‖u‖21,Ω .

Следовательно,

‖up‖21,R2 = ‖u‖21,Ω + ‖up‖21,Ω∞

6 ‖u‖21,Ω + s∞(p, u, u)/1p 6

6 (1 +Ms(p)/1p)‖u‖21,Ω =: c2(p)‖u‖21,Ω . ¤

Лемма 7.14. Пусть ограниченная функция u является гармо-
нической или метагармонической вне замкнутого круга BR0. Обо-
значим коэффициенты Фурье функции u|∂BR0

∈ L2(∂BR0) символа-
ми an(u|∂BR0

). Тогда при всех целых n и R > R0 справедливы оценки

|an(u|∂BR
)| 6 (R0/R)

|n||an(u|∂BR0
)|.

Доказательство. Рассмотрим случай метагармонической функ-
ции u. Воспользуемся представлением (7.6). Оно справедливо в
неограниченной области R2 \ BR при любом R > R0. Поэтому вне
круга BR0 имеем

u =
∞∑

n=−∞

Kn(pr)

Kn(pR0)
an(u|∂BR0

) einϕ. (7.20)

Пусть %n(p) := Kn(Rp)/Kn(pR0), тогда %n(p) = %−n(p) > 0. Из асимп-
тотик (7.12) функций Бесселя при малых p легко получить равенст-
во %n(0) = (R0/R)

|n|. Поскольку функция r → Kn(r) возрастающая,
имеем %′n(p) = (Kn(R0p) − Kn(Rp))%n(p)/p 6 0. Поэтому при всех n
справедливы оценки 0 < %n(p) 6 %n(0) = (R0/R)

|n|.
Рассмотрим теперь равенство (7.20) в точках r = R и заметим,

что ряд, в силу равенства Парсеваля (см. (7.9)), равномерно сходит-
ся. Умножим обе его части на функцию e−ikϕ/2π и проинтегрируем
по ϕ ∈ [0, 2π). В результате получим ak(u|∂BR

) = %k(p)ak(u|∂BR0
) при

всех k. Отсюда следует оценка |ak(u|∂BR
)| 6 (R0/R)

|k||ak(u|∂BR0
)|.

Случай гармонической функции u рассматривается аналогично.
В этом случае в формуле (7.20) множитель Kn(pr)/Kn(pR0) доста-
точно заменить на (R0/r)

|n|. ¤
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5. Второй метод. Приведем доказательство “эквивалентно-
сти” задач (P∞) и (P). Метод перехода от задачи на плоскости к
задаче в круге описывается в первой части доказательства.

Теорема 7.31. Задачи (P∞) и (P) эквивалентны в следующем
смысле. Если (β, k, u) — решение задачи (P∞), то (β, p, u|Ω) — реше-
ние задачи (P) при p = (β2 − ε∞k2)1/2. Обратно: если (β, p, u) есть
решение задачи (P), то (β, k, up), где k = ((β2−p2)/ε∞)1/2, up — ме-
тагармоническое продолжение u, является решением задачи (P∞).

Доказательство. Пусть (β, k, u) удовлетворяет тождеству (P∞).
Определим число p согласно (7.4). Тогда (β, p) ∈ K, посколь-
ку (β, k) ∈ Λ. Запишем тождество (P∞) в следующем виде:
∫

Ω

(∇u · ∇v+ β2uv) dx+

∫

Ω∞

(∇u · ∇v+ p2uv) dx = k2
∫

Ω

εuv dx. (7.21)

Здесь v — произвольная функция из H1(R2). Заметим, что если при-
нять v = 0 в области Ω, то получим тождество

∫

Ω∞

(∇u · ∇v + p2uv) dx = 0 ∀ v ∈ H1
0(Ω∞).

Следовательно, u является метагармонической в Ω∞ (7.18) и u = up .
Ограничимся в (7.21) только такими v ∈ H1(R2), что v = vp , и учтем
определение формы s∞ (см. лемму 7.13). Тогда получим, что
∫

Ω

(∇u ·∇v+β2uv) dx+s∞(p, u, v) = k2
∫

Ω

εuv dx ∀ v ∈ H1(Ω). (7.22)

Так как p2 = β2 − ε∞k2, то

k2
∫

Ω

εuv dx = −p2
∫

Ω

σuv dx+ β2

∫

Ω

σuv dx.

Поэтому тождество (7.22) преобразуется к виду
∫

Ω

(∇u · ∇v + p2σuv) dx+ s∞(p, u, v) = β2

∫

Ω

(σ − 1)uv dx.

Следовательно, (β, p, u|Ω) есть решение задачи (P).
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Докажем обратное утверждение. Пусть (β, p, u) — решение (P).
Определим k = ((β2 − p2)/ε∞)1/2. Так как (β, p) ∈ K, то (β, k) ∈ Λ.
Пусть up и wp — метагармонические продолжения u и произвольно-
го w ∈ V , соответственно. Учитывая определение формы s∞, имеем
∫

Ω

(∇up · ∇w + β2upw) dx+

∫

Ω∞

(∇up · ∇wp + p2upwp) dx =

= k2
∫

Ω

εupw dx. (7.23)

Пусть v — произвольная функция из H1(R2) такая, что v|Ω = w.
В области Ω∞ представим ее в виде v = wp+η. Ясно, что η ∈ H1

0(Ω∞) и
∫

Ω∞

(∇up · ∇η + p2up η) dx = 0.

Учтем это тождество в (7.23). Тогда получим
∫

Ω

(∇up · ∇v + β2upv) dx+

∫

Ω∞

(∇up · ∇v + p2upv) dx = k2
∫

Ω

εupv dx.

Поскольку p2 = β2 − ε∞k2, то предыдущее тождество преобразуется
к виду ∫

R2

(∇up · ∇v + β2upv) dx = k2
∫

R2

εupv dx.

Отсюда следует, что (β, k, up) — решение задачи (P∞). ¤

Замечание 7.8. По определению задача (P) зависит от выбора области Ω,
точнее, — от параметра R (радиуса Ω). Поэтому правильнее было бы писать (PR),
ΩR, ΓR и т.д. Чтобы не перегружать обозначения, мы эти зависимости от R бу-
дем подразумевать, но не будем указывать явно. Это соглашение дополнительно
оправдывается тем, что в тройке (β, p, u), определяющей решение задачи (P),
от R зависит только u, причем тривиальным образом: u есть сужение на об-
ласть Ω функции, определенной в R2, которая не зависит от R. С теоретической
точки зрения выбор R не важен при условии, что Ω ⊇ Ωi. C практической точки
зрения величина R имеет важное значение и ее выбор будет влиять на эффек-
тивность численных методов, которые будут обсуждаться далее.

Замечание 7.9. По-видимому, D. Givoli [115] [116] был первым, кто пред-
ложил использовать метод разделения переменных для получения точного нело-
кального краевого условия на фиктивной границе при решении краевых за-
дач в неограниченных областях. Оператор SΓ был им назван DtN оператором
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(Dirichlet-to-Newmann), поскольку он преобразует, фактически, краевые условия
Дирихле на фиктивной границе в условия Неймана. Мы выбрали конечную (рас-
четную) область Ω в форме круга исходя из соображений простоты изложения
и проводимых выкладок. Для рассматриваемых нами задач оператор SΓ нетруд-
но определить и для эллиптической области Ω (см., напр., [97]). Такой выбор
оправдан на практике, если область Ωi поперечного сечения волновода сильно
вытянута в одном направлении.

§ 2. Существование и свойства решений

Задачу (P) (см. замечание 7.4) далее будем рассматривать как
параметрическую задачу на собственные значения: при каждом p > 0
найти такие (β, u) ∈ R+ × V \ {0}, что

(P) a(p, u, v) = β2b(u, v) ∀ v ∈ V.
Формы a и b зависят от функции σ := ε/ε∞. В данном параграфе
будут использованы лишь следующие свойства этой функции:

1 6 σ 6 σ+ := ε+/ε∞ в Ω; σ
∣∣
Ω\Ωi

= 1; C(Ωi) 3 σ
∣∣
Ωi
> 1 + σ0.

Здесь σ0 > 0 1). Предположения о гладкости σ в Ωi, а также о глад-
кости ∂Ωi понадобятся нам в следующих параграфах.

Укажем необходимые в дальнейшем свойства форм a и b. Отме-
тим, что пространство V := H1(Ω) является гильбертовым. Скаляр-
ное произведение в нем определяется равенством

(u, v) :=

∫

Ω

(∇u · ∇v + uv) dx, u, v ∈ V.

1. Свойства форм a и b. Наиболее просто устроена форма b,

b(u, v) :=

∫

Ω

(σ − 1)uv dx.

Лемма 7.15. Форма b(·, ·) является симметричной,

0 6 b(u, u) 6MB‖u‖21,Ω, u ∈ V.
1)См. соответствующее замечание на с. 122.
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Порождаемый ею оператор B является самосопряженным, ком-
пактным и неотрицательным 1), kerB = {u ∈ V : u = 0 на Ωi}.

Доказательство. Поскольку σ = 1 вне Ωi, то

0 6 b(u, u) =

∫

Ωi

(σ − 1)u2dx 6MB ‖u‖20,Ω 6MB ‖u‖21,Ω, (7.24)

где MB := σ+ − 1. Из симметричности и ограниченности формы b
следует самосопряженностьB; компактностьB есть следствие первой
оценки сверху в (7.24) и компактности вложения H1(Ω) ⊂ L2(Ω).
Отметим, что ядро и образ B являются бесконечномерными. ¤

Рассмотрим форму a. Она была определена нами при p > 0 сле-
дующим образом:

a(p, u, v) := a0(p, u, v) + s∞(p, u, v) :=

:=

∫

Ω

(∇u · ∇v + p2σuv) dx+ 2π
∞∑

n=−∞
Kn(pR) an(u) an(v). (7.25)

Далее без дополнительных ссылок будем использовать свойства
функций Kn, указанные в лемме 7.12. Поскольку для всех целых n
имеем Kn(pR)→ |n| при p→ 0, то по определению примем

a(0, u, v) :=

∫

Ω

∇u · ∇v dx+ 2π
∞∑

n=−∞
|n| an(u) an(v). (7.26)

В силу этого далее будем считать, что при всех p > 0 форма a имеет
определение (7.25).

Лемма 7.16. При каждом p > 0 форма a является симмет-
ричной, неотрицательной и ограниченной,

mA(p)‖u‖21,Ω 6 a(p, u, u) 6MA(p)‖u‖21,Ω, u ∈ V, (7.27)

где mA(p) := 1p, MA(p) := (σ+ + c20(R0)) 1
p.

Если (A(p)u, v) = a(p, u, v) для любых u, v ∈ V , то A(p) являет-
ся самосопряженным и неотрицательным оператором;

kerA(0) = {u : u = const в Ω}; A(p) +B > mABI,

1)Оператор B в V определяется по теореме Рисса равенством (Bu, v) = b(u, v),
где u, v ∈ V .
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где постоянная mAB > 0 зависит от Ω и ε.

Доказательство. Симметричность и неотрицательность фор-
мы a являются очевидными. Напомним, что при p > 0 (см. (7.19))

0 6 s∞(p, u, u) 6Ms(p)‖u‖21,Ω, Ms(p) := c20(R0) 1
p . (7.28)

Ясно, что эти оценки справедливы и при p = 0, т. к. Kn(0) 6 Kn(Rp).
Учитывая (7.28), из (7.25) легко вывести оценки (7.27) (напомним, что
имеют место неравенства 1 6 σ 6 σ+). Из них следует, что A(p) явля-
ется самосопряженным и неотрицательным. Отметим, что mA(0) = 0,
а mA(p) > 0 при p > 0.

Утверждение о ядре A(0) становится очевидным, если учесть, что
при u = const в Ω, имеем u

∣∣
Γ
= const; an(u) = 0 при n 6= 0 (коэффи-

циент a0(u) 6= 0 отсутствует в определении a(0, u, u)). Наконец,

a(p, u, u)+b(u, u) >

∫

Ω

|∇u|2dx+
∫

Ω

(σ−1)u2dx =: |u|21,Ω+ρ2(u). (7.29)

Отметим, что ρ есть непрерывная полунорма на L2(Ω) и она не обра-
щается в нуль на постоянных в Ω функциях. Хорошо известно, что в
этом случае справедлива оценка (см., напр., [81, c. 25])

∫

Ω

u2 dx 6 cΩ
(
|u|21,Ω + ρ2(u)

)
,

где постоянная cΩ зависит от области Ω. Прибавляя к обеим частям
этой оценки |u|21,Ω, получим: |u|21,Ω + ρ2(u) > mAB‖u‖21,Ω, а из (7.29) —
заключительное утверждение леммы. ¤

Лемма 7.17. Функция p → a(p, u, u), u ∈ V , является диффе-
ренцируемой на R+, непрерывной в нуле и возрастающей.

Доказательство. Пусть фиксировано u ∈ V . Убедимся, что
ряд, определяющий s∞(p, u, u), можно почленно дифференцировать
по p на любом отрезке ω := [ω1, ω2] из R+. Для этого достаточно
убедиться, что формальная производная ряда

s′(p) := 2πR
∞∑

n=−∞
K′n(pR) |an(u)|2
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сходится равномерно в ω. Напомним, что все функции r → Kn(r)
являются возрастающими, непрерывными в нуле и аналитическими
на R+

1), 0 < K′n(r) 6 |n|+ r при r > 0 и n 6= 0.
Пусть µω := max{K′0(pR), pR : p ∈ ω}. Нетрудно видеть, что

ряд s′(p) мажорируется сходящимся числовым рядом

2πR
∞∑

n=−∞
(|n|+ µω)|an(u)|2 =

= Rs∞(0, u, u) + µω2πR
∞∑

n=−∞
|an(u)|2 =

= Rs∞(0, u, u) + µω

∫

Γ

u2 dΓ 6 Dω‖u‖21,Ω.

Здесь мы воспользовались оценкой (7.28) при p = 0, равенством Пар-
севаля (7.9) и непрерывностью вложения H1(Ω) ⊂ L2(Γ). Следова-
тельно, ряд s′(p) сходится равномерно на ω. Поскольку s′(p) > 0, то
при p ∈ ω и u 6= 0 имеем

0 <
d

dp
a(p, u, u) = 2p

∫

Ω

σu2 dx+ s′(p) 6 DA(p)‖u‖21,Ω,

где DA(p) := 2p σ++Dω. Отсюда также следует, что a(p, u, u) возрас-
тает по p.

Пусть теперь ε(p) := max{K0(pR)/R, p}. Поскольку при всех n
справедливы оценки 0 6 Kn(pR)− |n| 6 R ε(p), то

0 6 a(p, u, u)− a(0, u, u) =

= p2
∫

Ω

σu2dx+ 2π
∞∑

n=−∞
(Kn(pR)− |n|)|an(u)|2 6

6 p2σ+‖u‖20,Ω + ε(p) 2πR
∞∑

n=−∞
|an(u)|2 =

= p2σ+‖u‖20,Ω + ε(p)‖u‖20,Γ 6
(
p2σ+ + cΩε(p)

)
‖u‖21,Ω, (7.30)

1)Напомним, что вещественная функция аналитична в ω, если в каждой точ-
ке ω она раскладывается в равномерно сходящийся ряд Тейлора.
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где cΩ — постоянная вложения H1(Ω) ⊂ L2(Γ). Отсюда следует, что a
является непрерывной в нуле, так как ε(p)→ 0 при p→ 0. ¤

Следствие 7.4. Оператор A1(p) := A(p)−A(0) является неот-
рицательным и компактным при p > 0, ‖A1(p)‖ → 0 при p→ 0.

Доказательство. Так как (A1(p)u, u) = a(p, u, u) − a(0, u, u),
то из (7.30) имеем

0 6 (A1(p)u, u) 6 p2σ+‖u‖20,Ω + ε(p)‖u‖20,Γ.

Отсюда следует компактность оператора A1(p) в силу того, что вло-
жения H1(Ω) ⊂ L2(Ω) и H1(Ω) ⊂ L2(Γ) являются компактными.
Ясно, что

‖A1(p)‖ = sup
u∈V,u6=0

|(A1(p)u, u)|
‖u‖21,Ω

6 p2σ+ + cΩε(p)→ 0, p→ 0.

2. Существование и свойства решений задачи (P). На-
помним операторную формулировку задачи: при каждом задан-
ном p > 0 найти такие (β, u) ∈ R+ × V \ {0}, что A(p)u = β2Bu.
Рассмотрим также задачу

A(0)u = β2Bu, (7.31)

собственные числа которой определяют критические числа.
Задачи подобного вида были изучены нами в главе 6 (см. § 3,

с. 141), где спектральный параметр β2 обозначался через λ, а па-
раметр p пробегал R+

1). Были доказаны две теоремы (6.26 и 6.27),
посвященные, соответственно, существованию решений и свойствам
дисперсионных кривых. Чтобы воспользоваться этими результатами,
необходимо проверить пять условий (см. условия A1–A5 на с. 143),
которым должны удовлетворять операторы A(p) и B.

Лемма 7.18. Оператор-функция p → A(p) и оператор B удо-
влетворяют условиям A1–A5.

Доказательство. Напомним условия A1–A5 (опуская части,
касающиеся зависимости B от p), а также укажем леммы предыду-
щего пункта, посвященные их проверке.

1)Рассматриваемая задача несколько проще, поскольку оператор B не зависит
от p.
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В леммах 7.15 и 7.16 было доказано, что

mA(p) 6 A(p) 6MA(p)I, p ∈ R+, 0 6 B 6MBI,

r0 := dim(kerA(0)) = 1, dim(ImB(p)) =∞,

где mA(0) = 0, mA(p) > 0 при p > 0. Эти оценки означают, что
выполнены как условия A1, так и условия A2.

В лемме 7.16 при всех p из R+ была установлена оценка

A(p) +B(p) > mABI,

означающая выполнение условия A3. Там же было доказано, что при
любом u ∈ V функция p → a(p, u, u) возрастает. Поэтому отноше-
ние Рэлея R(p, u) := a(p, u, u)/b(u, u) также возрастает по p на Ṽ 1)

(условие A4).
Непрерывность в нуле функции p → a(p, u, u) была доказана в

лемме 7.17. Там же была установлена ее дифференцируемость на по-
луоси R+. Такие функции локально липшиц-непрерывны, поскольку

|a(p, u, u)− a(p̄, u, u)| =
∣∣∣

p∫

p̄

d

dρ
a(ρ, u, u) dρ

∣∣∣ 6

6

∣∣∣
p∫

p̄

DA(p)‖u‖21,Ω dρ
∣∣∣ 6 Lω|p− p̄| ‖u‖21,Ω,

где p, p̄ ∈ ω := [ω1, ω2] ⊂ R+. Таким образом, функция p→ A(p), как
и B, принадлежат множеству L(R+, V ) (условия A5). ¤

Теорема 7.32. При каждом p ∈ R+ существует счетное мно-
жество чисел βK(p), K > 1, с единственной точкой накопле-
ния +∞, квадраты которых образуют полный набор собственных
чисел задачи (P) при p > 0 и задачи (7.31) при p = 0. Соот-
ветствующие им собственные подпространства UK(p) конечномер-

ны, VA(p)+B =
∞⊕
k=1

UK(p)⊕ kerB 2). Кроме того, если {βi(p)}∞i=1 есть

числа βK(p), K = 1, 2, . . ., занумерованные по возрастанию с учетом

1)Ṽ есть ортогональное дополнение kerB до пространства VA(p)+B.
2)Кратность βK(p) определим как кратность βK2(p) := (βK(p))2. Соответствую-

щие им собственные элементы будем называть также собственными функциями.
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кратности, то
a) функции p → βi(p) и p → β2

i (p) − p2, i > 1, являются возрас-
тающими, непрерывными в нуле и локально липшиц-непрерывными
на R+;
b) β1(p)↘ +0 при p→ +0, β2(0) > 0;

c) если k0 :=
(
ε+/(ε+ − ε∞)

)1/2
, то

βi(p)

p
> k0, lim

p→∞
βi(p)

p
= k0.

Доказательство. Из теорем 6.26 и 6.27 главы 6, которыми
мы можем воспользоваться благодаря предыдущей лемме, следуют
все утверждения теоремы, кроме утверждения о монотонности функ-
ций p→ β2

i (p)− p2 и c).
Пусть p > 0. Используем минимаксный принцип Куранта — Фи-

шера. Имеем

β2
i (p) = min

Vi⊂Ṽ
max

v∈Vi\{0}
R(p, v), R(p, v) :=

a(p, v, v)

b(v, v)
.

Поэтому

β2
i (p)− p2 = min

Vi⊂Ṽ
max

v∈Vi\{0}
R̃(p, v), R̃(p, v) := R(p, v)− p2. (7.32)

Простые преобразования приводят к равенству

R̃(p, v) =
1

b(v, v)

(∫

Ω

(|∇v|2 + p2v2) dx+ s∞(p, v, v)
)
.

Теперь из (7.32) следует, что функция p→ β2
i (p)− p2 является неот-

рицательной и возрастающей.
Докажем второе утверждение в с), поскольку первое следует из

принадлежности (βi(p), p) множеству K. Обозначим через Br круг
малого радиуса r с центром в такой точке x+ ∈ Ωi, что

ε+ = ε(x+) = max
x∈Ωi

ε(x), δr := max
x∈Br

ε+ − ε(x)

ε∞
,

и пусть Vr есть множество функций из V , равных нулю вне Br. От-
метим, что s∞(p, u, u) = 0 на Vr; σ(x) := ε(x)/ε∞ 6 ε+/ε∞ в Br,

σ(x)− 1 =
ε+
ε∞
− 1− ε+ − ε(x)

ε∞
>
ε+ − ε∞ − ε∞δr

ε∞
=:

dr
ε∞

.
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Нетрудно видеть, что для любого v ∈ Vr справедлива оценка

R(p, v) 6
ε∞
dr

(∫

Br

|∇v|2dx
)(∫

Br

v2dx
)−1

+
ε+p

2

dr
.

Обозначим через (λir, u
i) собственные пары оператора Лапласа в кру-

ге Br при краевых условиях Дирихле (ui продолжим нулем вне кру-
га Br). Поскольку λir = r−2λi1, то

β2
i (p) = min

Vi⊂Ṽ
max

v∈Vi\{0}
R(p, v) 6

ε∞λi1
r2dr

+
ε+p

2

dr
.

Следовательно,

k20 6
β2
i (p)

p2
6

ε∞λi1
p2r2dr

+
ε+
dr
.

Переходя здесь к пределу при r → 0, p → ∞ так, чтобы pr → ∞,
получим второе утверждение с), так как δr → 0, ε+/dr → k20. ¤

3. Аналитичность дисперсионных кривых. Согласно след-
ствию 7.4 оператор A(p) допускает представление в виде суммы са-
мосопряженных неотрицательных операторов, A(p) =: A(0) + A1(p),
причем операторы A1(p) являются компактными и ‖A1(p)‖ → 0
при p→ 0. Оператор A(0) порождается формой a(0, ·, ·) (см. (7.26)),

(A1(p)u, v) := p2
∫

Ω

σuv dx+ 2π
∞∑

n=−∞
K̃n(pR) an(u) an(v), (7.33)

где K̃n(z) = Kn(z)−Kn(0). Задачу (P) преобразуем к виду

Ã(p)u := A0u+A1(p)u = λBu, A0 := A(0) +B, λ := β2 +1. (7.34)

Далее будет показано, что оператор A1(p), рассматриваемый как
возмущение положительно определенного оператора A0, аналитиче-
ски зависит от p. В этом случае, привлекая аналитическую теорию
возмущений линейных операторов, получим следующее утверждение.

Теорема 7.33. Все собственные числа задачи (P) представля-
ются аналитическими на R+ функциями. Точнее, существует по-
следовательность скалярных функций λi(p) и последовательность
вектор-функций ui(p), i = 1, 2, . . ., аналитических на R+ и таких,
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что для каждой точки p ∈ R+ последовательность λi(p) представ-
ляет полный набор собственных чисел задачи (P), а последователь-
ность ui(p) образует полное в V/ kerB(0) семейство собственных
элементов.

Доказательство. Рассмотрим эквивалентную формулиров-
ку (7.34) задачи (P). Задачи такого типа при более общих предпо-
ложениях относительно операторов задачи изучались в книге [48,
c. 520]. Поскольку оператор Ã(p) положительно определен при всех p,
то определен самосопряженный и компактный оператор

T (p) := Ã−1/2(p)BÃ−1/2(p).

Он также аналитически зависит от переменной p на R+ [48, c. 523].
Ясно, что

T (p)v = µ(p)v, λ(p) =: µ−1(p)− 1, u =: Ã−1/2(p)v.

Нас интересуют только ненулевые собственные числа T (p). Так
как kerT (p) = kerB(0) при всех p, то они могут быть получены как
решения задачи

T̃ (p)v = µ(p)v, v ∈ Ṽ \ {0}, Ṽ := V/ kerB(0), (7.35)

где T̃ (p) есть сужение T (p) на Ṽ . Известно, что все собственные числа
и соответствующие им собственные элементы этой задачи представ-
ляются аналитическими на R+ функциями ([48, cм. теорему 3.9 и
замечание 3.11 на с. 490]), причем собственные элементы образуют
базис в Ṽ . Отсюда следуют утверждения теоремы, если учесть связь
между исходной задачей и (7.35). ¤

Замечание 7.10. Разницу между двумя нумерациями {λi(p)} и {λi(p)}
дисперсионных кривых демонстрирует рис. 13, c. 146.

Замечание 7.11. Согласно теореме 7.32 аналитические функции λi(p)
определены по непрерывности при p = 0. Аналогичное утверждение, на доказа-
тельстве которого мы не останавливаемся, справедливо и для собственных эле-
ментов ui(p).

Докажем аналитичность семейства операторов A1(p). Для этого
достаточно убедиться, что справедлива

Лемма 7.19. Функция p→
∞∑

n=−∞
K̃n(pR) an(u) an(v) при фикси-

рованных u, v ∈ V является аналитической на R+. Радиус сходимо-
сти ее ряда Тейлора в любой точке p0 > 0 равен p0.
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Доказательство. Пусть u, v ∈ V . Введем в рассмотрение
числа cn := an(u) an(v) и функции φn(z) := K̃n(z)/z, где аргу-
мент z ∈ C+ := {p+ iy : p > 0}. Определим ряды

s0 :=
∞∑

n=−∞
|cn|, s(z) :=

∞∑

n=−∞
K̃n(Rz) cn.

Из равенства Парсеваля (7.9), c. 155, и вложения V ⊂ L2(Γ) следует,
что числовой ряд s0 сходится. Действительно,

s20 6

∞∑

n=−∞
|an(u)|2

∞∑

n=−∞
|an(v)|2 6 c ‖u‖21,Ω‖v‖21,Ω.

Ряд s(z) преобразуется к виду

s(z) = c0K0(Rz) +Rz

∞∑

n=−∞,n6=0

cnφn(Rz) =: c0K0(Rz) +Rz s1(z).

Функциональный ряд s1 мажорируется рядом s0, так как |φn(z)| 6 1
в C+ при n 6= 0. Поэтому s1 сходится равномерно в C+. Поскольку
при каждом n функции φn(z), а также K0(z) являются аналитически-
ми в односвязной области C+, то по теореме Вейерштрасса s1(z), а
следовательно и s(z), являются аналитическими в C+. Отметим, что
поскольку аналитичность s теряется в нуле, то радиус сходимости
ряда Тейлора

s(z) =
∞∑

k=0

s(k)(z0, u, v)(z − z0)
k, s(k)(z0, u, v) :=

s(k)(z0)

k!
,

при вещественном положительном z0 = p0 равен в точности p0. Коэф-
фициенты этого ряда представляют собой симметричные, веществен-
ные и ограниченные билинейные формы на V и могут быть получены
разложением в ряд Тейлора в точке z0 функций K̃n(Rz) в определе-
нии s(z) и группировкой слагаемых. ¤

4. Множество решений задачи (P∞). Напомним, что за-
дача (P∞) является обобщенной формулировкой задачи нахождения
пар чисел (β, k) ∈ Λ и ненулевых вещественных u ∈ H1(R2), удовле-
творяющих в R2 \ γ уравнению

−∆u+ β2u = k2εu,
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Рис. 17. Дисперсионные кривые для волновода прямоугольного поперечного сече-
ния с размерами 1.5×1; ε(x) = 2.0, x ∈ Ωi; ε∞ = 1. На левом рисунке пунктирной
линией изображена часть границы области K, на правом — граница Λ.

где продольное волновое число k пропорционально частоте электро-
магнитных колебаний ω, k := (ε0µ0)

1/2 ω.
Между множествами решений этой задачи и задачи (P) имеет-

ся взаимно однозначное соответствие, определяемое теоремой 7.31. А
именно, если тройка (βi(p), p, ui(p)) есть решение задачи (P), i > 1, то

при ki(p) =
(
β2
i (p)− p2)/ε∞

)1/2
тройка (βi(p), ki(p), uip(p)) — решение

задачи (P∞) и наоборот 1). Таким образом, из теоремы 7.32, с. 173,
посвященной описанию множества решений задачи (P), нетрудно по-
лучить информацию о множестве решений задачи (P∞). Дадим, пред-
варительно, несколько пояснений.

В задаче (P∞) волновое число k (или частоту ω) будем считать
параметром, а (β, u) — неизвестными, и будем интересоваться зави-
симостью решений от k. Пусть (βi(p), ui(p)), i > 1, p ∈ R+, есть

решения задачи (P) и ki(p) =
(
β2
i (p) − p2)/ε∞

)1/2
. Тогда решениями

задачи (P∞) являются тройки (βi(p), ki(p), uip(p)), i > 1, p ∈ R+. В
плоскости (k, β) функции

k = ki(p), β = βi(p), p ∈ R+, i = 1, 2, . . . ,

определяют дисперсионные кривые задачи (P∞), параметризованные
поперечным волновым числом p. Согласно утверждению а) теоре-
мы 7.32, функции p → ki(p), p → βi(p) локально удовлетворяют
условию Липшица, непрерывны в нуле и возрастают. При p → 0

1)Напомним, что uip(p) есть метагармоническое продолжение ui(p)
∣∣
Ω
.
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имеем ki(p) → k0i = β0
i /ε

1/2
∞ , βi(p) → β0

i . Таким образом, i-я дис-
персионная кривая начинается в критической точке (k0i , β

0
i ). Чис-

ло ω0
i := k0i /(ε0µ0)

1/2 называется критической частотой. На рис. 17
в качестве иллюстрации сказанному выше представлены первые дис-
персионные кривые задачи (P) (слева) и (P∞) (справа) для одно-
родного волновода прямоугольного поперечного сечения. Ясно, что
дисперсионные кривые допускают параметризацию

βi = βi(k), k ∈ (k0i ,∞), i = 1, 2, . . . 1)

Числа (β0
i )

2 являются решениями следующей задачи: найти па-
ры (β2, u) ∈ R+ × V \{0} такие, что

(P0) a(0, u, v) = β2b(u, v) ∀ v ∈ V.
Напомним, что

a(0, u, v) :=

∫

Ω

∇u · ∇v dx+ 2π
∞∑

n=−∞
|n| an(u) an(v).

Задачу (P0) назовем задачей определения критических чисел. Со-
гласно теореме 7.32

0 = β0
1 < β0

2 6 β0
3 6 . . . , β0

i →∞, i→∞.

Определим ступенчатую функцию

n(k) := max{i : k0i < k, i = 1, 2, . . .}.

Число n(k) в точности равно числу решений (βi(k), ui(k)) задачи (P∞)
при фиксированном k > 0. Из приведенных выше рассуждений и
теоремы 7.32 непосредственно следует

Теорема 7.34. При каждом k > 0 существует конечное
число собственных чисел βK(k), 1 6 K 6 m(k), суммарной
кратности n(k) и соответствующих им собственных подпро-
странств UK(k) таких, что (βK(k), k, u) есть решение задачи (P∞)
при любом u ∈ UK(k). Кроме того, если

0 < β1(k) 6 β2(k) 6 . . . 6 βn(k)(k)

1)Впрочем, как и параметризацию ki = ki(β), β ∈ (β0i ,∞), i = 1, 2, . . .
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есть нумерация чисел {βK(k)}m(k)
K=1 с учетом кратности, то

a) n(k)→∞ при k →∞; β1(k)→ 0 при k → +0;
b) функции k → βi(k), k > k0i , i = 1, . . . , n(k), возрастают и локаль-
но липшицевы;

c) ε
1/2
∞ k < βi(k) < ε

1/2
+ k, k > k0i , lim

k→∞
(βi(k)/k) = ε

1/2
+ , i = 1, . . . , n(k).

При каждом k > 0, как следует из этой теоремы, существует по
крайней мере одно решение задачи (P∞). Число решений неограни-
ченно возрастает с ростом k.

Замечание 7.12. Обратим внимание на то, что качественное поведение
дисперсионной кривой p → β1(p) на рис. 17 отличается от поведения других
кривых. В частности, она вогнута и экспоненциально приближается к оси β при
малых p. Проанализируем поведение β1(p) при малых p. Оператор A(p) имеет
вид

A(p) = A(0) + A1(p),

где компактный оператор A1(p) определяется формулой (7.33), с. 175. При ма-

лых p функции K̃n(Rp) имеют асимптотику (7.17). Введем в рассмотрение пара-
метры ε := p2 ln(1/p) и ε0 := K0(pR) ≈ 1/ ln(1/p) и определим операторы

(A0u, v) := a(0, u, v) + ε0 2π a0(u) a0(v),

(E(p)u, v) := p2
∫

Ω

σuv dx+ 2π
∞∑

n=−∞, n6=0

K̃n(pR) an(u) an(v).

Тогда задача (P) примет вид

A0u+ E(p)u = β2(p)Bu.

Используя равенство Парсеваля, легко показать, что ‖E(p)‖ 6 c ε. Поэтому при
малых p задача на собственные значения

A0u = λBu,

является хорошим приближением задачи (P), поскольку 0 6 β2(p)− λ 6 c ε. Эта
задача зависит от малого параметра ε0. Пусть (λ0, u0) — ее собственные пары при
нулевом значении ε0. Используя теорию асимптотических разложений собствен-
ных пар (см., напр., [48, теорема 2.6, c. 551]), получим разложение для собствен-
ных числел λ = λ0 + λ1ε0 +O(ε20). Для простого собственного числа справедливо
представление λ1 = (A0u0, u0)/(Bu0, u0). Окончательно имеем

β2(p) = λ0 + λ1ε0 +O(ε20) +O(ε) = λ0 + λ1K0(pR) +O(K2
0(pR)).

Рассмотрим первую собственную пару (β21(p), u1(p)). В этом случае λ0 = 0 а u0 —
постоянная в Ω функция (она приналежит ядру A0 при ε0 = 0). Поэтому

β21(p) = λ1 K0(Rp) +O(K2
0(pR)), λ1 := 2π/

∫

Ω

(σ − 1) dx.
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Таким образом, при малых p поведение функции p → β1(p) совпадает с поведе-

нием функции K
1/2
0 (Rp) (график функции K0(p) см. на левом рис. 15, с. 157).

§ 3. Дискретная задача

Для приближенного решения задачи (P) используем метод Га-
леркина с возмущениями. Абстрактная оценка точности этого мето-
да была получена в первой главе (см. теорему 6.30 на с. 150). Для
дискретизации задачи используем метод конечных элементов (МКЭ)
с численным интегрированием, основанный на конформной аппрок-
симации Vh пространства Соболева V := H1(Ω). Наряду с числен-
ным интегрированием дополнительное возмущение в метод Галерки-
на вносит усечение бесконечной суммы, входящей в определение фор-
мы a.

1. Пространство конечных элементов. Опишем кратко
пространство конечных элементов Vh (подробнее см., напр., [55, c. 47],
либо [159], [160], либо [23, c. 114]). Пусть {Th}h — семейство точных
регулярных триангуляциий круга Ω, зависящее от малого парамет-
ра h > 0. А именно, Th есть такая совокупность треугольных конеч-
ных элементов e, что 1)

Ωh :=
⋃

e∈Th

e = Ω, h := max
e∈Th

diam(e).

Допускается использование элементов двух типов — элементов с тре-
мя прямолинейными сторонами (прямолинейные элементы) и элемен-
тов с двумя прямолинейными и одной криволинейной стороной (кри-
волинейные элементы). С практической точки зрения естественно ис-
пользовать криволинейные элементы только в качестве пригранич-
ных, то есть когда две вершины треугольника e лежат на ∂Ω (окруж-
ности), или на ∂Ωi (границе волновода) (см. рис. 18).

Рассмотрим элемент e ∈ Th с вершинами a1, a2 и a3 (либо криво-
линейный, либо прямолинейный). Будем считать, что две его сторо-
ны a1a2 и a1a3 — прямолинейные, а третья лежит на кривой `, пара-
метризованной дуговой координатой s так, что a2 = χ(s2), a3 = χ(s3).
При этом le = s3 − s2 — длина дуги a2a32).

1)Общими у элементов могут быть либо сторона, либо вершина; e — замкнутое
множество.

2)` — либо кривая линиия, либо — прямая, ` = {x ∈ R2 : x = χ(s), s ∈ [0, L]}.
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Рис. 18. Приграничные (1) и внутренние (2) треугольники, γ есть часть ∂Ω
или ∂Ωi.

Пусть ê — базисный треугольник в плоскости (x̂1x̂2) с вершина-
ми â1 = (0, 0), â2 = (1, 0), â3 = (0, 1). Определим отображение

x = xe(x̂) := a1 +Bex̂+ x̂1
Φ(x̂2)− ΦI(x̂2)

1− x̂2
.

Здесь Φ(t) := χ(s2 + t(s3 − s2)); ΦI(t) := a2 + t(a3 − a2), 0 6 t 6 1, —
параметрическое представление хорды a2a3;

Be :=

(
(a2 − a1)1 (a3 − a1)1
(a2 − a1)2 (a3 − a1)2

)
.

Отображение x = xe(x̂) задает преобразование ê на e, сохраняющее
ориентацию, причем ai = xe(âi). Известно, что это взаимно однознач-
ное диффеоморфное отображение, если h достаточно мало. Точнее,
если 1)

c−1 h2 6 detBe 6 c h2, ‖Be‖ 6 c h, ‖B−1e ‖ 6 c h, (7.36)

то

c−1 h2 6 det
(
Dxe(x̂)

)
6 c h2 ∀ x̂ ∈ ê, (7.37)

‖ det(Dxe)‖j,∞,ê 6 c hj+2, ‖xe‖j,∞,ê 6 c hj, j = 1, 2, . . . , (7.38)

где Dxe — матрица Якоби отображения xe. Здесь и далее буква c
(возможно с индексом) используется для обозначения различных по-
стоянных, не зависящих от h.

1)Здесь ‖A‖ означает спектральную (вторую) норму матрицы A. Отметим,
что |Ay| 6 ‖A‖ |y|, y ∈ R2; ‖A‖ = ‖AT‖.
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Обозначим через x̂ = x−1e (x) обратное отображение к xe, а симво-
лом P̂m — множество полиномов степени не выше m на ê, m > 0,

P̂m :=
{ ∑

06α1+α26m

cαx̂
α1
1 x̂

α2
2 , cα ∈ R

}
,

dim P̂m =: M̂ := (m+ 1)(m+ 2)/2.

Введем следующее пространство функций на e:

P e
m := {p : p(x) = p̂(x−1e (x)), p̂ ∈ P̂m, x ∈ e}, m > 1.

Если ϕ̂i(x̂), i = 1, . . . , M̂ , — базис Лагранжа в P̂m, m > 1, связанный
с узлами интерполяции ω̂ := {âi, i = 1, . . . , M̂} 1), то базис Лагранжа
в P e

m составляют функции ϕei (x) = ϕ̂i(x
−1
e (x)), i = 1, . . . , M̂ . Они

связаны с узлами интерполяции ωe := {aei := xe(âi), âi ∈ ω̂} на
элементе e.

Замечание 7.13. Если ` — отрезок прямой (то есть все стороны e прямоли-
нейные), то xe(x̂) = a1+Bex̂ — аффинное отображение, а P e

m — пространство по-
линомов степени не выше m. Заметим также, что для криволинейных элементов
e функции из P e

m не являются полиномами. Тем не менее, сужение произволь-
ной функции из P e

m на любую сторону e (в том числе криволинейную) является
полиномом степени не выше m относительно дуговой координаты этой стороны
(см., напр., [23, c. 118]).

Триангуляция Th называется регулярной, если выполнены усло-
вия (7.37) и (7.38) для любого элемента e ∈ Th. Далее будем предпо-
лагать, что длины сторон элементов из Th имеют порядок h, а углы
треугольников отделены от нуля и π равномерно по h. Этих условий
достаточно для выполнения (7.36), то есть для регулярности триан-
гуляции.

Аппроксимация Vh пространства V определяется теперь следую-
щим образом:

Vh := {vh ∈ C(Ω) : vh|e ∈ P e
m ∀ e ∈ Th}.

Это пространство конечномерно и базис Лагранжа в нем определя-
ется обычным способом: если ωh := {ai, i = 1, . . . , Nh} — сетка узлов

1)То есть ϕ̂i ∈ P̂m, ϕ̂i(âj) = δij для i, j = 1, . . . , M̂ . Предполагается, что на
каждой стороне ê выбрано m+1 равномерно расположенных узла интерполяции,
включая вершины элемента.
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на Ω, образованная различными точками из
⋃{ωe, e ∈ Th}, то уз-

лу al ∈ ωh ставится в соответствие базисная функция ϕl ∈ Vh такая,
что ϕl(aj) = δlj, l, j = 1, . . . , Nh. По определению имеем

uh(x) =

Nh∑

i=1

ciϕi(x), x ∈ Ω, ci = uh(ai), uh ∈ Vh.

Введем обозначения: û(x̂) := u(xe(x̂)) — образ функции u(x), опреде-
ленной на e, при преобразовании координат x = xe(x̂), x̂ ∈ ê;

|u|2k,h :=
∑

e∈Th

|u|2k,e, ‖u‖2k,h :=
∑

e∈Th

‖u‖2k,e, ‖u‖k,∞,h := max
e∈Th

‖u‖k,∞,e.

Регулярность триангуляции Th обеспечивает справедливость следую-
щих оценок:

|û|s,p,ê 6 c hs−2/p‖u‖s,p,e, |u|s,p,e 6 c h2/p−s|û|s,p,ê, (7.39)

‖vh‖k,h 6 c hl−k‖vh‖l,h, 0 6 l < k, vh ∈ Vh, (7.40)

inf
vh∈Vh

‖u− vh‖1,Ω → 0 при h→ 0, u ∈ V, (7.41)

inf
vh∈Vh

‖u− vh‖1,Ω 6 c hk‖u‖k+1,h, k = 0, . . . ,m. (7.42)

Здесь s > 0, p ∈ [1,∞]; ‖ · ‖s,p,e, | · |s,p,e — норма и полунорма в
пространстве Соболева W s

p (e)
1). Оценка (7.40) называется в теории

МКЭ обратным неравенством.

2. Формулы численного интегрирования. Для прибли-
женного вычисления интегралов по области Ω будем использовать
составные квадратурные формулы. Пусть m > 1 то же, что и в опре-
делении Vh, а Ŝ — некоторая заданная квадратурная формула на эле-
менте ê с положительными коэффициентами, точная на полиномах из
P̂2m−1 2):

∫

ê

ϕ(x̂)dx̂ ≈
Q∑

i=1

ĉiϕ(b̂i) =: Ŝ(ϕ), ĉi > 0.

1)Мы используем стандартные обозначения для функциональных пространств,
см. с. 10.

2)Использование таких квадратур в МКЭ при решении краевых задач для эл-
липтических уравнений второго порядка приводит к оптимальным оценкам точ-
ности в нормах H1 и L2.
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Примеры таких квадратур хорошо известны. При m = 1 подходящей,
например, является формула c одним узлом (в центре тяжести ê) или
с тремя узлами (в вершинах ê).

Пусть Je(x̂) := Dxe(x̂) — матрица Якоби преобразования xe,
а |Je(x̂)| := det Je(x̂) > 0. Тогда следующие формулы определяют
искомую составную квадратуру Sh(·):
∫

Ω

ϕ(x)dx =
∑

e∈Th

∫

e

ϕ(x)dx =
∑

e∈Th

∫

ê

|Je(x̂)|ϕ(xe(x̂)) dx̂ ≈

≈
∑

e∈Th

Q∑

i=1

ĉi |Je(b̂i)|ϕ(xe(b̂i)) =:
∑

e∈Th

Se(ϕ) =: Sh(ϕ).

Определим дискретные аналоги норм в H1(Ω) и L2(Ω):

‖uh‖21,Vh
:= Sh

(
|∇uh|2 + u2h

)
, ‖uh‖20,Vh

:= Sh
(
u2h
)
.

Теорема 7.35. Пусть триангуляция Th является регулярной,
а квадратурная формула Ŝ точна на любом полиноме из P̂2m−2 и
имеет положительные коэффициенты. Тогда справедливы оценки

c−1‖uh‖1,Ω 6 ‖uh‖1,Vh
6 c ‖uh‖1,Ω, uh ∈ Vh, (7.43)

‖uh‖0,Vh
6 c ‖uh‖0,Ω, uh ∈ Vh. (7.44)

Доказательство. Пусть e ∈ Th, P̂m 3 û(x̂) := uh(xe(x̂))−
образ функции uh = uh|e при отображении x = xe(x̂). Обозна-
чая J−Te := (J−1e )T , имеем |∇uh(x)| = |J−Te (x̂)∇̂û(x̂)| 1). Из усло-
вий регулярности триангуляции вытекают следующие равномерные
по x̂ ∈ ê оценки:

c−1h2 6 |Je(x̂)| 6 c h2, ‖Je(x̂)‖ 6 c h, ‖J−1e (x̂)‖ 6 c h−1. (7.45)

Из условий на Ŝ следует, что

Î(û) :=

∫

ê

(
|∇̂û|2 + û2

)
dx̂ ∼ Ŝ

(
|∇̂û|2 + û2

)
=: ŝ(û) на P̂m,

2)

1)∇̂ = (∂/∂x̂1, ∂/∂x̂2)
T .

2)f(u) ∼ g(u) на U , если c1f(u) 6 g(u) 6 c2g(u) для ∀u ∈ U , c1, c2 не зависят
от h и u, c1 > 0.
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поскольку, как нетрудно видеть, как Î1/2, так и ŝ1/2 являются нормами
на P̂m. Докажем, что

I(uh) :=

∫

e

(
h2|∇uh|2 + u2h

)
dx ∼ Se

(
h2|∇uh|2 + u2h

)
=: S(uh) (7.46)

на P e
m. Используя оценку |y| 6 ‖A‖ |A−1y|, y ∈ R2, а также оцен-

ки (7.45), имеем

I(uh) =

∫

ê

|Je|
(
h2|J−Te ∇̂û|2 + û2

)
dx̂ 6 c h2Î(û) 6 c h2ŝ(û) 6

6 c
h2

min |Je|
Se
(
‖JT‖2|J−T∇uh|2 + u2h

)
6 c S(uh).

Такие же рассуждения приводят к неравенству S(uh) 6 c I(uh),
что доказывает (7.46). Аналогично доказывается, что также

∫

e

|∇uh|2 dx ∼ Se
(
|∇uh|2

)
на P e

m. (7.47)

Из (7.46) и (7.47) имеем
∫

e

(
(1 + h2)|∇uh|2 + u2h

)
dx ∼ Se

(
(1 + h2)|∇uh|2 + u2h

)
.

Отсюда, после суммирования по всем e ∈ Th, следуют оценки (7.43).

Функционал Ŝ1/2
(
û2
)

определяет полунорму, а
( ∫
ê

û2 dx̂
)1/2

—

норму на P̂m. Поэтому, как и ранее, имеем

Se(u
2
h) 6 c h2Ŝ(û2) 6 c h2

∫

ê

û2 dx̂ 6 c
h2

min |Je|

∫

e

u2h dx 6 c

∫

e

u2h dx.

Суммируя эти оценки по всем e ∈ Th, придем к (7.44). ¤

Следствие 7.5. Sh
(
|∇uh|2

)
∼ |uh|21,Ω,

Se
(
|∇uh|2 + u2h

)
∼
∫

e

(
|∇uh|2 + u2h

)
dx.
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3. Дискретная задача. Свойства решений. Определим би-
линейные формы a0h, bh, sN , являющиеся аппроксимациями на Vh×Vh
форм a0, b и s∞, соответственно. Для этого заменим интегралы по
области Ω в определении форм a0 и b на составную квадратуру Sh,
бесконечный ряд в определении s∞ — конечным. В итоге получим

a0h(p, u, v) := Sh(∇u · ∇v + p2σ uv), σ := ε/ε∞,

bh(u, v) := Sh((σ − 1)uv),

sN(p, u, v) := 2π
N∑

n=−N
Kn(pR)an(u)an(v).

Здесь u, v ∈ Vh, N > 0. Предполагается, что коэффициенты Фу-
рье функций u и v вычисляются точно. Последнее нетрудно вы-
полнить аналитически, так как u и v на Γ являются кусочно-
полиномиальными (степени m) функциями относительно угловой ко-
ординаты ϕ.

Отметим, что при аппроксимации формы s∞ возникает дополни-
тельный параметр N . Далее будем считать, что N = N(h), поэтому
введем обозначение

ah(p, u, v) := a0h(p, u, v) + sN(p, u, v).

Рассмотрим конечномерную задачу: при каждом p ∈ R+ найти
числа βh ∈ R+ и ненулевые uh ∈ Vh такие, что 1)

(Ph) ah(p, uh, v) = βh2 bh(uh, v) ∀ v ∈ Vh.
При p > 0 эта задача является дискретным аналогом задачи (P), а
при p = 0 — задачи (P0) для определения критических чисел.

Пусть uh =
Nh∑
i=1

yiϕi, yi = uh(ai); y := (y1, y2, . . . , yNh
)T — вектор

узловых параметров uh. Введем матрицы

Ah(p) :=
{
ah(p, ϕj, ϕi)

}Nh

i,j=1
, Bh :=

{
bh(ϕj, ϕi)

}Nh

i,j=1
.

Тогда задача (Ph) может быть записана как параметрическая обоб-
щенная алгебраическая задача на собственные значения:

Ah(p)y = βh2Bhy, y ∈ RNh\{0}.
1)Числа βh, как и βh2, мы далее будем называть собственными числами.
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Задачи подобного вида были изучены нами в главе 6 (см. § 4, с. 148),
где спектральный параметр βh2 обозначался через λh. Прежде чем
использовать результаты теоремы 6.29, необходимо убедиться, что се-
мейства матриц Ah(p) и Bh удовлетворяют условиям Ah

1–A
h
5 , с. 148.

Лемма 7.20. Семейства матриц Ah(p), p > 0 и Bh удовлетво-
ряют условиям Ah

1–A
h
5 .

Доказательство. Учтем, что Kn(r) > 0 при r ∈ R+. Привле-
кая лемму 7.13, получаем

0 6 sN(p, uh, uh) 6 s∞(p, uh, uh) 6Ms(p)‖uh‖21,Ω.
Учитывая (7.43), также имеем 1):

a0h(p, uh, uh) > 1p Sh
(
|∇uh|2 + u2h

)
> 1p c

−2‖uh‖21,Ω .
Аналогично доказывается неравенство a0h(p, uh, uh) 6 1p c2‖uh‖21,Ω.
Из этих оценок следует, что

ma(p)‖uh‖21,Ω 6 ah(p, uh, uh) 6Ma(p)‖uh‖21,Ω , (7.48)

где ma(p) := 1p c
−2, Ma(p) := 1p c2 +Ms(p), p ∈ R+. Оценки

0 6 bh(uh, uh) 6Mb‖uh‖21,Ω, Mb := (σ+ − 1)c2, (7.49)

являются очевидными. Из (7.48) и (7.49) следует, что выполнены
условия Ah

1 . Далее, по определению

ah(0, uh, uh) = Sh
(
|∇uh|2

)
+ 2π

N∑

n=−N
|n| |an(uh)|2 > 0.

Учитывая (7.47), получаем, что kerAh(0) = {uh : uh = const в Ω}.
Поэтому r0 = 1 и выполнены условия Ah

2 (см. замечание 6.2).
Поскольку σ

∣∣
Ωi
> 1 + σ0, то, учитывая (7.47) и следствие 7.5,

имеем при c0 := min{1, σ0}:

ah(p, uh, uh) + bh(uh, uh) > Sh
(
|∇uh|2

)
+ σ0

∑

e∈Ωi

Se
(
u2h
)
>

> c0

( ∑

e∈Ω\Ωi

Se
(
|∇uh|2

)
+
∑

e∈Ωi

Se
(
|∇uh|2 + u2h

))
>

> c
(∫

Ω

|∇uh|2dx+

∫

Ωi

u2hdx
)
> mab‖uh‖21,Ω.

1)1p := min{1, p2}, 1p := max{1, p2}
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Отметим, что постоянная mab зависит от Ω.
Перейдем к условию Ah

4 . Имеем (1 > σ/σ+):

bh(u, u) =
∑

e∈Ωi

Se
(
(σ − 1)u2

)
> σ0

∑

e∈Ωi

Se
(
u2
)
> σ0/σ+

∑

e∈Ωi

Se
(
σu2
)
.

C другой стороны, очевидно, bh(u, u) 6
∑
e∈Ωi

Se
(
σu2
)
=: S(u). Поэто-

му, если u ∈ Ṽh 1), то S(u) 6= 0. Отсюда легко следует, что отношение
Рэлея Rh(p, u) := ah(p, u, u)/bh(u, u) возрастает по p при u ∈ Ṽh (усло-
вие Ah

4).
Проверим условие Ah

5 . Пусть u ∈ Vh. Непрерывность в нуле функ-
ции p → ah(p, u, u) доказывается так же, как и для формы a (см.
лемму 7.17, c. 170). Учитывая, что K′n(r) > 0 при r > 0, имеем

0 6
d

dp
ah(p, u, u) = 2p Sh

(
σu2
)
+

d

dp
sN(p, u, u) 6 c p ‖u‖20,Vh

+

+
d

dp
s∞(p, u, u) 6 c p ‖u‖20,Ω + M̃s(p)‖u‖21,Ω 6 M̃a(p)‖u‖21,Ω.

Таким образом, Ah(p) ∈ L(R+, Vh). ¤

Пусть N b
h := dim(ImBh). Из теоремы 6.29, с. 149 (см. также за-

мечание 6.2), непосредственно следует

Теорема 7.36. При каждом p ∈ R+ задача (Ph) имеет конечное
число (скажем nh(p)) собственных чисел βhK(p) суммарной кратно-
сти N b

h и соответствующих им собственных подпространств

UK
h (p), K = 1, 2, . . . , nh(p), Vh,Ah(p)+Bh

=

nh(p)⊕

K=1

UK
h (p)⊕ kerBh.

Кроме того, если 0 6 βh1 (p) 6 βh2 (p) 6 . . . 6 βh
N b

h

(p) есть соб-

ственные числа, занумерованные с учетом кратности, то функ-
ции p→ βhi (p), i = 1, 2, . . . , N b

h, являются непрерывными в нуле, ло-
кально липшиц-непрерывными на R+ и возрастающими; βh1 (p) → 0
при p→ +0; βh2 (0) > 0.

1)Ṽh есть ортогональное дополнение kerBh до пространства Vh,Ah(p)+Bh
.
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§ 4. Оценки точности

При каждом фиксированном p ∈ R+ задача (Ph) является схемой
Галеркина с возмущениями для задачи (P). Задачи такого типа были
изучены в главе 6.

Пусть β2
i (p) и βh2i (p), i = 1, 2, . . ., — упорядоченные по возраста-

нию с учетом кратности собственные числа задачи (P) и (Ph) соответ-
ственно, ui(p) и uhi (p) — соответствующие им собственные функции.
Пусть далее βK(p) имеет кратность rK = rK(p), K > 1,

βK(p) = βk(p), βk−1(p) < βk(p) = . . . = βk+rK−1(p) < βk+rK
(p),

UK(p) := span{uk(p), . . . , uk+rK−1(p)},
UK
h (p) := span{uhk(p), . . . , uhk+rK−1(p)}.

Целью данного параграфа является оценка зависимости величин

|βK(p)− βhi (p)|, k 6 i 6 k + rK − 1,

и раствора ΘV (U
K(p), UK

h (p)) от параметров h и N дискретной зада-
чи (Ph).

Теорема 6.30, с. 150, приводит к следующим оценкам этих вели-
чин:

ΘV (U
K(p), UK

h (p)) 6 c max
u∈UK(p), ‖u‖1,Ω=1

εh(u), (7.50)

|βK2(p)− βh2i (p)| 6 c max
u∈UK(p),‖u‖1,Ω=1

(
ε2h(u) + Σh(Phu)

)
. (7.51)

Здесь c = c(K, p), Ph := Ph(p) — ортопроектор в VA(p)+B на Vh,

εh(u) := inf
vh∈Vh

‖u− vh‖1,Ω + Ea(Phu) + Eb(Phu), u ∈ V,

Σh(y) := |a(p, y, y)− ah(p, y, y)|+ |b(y, y)− bh(y, y)|, y ∈ Vh,
для заданных форм d и dh,

Ed(ϕh) := sup
vh∈Vh,‖vh‖=1

|d(ϕh, vh)− dh(ϕh, vh)|, ϕh ∈ Vh.

Для того, чтобы воспользоваться оценками (7.50), (7.51), необхо-
димо убедиться в выполнении условий (H1), Ah

6 . Фактически необхо-
димо проверить лишь условие 1)

1)Здесь T (p) := (A(p) +B)−1B, A(p) и B — операторы задачи (P).
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Ah
6) sup

f∈Vh, ‖f‖=1

(Eb(f)+Eb(PhT (p)f)+Ea(PhT (p)f))→ 0 при h→ 0,

поскольку (H1) выполняется очевидным образом (см. (7.41), c. 184).
Прежде чем приступить к анализу правых частей в (7.50) и (7.51),

оценим два типа возмущений в формах a и b, а именно возмущений
от использования квадратурных формул и от усечения ряда.

До конца главы будем предполагать, что K > 1 и p > 0 являются
фиксированными, ε|Ωi

⊂ W 2m
∞ (Ωi), а собственные функции u из UK(p)

обладают следующей гладкостью:

u|Ωi
⊂ Hm+1(Ωi), u|Ω\Ωi

⊂ Hm+1(Ω \ Ωi), (7.52)

где m то же число, что и в определении пространства Vh. Будем ис-
пользовать дополнительные обозначения

|u|j := |u|j,Ωi
+ |u|j,Ω\Ωi

, ‖u‖j := ‖u‖j,Ωi
+ ‖u‖j,Ω\Ωi

, j > 0.

1. Оценки погрешности численного интегрирования. Вве-
дем обозначения функционалов погрешности квадратурных формул:

Ê(f̂) :=

∫

ê

f̂(x̂) dx̂− Ŝ(f̂), Ee(f) :=

∫

e

f(x) dx− Se(f),

Eh(f) :=
∑

e∈Th

Ee(f).

Лемма 7.21. Пусть Ê(f̂) = 0 для любого полинома f̂ ∈ P̂2m−1,
а p |e ∈ W 2m

∞ (e) для любого e ∈ Th. Обозначим символом Eh любую из

величин Eh(puv), Eh

(
p u

∂v

∂xi

)
или Eh

(
p
∂u

∂xj

∂v

∂xi

)
, i, j = 1, 2. Тогда

|Eh| 6 c ‖p‖2m,∞,hh
2m‖u‖m,h‖v‖m,h ∀u, v ∈ Vh.

Доказательство. Обоснование оценок подобного типа прово-
дится по стандартной в МКЭ схеме: в функционале погрешности осу-
ществляется переход на базисный элемент, используется лемма Брам-
бла — Гильберта и совершается обратный переход на исходный эле-
мент (см., напр, [80, c. 178], [23, c. 176]). Имеет место оценка

|Ee(puv)| = |Ê(f̂)| 6 ‖f̂‖0,∞,ê 6 ‖f̂‖2m,∞,ê,
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где f̂ := σ̂ûv̂, σ̂ := |Je(x̂)| p̂(x̂), p̂(x̂) := p(xe(x̂)), |Je(x̂)| — якобиан
преобразования xe. Так как Ê(P̂2m−1) = 0, то из леммы Брамбла —
Гильберта [105] следует, что

|Ee(puv)| 6 c |f̂ |2m,∞,ê. (7.53)

Поскольку û, v̂ ∈ P̂m, а полунормы |·|i,∞,ê и |·|i,ê эквивалентны на P̂m,
то, пользуясь правилом Лейбница, получим

|f̂ |2m,∞,ê 6 c
m∑

i,j=0

|σ̂|2m−i−j,∞,ê|û|i,∞,ê|v̂|j,∞,ê 6

6 c

m∑

i,j=0

|σ̂|2m−i−j,∞,ê|û|i,ê|v̂|j,ê. (7.54)

Из условий регулярности триангуляции (см. оценки (7.37) — (7.39) на
с. 184) и правила Лейбница следует

|σ̂|s,∞,ê 6 c
s∑

l=0

|Je|s−l,∞,ê |p̂|l,∞,ê 6

6 c

s∑

l=0

hs−l+2 hl ‖p‖l,∞,e = c hs+2‖p‖s,∞,e.

Таким образом, из (7.54) будем иметь

|f̂ |2m,∞,ê 6 c

m∑

i,j=0

h2m−i−j+2‖p‖2m−i−j,∞,eh
i−1‖u‖i,ehj−1‖v‖j,e 6

6 c h2m‖p‖2m,∞,e‖u‖m,e‖v‖m,e.
Комбинируя последнюю оценку и (7.53), имеем требуемое

|Eh(puv)| =
∣∣∑

e∈Th

Ee(puv)
∣∣ 6 c h2m

∑

e∈Th

‖p‖2m,∞,e‖u‖m,e‖v‖m,e 6

6 c h2m‖p‖2m,∞,h

∑

e∈Th

‖u‖m,e‖v‖m,e 6 c h2m‖p‖2m,∞,h‖u‖m,h‖v‖m,h.

Приведенные выше рассуждения полностью повторяются и в двух
оставшихся случаях. Например,

Eh := Eh

(
p
∂u

∂xj

∂v

∂xi

)
=
∑

e∈Th

Ie, Ie := Ee

(
p
∂u

∂xj

∂v

∂xi

)
.
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Поскольку∇u = JTe ∇̂û, Je — матрица Якоби преобразования xe, то Ie
представляет собой сумму слагаемых вида Ê(f̂),

f̂ := σ̂
∂û

∂x̂j

∂v̂

∂x̂i
, σ̂ :=

1

|Je(x̂)|
∂xei(x̂)

∂x̂k

∂xej(x̂)

∂x̂l
p̂ ,

причем |Ê(f̂)| 6 c |f̂ |2m,∞,ê. Как и ранее, имеем |σ̂|s,∞,ê 6 c hs‖p‖s,∞,e,

|Ê(f̂)| 6 c |f̂ |2m,∞,ê 6 c
m−1∑

i,j=0

|σ̂|2m−i−j,∞,ê|û|i+1,ê|v̂|j+1,ê 6

6 c h2m‖p‖2m,∞,e‖u‖m,e‖v‖m,e.

Отсюда, после суммирования по e ∈ Th, следует оценка Eh. ¤

Следствие 7.6. Пусть ε|Ωi
∈ W 2m

∞ (Ωi), u, v ∈ Vh, p ∈ R+. Тогда

|a0(p, u, v)− a0h(p, u, v)| 6 c h2m‖u‖m,h‖v‖m,h,
|b(u, v)− bh(u, v)| 6 c h2m‖u‖m,h‖v‖m,h.

2. Вспомогательные утверждения. Следующие две леммы
понадобятся нам при оценке возмущений метода Галеркина.

Лемма 7.22. Пусть u ∈ UK(p), k = 1, 2, . . . ,m. Тогда

‖u− Phu‖1,Ω 6 c hk‖u‖k+1, ‖Phu‖k,h 6 c ‖u‖k. (7.55)

Доказательство. Из эквивалентности норм в VA(p)+B и в V
следует, что проектор Ph ограничен в V и

‖u− Phu‖1,Ω 6 c inf
vh∈Vh

‖u− vh‖1,Ω ∀u ∈ V.

Первая оценка леммы следует из этой оценки и неравенства (7.42),
с. 184, так как ‖u‖k,h = ‖u‖k. Справедливость второй оценки в (7.55)
при k = 1 вытекает из ограниченности Ph в V , поскольку

‖Phu‖1,h = ‖Phu‖1,Ω.

Пусть k > 2, а πh есть такой проектор V на Vh, что

‖u− πhu‖1,Ω 6 c hk−1‖u‖k, ‖u− πhu‖k,h 6 c ‖u‖k.
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Например, в качестве πh можно выбрать оператор Vh-интерполяции 1).
Используя обратное неравенство (7.40), имеем

‖πhu− Phu‖k,h 6 c h1−k‖πhu− Phu‖1,Ω 6
6 c h1−k(‖u− πhu‖1,Ω + ‖u− Phu‖1,Ω) 6 c ‖u‖k.

Следовательно,

‖Phu‖k,h 6 ‖u‖k,h + ‖u− πhu‖k,h + ‖πhu− Phu‖k,h 6 c ‖u‖k. ¤

Обозначим через A(Ω) множество функций из H1(Ω), гармонических
или метагармонических в Ω \ Ωi. Отметим, что UK(p) ⊂ A(Ω).

Лемма 7.23. Пусть p ∈ R+,

SN(u) := 2π
∑

|n|>N
Kn(Rp) |an(u)|2, u ∈ A(Ω).

Тогда 2)

SN(Phu) 6 c
(
‖u− Phu‖21,Ω + (R0/R)

2N‖u‖21,Ω
)
.

Доказательство. Справедливы два следующих неравенства
(см. замечание 7.5, c. 158):

SN(Phu) 6 2(SN(u− Phu) + SN(u)), Kn(Rp) 6 1pKn(R).

Поэтому (см. следствие 7.3):

SN(u− Phu) := 2π
∑

|n|>N
Kn(Rp) |an(u− Phu)|2 6

6 1p 2π
∑

|n|>N
Kn(R) |an(u−Phu)|2 6 1p |u−Phu|21/2,Γ 6 c ‖u−Phu‖21,Ω.

Из леммы 7.14 следует, что

|an(u)| 6 (R0/R)
|n||an(u0)|, u0 = u|∂BR0

.

Кроме того, Kn(Rp) 6 (Rp/R0)
2Kn(R0). Поэтому

SN(u) 6 p2(R0/R)
2N2π

∑

|n|>N
Kn(R0) |an(u0)|2 6

6 p2 (R0/R)
2N |u|21/2,∂BR0

6 c (R0/R)
2N‖u‖21,BR0

6 c (R0/R)
2N‖u‖21,Ω.

Теперь из оценок SN(u−Phu) и SN(u) следует требуемое утверждение.
1)πhu ∈ Vh, πhu(ai) = u(ai) в каждой точке сетки ai.
2)Напомним, что R > R0, R0 := min{r : Ωi ⊆ Br}.
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3. Оценки возмущений. Оценим возмущения форм, вызван-
ные численным интегрированием и усечением ряда. Положим

εhm := hm + (R0/R)
N , εh0 := ‖(I − Ph)T (p)‖+ h2 + (R0/R)

N .

Теорема 7.37. Пусть p ∈ R+, uh ∈ Vh, u ∈ UK(p). Тогда

Ea(PhT (p)uh) 6 c εh0‖uh‖1,Ω, (7.56)

Ea(Phu) 6 c εhm‖u‖m+1, (7.57)

|a(p, Phu, Phu)− ah(p, Phu, Phu)| 6 c ε2hm‖u‖2m+1. (7.58)

Доказательство. Имеем для любых fh, vh ∈ Vh 1):

(a− ah)(p, fh, vh) = (a0− a0h)(p, fh, vh)+ 2π
∑

|n|>N
Kn(Rp) an(fh) an(vh).

Воспользуемся следствием 7.6. Тогда

|(a− ah)(p, fh, vh)| 6 c h2m‖fh‖m,h‖vh‖m,h+
+ 2π

∑

|n|>N
Kn(Rp) |an(fh)| |an(vh)|. (7.59)

Выберем здесь fh = Phv, v = T (p)uh и учтем, что v ∈ A(Ω),

2π
∑

|n|>N
Kn(Rp) |an(vh)|2 6 c ‖vh‖21,Ω

и ‖vh‖m,h 6 c h1−m‖vh‖1,Ω (обратное неравенство). Используя нера-
венство Коши — Буняковского и лемму 7.23, получим

|(a− ah)(p, Phv, vh)| 6 c h2‖Phv‖1,Ω‖vh‖1,Ω + c S
1/2
N (Phv)‖vh‖1,Ω 6

6 c
(
h2‖v‖1,Ω + ‖v − Phv‖1,Ω + (R0/R)

N‖v‖1,Ω
)
‖vh‖1,Ω.

Отметим, что T (p) — компактный оператор при каждом p > 0, кроме
того, ‖v‖1,Ω 6 c ‖uh‖1,Ω, ‖v−Phv‖1,Ω 6 ‖(I−Ph)T (p)‖ ‖uh‖1,Ω. Отсюда
следует оценка (7.56).

Выберем теперь в (7.59) fh = Phu и учтем оценки (7.55). Получим

|(a− ah)(p, Phu, vh)| 6 c hm+1‖Phu‖m,h‖vh‖1,Ω + c S
1/2
N (Phu)‖vh‖1,Ω 6

6 c εhm‖u‖m+1‖vh‖1,Ω.
1)(a− ah)(p, u, v) = a(p, u, v)− ah(p, u, v).
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Отсюда следует (7.57). Оценку (7.58) нетрудно получить из (7.55) и
леммы 7.23, выбирая в (7.59) функции fh = vh = Phu. ¤

Теорема 7.38. Пусть uh ∈ Vh, u ∈ UK(p). Тогда

Eb(uh) 6 c h2‖uh‖1,Ω, (7.60)

Eb(Phu) 6 c hm+1‖u‖m, (7.61)

|b(Phu, Phu)− bh(Phu, Phu)| 6 c h2m‖u‖2m. (7.62)

Доказательство. Согласно следствию 7.6

|b(uh, vh)− bh(uh, vh)| 6 c h2m‖uh‖m,h‖vh‖m,h, uh, vh ∈ Vh.

Дважды применяя здесь обратное неравенство, получим (7.60). Вы-
бирая uh = Phu, используя (7.55) и обратное неравенство, будем
иметь (7.61). Полагая uh = vh = Phu и учитывая (7.55), полу-
чим (7.62). ¤

4. Оценки точности приближенных решений. Используя
полученные выше оценки величин, входящих в условие Ah

6 и неравен-
ства (7.50), (7.51), оценим точность приближенного метода.

Теорема 7.39. Пусть p ∈ R+, ε|Ωi
⊂ W 2m

∞ (Ωi), выполнены усло-
вия гладкости (7.52) и

N > c0 ln(1/h), c0 =
m

ln(R/R0)
.

Тогда при достаточно малом h имеют место оценки

ΘV (U
K(p), UK

h (p)) 6 c hm, |βK(p)− βhi (p)| 6 c h2m,

где K > 1, i = k, . . . , k + rK − 1, c = c(K, p).

Доказательство. Воспользуемся оценками (7.56), (7.60).
Пусть uh ∈ Vh, vh = PhT (p)uh. Тогда

Eb(vh) 6 c h2‖vh‖1,Ω 6 c h2‖uh‖1,Ω.

Легко видеть, что (R0/R)
N 6 hm. Поэтому

Eb(uh) + Eb(PhT (p)uh) + Ea(PhT (p)uh) 6 c(h2 + εh0)‖uh‖1,Ω 6
6 c

(
h+ ‖(I − Ph)T (p)‖

)
‖uh‖1,Ω.
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Отсюда следует справедливость условия Ah
6 , поскольку в силу усло-

вия (H1) и компактности оператора T (p) имеем ‖(I − Ph)T (p)‖ → 0
при h→ 0 (см., напр., [56, лемма 15.4, с. 202]).

Обратимся к оценкам (7.50), (7.51). Из оценок (7.57) и (7.61) по-
лучаем, что

Ea(Phu) + Eb(Phu) 6 c hm‖u‖m+1.

Следовательно, с учетом (7.42) имеем εh(u) 6 c hm‖u‖m+1. Оценка

Σh(Phu) 6 c h2m‖u‖2m+1

вытекает непосредственно из (7.58) и (7.62). Таким образом, из оце-
нок (7.50), (7.51) имеем

ΘV (U
K(p), UK

h (p)) 6 c hm, |βK2(p)− βh2i (p)| 6 c h2m, (7.63)

поскольку в силу конечномерности пространства UK(p)

max
u∈UK(p), ‖u‖=1

‖u‖m+1 6 c, c = c(K, p).

Ясно, что из (7.63) следует также, что |βK(p)− βhi (p)| 6 c h2m. ¤

Замечание 7.14. В случае волновода кругового поперечного сечения (об-
ласть Ωi является кругом BR0

) естественно выбрать R = R0. Однако этот выбор
исключается в формулировке теоремы (иначе c0 = ∞). Преодолеть это ограни-
чение нетрудно, если уточнить лемму 7.23. В этом случае

SN(Phu) 6 c
(
‖u− Phu‖21,Ω + (N + 1)−2m‖u‖21,Ω

)
.

Для доказательства этого утверждения достаточно m раз проинтегрировать по
частям в выражении an(u) при оценке SN(u). Далее, повторяя доказательство
теоремы 7.39, нетрудно получить, что ее результаты остаются справедливыми
при N = O(1/h).

Глава 8

ВЕКТОРНАЯ ЗАДАЧА О ПОВЕРХНОСТНЫХ
СОБСТВЕННЫХ ВОЛНАХ

Данная глава посвящена решению векторной задачи о поверх-
ностных собственных волнах цилиндрических диэлектрических вол-
новодов, находящихся в однородной окружающей среде. Формулиров-
ка задачи (см. введение к настоящему разделу) сводится к нахожде-
нию пар чисел (β, k) ∈ Λ и ненулевых H ∈ [H1(R2)]3, удовлетворяю-
щих в R2 \ γ уравнению

rotβ

(
1

ε
rot β H

)
− 1

ε∞
gradβ (divβ H) = k2H, (8.1)

а также условиям сопряжения на границе γ (с. 22). Напомним,
что Λ := {(β, k) : β/√ε+ < k < β/

√
ε∞, β > 0}; дифференциальные

операции с индексом β введены на с. 19; диэлектрическая проницае-
мость ε удовлетворяет условиям, сформулированным на с. 122; сим-
воломH1(R2) обозначено пространство Соболева комплекснозначных
функций.

Дадим краткий обзор содержания главы. В § 1 задача (8.1) фор-
мулируется в слабой форме. Показывается, что решение H имеет
вид H = (H1,H2, iH3), где H1,H2,H3 — вещественные функции. Далее
задача формулируется в терминах векторного поля H := (H1,H2,H3)
и эквивалентным образом сводится к задаче в ограниченной области
(в круге Ω). Она представляет собой самосопряженную квадратич-
ную задачу на собственные значения в вещественном гильбертовом
пространстве [H1(Ω)]3 следующего вида 1):

A(p)H + βCH− β2BH = 0. (8.2)

Оператор A(p) является положительно определенным при каж-
дом p > 0, B — неотрицательным и компактным, C — компакт-
ным оператором. Оказывается, что третью компоненту H можно ис-
ключить из уравнения (8.2) и получить задачу A(p)H = β2B(p)H

1)Здесь, как и ранее, p := (β2 − k2ε∞)
1/2 считается параметром.
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в [H1(Ω)]2, H := (H1,H2). Свойства операторов A(p) и B(p), раз-
решимость задачи и свойства дисперсионных кривых p → β(p) ис-
следуются в § 2. Эти результаты позволяют описать множество ре-
шений исходной задачи (8.1), а также свойства дисперсионных кри-
вых k → β(k) (см. § 3). В § 4 строится и исследуется конечномерная
аппроксимация задачи (8.2) на основе МКЭ, а ее точность оценива-
ется в заключительном § 5.

Необходимо отметить, что изложение материала следует схеме,
принятой в предыдущей главе (посвященной скалярному случаю).
Поскольку при этом также существенно используются результаты
главы 6, то мы предполагаем, что читатель знаком с материалом
глав 6 и 7.

§ 1. Эквивалентные постановки задачи

1. Линейная спектральная задача на плоскости. Обозна-
чим через H1(D) пространство Соболева комплекснозначных скаляр-
ных функций на области D ⊆ R2, V l(D) := [H1(D)]l. Положим
для H, H′ из V l(D), l > 1:

H · H′ := H1H
′
1 + . . .+HlH

′
l, |H|2 := H · H, ∇H := (∇H1, . . . ,∇Hl),

∇H · ∇H′ := ∇H1 · ∇H′1 + . . .+∇Hl · ∇H′l, |∇H|2 := ∇H · ∇H.

Пространство V l(D) является гильбертовым; скалярное произведение
и норма в нем определяются стандартно:

(H,H′) :=

∫

D

(
∇H · ∇H′ +H · H′

)
dx, ‖H‖1,D := (H,H)1/2.

Рассмотрим обобщенную (слабую) формулировку задачи (8.1).
Она получается обычным образом и имеет следующий вид [94].

Найти (β, k) ∈ Λ и ненулевые H ∈ V 3(R2) такие, что для любого
вектора H′ ∈ V 3(R2) имеет место равенство

(P∞)
∫

R2

(
1

ε
rotβ H · rotβ H′ +

1

ε∞
divβ H divβ H′

)
dx = k2

∫

R2

H ·H′ dx.

Эрмитову форму в левой части (P∞) обозначим через C̃(β; H,H′) и
проясним характер ее зависимости от параметра β. Для этого нам
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понадобится ряд дополнительных обозначений. Пусть

σ := ε−1∞ − ε−1, σ+ := ε−1∞ − ε−1+ .

Отметим, что 0 6 σ 6 σ+ в R2, σ = 0 в Ωe. Будем обозначать прямы-
ми заглавными буквами векторные поля в R3 (H, H′, . . . ), а соответ-
ствующие им поля в R2, образованные первыми двумя компонента-
ми, — соответствующими каллиграфическими буквами (H, H′, . . . ).
Так, если F := (F1,F2,F3), то F := (F1,F2). Положим

rotH := ∂H2/∂x1 − ∂H1/∂x2, divH := ∂H1/∂x1 + ∂H2/∂x2,

aD(β; H,H
′) :=

∫

D

(
ε−1 rotH rotH′ + ε−1∞ divH divH′ +

+ε−1∇H3 · ∇H′3 + β2ε−1H · H′
)
dx, bD(H,H

′) :=

∫

D

σH · H′ dx,

c̃D(H,H
′) :=

∫

D

σ
(
∇H3 · H′ −H · ∇H′3

)
dx.

Справедливо представление [94]

C̃(β; H,H′) = aR2(β; H,H
′) + iβc̃R2(H,H

′)− β2bR2(H,H
′).

Здесь мнимая единица является сомножителем c̃R2 и больше нигде
в коэффициенты форм не входит. Структура формы C̃ позволяет
вовсе освободиться от комплексных коэффициентов в формулиров-
ке задачи (P∞). Действительно, будем искать решение задачи в ви-
де H∗ := (H, iH3), H := (H1,H2). Полагая также H′ := (H′, iH′3) в
тождестве (P∞), придем к новой задаче для определения неизвест-
ных (β, k,H), H := (H1,H2,H3).

Найти (β, k) ∈ Λ и ненулевые H ∈ V 3(R2) такие, что для любого
вектора H′ ∈ V 3(R2) имеет место равенство

(P∞) C(β; H,H′) = k2
∫
R2

H · H′ dx.

Здесь C(β; H,H′) := aR2(β; H,H
′)− βcR2(H,H

′)− β2bR2(H,H
′),

cD(H,H
′) :=

∫

D

σ
(
∇H3 · H′ +H · ∇H′3

)
dx.
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Очевидно, что форма C является эрмитовой и вещественной (т. е.
вещественна при вещественных H, H′). Кроме того, она является по-
ложительно определенной при каждом β > 0 (см. [94]):

C(β; H,H) >
1

ε+

∫

R2

(
|∇H|2 + β2|H|2

)
dx, H ∈ V 3(R2). (8.3)

Следовательно, решения задачи (P∞) могут быть выбраны веще-
ственными. Поэтому далее мы будем иметь дело с более простой с
вычислительной точки зрения задачей (P∞), считая все пространства
функций вещественными и опуская знаки комплексного сопряжения
в определении форм.

Пользуясь методикой, развитой в предыдущей главе, задачу (P∞)
сведем к задаче в круге. Пусть, как и ранее, Ω := BR — открытый
круг радиуса R > R0 с границей Γ такой, что Ωi ⊆ Ω, Ω∞ := R2 \ Ω
(см. рис. 14 на с. 154). Пусть также

V 3
0 (Ω∞) := {H ∈ V 3(Ω∞) : H|Γ = 0}.

2. Метагармоническое продолжение. Непосредственным
обобщением скалярного случая (с. 163) является

Определение 8.18. Пусть l = 2, 3. Функцию H ∈ V l(R2) назо-
вем метагармонической в области D ⊂ R2, если каждая его компо-
нента является метагармонической в D, т. е.

−4H+ p2H = 0, x ∈ D, p 6= 0 1).

Функцию Hp ∈ V l(R2) назовем метагармоническим продолжени-
ем функции H ∈ V l(Ω), если она является метагармонической в об-
ласти Ω∞ и Hp

∣∣
Ω
= H. ¤

Поскольку метагармоническое продолжение вектор-функции опре-
деляется покомпонентно, то его свойства непосредственно выводятся
из свойств метагармонических продолжений скалярных функций. На-
пример, из леммы 7.13, c. 164, следует, что
∫

Ω∞

(
∇Hp · ∇H′p + p2Hp · H′p

)
dx =

∞∑

n=−∞
Kn(Rp) an(H) · an(H′), (8.4)

1)Если A интегральный или дифференциальный оператор в V , то его действие
в V l определяется покомпонентно: AH := (AH1, . . . , AHl).
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где an(H) := an(H|Γ) — коэффициент Фурье функции H|Γ:

an(H) :=
1

2π

2π∫

0

H|r=R e−inϕ dϕ.

Далее, если ограниченная функция H является метагармонической
(или гармонической) вне замкнутого круга BR0, то при всех R > R0

справедливы оценки (см. лемму 7.14, c. 165)

|an(H|∂BR
)| 6 (R0/R)

|n||an(H|∂BR0
)|.

Определим билинейную форму на V 3(Ω) равенством

s∞(p; H,H
′) := aΩ∞

(p; Hp,H
′
p), H,H′ ∈ V 3(Ω), (8.5)

где Hp, H′p есть метагармонические продолжения функций H, H′. По-
лучим “явное” представление формы s∞.

Для этого определим билинейную форму IΓ : V 2(Ω)×V 2(Ω)→ R,

IΓ(H,H′) :=
∫

Ω

∇H·∇H′ dx−
∫

Ω

(
rotH rotH′+divH divH′

)
dx, (8.6)

а также усиленное пространство Соболева [28]

H1(Ω,Γ) := {u ∈ H1(Ω) : u|Γ ∈ H1(Γ)} ⊂ H1(Ω)

с естественной нормой ‖u‖H1(Ω,Γ) = ‖u‖1,Ω + ‖u‖1,Γ. Известно, что в
нем плотно множество C∞(Ω) 1) [82], [83].

Лемма 8.24. IΓ — симметричная и ограниченная форма. Кроме
того, если компоненты H и H′ из H1(Ω,Γ), то

IΓ(H,H′) =
2π∫

0

(∂H1

∂ϕ
H′2 +

∂H′1
∂ϕ

H2

)∣∣∣
r=R

dϕ, (8.7)

а для любых H, H′ ∈ V 2(R2) имеет место равенство
∫

Ω∞

(rotH rotH′+divH divH′) dx =

∫

Ω∞

∇H·∇H′dx+IΓ(H,H′). (8.8)

1)Элементами C∞(Ω) являются сужения на Ω бесконечно дифференцируемых
функций в R2.
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Доказательство. Очевидно, что IΓ — симметричная форма.
Интегралы в (8.6) включают одинаковые слагаемые. После их взаим-
ного сокращения получим

IΓ(H,H′) =
∫

Ω

(
(H′1,2H2,1−H′1,1H2,2)+(H1,2H′2,1−H1,1H′2,2)

)
dx. (8.9)

Здесь Hi,j = ∂Hi/∂xj. Из (8.9) следует оценка

|IΓ(H,H′)| 6 |H|1,Ω|H′|1,Ω. (8.10)

Отсюда также следует ограниченность IΓ на [H1(Ω,Γ)]2 ⊂ V 2(Ω). По-
скольку вложение [C∞(Ω)]2 ⊂ [H1(Ω,Γ)]2 является плотным, то пред-
ставление (8.7) достаточно проверить лишь для H,H′ ∈ [C∞(Ω)]2.
Это осуществляется интегрированием по частям в (8.9).

С учетом плотности вложения [C∞0 (R2)]2 ⊂ V 2(R2) аналогично
доказывается также справедливость тождества 1):

∫

R2

(
rotH rotH′ + divH divH′

)
dx =

∫

R2

∇H · ∇H′ dx. (8.11)

Из (8.11) следует (8.8), если учесть определение IΓ. ¤

Далее нам понадобится также представление функционала IΓ в
терминах коэффициентов Фурье.

Лемма 8.25. Справедливо представление

IΓ(H,H′) = 2πi
∞∑

n=−∞
n an(H)× an(H′), (8.12)

причем
|n| |an(H)|2 + i n an(H)× an(H) > 0 (8.13)

для всех n и H ∈ V 2. Здесь a× b := a1b2 − a2b1.

Доказательство. Формулу (8.12) достаточно проверить лишь
для гладких функций. Она получается подстановкой разложения в
ряд Фурье функции H|Γ в следующее представление IΓ:

IΓ(H,H′) =
2π∫

0

(∂H1

∂ϕ
H′2 −

∂H2

∂ϕ
H′1

)∣∣∣
r=R

dϕ.

1)C∞
0 (R

2) — множество бесконечно дифференцируемых функций с компакт-
ным носителем.
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Оценка (8.13) следует из вещественности величины i n an(H)× an(H)

и оценки |i n an(H)× an(H)| 6 |n| |an(H)|2. ¤

Из определения формы s∞ и (8.8) следует (ε = ε∞ в Ω∞):

s∞(p; H,H
′) = ε−1∞

∫

Ω∞

(
rotHp rotH′p + divHp divH′p+

+∇(Hp)3 · ∇(H′p)3 + p2Hp · H′p
)
dx =

= ε−1∞

∫

Ω∞

(
∇Hp · ∇H′p + p2Hp · H′p

)
dx+ ε−1∞ IΓ(H,H′). (8.14)

Учитывая представление (8.4), окончательно имеем

s∞(p; H,H
′) =

2π

ε∞

∞∑

n=−∞
Kn(Rp) an(H) · an(H′) + ε−1∞ IΓ(H,H′). (8.15)

Здесь функции Kn(z) := −zK ′
n(z)/Kn(z) те же, что в скалярной за-

даче (их свойства указаны в лемме 7.12, c. 161).
Нетрудно заметить, что, если H,H′ ∈ V 3(R2) и Hp,H

′
p — метагар-

монические продолжения соответственно H|Ω и H′|Ω, то

aΩ∞
(p; Hp,H

′
p) = aΩ∞

(p; Hp,H
′).

Действительно, положим η := H′p − H′. Из определения формы IΓ и
метагармонического продолжения следует, что∫

Ω∞

(
∇Hp · ∇η + p2Hp · η

)
dx+ IΓ(H, η) = 0,

поскольку η ∈ V 3(R2) и η|Ω = 0. Тогда из (8.14) имеем (H′p = η +H′):

aΩ∞
(p; Hp,H

′
p) = ε−1∞

∫

Ω∞

(
∇Hp · ∇H′p+ p2Hp ·H′p

)
dx+ ε−1∞ IΓ(H,H′) =

= ε−1∞

∫

Ω∞

(
∇Hp · ∇H′+ p2Hp ·H′

)
dx+ ε−1∞ IΓ(H,H′) = aΩ∞

(p; Hp,H
′).

Последнее равенство следует из тождества (8.8). Отметим также, что
из этого равенства следует, что Hp является метагармоническим про-
должением H тогда и только тогда, когда

Hp |Γ = H|Γ, aΩ∞
(p; Hp,H

′) = 0 ∀H′ ∈ V 3
0 (Ω∞).
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3. Квадратичная задача на собственные значения в кру-
ге. Как и в скалярном случае, введем множество

K := {(β, p) : p > 0, β > (ε+/(ε+ − ε∞))
1/2p}

и рассмотрим задачу: найти положительные числа β, p и ненуле-
вые H ∈ V 3(Ω) такие, что для любого H′ ∈ V 3(Ω) имеет место
равенство

(P) aΩ(p; H,H
′) + s∞(p; H,H′)− βcΩ(H,H

′)− β2bΩ(H,H
′) = 0.

При каждом фиксированном p > 0 эта задача является квадратичной
по β задачей на собственные значения.

Установим “эквивалентность” задач (P∞) и (P).
Теорема 8.40. Пусть (β, k,H) — решение задачи (P∞). Тогда

тройка (β, p,H|Ω), p = (β2 − k2ε∞)1/2, — решение задачи (P), при-
чем (β, p) ∈ K. Пусть (β, p,H) — решение (P). Тогда (β, p) ∈ K, а

тройка (β, k,Hp), где k =
(
(β2−p2)/ε∞

)1/2
, Hp — метагармоническое

продолжение H, является решением задачи (P∞).
Доказательство. Пусть (β, k,H) — решение задачи (P∞).

Положим p = (β2 − k2ε∞)1/2. Так как (β, k) ∈ Λ, то легко проверяет-
ся, что (β, p) ∈ K. Учитывая то, что bR2 = bΩ, cR2 = cΩ, представим
тождество (P∞) в виде

aΩ(p; H,H
′) + aΩ∞

(p; H,H′)− βcΩ(H,H
′)− β2bΩ(H,H

′) = 0. (8.16)

Выбирая здесь H′ = 0 в Ω, видим, что H|Ω∞
= Hp|Ω∞

. Следовательно,
вектор H совпадает с Hp. Полагая в (8.16) H = Hp, H′ = H′p , получим

aΩ(p; H,H
′) + aΩ∞

(p; Hp,H
′
p)− βcΩ(H,H

′)− β2bΩ(H,H
′) = 0

для ∀H′ ∈ V 3(Ω). Таким образом, (β, p,H|Ω) — решение задачи (P).
Обратно, пусть (β, p,H) — решение (P), H′ ∈ V 3(R2). Тогда

aR2(p; Hp,H
′)− βcΩ(H,H

′)− β2bΩ(H,H
′) = 0, (8.17)

так как aΩ∞
(p; Hp,H

′
p) = aΩ∞

(p; Hp,H
′). Учитывая (8.17), имеем

CR2(β; Hp,H
′) := aR2(β; Hp,H

′)− βcΩ(H,H
′)− β2bΩ(H,H

′) =

= aR2(β; Hp,H
′)− aR2(p; Hp,H

′) =
β2 − p2

ε∞

∫

R2

Hp · H′ dx. (8.18)
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Полагая здесь H′ = Hp и пользуясь (8.3), получим, что

β2/ε+ < (β2 − p2)/ε∞.

Следовательно, β > (ε+/(ε+ − ε∞))1/2p, т. е. (β, p) ∈ K. Из (8.18)
также следует, что тройка (β, k,Hp), где k2 = (β2−p2)/ε∞, — решение
задачи (P∞). ¤

4. Линейная задача на собственные значения в круге.
Задачу (P) с определенной по формуле (8.15) формой s∞ будем рас-
сматривать как квадратичную по β задачу на собственные значения
при каждом p > 0. Вырожденность формы bΩ позволяет свести ее к
линейной задаче 1).

Представим уравнение (P) в блочном виде. Далее для сокращения
записей будем полагать V := V 1(Ω), V l := V l(Ω), норму в [Hs(D)]l,
D ⊆ R2, будем обозначать через ‖ · ‖s,D,

‖H‖2s,D :=
l∑

k=1

‖Hk‖2s,D, |H|2s,D :=
l∑

k=1

|Hk|2s,D.

Введем формы 2), считая, что p > 0 (H,H ′ ∈ V , H,H′ ∈ V 2):

a(p,H,H′) :=
∫

Ω

(1
ε
rotH rotH′+ 1

ε∞
divH divH′+ p2

ε∞
H ·H′

)
dx+

+
2π

ε∞

∞∑

n=−∞
Kn(Rp) an(H) · an(H′) + ε−1∞ IΓ(H,H′),

`(p,H,H ′) :=

∫

Ω

(
ε−1∇H · ∇H ′ + p2ε−1∞HH

′
)
dx+

+
2π

ε∞

∞∑

n=−∞
Kn(Rp) an(H) an(H ′).

Определим по ним операторы A(p) : V 2 → V 2 и L(p) : V → V :

(A(p)H,H′) := a(p,H,H′), (L(p)H,H ′) := `(p,H,H ′).

1)По определению имеем bΩ(H,H
′) = bΩ(H,H′).

2)Далее мы докажем ограниченность и положительную определенность этих
форм.
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Определим также линейные операторы B0 : V
2 → V 2 и C : V 2 → V :

(B0H,H′) :=
∫

Ω

σH · H′ dx, (CH, H ′) :=

∫

Ω

σH · ∇H ′ dx.

Ясно, что B0 и C — ограниченные операторы (0 6 σ 6 σ+ в Ω).
Эти определения позволяют записать уравнение (P) в виде

(
A(p) −βC∗
−βC L(p)

)(
H
H3

)
= β2

(
B0 0
0 0

)(
H
H3

)
.

Здесь C∗ : V → V 2 — оператор, сопряженный к C. Исключив из
этой системы H3, получим эквивалентную задачу: при каждом p > 0
найти (β,H) ∈ R+ × V 3 \ {0}, H = (H,H3)

T такие, что

(P ′) : A(p)H = β2B(p)H, H3 = βT (p)H.
Здесь B(p) := B0 + C∗L(p)−1C, T (p) = L−1(p)C. Положим

b(p,H,H′) := (B(p)H,H′).
При заданном p первое уравнение в (P ′) представляет собой линей-
ную задачу на собственные значения, на языке форм имеющую вид

a(p,H,H′) = β2
b(p,H,H′) ∀H′ ∈ V 2.

Из нее можно определить β и первые две компоненты H собствен-
ной функции H. Третья компонента H3 после этого определяется как
решение уравнения

`(p,H3, H
′) = β(CH, H ′) ∀H ′ ∈ V.

§ 2. Существование и свойства решений

Прежде чем исследовать разрешимость задачи (P ′) и, как след-
ствие, задач (P) и (P∞), установим необходимые нам в дальней-
шем свойства входящих в них форм и операторов. В данном па-
раграфе будут использованы лишь следующие свойства функций ε
и σ := ε−1∞ − ε−1:

ε∞ 6 ε 6 ε+ в R2; σ
∣∣
R2\Ωi

= 0; σ0 6 σ
∣∣
Ωi
6 σ+.

Здесь σ+ := ε−1∞ − ε−1+ , σ0 > 0 1).
1)См. соответствующее замечание на с. 122.
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1. Свойства форм a и `. Введем форму s̃ на V 3:

s̃∞(p; H,H
′) := 2π

∞∑

n=−∞
Kn(Rp) an(H) · an(H′).

Поскольку

s̃∞(p; H,H
′) = 2π

3∑

k=1

∞∑

n=−∞
Kn(Rp) an(Hk) an(H′k),

то нужные нам свойства этой формы непосредственно следуют из
свойств формы

2π
∞∑

n=−∞
Kn(Rp) an(u) an(v), u, v ∈ V,

изученной в предыдущей главе. Из лемм 7.13 (с. 164) и 7.17 (с. 170)
непосредственно следуют оценки

0 6 s̃∞(p; H,H) 6Ms(p)‖H‖21,Ω, (8.19)

0 6
d

dp
s̃∞(p; H,H) 6 M̃s(p)‖H‖21,Ω, (8.20)

где Ms(p) := c20(R0)max{1, p2}, M̃s ∈ C(R+). Положим

a(p,H,H′) := aΩ(p,H,H
′) + s∞(p,H,H

′) :=

∫

Ω

(
ε−1 rotH rotH′ +

+ ε−1∞ divH divH′ + ε−1∇H3 · ∇H′3 + p2ε−1H · H′
)
dx+

+
2π

ε∞

∞∑

n=−∞
Kn(Rp) an(H) · an(H′) + ε−1∞ IΓ(H,H′).

Лемма 8.26. Форма a(p, ·, ·) является симметричной,

mA(p)‖H‖21,Ω 6 a(p,H,H) 6MA(p)‖H‖21,Ω,

m̃A(p)‖H‖20,Ω 6
d

dp
a(p,H,H) 6 M̃A(p)‖H‖21,Ω.

Здесь p > 0, mA, MA ∈ C(R+), mA(0) = 0; m̃A, M̃A ∈ C(R+).
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Доказательство. Симметричность формы a является очевид-
ной. Из (8.5), определения Hp и тождества (8.11) следует, что

a(p,H,H) = aΩ(p,H,H) + aΩ∞
(p,Hp,Hp) = aR2(p,Hp,Hp) >

>
1

ε+

∫

R2

(
| rotHp|2 + | divHp|2 + |∇Hp3|2 + p2|Hp|2

)
dx =

=
1

ε+

∫

R2

(
|∇Hp|2 + p2|Hp|2

)
dx > mA(p)‖Hp ‖21,R2 > mA(p)‖H‖21,Ω.

Здесь mA(p) = min{1, p2}/ε+. Также имеем

a(p,H,H) 6 ε−1∞

∫

Ω

(
| rotH|2 + | divH|2 + |∇H3|2 + p2|H|2

)
dx+

+ s∞(p; H,H) 6
max{2, p2}

ε∞

∫

Ω

(
|∇H|2 + |H|2

)
dx+ s∞(p; H,H).

Отсюда следует оценка сверху a(p,H,H), если учесть определе-
ние (8.15) и оценки (8.19) и (8.10). Из (8.20) следуют оценки про-
изводной, поскольку

d

dp
a(p,H,H) =

2p

ε∞

∫

Ω

|H|2 dx+
1

ε∞

d

dp
s̃∞(p,H,H). ¤

Следствие 8.7. Пусть либо c = a и l = 2, либо c = ` и l = 1.
Тогда для любого H ∈ V l и p > 0 справедливы оценки

mA(p)‖H‖21,Ω 6 c(p,H,H) 6MA(p)‖H‖21,Ω,

m̃A(p)‖H‖20,Ω 6
d

dp
c(p,H,H) 6 M̃A(p)‖H‖21,Ω, p > 0.

Доказательство. Достаточно заметить, что при H = (H, 0),
гдеH ∈ V 2, имеем a(p,H,H) = a(p,H,H), а при H = (0, 0, H),H ∈ V ,
имеем `(p,H,H) = a(p,H,H). ¤

Определенные нами при p > 0 симметричные неотрицательные и
ограниченные формы a и ` являются непрерывными по p. Поскольку
функции p → a(p,H,H) и p → `(p,H,H) возрастают по p при лю-
бых фиксированных H ∈ V 2 и H ∈ V , то их можно доопределить

210 Глава 8. Векторная задача

(непрерывно) при p = 0 с сохранением свойств симметричности и
ограниченности (см., напр., [48, теорема 3.3, с. 561]). Полагая p = 0 в
определении этих форм, получим (Kn(0) = |n|):

a(0,H,H′) :=
∫

Ω

(1
ε
rotH rotH′ + 1

ε∞
divH divH′

)
dx+

+
2π

ε∞

∞∑

n=−∞
|n| an(H) · an(H′) + ε−1∞ IΓ(H,H′), (8.21)

`(0, H,H ′) :=

∫

Ω

ε−1∇H · ∇H ′dx+
2π

ε∞

∞∑

n=−∞
|n| an(H) an(H ′). (8.22)

Порождаемые этими формами операторы обозначим через A(0)
и L(0). Имеем ‖A(p)−A(0)‖ → 0 и ‖L(p)− L(0)‖ → 0 при p→ +0.

Следствие 8.8. Операторы A(p) и L(p) являются самосопря-
женными, положительно определенными при каждом p > 0 и неот-
рицательными при p = 0. Оператор-функции p → A(p) и p → L(p)
возрастают, непрерывны в нуле и дифференцируемы на R+,

kerA(0) = {H : H = (c1, c2)
T в Ω, c1, c2 ∈ R},

kerL(0) = {H : H = c в Ω, c ∈ R}.
Доказательство. Опишем ядро оператора A(0). Имеем

a(0,H,H) :=

∫

Ω

(1
ε
| rotH|2 + 1

ε∞
| divH|2

)
dx+

+
2π

ε∞

∞∑

n=−∞
|n| |an(H)|2 + ε−1∞ IΓ(H,H) =: IΩ + IΓ.

Ясно, что постоянные в Ω функции H входят в ядро A(0). Далее, из
леммы 8.25 следует, что IΓ > 0. Поэтому (ε−1∞ > ε−1 > ε−1+ ):

a(0,H,H) >
1

ε+

∫

Ω

(
| rotH|2 + | divH|2

)
dx+

+
2π

ε+

∞∑

n=−∞
|n| |an(H)|2 + ε−1+ IΓ(H,H).
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Используя определение (8.6), получим интересующую нас оценку

a(0,H,H) >
1

ε+

∫

Ω

|∇H|2dx. (8.23)

Из нее следует, что ядро A(0) не содержит других функций, кроме
постоянных в Ω. Утверждение о ядре L(0) является очевидным. ¤

2. Свойства формы b и оператора T . Отметим, прежде
всего, нужные нам свойства оператора T .

Лемма 8.27. Оператор T (p) является компактным при p > 0,

|T (p)H|1,Ω 6 σ+ε+‖H‖0,Ω, ‖T (p)H‖1,Ω 6MT (p)‖H‖0,Ω.

Здесь MT — непрерывная функция на R+, H ∈ V 2.

Доказательство. По определению

(CH, H ′) =

∫

Ω

σH · ∇H ′ dx, H ∈ V 2, H ′ ∈ V.

Поскольку 0 6 σ 6 σ+ в Ω, то |(CH, H ′)| 6 σ+‖H‖0,Ω|H ′|1,Ω. Пусть

H = T (p)H := L−1(p)CH.

Тогда из определения L(p) и равенства (L(p)H,H) = (CH, H) имеем

1

ε+

∫

Ω

(
|∇H|2 + p2|H|2

)
dx 6 (L(p)H,H) 6 σ+‖H‖0,Ω|H|1,Ω.

Отсюда нетрудно вывести требуемые оценки:

|H|1,Ω < σ+ε+‖H‖0,Ω, p ‖H‖0,Ω 6 σ+ε+‖H‖0,Ω,

‖H‖1,Ω 6MT (p)‖H‖0,Ω, MT (p) := σ+ε+(1 + p−2)1/2.

Из последней оценки следует компактность оператора T (p). ¤

Лемма 8.28. Форма b(p, ·, ·) является симметричной,

0 6 b(p,H,H) 6MB‖H‖20,Ω, (8.24)

0 6 − d

dp
b(p,H,H) 6 M̃B(p)‖H‖21,Ω.
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Здесь p > 0, M̃B — непрерывная функция на R+, H ∈ V 2.

Доказательство. По определению имеем

b(p,H,H′) =
∫

Ω

σH · H′ dx+ (L−1(p) CH, CH′), H,H′ ∈ V 2. (8.25)

Отсюда следуют симметричность b и оценка снизу в (8.24), посколь-
ку 0 6 σ 6 σ+ в Ω, а L−1(p) — самосопряженный и положительно
определенный оператор.

Пусть H := T (p)H. Используя первую оценку леммы 8.27, имеем

b(p,H,H) =

∫

Ω

σ
(
|H|2dx+∇H · H

)
dx 6

6 σ+(‖H‖20,Ω + |H|1,Ω‖H‖0,Ω) 6 (σ+ + σ2
+ε+)‖H‖20,Ω =:MB‖H‖20,Ω.

Поскольку (см., напр., [48, c. 46])

d

dp
L−1(p) = −L−1(p) d

dp
L(p) L−1(p), (8.26)

то, используя следствие 8.7 и вторую оценку леммы 8.27, получим

0 6 − d

dp
b(p,H,H) = (L−1(p)

d

dp
L(p) L−1(p)CH, CH) =

= (
d

dp
L(p)H,H) 6 M̃A(p)‖H‖21,Ω 6 M̃B(p)‖H‖20,Ω.

Здесь M̃B(p) := M̃A(p)MT (p). ¤

Симметричная и ограниченная (равномерно по p) форма b(p, ·, ·)
была определена нами при p > 0. Функция p → b(p,H,H) является
непрерывной и невозрастающей по p при фиксированномH ∈ V 2. По-
этому ее можно доопределить (непрерывно) при p = 0 (см., напр., [48,
теорема 3.3, с. 561]) с сохранением свойств симметричности и ограни-
ченности. Полагая p = 0 в определении формы, получим

b(0,H,H′) =
∫

Ω

σH · H′ dx+ (L−1(0) CH, CH′), H,H′ ∈ V 2,

причем ‖B(p)− B(0)‖ → 0 при p→ 0.
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Следствие 8.9. Оператор B(p) является самосопряженным,
неотрицательным и компактным при каждом p > 0, а оператор-
функция p→ B(p) — невозрастающей, непрерывной в нуле и диффе-
ренцируемой на R+,

kerB(p) = kerB(0) = {H ∈ V 2 : H = 0 на Ωi}.

Доказательство. Компактность B(p) есть следствие оценки
сверху в (8.24) и компактности оператора вложения V 2(Ω) ⊂ [L2(Ω)]

2.
Утверждение о ядре b является очевидным, поскольку

b(p,H,H) =

∫

Ω

σ
(
|H|2dx+∇H · H

)
dx >

∫

Ω

σ|H|2dx,

где H = L−1(p)CH, a σ = 0 вне Ωi, σ|Ωi
> σ0 > 0. ¤

Лемма 8.29. Существует постоянная mAB = mAB(Ω, ε) та-
кая, что

A(p) + B(p) > mABI, p > 0.

Доказательство. Учтем оценку (8.23). Поскольку что σ > σ0
в Ωi, σ = 0 вне Ωi, то

a(p,H,H) + b(p,H,H) > a(0,H,H) +

∫

Ω

σ|H|2dx >

>
1

ε+

∫

Ω

|∇H|2dx+

∫

Ωi

σ|H|2dx > mAB‖H‖21,Ω.

Заключительная оценка выводится так же, как и в скалярном случае
(см. доказательство аналогичного утверждения леммы 7.16). ¤

Замечание 8.15. Оператор L(0) имеет одномерное ядро, и на всем V опера-
тор L−1(0) не определен. В то же время оператор B(0) определен в V 2, поскольку
при любом H ∈ V 2 функция CH является ортогональной kerL(0). Введем в рас-
смотрение оператор L0 : V → V :

(L0H,H
′) = (L(0)H,H ′) + a0(H) a0(H

′), H,H ′ ∈ V.
Нетрудно проверить, что L0 — положительно определенный оператор и

C∗L−1(0)CH = C∗L0−1CH ∀H ∈ V 2.
Поэтому можно считать, что B(0) = B0 + C∗L−1

0 (0)C. Это определение будет по-
лезно в дальнейшем при реализации приближенного метода решения задачи (P ′).
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3. Существование и свойства решений задачи (P). Ис-
ходная задача (P) в круге Ω, квадратично зависящая от β, была све-
дена нами к задаче (P ′). Напомним, что она представляет собой па-
раметрическую задачу на собственные значения

A(p)H = β2B(p)H, H ∈ V 2\{0}, (8.27)

где p > 0, из которой определяются β и первые две компоненты H
поля H = (H,H3) (по ним находится H3 = βT (p)H).

Разрешимость задачи (P) следует из разрешимости задачи (8.27),
которую мы рассмотрим также при p = 0. Задачи подобного ви-
да были изучены нами в главе 6 (см. § 3, с. 141), где спектраль-
ный параметр β2 обозначался через λ. Были доказаны две теоремы
(6.26 и 6.27), посвященные, соответственно, существованию решений
и свойствам дисперсионных кривых. Чтобы воспользоваться этими
результатами, необходимо проверить условия A1–A5, с. 143, которым
должны удовлетворять операторы A(p) и B(p) при p > 0.

Лемма 8.30. Оператор-функции A(p) и B(p) удовлетворяют
условиям A1–A5.

Доказательство. Предыдущий пункт фактически был посвя-
щен проверке этих условий. Напомним условия A1-A5, а также ука-
жем леммы предыдущего пункта, посвященные их проверке.

В леммe 8.28 и в следствии 8.7 было установлено, что

mA(p) 6 A(p) 6MA(p)I, p ∈ R+, 0 6 B(p) 6MBI,

где mA(0) = 0, mA(p) > 0 при p > 0. Эти оценки означают, что
выполнены условия A1.

Компактность оператора B(p) (ясно, что он бесконечномерный) и
равенства kerB(p) = kerB(0), p ∈ R+, установлены в следствии 8.9.
В следствии 8.7 было показано, что r0 := dim(kerA(0)) = 2. Поэтому
условия A2 также выполнены.

В лемме 8.29 была установлена оценка

A(p) + B(p) > mABI, p > 0,

означающая выполнение условия A3.
Поскольку функция p→ a(p,H,H) возрастает при любомH ∈ V 2

(следствие 8.7), а функция p→ b(p,H,H) не возрастает (лемма 8.28),
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Рис. 19. Дисперсионные кривые для волновода прямоугольного поперечного се-
чения с размерами 1.5× 1, ε(x) = 2.08, x ∈ Ωi, ε∞ = 1, µ0 = 1.

то отнoшение Рэлея a(p,H,H)/b(p,H,H) возрастает по p на Ṽ 1)

(условие A4).
Оператор-функции A(p) и B(p) непрерывны в нуле и диф-

ференцируемы на полуоси R+, т. е. являются локально липшиц-
непрерывными на R+ (следствия 8.8, 8.9). Следовательно, они при-
надлежат множеству L(R+, V ) (условие A5). ¤

Теорема 8.41. При каждом p ∈ R+ существует счетное
множество чисел βK(p), K > 1, с единственной точкой накоп-
ления +∞, квадраты которых образуют полный набор собствен-
ных чисел задачи (8.27). Соответствующие им собственные под-

пространства UK(p) конечномерны, V 2
A(p)+B(p) =

∞⊕
k=1

UK(p)⊕kerB(0).
Кроме того, если {βi(p)}∞i=1 есть числа βK(p), K = 1, 2, . . ., зануме-
рованные по возрастанию с учетом кратности, то
a) функции p → βi(p) и p → β2

i (p) − p2, i > 1, являются неот-
рицательными, возрастающими, непрерывными в нуле и локально
липшиц-непрерывными на R+;
b) β2(p)↘ +0 при p→ +0, β3(0) > 0, βi(p)→∞ при i→∞;
c) βi(p)/p > k0 , lim

p→∞
βi(p)/p = k0, i > 1, k20 := ε+/(ε+ − ε∞).

Доказательство. Из теорем 6.26 и 6.27 главы 6, которыми
мы можем воспользоваться благодаря предыдущей лемме, следуют

1)Ṽ есть ортогональное дополнение kerB(p) до пространства V 2
A(p)+B(p).
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все утверждения теоремы, кроме утверждения о неотрицательности
и монотонности функций p→ β2

i (p)− p2 и утверждения c).
Используем минимаксный принцип Куранта — Фишера. Имеем

β2
i (p) = min

Vi⊂Ṽ
max
H∈Vi\0

R(p,H), R(p,H) :=
(A(p)H,H)

(B(p),H,H)
.

Пусть D(p) := A(p)− p2B(p). Ясно, что функция

p→ (D(p)H,H)/(B(p),H,H), H ∈ V 2,

возрастает и при p = 0 является неотрицательной. Поскольку

β2
i (p)− p2 = min

Vi⊂Ṽ
max
H∈Vi\0

(D(p)H,H)

(B(p),H,H)
,

то отсюда следует, что функция p → β2
i (p) − p2 является неотрица-

тельной и возрастающей.
Докажем второе утверждение в с), поскольку первое следует из

принадлежности (βi(p), p) множеству K. Обозначим через Br круг
малого радиуса r с центром в такой точке x+ ∈ Ωi, что

ε+ = ε(x+) = max
x∈Ωi

ε(x), δr := max
x∈Br

(ε+ − ε(x)) ,

и пусть V 2
r есть множество функций из V 2, равных нулю вне Br.

Отметим, что IΓ(H,H) = 0, s∞(p,H,H) = 0 на V 2
r . Если H ∈ V 2

r , то
из равенства (8.6) следует, что

a(p,H,H) =

∫

Ω

(1
ε
| rotH|2 + 1

ε∞
| divH|2 + p2

ε∞
|H|2

)
dx 6

6
1

ε∞

∫

Ω

(
| rotH|2+| divH|2+p2|H|2

)
dx =

1

ε∞

∫

Br

(
|∇H|2+p2|H|2

)
dx.

Учтем, что

σ(x) =
1

ε∞
− 1

ε+ − (ε+ − ε(x))
>

1

ε∞
− 1

ε+ − δr
=:

1

ε∞ dr
, x ∈ Br,

b(p,H,H) >

∫

Ω

σ|H|2 dx > 1

ε∞dr

∫

Br

|H|2 dx.
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Тогда для любого H ∈ V 2
r справедлива оценка

R(p,H) 6 dr

(∫

Br

|∇H|2dx
)(∫

Br

|H|2dx
)−1

+ drp
2 .

Обозначим через (λir, u
i) собственные пары оператора Лапласа

в круге Br при краевых условиях Дирихле (ui продолжим нулем
вне Br). Положим Vi := {(H1, 0) : H1 ∈ span{u1, . . . , ui}}. Посколь-
ку λir = r−2λi1, то

β2
i (p) 6 max

H∈Vi\{0}
R(p,H) 6

λi1dr
r2

+ drp
2 .

Следовательно,

0 6
β2
i (p)

p2
− k20 6

λi1dr
r2 p2

+ dr − k20 .

Переходя здесь к пределу при r → 0, p → ∞ так, чтобы pr → ∞,
получим требуемое утверждение, так как δr → 0, dr → k20. ¤

Следствие 8.10. При каждом p > 0 числа βK(p), K > 1, об-
разуют полный набор собственных чисел задачи (P), им соответ-
ствуют конечномерные собственные подпространства

UK(p) = {(H,H3) : H ∈ UK(p), H3 = βK(p)T (p)H}.
Замечание 8.16. Аналогично скалярному случаю нетрудно доказать ана-

литичность семейства операторов A(p) и L(p) (см. доказательство аналитично-
сти оператор-функции A1(p), с. 175). Из аналитичности семейства L(p) и обра-
тимости L(p) при p > 0 нетрудно вывести, что оператор-функция p → B(p)
также является аналитической на R+ (см. равенство (8.26)). Учитывая неравен-
ство A(p) + B(p) > mABI и kerB(p) = kerB(0), аналогично скалярному случаю
можно доказать, что собственные числа задачи (P) представляются аналитиче-
скими на R+ функциями и имеет меcто аналог теоремы 7.33, с. 175. [48, c. 520].

§ 3. Множество решений задачи (P∞).

Задача (P∞) является обобщенной формулировкой задачи нахож-
дения пар чисел (β, k) ∈ Λ и ненулевых векторов H ∈ [H 1(R2)]3,
удовлетворяющих уравнению (8.1), с. 198. Между множествами ре-
шений этой задачи и задачи (P) имеется взаимно однозначное со-
ответствие (см. теорему 8.40): если (βi(p), p,Hi(p)) есть решение за-
дачи (P), i > 1, то (βi(p), ki(p),Hip(p)) — решение задачи (P∞)

218 Глава 8. Векторная задача

при ki(p) =
(
β2
i (p) − p2)/ε∞

)1/2
, и наоборот 1). Таким образом, из

теоремы 8.41, c. 215, и следствия 8.10, посвященных описанию мно-
жества решений задачи (P), нетрудно получить информацию о мно-
жестве решений задачи (P∞).

Предварительно сделаем несколько замечаний. В задаче (P∞) бу-
дем считать волновое число k (или частоту ω) параметром, а неиз-
вестными — (β,H), и будем интересоваться их зависимостью от k.
Пусть (βi(p),Hi(p)), i > 1, p ∈ R+, есть решения задачи (P), обозна-

чим ki(p) =
(
β2
i (p) − p2)/ε∞

)1/2
. Тогда решениями задачи (P∞) яв-

ляются тройки (βi(p), ki(p),Hip(p)), i > 1, p ∈ R+. В плоскости (k, β)
функции

k = ki(p), β = βi(p), p ∈ R+, i = 1, 2, . . . ,

определяют дисперсионные кривые задачи (P∞), параметризованные
поперечным волновым числом p. Согласно утверждению а) теоре-
мы 8.41, функции p → ki(p), p → βi(p) локально удовлетворяют
условию Липшица, непрерывны в нуле и возрастают. При p→ 0 име-
ем пределы ki(p) → k0i = β0

i /ε
1/2
∞ , βi(p) → β0

i . Таким образом, i-я
дисперсионная кривая начинается в критической точке (k0i , β

0
i ) (см.

рис. 19, где представлены первые дисперсионные кривые задачи (P)
(слева) и (P∞) (справа) для однородного волновода прямоугольного
поперечного сечения). Ясно, что дисперсионные кривые допускают
параметризацию

βi = βi(k), k ∈ (k0i ,∞), i = 1, 2, . . .

Числа (β0
i )

2 являются решениями следующей задачи: найти па-
ры (β2,H) ∈ R+ × V 2\{0} такие, что

(P0) a(0,H,H′) = β2b(0,H,H′) ∀H′ ∈ V 2.

Формы этой задачи определяются равенствами (8.21), (8.22), (8.25).
Задачу (P0) назовем задачей определения критических чисел. Со-
гласно теореме 8.41

0 = β0
1 = β0

2 < β0
3 6 β0

4 6 . . . , β0
i →∞, i→∞.

Определим ступенчатую функцию

n(k) := max{i : k0i < k, i = 1, 2, . . .}.
1)Напомним, что Hip(p) есть метагармоническое продолжение Hi(p)

∣∣
Ω
.
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Ясно, что при фиксированном k > 0 значение n(k) в точности рав-
но числу решений (βi(k),Hi(k)) задачи (P∞). Из приведенных выше
рассуждений, теоремы 8.41 и следствия 8.10 непосредственно следует

Теорема 8.42. При каждом k > 0 существует конечное
число собственных чисел βK(k), 1 6 K 6 m(k), суммарной
кратности n(k), и соответствующих им собственных подпро-
странств UK(k) таких, что (βK(k), k,H) есть решение задачи (P∞)
при любом H ∈ UK(k). Кроме того, если

0 < β1(k) 6 β2(k) 6 . . . 6 βn(k)(k),

есть нумерация чисел {βK(k)}m(k)
K=1 с учетом кратности, то

a) функция k → βi(k), k > k0i , возрастает, непрерывна точке k0i и
локально липшиц-непрерывна при k > k0i , где i = 1, . . . , n(k);
b) n(k) = 2 при k < k03, n(k) > 2 при k > k03, n(k)→∞ при k →∞;

c) ε
1/2
∞ k < βi(k) < ε

1/2
+ k, k > k0i , lim

k→∞
(βi(k)/k) = ε

1/2
+ , i = 1, . . . , n(k).

При каждом k > 0, как следует из теоремы, существуют по край-
ней мере два решения задачи (P∞). Число решений неограниченно
возрастает с ростом k.

Замечание 8.17. Обратим внимание, что качественное поведение первых
двух дисперсионных кривых p → β1(p), p → β2(p) на левом рис. 19 отличается
от других. В частности, они вогнуты и экспоненциально приближаются к оси β
при малых p. Обоснование такого поведения такое же, как и в скалярном случае
(см. замечание 7.12, c. 180). Дествительно, пусть H1(p), H2(p) есть собственные
функции, соответствующие β1(p), β2(p). Поскольку β1(0) = β2(0) = 0,

H1(0) = (c1(0), 0), H2(0) = (0, c2(0))−

постоянные в Ω вектор-функции, то при малых p имеем H1(p) = (c1(p), 0)+ H̃1(p)

и H2(p) = (0, c2(p)) + H̃2(p), где ‖H̃i(p)‖1,Ω ≈ 0. Аналогично скалярному случаю
получаем

β2i (p) =
a(p,Hi(p),Hi(p))

b(p,Hi(p),Hi(p))
≈ cK0(Rp) ≈ c ln−1

( 1

Rp

)
, c := 2π/

∫

Ω

(σ − 1) dx.

Таким образом, при малых p поведение функции p→ βi(p), i = 1, 2, совпадает с

поведением функции K
1/2
0 (Rp) (см. график K0(p) на левом рис. 15, с. 157).
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§ 4. Дискретная задача

Для дискретизации задачи (P) используем метод конечных эле-
ментов с численным интегрированием. Для аппроксимации Vh про-
странства Соболева V используем конструкцию, описанную в ска-
лярном случае на с. 181, а также квадратурную формулу Sh (с. 184).

Определим пространства конечных элементов — аппроксимации
пространств V , V 2 и V 3, соответственно:

Vh, V 2
h := Vh × Vh, V 3

h := V 2
h × Vh, dimVh =: Nh.

Пусть Hh := (H1h,H2h) ∈ V 2
h — аппроксимация H ∈ V 2, Hh ∈ V 3

h —
аппроксимация H ∈ V 3,

Hlh(x) =

Nh∑

i=1

Hli ϕi(x), x ∈ Ω, Hli = Hlh(ai), ai ∈ ωh, l = 1, 2, 3.

Положим Hl = (Hl1, . . . ,Hl Nh
)T ; H = (H1,H2)

T — вектор узловых
параметров функции Hh; H = (H,H3)

T — вектор узловых парамет-
ров Hh ∈ V 3

h (будем говорить, что H соответствует (⇔) Hh). Для
Hh ∈ V l

h введем обозначение

‖Hh‖2m,h =
∑

e∈Th

l∑

i=1

‖Hih‖2m,e, l > 1.

Отметим, что из (7.43), c. 185, и обратного неравенства следуют оцен-
ки

c−1‖Hh‖21,Ω 6 Sh
(
|∇Hh|2 + |Hh|2

)
6 c ‖Hh‖21,Ω, (8.28)

‖Hh‖m,h 6 c h1−m‖Hh‖1,Ω, m > 1, (8.29)

где постоянная c не зависит от h. Ясно, что ‖Hh‖1,h = ‖Hh‖1,Ω.
При построении дискретной задачи составляющие задачи (P) ап-

проксимируем естественным образом, за исключением формы IΓ. Во-
первых отметим, что след на Γ функции из Vh принадлежит про-
странству H1(Γ). Поэтому IΓ(H,H′) можно вычислить по следующей
формуле (см. лемму 8.24):

IΓ(H,H′) =
2π∫

0

(∂H1

∂ϕ
H′2 +

∂H′1
∂ϕ

H2

)∣∣∣
r=R

dϕ, H,H′ ∈ V 2
h .
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Подынтегральное выражение здесь является кусочно-полиномиальной
функцией степени 2m− 1 и точно вычисляется с помощью составной
m-точечной квадратурной формулы Гаусса. Далее заметим, что

ε−1∞ =
(
ε−1∞ − ε−1+

)
+ ε−1+ =: σ+ + ε−1+ .

Используя формулу (8.12), определяющую IΓ через коэффициенты
Фурье, получим 1)

ε−1∞ IΓ(H,H′) = ε−1+ IΓ(H,H′) + σ+IΓ(H,H′) =

= ε−1+ IΓ(H,H′) + 2πi σ+

∞∑

n=−∞
n an(H)× an(H′).

Рассмотрим задачу: найти (βh,Hh) ∈ R+ × V 3
h \{0} такие, что

для любого H′ ∈ V 3
h имеет место равенство

(Ph) ah(p; Hh,H
′)− βhch(Hh,H

′)− βh2b0h(Hh,H
′) = 0.

Здесь

ah(β; H,H
′) := Sh

(
ε−1 rotH rotH′ + ε−1∞ divH divH′ +

+ ε−1∇H3 · ∇H′3 + β2ε−1∞ H · H′
)
+

2π

ε∞

N∑

n=−N
Kn(Rp)an(H) · an(H′)+

+ 2πiσ+

N∑

n=−N
n an(H)× an(H′) + ε−1+ IΓ(H,H′),

b0h(H,H
′) := Sh(σH · H′), ch(H,H

′) := Sh
(
σ
(
∇H3 · H′ +H · ∇H′3

))
.

При фиксированном параметре p > 0 задача (Ph) представля-
ет собой квадратичную относительно βh алгебраическую задачу на
собственные значения. Запишем ее в матричном виде. С этой целью
для всех p > 0 определим следующие матрицы через их билинейные

1)Такая аппроксимация позволит доказать знакоопределенность соответству-
ющих дискретных форм. Далее будем считать, что N = N(h).
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формы (H⇔ H ∈ V 2
h и H3 ⇔ H3 ∈ Vh):

Ah(p)H ·H′ := Sh

(
ε−1 rotH rotH′+ε−1∞ divH divH′+p2ε−1∞H·H′

)
+

+
2π

ε∞

N∑

n=−N
Kn(Rp)an(H) · an(H′)+

+ 2πiσ+

N∑

n=−N
n an(H)× an(H′) + ε−1+ IΓ(H,H′),

B0hH ·H′ := Sh(σH · H′), ChH ·H′3 := Sh(σH · ∇H′3),

Lh(p)H3 ·H′3 := `h(p,H3,H
′
3) := Sh

(
ε−1∇H3 · ∇H′3 + p2ε−1∞ H3H

′
3

)
+

+
2π

ε∞

N∑

n=−N
Kn(Rp) an(H3) an(H′3).

Тогда уравнение (Ph) запишется в виде системы 1)

(
Ah(p) −βhCTh
−βhCh Lh(p)

)(
H

H3

)
= βh2

(
B0h 0
0 0

)(
H

H3

)
.

Исключая из этой системы H3, получим эквивалентную ей задачу:
найти такие (βh,H) ∈ R+ × R3Nh \ {0}, H = (H,H3)

T , что

(P ′h) Ah(p)H = βh2Bh(p)H, H3 = βhLh(p)
−1ChH,

где Bh(p) = B0h + CThLh(p)−1Ch.
Первое уравнение в (P ′h) в терминах билинейных форм имеет вид

ah(p,Hh,H′h) = βh2bh(p,Hh,H′h) ∀H′h ∈ V 2
h , (8.30)

где

ah(p,Hh,H′h) := Ah(p)H ·H′, bh(p,Hh,H′h) := Bh(p)H ·H′.
При заданном p > 0 задача на собственные значения (8.30) позволяет
определить βh и первые две компоненты H собственной функции.
Третья компонента H3 по ним находится явно. Далее мы рассмотрим
задачу (8.30) так же при p = 0 (аппроксимацию задачи (P 0), c. 218,
для определения критических чисел).

1)Далее будет показано, что Lh(p) — положительно определенная матрица при
любом p > 0.
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1. Свойства форм. Задачи вида (8.30) были изучены нами в
главе 6 (см. § 4, с. 148), где спектральный параметр βh2 обозначал-
ся через λh. Воспользуемся результатами теоремы 6.29. Для этого
необходимо убедиться, что семейства матрицы Ah(p) и Bh(p) удовле-
творяют условиям Ah

1-A
h
5 , с. 148.

Далее буквой c будут обозначаться различные постоянные, не за-
висящие от параметров h и N дискретной задачи.

Лемма 8.31. Семейства матриц Ah(p) и Bh(p), p ∈ R+, удо-
влетворяют условиям Ah

1 −Ah
2 , A

h
4 −Ah

5 . При достаточно малом h
выполняется также условие Ah

3 .

Доказательство. Проверим условие Ah
1 . Ясно, что (H ∈ V 2

h )

|ah(p,H,H)| 6 c Sh
(
|∇H|2 + |H|2

)
+

+ c
N∑

n=−N
(Kn(Rp) + |n|) |an(H)|2 + c |IΓ(H,H)|.

Каждое слагаемое здесь оценивается величиной c ‖H‖21,Ω. Действи-
тельно, первое слагаемое оценивается согласно (8.28), третье — со-
гласно лемме 8.24. Далее, учитывая следствие 7.3, c. 161, а также
оценки |n| 6 Kn(Rp), получим требуемую оценку второго слагаемо-
го. Окончательно получим

|ah(p,H,H)| 6 c ‖H‖21,Ω ∀H ∈ V 2
h , (8.31)

где c = c(p, ε), функция p→ c(p, ε) непрерывна на R+.
По определению имеем

bh(p,H,H′) := Bh(p)H ·H′ := Sh(σH · H′) +
(
Lh(p)

)−1ChH · ChH′.
Матрица Lh(p) положительно определена и ограничена при p > 0
равномерно по h и N . Действительно, пусть H3 ⇔ H3 ∈ Vh и 1p :=
min{1, p2}. Тогда

Lh(p)H3 ·H3 > ε−1+ 1p Sh
(
|∇H3|2 + |H3|2

)
> c 1p ‖H3‖21,Ω .

Аналогично Lh(p)H3 ·H3 6 c (max{1, p2}+ 1) ‖H3‖21,Ω.
Поскольку Sh

(
|∇H3|2) > c |H3|21,Ω (см. следствие 7.5, c. 186), то

Lh(0)H3 ·H3 = Sh

(
ε−1|∇H3|2

)
+

2π

ε∞

N∑

n=−N
|n| |an(H3)|2 > c |H3|21,Ω.
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Отсюда следует, что матрица Lh(0) имеет ядро, состоящее из век-
торов с равными компонентами (им соответствуют постоянные в Ω
функции). Из определения матрицы Ch следует, что вектор ChH ор-
тогонален этому ядру при любом H. Поэтому функция

p→
(
Lh(p)

)−1ChH · ChH

корректно определена и неотрицательна при всех H ∈ R2Nh и, как
следствие, неотрицательно определена форма bh при каждом p ∈ R+.

Оценим сверху форму bh. Положим H3 :=
(
Lh(p)

)−1ChH и
пусть Vh 3 H3 ⇔ H3, H ⇔ H. Имеем

ε−1+ Sh

(
|∇H3|2 + p2|H3|2

)
6 Lh(p)H3 ·H3 = ChH ·H3 =

= Sh(σH · ∇H3) 6 σ+S
1/2
h (|H|2)S1/2

h (|∇H3|2).

Отсюда следует, что S1/2
h (|∇H3|2) 6 σ+ε+S

1/2
h (|H|2). Следовательно,

bh(p,H,H) := Sh(σH · H) + ChH ·H3 =

= Sh(σ|H|2) + Sh(σH · ∇H3) 6

6 σ+Sh(|H|2) + σ+S
1/2
h (|∇H3|2)S1/2

h (|H|2) 6
6MBSh(|H|2) 6Mb‖H‖20,Ω.

Заключительная оценка здесь следует из теоремы 7.35, c. 185. Поэто-
му

0 6 bh(p,H,H) 6Mb‖H‖21,Ω ∀H ∈ V 2
h .

Из этих оценок и (8.31) следует, что условия Ah
1 выполнены.

Пусть теперь Vh 3 H3 ⇔ H3 :=
(
Lh(p)

)−1ChH. Тогда

bh(p,H,H) = Sh(σ|H|2) + Sh(σH · ∇H3).

Как было показано выше, второе слагаемое здесь неотрицательно.
Поэтому ядро bh не зависит от p и kerBh(p) = kerBh(0) при каж-
дом p ∈ R+ (условие Ah

2). Отметим, что поскольку σ = 0 вне Ωi

и σ = σ0 > 0 на Ωi, то

ker bh = {H ∈ V 2
h : Se(|H|2) = 0, e ⊂ Ωi}. (8.32)
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Покажем, что Ah(p) + Bh(p) > mabIh при p > 0 (условие Ah
3) при

достаточно малом h, mab > 0. Пусть H ∈ V 2
h . По определению

ah(p,H,H) := Sh

(
ε−1| rotH|2 + ε−1∞ | divH|2 + p2ε−1∞ |H|2

)
+

+
2π

ε∞

N∑

n=−N
Kn(Rp)|an(H)|2+2πiσ+

N∑

n=−N
n an(H)×an(H)+ε−1+ IΓ(H,H).

Учтем здесь, что ε−1∞ = σ+ + ε−1+ , Kn(Rp) > |n|, а также оценку
леммы 8.25. Тогда нетрудно видеть, что сумма второго и третьего
слагаемых неотрицательна. Учтем также, что

bh(p,H,H) > Sh(σ|H|2), ε−1 > ε−1+ .

Тогда для всех p > 0 получим

Th := (ah + bh)(p,H,H) > ε−1+ Sh

(
| rotH|2 + | divH|2

)
+

+ Sh(σ|H|2) + ε−1+ IΓ(H,H). (8.33)

Пусть Eh означает погрешность квадратуры Sh. Из (8.33) имеем

Th > ε−1+

(∫

Ω

(
| rotH|2 + | divH|2

)
dx+ IΓ(H,H)

)
+

∫

Ω

σ|H|2dx−Ψ,

где Ψ := ε−1+ Eh

(
| rotH|2+| divH|2

)
+Eh(σ|H|2). Величина Ψ представ-

ляет собой сумму слагаемых, оценка которых следует из леммы 7.21,
с. 191. С учетом (8.29) имеем

|Ψ| 6 c h2m‖H‖2m,h 6 c0 h
2‖H‖21,Ω .

Используя определение формы IΓ (см. (8.6)), получим

Th > ε−1+ |H|21,Ω +

∫

Ω

σ|H|2dx− c0 h
2‖H‖21,Ω .

Здесь сумма первых двух слагаемых оценивается снизу величи-
ной c ‖H‖21,Ω (см. аналогичную оценку снизу в (7.29) на с. 170). Поэто-
му Th > (c− c0h2)‖H‖21,Ω. Выберем h0 так, чтобы mab := c− c0h20 > 0.
Тогда получим, что искомая оценка Th > mab‖H‖21,Ω справедлива для
всех h 6 h0.
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Перейдем к проверке условия Ah
4 . Покажем, что отнoшение Рэ-

лея ah(p,H,H)/bh(p,H,H) возрастает по p при любом u ∈ Ṽ 2
h (на

ортогональном дополнении kerBh(0) до пространства Vh,Ah(p)+Bh(p)).
Во-первых, отметим, что при фиксированном H ∈ V 2

h функ-
ции p → ah(p,H,H) и p → bh(p,H,H) дифференцируемы на R+.
Действительно,

d

dp
ah(p,H,H) =

2p

ε∞
Sh
(
|H|2

)
+

2π

ε∞

N∑

n=−N
K′n(Rp)|an(H)|2.

Оба слагаемых здесь являются неотрицательными и оцениваются
сверху величиной c ‖H‖21,Ω, c = c(p) (см. оценки (7.44), с. 185, и (8.20),
с. 208). Поэтому

0 6
d

dp
ah(p,H,H) 6 M̃a(p)‖H‖21,Ω,

где функция M̃a является локально ограниченной на R+. Отметим,
что если H ∈ Ṽ 2

h , то найдется такой конечный элемент e ⊂ Ωi,
что Se

(
|H|2

)
> 0 (см. (8.32)). Следовательно,

d

dp
ah(p,H,H) > 0, H ∈ Ṽ 2

h . (8.34)

Аналогичным образом устанавливается дифференцируемость функ-
ции p→ `h(p,H,H) на R+ и получаются оценки

0 6
d

dp
`h(p,H,H) 6 M̃`(p)‖H‖21,Ω, H ∈ Vh, p > 0. (8.35)

Пусть Vh 3 H ⇔ L−1h (p)ChH, H⇔ H ∈ V 2
h . Поскольку

d

dp
L−1h (p) = −L−1h (p)

d

dp
Lh(p) L

−1
h (p),

(см., напр., [48, c. 46]), то из (8.35) следует, что

0 6 − d

dp
bh(p,H,H) =

d

dp
`h(p,H,H) 6 M̃b(p)‖H‖21,Ω, p > 0. (8.36)

Из (8.34) и (8.36) следует, что отношение Рэлея ah(p,H,H)/bh(p,H,H)

возрастает по p на пространстве Ṽ 2
h .
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Проверим, наконец, условие Ah
5 . Из дифференцируемости при

фиксированном H ∈ V 2
h функций p → ah(p,H,H) и p → bh(p,H,H)

на R+ следует, что матричные функции Ah(p) и Bh(p) дифферен-
цируемы по p на R+ (тем более они являются локально липшиц-
непрерывными на R+). Непрерывность в нуле этих функций устанав-
ливается так же, как и непрерывность в нуле невозмущенных форм.
Отсюда следует, что матричные функции Ah(p) и Bh(p) принадлежат
множеству L(R+, Vh) (условие Ah

5). ¤

Пусть N b
h := dim(ImBh(0)). Из предыдущей леммы 8.31 и теоре-

мы 6.29, с. 149, непосредственно следует

Теорема 8.43. При достаточно малом h и p ∈ R+ задача (8.30)
имеет конечное число (скажем nh(p)) собственных чисел βhK(p)
суммарной кратности N b

h и соответствующих им собственных

подпространств UKh (p), Vh,Ah(p)+Bh(p) =
nh(p)⊕
K=1

UKh (p)⊕kerBh(0). Кроме

того, если βhi (p), i = 1, 2, . . . , N b
h, есть собственные числа, зануме-

рованные с учетом кратности, то функции p → βhi (p) являются
непрерывными в нуле, локально липшиц-непрерывными на R+ и воз-
растающими.

Следствие 8.11. При каждом p > 0 числа

βhK(p), K = 1, . . . , nh(p),

образуют полный набор собственных чисел задачи (Ph). Им соот-
ветствуют конечномерные собственные подпространства

UK
h (p) = {(H,H3) : H ∈ UKh (p), H3 = βhK(p)Th(p)H},

где функция H = Th(p)H ∈ Vh является решением задачи

`h(p,H,H
′) = Sh(σH · ∇H ′) ∀H ′ ∈ Vh.
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Исходная задача (P) и приближенная задача (Ph) были сведены
нами к эквивалентным системам (P ′) и (P ′h) соответственно. Напом-
ним их:

(P ′) A(p)H = β2B(p)H, H3 = βT (p)H,
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(P ′h) Ah(p)H = βh2Bh(p)H, H3 = βhTh(p)H,

где T (p) := L−1(p)C, Th(p) = Lh(p)
−1Ch.

Точность определения β и компоненты H решения H = (H,H3)
оценивается сравнением первых уравнений в этих системах, которые
в терминах билинейных форм имеют следующий вид (Hh ⇔ H):

(P̃ ′) a(p,H,H′) = β2b(p,H,H′) ∀H′ ∈ V 2,

(P̃ ′h) ah(p,Hh,H′) = βh2bh(p,Hh,H′) ∀H′ ∈ V 2
h .

Точность определения третьей компоненты решения H3 будет следо-
вать из близости β и βh, а также H и Hh.

При фиксированном p > 0 задача (P̃ ′h) представляет собой схе-
му Галеркина с возмущениями для задачи (P̃ ′) 1). Это позволяет нам
воспользоваться оценками теоремы 6.30, с. 150, при оценке точности
метода. Отметим, что возмущения форм a и b вызваны численным
интегрированием и усечением бесконечного ряда.

Пусть β2
i (p) и βh2i (p), i = 1, 2, . . ., — упорядоченные по возраста-

нию с учетом кратности собственные числа задачи (P̃ ′) и (P̃ ′h), соот-
ветственно, Hi(p) и Hh

i (p) — отвечающие им собственные функции.
Пусть далее βK(p) имеет кратность rK = rK(p), K > 1,

βK(p) = βk(p), βk−1(p) < βk(p) = . . . = βk+rK−1(p) < βk+rK
(p),

UK(p) := span{Hk(p), . . . ,Hk+rK−1(p)},
UKh (p) := span{Hh

k(p), . . . ,Hh
k+rK−1(p)}.

Определим для каждого i > 1 функцию H3i(p) ∈ V как решение
задачи L(p)H3i(p) = βiCHi(p) и, соответственно, Hh

3i(p) ∈ Vh — как
решение уравнения `h(p,Hh

3i(p), v) = βhi Sh(σHh
i (p) · ∇v) ∀ v ∈ Vh. По-

ложим Hi(p) = (Hi(p),H3i(p))
T , Hh

i (p) = (Hh
i (p),H

h
3i(p))

T ,

UK(p) := span{Hk(p), . . . ,Hk+rK−1(p)},
UK
h (p) := span{Hh

k(p), . . . ,H
h
k+rK−1(p)}.

Пары (βK(p),UK(p)), K > 1, являются решениями задачи (P̃ ′),
тогда как пары (βK(p),UK(p)), K > 1, являются решениями зада-
чи (P); числа βhi (p), k 6 i 6 k+rK−1, рассматриваются как аппрок-
симации собственного числа βK(p), а пространства UKh (p) и UK

h (p) —

1)При p = 0 мы определяем критические числа.
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как аппроксимации собственных подпространств UK(p) и UK(p), со-
ответственно.

Нашей первой задачей является оценка зависимости величин

|βK(p)− βhi (p)|, k 6 i 6 k + rK − 1,

и раствора ΘV 2(UK(p),UKh (p)) от параметров h и N дискретной зада-
чи (Ph) (см. теорему 6.30).

Прежде чем воспользоваться теоремой 6.30, оценим необходи-
мые нам величины возмущений форм a и b. До конца главы бу-
дем предполагать, что K > 1 и p > 0 являются фиксированны-
ми, ε|Ωi

⊂ W 2m
∞ (Ωi), а собственные функции H = (H,H3) обладают

следующей гладкостью:

H|Ωi
∈ [Hm+1(Ωi)]

3, H|Ω\Ωi
∈ [Hm+1(Ω \ Ωi)]

3, (8.37)

где m то же число, что и в определении пространства Vh. Будем ис-
пользовать дополнительные обозначения

|H|j := |H|j,Ωi
+ |H|j,Ω\Ωi

, ‖H‖j := ‖H‖j,Ωi
+ ‖H‖j,Ω\Ωi

, j > 0,

для функций из H ∈ V l, l = 1, 2, 3.
Введем также обозначениеAl(Ω) для множества функций из V l(Ω),

гармонических или метагармонических в Ω \ Ωi. Отметим, что при
всех K имеют место вложения UK(p) ⊂ A2(Ω), UK(p) ⊂ A3(Ω).

1. Оценки возмущений формы a. Прежде всего сделаем об-
щее замечание об оценках погрешности квадратурных формул при
вычислении интегралов, которые нам встретятся далее. Примерами
таких погрешностей являются функционалы

Eh

(
ε−1 rotHh rotH′h

)
, Eh(σHh · H′h), Eh(σ∇uh · H′h), . . .

Все эти величины представляют собой билинейные формы на V l
h×V k

h

при некоторых k, l = 1, 2, и распадаются на сумму слагаемых, оценка
которых получена в лемме 7.21, с. 191. Суммарная оценка имеет вид

|Eh(. . .)| 6 c h2m‖ · ‖m,h‖ · ‖m,h.
Из нее часто выводятся другие оценки с использованием обратного
неравенства ‖ · ‖m,h 6 c h1−m‖ · ‖. Далее мы будем использовать по-
добные оценки без дополнительных комментариев.
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Обозначим через Ph = Ph(p) ортопроектор в VA(p)+B(p) на V 2
h . Из

эквивалентности норм в VA(p)+B(p) 1) и в V 2 следует, что проектор Ph
ограничен в V 2 и

‖H − PhH‖1,Ω 6 c inf
Hh∈V 2h

‖H −Hh‖1,Ω ∀H ∈ V 2.

Если H ∈ UK(p), то так же, как и в скалярном случае, доказывается,
что

‖H−PhH‖1,Ω 6 c hj‖H‖j+1, ‖PhH‖j,h 6 c ‖H‖j, j = 1, . . . ,m. (8.38)

Будем использовать сокращение

(a− ah)(p,Hh,H′h) := a(p,Hh,H′h)− ah(p,Hh,H′h),
а также обозначение

Ea(Hh) := sup
H′

h∈V 2h ,‖H′

h‖1,Ω=1

|(a− ah)(p,Hh,H′h)|, Hh ∈ V 2
h .

Аналогично определяетсяEb(Hh). Пусть T (p) :=
(
A(p)+B(p)

)−1B(p),

εhm := hm + (R0/R)
N , εh0 := ‖(I − Ph)T (p)‖+ h2 + (R0/R)

N .

Отметим, что T (p) — компактный оператор.

Теорема 8.44. Пусть p > 0, Hh ∈ Vh, H ∈ UK(p). Тогда

Ea(PhT (p)Hh) 6 c εh0‖Hh‖1,Ω, (8.39)

Ea(PhH) 6 c εhm‖H‖m+1, (8.40)

|(a− ah)(p,PhH,PhH)| 6 c ε2hm‖H‖2m+1. (8.41)

Доказательство. Имеем для любых Hh,H′h ∈ V 2
h :

(a− ah)(p,Hh,H′h) =
2π

ε∞

∑

|n|>N
Kn(Rp) an(Hh) · an(H′h) +

+ Eh

(
ε−1 rotHh rotH′h + ε−1∞ divHh divH′h + p2ε−1∞Hh · H′h

)
+

+ ε−1∞ IΓ(Hh,H′h)− 2πiσ+

N∑

n=−N
n an(Hh)× an(H′h)− ε−1+ IΓ(Hh,H′h).

1)Напомним, что A(p) + B(p) > mABI при любом p > 0.
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Последние три слагаемых в этом представлении (обозначим их
через Sh) преобразуем следующим образом. Во-первых, учтем,
что ε−1∞ − ε−1+ =: σ+ и сгруппируем слагаемые с IΓ. Далее восполь-
зуемся представлением IΓ через коэффициенты Фурье (лемма 8.25).
В результате получим, что

Sh = 2πiσ+
∑

|n|>N
n an(Hh)× an(H′h).

Поскольку |n| 6 Kn(Rp), то

|Sh| 6 2πσ+
∑

|n|>N
Kn(Rp) |an(Hh)| |an(H′h)|.

Оценим погрешность квадратуры. В результате получим

Ψh := |(a− ah)(p,Hh,H′h)| 6 c h2m‖Hh‖m,h‖H′h‖m,h+
+ c 2π

∑

|n|>N
Kn(Rp)|an(Hh)||an(H′h)|. (8.42)

Введем обозначение

SN(H) := 2π
∑

|n|>N
Kn(Rp) |an(H)|2, H ∈ V 2.

Полностью аналогично скалярному случаю доказывается (см. лем-
му 7.23), что если H ∈ A2(Ω), то

SN(PhH) 6 c
(
‖H − PhH‖21,Ω + (R0/R)

2N‖H‖21,Ω
)
. (8.43)

Для гладких H первое слагаемое справа оценивается согласно (8.38).
Кроме того, для любого H ∈ V 2 справедлива оценка

SN(H) 6 2π
∞∑

n=−∞
Kn(Rp) |an(H)|2 =: |H|21/2,Γ 6 c ‖H‖21,Ω. (8.44)

C учетом неравенства Коши — Буняковского из (8.42) получим, что

Ψh 6 c h2m‖Hh‖m,h‖H′h‖m,h + c S
1/2
N (Hh)S

1/2
N (H′h), (8.45)

где Hh,H′h ∈ V 2
h .
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Выберем здесь Hh = PhH, H = T (p)Hh. Нетрудно проверяется,
что H ∈ A2(Ω). Ясно, что ‖H‖1,Ω 6 c ‖Hh‖1,Ω. Используя обратное
неравенство и оценки (8.43), (8.44), получим

|(a−ah)(p,PhH,H′h)| 6 c h2‖PhH‖1,Ω‖H′h‖1,Ω+c S1/2
N (PhH)‖H′h‖1,Ω 6

6 c
(
h2‖H‖1,Ω + εh0‖H‖1,Ω

)
‖H′h‖1,Ω 6 c εh0‖Hh‖1,Ω‖H′h‖1,Ω.

Отсюда следует оценка (8.39).
Выберем теперь в (8.45) Hh = PhH, считая, что H ∈ Uk(p). Тогда

|(a− ah)(p,PhH,H′h)| 6 c hm+1‖PhH‖m,h‖H′h‖1,Ω+
+ c S

1/2
N (PhH)‖H′h‖1,Ω 6 c εhm‖H‖m+1‖H′h‖1,Ω.

Здесь мы учли оценки (8.38). Отсюда следует оценка (8.40).
Наконец, полагая в (8.45)Hh = H′h = PhH,H ∈ Uk(p), аналогично

получим заключительную оценку (8.41). ¤

2. Оценки возмущений формы b. Прежде всего запишем
величину b− bh в удобном для оценок виде.

Пусть Hh,H′h ∈ V 2
h , H⇔ Hh, H′ ⇔ H′h. Определим по ним функ-

цию u := L−1(p)CHh из V , а также uh ∈ Vh с узловыми парамет-
рами y =

(
Lh(p)

)−1ChH. Аналогично по H′h ∈ V 2
h определим функ-

ции u′ ∈ V , u′h ∈ Vh и y′. Отметим, что 1)

`(u, v) = f(v) :=

∫

Ω

σHh · ∇v dx ∀ v ∈ V, (8.46)

`h(uh, vh) = fh(v) := Sh(σHh · ∇vh) ∀ vh ∈ Vh. (8.47)

Здесь `h есть аппроксимация функционала `. Напомним, что

`(u, v) =

∫

Ω

(1
ε
∇u · ∇v + p2

ε∞
uv
)
dx+

2π

ε∞

∞∑

n=−∞
Kn(Rp) an(u) an(v) ,

`h(u, v) = Sh

(1
ε
∇u · ∇v + p2

ε∞
uv
)
+

2π

ε∞

N∑

n=−N
Kn(Rp) an(u) an(v).

1)Для сокращения вместо `(p, u, v) используем обозначение `(u, v), вместо
`h(p, u, v) пишем `h(u, v).
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Положим Ψh := (b− bh)(p,Hh,H′h). Тогда получим

Ψh = Eh(σHh · H′h) + (L−1(p)CHh, CH′h)−
(
Lh(p)

)−1ChH · ChH′ =
= Eh(σHh · H′h) + (L(p)u, u′)− Lh(p)y · y′.

Таким образом,

(b− bh)(p,Hh,H′h) = Eh(σHh · H′h) + `(u, u′)− `h(uh, u
′
h). (8.48)

Первое слагаемое здесь оценивается сверху стандартным образом:

|Eh(σHh · H′h)| 6 c h2m‖Hh‖m,h‖H′h‖m,h.

Оценки требует величина Lh := `(u, u′)− `h(uh, u′h) при том или ином
выборе функций Hh и H′h.

Обратимся к задачам (8.46) и (8.47). Видим, что задача (8.47) яв-
ляется аппроксимацией по методу конечных элементов с численным
интегрированием нелокальной эллиптической краевой задачи (8.46).
При p > 0 формы ` и `h равномерно по h и N положительно опреде-
лены и ограничены в V (см. следствие 8.7, c. 209, и лемму 8.31, c. 223,
соответственно). Функционалы f и fh также ограничены в V : ясно,
что |f(v)| 6 σ+‖Hh‖0,Ω|v|1,Ω,

|fh(v)| 6 σ+Sh(|Hh|2)Sh(|∇vh|2) 6 c ‖Hh‖0,Ω|v|1,Ω.

Последняя оценка следует из теоремы 7.35, с. 185, и ее следствия.
Поэтому задачи (8.46) и (8.47) однозначно разрешимы при p > 0 и

‖u‖1,Ω 6 c ‖Hh‖0,Ω, ‖uh‖1,Ω 6 c ‖Hh‖0,Ω. (8.49)

При p = 0 квадратичные формы `(u, u) и `h(uh, uh) эквивалент-
ны |u|21,Ω и |uh|21,Ω, соответственно, и обе имеют общее ядро ker `, со-
стоящее из постоянных в Ω функций. Поскольку функционалы f и fh
обращаются в нуль на таких функциях, то задачи (8.46) и (8.47) име-
ют единственные решения с точностью до постоянных в Ω функций.
При оценке Lh эти постоянные не играют никакой роли. Поэтому
далее будем считать, что при p = 0 решения этих задач ищутся в
фактор-пространствах V := V/ ker ` и Vh := Vh/ ker `, соответствен-
но. Поскольку полунорма | · |1,Ω и норма ‖ ·‖1,Ω на этих пространствах
являются эквивалентными, то отсюда следует, что оценки (8.49) име-
ют место и при p = 0. C учетом сделанных замечаний случаи p = 0
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и p > 0 далее рассматриваются однотипно. Отметим, что u′ и u′h оце-
ниваются аналогично:

‖u′‖1,Ω 6 c ‖H′h‖0,Ω, ‖u′h‖1,Ω 6 c ‖H′h‖0,Ω.

Заметим также, что u ∈ A(Ω).
Пусть Ph есть ортопроектор в VL(p) на Vh, T (p) := L−1(p)C 1),

ε̃h0 := ‖(I − Ph)T (p)‖+ ‖(I − Ph)T (p)‖+ h2 + (R0/R)
N .

Отметим, что T (p) (как и T (p)) является компактным оператором.

Теорема 8.45. Пусть Hh ∈ V 2
h , H := (H,H3) ∈ UK(p). Тогда

Eb(Hh) 6 c ε̃h0‖Hh‖1,Ω, (8.50)

Eb(PhH) 6 c εhm‖H‖m, (8.51)

|(b− bh)(p,PhH,PhH)| 6 c ε2hm‖H‖2m. (8.52)

Доказательство. Докажем оценку (8.50). По функциям Hh

иH′h из V 2
h , как и выше, определим u и uh. Отталкиваясь от представ-

ления (8.48), оценим Lh. Для этого предварительно оценим ‖u−uh‖1,Ω.
Пусть eh := uh − Phu. Получим

c ‖eh‖21,Ω 6 `h(eh, eh) = fh(eh)− `h(Phu, eh) = fh(eh)− f(eh)+

+ `(Phu, eh)− `h(Phu, eh) 6 −Eh(σHh · ∇eh) + E`(Phu)‖eh‖1,Ω 6
6 c h2m‖Hh‖m,h‖eh‖m,h + E`(Phu)‖eh‖1,Ω 6

6
(
c h2‖Hh‖1,Ω + E`(Phu)

)
‖eh‖1,Ω.

Отсюда следует оценка ‖eh‖1,Ω. Теперь из неравенства треугольни-
ка ‖u− uh‖1,Ω 6 ‖u− Phu‖1,Ω + ‖eh‖1,Ω имеем

‖u− uh‖1,Ω 6 ‖u− Phu‖1,Ω + c h2‖Hh‖1,Ω + E`(Phu). (8.53)

Напомним, что

E`(uh) = sup
vh∈Vh,‖vh‖1,Ω=1

|(`− `h)(uh, vh)|, uh ∈ Vh,

1)По определению u = T (p)Hh, u
′ = T (p)H′

h.
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и, как нетрудно видеть,

(`− `h)(uh, vh) = Eh

(1
ε
∇uh · ∇vh +

p2

ε∞
uhvh

)
+

+
2π

ε∞

∑

|l|>N
K|l|(Rp) al(uh) al(vh) .

Аналогично скалярному случаю (см. доказательство оценки (7.57),
с. 195)

|(`− `h)(Phu, vh)| 6 c h2m‖Phu‖m,h‖vh‖m,h + S
1/2
N (Phu)‖vh‖1,Ω 6

6
(
c h2‖Phu‖1,Ω + ‖u− Phu‖1,Ω + (R0/R)

N‖u‖1,Ω
)
‖vh‖1,Ω.

Отсюда следует оценка E`(Phu). Наконец, из (8.53) получим

‖u− uh‖1,Ω 6 c
(
h2‖Phu‖1,Ω + h2‖Hh‖1,Ω+

+ ‖u− Phu‖1,Ω + (R0/R)
N‖u‖1,Ω

)
.

Поскольку

‖u−Phu‖1,Ω 6 ‖(I−Ph)T (p)‖ ‖Hh‖1,Ω, ‖Phu‖1,Ω 6 c ‖u‖1,Ω 6 c ‖Hh‖1,Ω,

то окончательно имеем ‖u− uh‖1,Ω 6 c ε̃h0‖Hh‖1,Ω.
Используем представление

Lh := `(u, u′)− `h(uh, u
′
h) = [`(u− Phu, u

′)− `h(uh − Phu, u
′
h)]+

+ [`(u′, Phu)− `h(u
′
h, Phu)] =: Ψ1 +Ψ2.

Из ограниченности форм и оценки eh следует оценка Ψ1:

|Ψ1| 6 c (‖u− Phu‖1,Ω + ‖uh − Phu‖1,Ω)‖u′h‖1,Ω 6 c ε̃h0‖Hh‖1,Ω‖H′h‖1,Ω.

Из тождеств (8.46), (8.47) следует, что Ψ2 = Eh(σH′h ·∇Phu). Поэтому

|Ψ2| 6 c h2‖Hh‖1,Ω‖H′h‖1,Ω.

Окончательно имеем

|(b− bh)(p,Hh,H′h)| 6 c h2m‖Hh‖m,h‖H′h‖m,h + |Lh| 6
6 c ε̃h0‖Hh‖1,Ω‖H′h‖1,Ω.
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Отсюда следует искомая оценка (8.50).
Перейдем к доказательству оценки (8.51). ПустьH ∈ UK(p), опре-

делим u := T (p)H. Функция u ∈ V есть решение задачи

`(u, v) =

∫

Ω

σH · ∇v dx ∀ v ∈ V.

Отметим, что u = β−1H3, где H3 — третья компонента собственной
функции H := (H,H3) ∈ UK(p). По предположению она является
достаточно гладкой (см. (8.37)).

Определим теперь u и uh по Hh = PhH как и ранее, сохранив
определение u′ и u′h по произвольнойH′h. Сравним между собой функ-
ции u, u и uh. Имеем (см. (8.38))

‖u− u‖1,Ω = ‖T (p)(H−PhH)‖1,Ω 6 c ‖H − PhH‖1,Ω 6 c hm‖H‖m+1.

Следовательно,

‖u− Phu‖1,Ω 6 ‖u− u‖1,Ω + ‖u− Phu‖1,Ω 6 c hm‖H‖m+1.

Оценим ‖u− uh‖1,Ω. Полагая eh := uh − Phu, будем иметь

c ‖eh‖21,Ω 6 `h(eh, eh) = f(eh)− `h(Phu, eh) = Eh(σPhH · ∇eh)+
+ `(Phu, eh)− `h(Phu, eh) 6 (c hm+1‖PhH‖m,h + E`(Phu))‖eh‖1,Ω.

Оценка E`(Phu) 6 c εhm‖u‖m+1 доказывается так же, как и в скаляр-
ном случае (см. доказательство оценки (7.57), с. 195). Отсюда и (8.38)
имеем ‖eh‖1,Ω 6 c εhm‖H‖m.

Таким образом,

‖u− uh‖1,Ω 6 ‖u− Phu‖1,Ω + ‖eh‖1,Ω 6 c εhm‖H‖m+1,

‖uh − Phu‖1,Ω 6 ‖uh − u‖1,Ω + ‖u− Phu‖1,Ω 6 c εhm‖H‖m+1.

Окончательно получаем, что

‖uh − Phu‖1,Ω, ‖u− uh‖1,Ω, ‖u− Phu‖1,Ω, ‖u− u‖1,Ω 6 εh, (8.54)

где εh := c εhm‖H‖m+1. Непосредственно проверяется, что

(b− bh)(p,PhH,H′h) = Eh(σPhH · H′h) + `(u, u′)− `h(uh, u
′
h) =

= [Eh(σPhH · H′h) + `(u− Phu, u
′)− `h(uh − Phu, u

′
h)]+

+ [`(Phu, u
′)− `h(Phu, u

′
h)] =: Ψ3 +Ψ4. (8.55)
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Ясно, что Ψ4 = Eh(σH′h · ∇Phu). С учетом (8.54) имеем

|Ψ3| 6 c (hm+1‖PhH‖m,h + εh)‖H′h‖1,Ω 6 c εhm‖H‖m+1 ‖H′h‖1,Ω,

|Ψ4| 6 c hm+1‖Phu‖m,h‖H′h‖1,Ω 6 c hm+1‖H‖m‖H′h‖1,Ω.
Из этих оценок и (8.55) вытекает вторая искомая оценка (8.51):

Eb(PhH) 6 c εhm‖H‖m+1.

Наконец, сохраняя для u, uh данное выше определение, поло-
жим H′h = PhH, u′ = u, u′h = uh. Будем иметь

(b− bh)(p,PhH,PhH) = Eh(σPhH · PhH) + `(u, u)− `h(uh, uh) =

= [Eh(σPhH · PhH) + `(u− Phu, u− Phu)− `h(uh − Phu, uh − Phu)]+

+ 2[`(u, Phu)− `h(uh, Phu)]− [`(Phu, Phu)− `h(Phu, Phu)].

Оценивая, как и выше, слагаемые в правой части, получим заключи-
тельную оценку (8.52). ¤

3. Оценки точности приближенных решений. Используя
полученные выше оценки возмущений форм a и b, оценим предвари-
тельно точность определения пары (βK(p),UK(p)), p > 0. Положим

Ψh(Hh) := Eb(Hh) + Eb(PhT (p)Hh) + Ea(PhT (p)Hh),

εh(H) := inf
Hh∈V 2h

‖H −Hh‖+ Ea(PhH) + Eb(PhH),

Σh(Hh) := |(a− ah)(p,Hh,Hh)|+ |(b− bh)(p,Hh,Hh)|,

где H ∈ V 2, Hh ∈ V 2
h .

Теорема 8.46. Пусть p > 0, ε|Ωi
∈ W 2m

∞ (Ωi) и выполнены усло-
вия гладкости (8.37). Тогда при достаточно малых h и

N > c0 ln(1/h), c0 =
m

ln(R/R0)
,

имеют место оценки

ΘV 2(UK(p),UKh (p)) 6 c hm, |βK(p)− βhi (p)| 6 c h2m,

где K > 1, i = k, . . . , k + rK(p)− 1, c = c(K, p).

Доказательство. Как отмечалось во введении к данному па-
раграфу, требуемые оценки точности следуют из теоремы 6.30, c. 150.
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Проверим, что условия этой теоремы выполнены. Условие (H1) озна-
чает, что

inf
Hh∈V 2h

‖H −Hh‖ → 0 при h→ 0.

Оно выполнено по определению пространства V 2
h . Также выполнены

условия A1–A5 и Ah
1–A

h
5 (см. леммы 8.30 и 8.31, соответственно).

Оценим Ψh(Hh). В силу ограничения на число N легко видеть,
что (R0/R)

N 6 hm. Из оценок (8.39), (8.50) и ограниченности опера-
тора PhT (p) : V 2

h → V 2
h следует, что

Ψh(Hh) 6 c(h2 + ε̃h0 + εh0)‖Hh‖1,Ω 6
6 c

(
h+ ‖(I − Ph)T (p)‖+ ‖(I − Ph)T (p)‖

)
‖Hh‖1,Ω.

В силу условия (H1) из компактности оператора T (p) следует,
что ‖(I − Ph)T (p)‖ → 0 при h → 0 (см., напр., [56, Лемма 15.4,
с. 202]). Аналогично ‖(I − Ph)T (p)‖ → 0 при h→ 0. Поэтому

sup
Hh∈V 2h ,‖Hh‖1,Ω=1

Ψh(Hh)→ 0 при h→ 0,

что означает выполнение условияAh
6 . Наконец, из оценок (8.40), (8.51)

имеем
εh(H) 6 c hm‖H‖m+1, H ∈ UK(p).

Поскольку H = (H,H3), H3 = βK(p)T (p)H, а пространство UK(p)
является конечномерным, то отсюда следует, что

max
H∈UK(p), ‖H‖1,Ω=1

εh(H) 6 c hm, (8.56)

т. е. выполнено заключительное условие теоремы. Поэтому

ΘV 2(UK(p),UKh (p)) 6 c max
H∈UK(p), ‖H‖1,Ω=1

εh(H),

|βK2(p)− βh2i (p)| 6 c max
H∈UK(p),‖H‖1,Ω=1

(
ε2h(H) + Σh(PhH)

)
.

Поскольку из (8.41), (8.51) вытекает, что Σh(PhH) 6 c h2m‖H‖m+1, то
из (8.56) получим

ΘV 2(UK(p),UKh (p)) 6 c hm, |βK2(p)− βh2i (p)| 6 c h2m. ¤
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Следствие 8.12. При p ∈ R+ cправедлива оценка

ΘV 3(U
K(p),UK

h (p)) 6 c hm.

Доказательство. Элементы пространства UK(p) будем обо-
значать через H := (H, u), u := βKT (p)H (см. следствие 8.10), элемен-
ты пространства UK

h (p) — через Hh := (Hh, vh). По элементу H опре-
делим функцию uh ∈ Vh — приближение u как решение конечномер-
ной задачи `h(uh, vh) = βKSh(σPhH ·∇vh) ∀ vh ∈ Vh. Согласно (8.54)
имеем ‖u − uh‖1,Ω 6 c hm‖H‖m+1 =: δh(H), так как εhm 6 c hm. По
определению раствора получим

Θ2
V 3(U

K(p),UK
h (p)) := sup

H∈UK(p), ‖H‖1,Ω=1

inf
Hh∈UK

h (p)
‖H− Hh‖21,Ω =

= sup
H∈UK(p), ‖H‖1,Ω=1

inf
Hh∈UK

h (p)

(
‖H −Hh‖21,Ω + ‖u− vh‖21,Ω

)
6

6 sup
H∈UK(p), ‖H‖1,Ω=1

inf
Hh∈UK

h (p)

(
‖H −Hh‖21,Ω + ‖u− uh‖21,Ω

)
6

6 sup
H∈UK(p), ‖H‖1,Ω61

inf
Hh∈UK

h (p)

(
‖H −Hh‖21,Ω + δ2h(H)

)
6

6 Θ2
V 2(UK(p),UKh (p)) + sup

H∈UK(p), ‖H‖1,Ω61

δ2h(H) 6 c h2m. ¤

Глава 9

РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ
ЭКСПЕРИМЕНТОВ

Эта глава посвящена описанию результатов различных вычисли-
тельных экспериментов, целью которых является практическая оцен-
ка точности предлагаемых методов. В вычислениях были использо-
ваны простейшая схема МКЭ (m = 1 в определении пространства
конечных элементов Vh) и квадратурная формула с одним узлом в
центре тяжести конечного элемента.

§ 1. Некоторые аспекты программной реализации

Дискретная задача в скалярном случае формулируется следую-
щим образом: при каждом p ∈ R+ найти βh ∈ R+ и y ∈ RNh\{0}
такие, что

Ah(p)y = βh2Bhy, (9.1)

где Ah(p) =
{
ah(p, ϕj, ϕi)

}Nh

i,j=1
, Bh =

{
bh(ϕj, ϕi)

}Nh

i,j=1
, функ-

ции {ϕi}Nh

i=1 образуют базис Лагранжа в Vh,

ah(p, u, v) = Sh(∇u · ∇v + p2σ uv) + 2π
N∑

n=−N
Kn(pR) an(u) an(v),

bh(u, v) = Sh((σ − 1)uv).

Представим матрицу Ah(p) в виде суммы матриц A0h(p) и SNh (p), где

SNh (p) = {sij}Nh

i,j=1, sij = 2π
N∑

n=−N
Kn(pR) an(ϕj) an(ϕi).

Отметим, что матрицы A0h(p) и Bh являются обычными для мето-
да конечных элементов. Их вычисление осуществляется известным
алгоритмом сборки, который сводится к однотипным поэлементным
вычислениям. Укажем способ вычисления матрицы SNh (p).
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Пусть в результате триангуляции области Ω ее граница Γ разбита
точками φi на nΓ равных частей длины h = 2π/nΓ. Будем считать так-
же, что граничные точки последовательно имеют номера от 1 до nΓ,
внутренние — от nΓ + 1 до Nh. Поскольку ϕi при nΓ + 1 6 i 6 Nh

равны нулю на Γ, то матрица SNh (p) имеет следующий вид:

SNh (p) =

[
S(p) 0
0 0

]
, S(p) =

{
skl}nΓk,l=1.

По определению пространства Vh функции ϕk, k = 1, 2, . . . , nΓ, равны
нулю на Γ вне отрезка [φk−1, φk+1] и

ϕk
∣∣
Γ
=

{
(ϕ− φk−1)/h, ϕ ∈ [φk−1, φk] ,
(φk+1 − ϕ)/h, ϕ ∈ [φk, φk+1] .

Простые вычисления приводят к следующей формуле:

an(ϕk) :=
1

2π

2π∫

0

ϕk
∣∣
Γ
e−inϕdϕ = dne

−inφk, dn =
h

2π

(sin(hn/2)
hn/2

)2
.

Учтем, что an(ϕk) = a−n(ϕk). Получим 1)

skl = 4π
N∑

n=0

′ d2nKn(pR)
(
cos(nφl) cos(nφk) + sin(nφl) sin(nφk)

)
.

Введем в рассмотрение прямоугольные матрицы Qc и Qs размерно-
сти nΓ × (N + 1) с элементами cos(nφl) и sin(nφl), соответственно, а
также диагональную матрицу

D(p) = 4π diag(0.5d20K0(pR), d
2
1K1(pR), . . . , d

2
N KN(pR)).

Тогда, очевидно, справедлива формула

S(p) = QcD(p)QT
c +QsD(p)QT

s .

Матрицы Qc и Qs вычисляются один раз, и при новом значении p
необходимо вычислять только матрицу D(p). Следовательно, для вы-
числения S(p) при данном p требуется порядка O(nΓN

2) арифметиче-
ских операций. Выразим это число в терминах h. В силу регулярности

1)В сумме
∑

′an слагаемое a0 умножается на 0.5.
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триангуляции nΓ = O(h−1); из оценок точности метода следует, что
достаточно выбрать N = O(ln(1/h)). Таким образом, для вычисле-
ния S(p) при данном p требуется порядка O(h−1 ln2(1/h)) арифме-
тических операций, тогда как для вычисления матриц A0h(p) и Bh

требуется порядка O(h−2) операций. Эти оценки полностью перено-
сятся и на векторный случай.

Далее мы приведем результаты расчетов конкретных волноводов,
характеризующихся различной формой поперечного сечения Ωi и по-
стоянной проницаемостью ε 1). Для каждого волновода мы приводим
графики дисперсионных кривых, а также исследуем точность вычис-
ления собственных чисел β в зависимости от расчетных параметров h
и N . Мы приводим результаты вычислений, относящиеся лишь к бо-
лее сложному для вычислений векторному случаю. В скалярном слу-
чае результаты расчетов оказались вполне аналогичными.

Опишем алгоритм определения дисперсионных кривых. Напом-
ним, что исходная задача состоит в определении кривых β = β(k)
и соответствующих собственных функций H = H(k), зависящих от
волнового числа k (k пропорционально частоте электромагнитных
колебаний ω). Предположим, что нас интересуют все дисперсионные
кривые и соответствующие им собственные волны в интервале ча-
стот [0, ω0], т. е. при k ∈ [0, k0]. Мы знаем, что дисперсионные кривые
лежат в области

Λ0 := {(β, k) : ε1/2∞ k 6 β 6 ε
1/2
+ k, k ∈ [0, k0]}.

С использованием предлагаемого нами метода эта задача решается
следующим образом. Переформулируем задачу в терминах парамет-
ров (β, p), где p = (β2 − k2ε∞)1/2. Области Λ0 взаимно однозначно
соответствует область K0 параметров (β, p),

K0 := {(β, p) : p ∈ [0, p0], γp 6 β 6 (p2 + k0ε+)
1/2},

где γ := (ε+/(ε+ − ε∞))1/2, p0 := (ε+ − ε∞)1/2k0.
На отрезке [0, p0] введем равномерную сетку узлов и в каждой

точке сетки pj найдем все собственные числа βh2i дискретной зада-
чи (9.1) (или ее аналога в векторном случае) из отрезка [γ2p2j , p

2
j+k0ε+]

и соответствующие им собственные функции. В результате интерпо-
ляции (кусочно-линейной при m = 1) получим приближенные дис-

1)Будем считать, что единицы измерения выбраны так, что ε∞ = 1, µ0 = 1.
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Рис. 20. Триангуляция области Ω для кругового волновода, R = 1.5, Nh = 146.

персионные кривые β = βhi (p), лежащие в области K0. Далее поло-
жим kh2i (p) := (βh2i (p)− p2)/ε∞. Найденные кривые

β = βhi (p), k = khi (p), p ∈ [0, p0],

образуют в совокупности приближения ко всем искомым дисперсион-
ным кривым точности O(h2m). Отметим, что в результате решения
дискретных задач на собственные значения (мы использовали метод
Ланцоша) определяются приближения лишь к сужениям собственных
функций на круг Ω. При необходимости они могут быть метагармо-
нически продолжены вне Ω, используя формулу

Hh(x) =
N∑

n=−N

Kn(pr)

Kn(pR)
an(Hh) e

inϕ, x ∈ Ω∞.

§ 2. Волновод кругового поперечного сечения

Рассмотрим однородный волновод с круговым поперечным се-
чением радиуса 1 и проницаемости ε = 2. Этот пример интересен
тем, что для него известно “точное” решение задачи (трансцендент-
ное уравнение (1.62), стр. 32, связывающее параметры β и k).

Радиус R области Ω был выбран равным 1.5. На рис. 21 изобра-
жены первые семь дисперсионных кривых β = β(p) задачи (P), вы-
численные на сетке с 2493 узлами и числом Фурье-гармоник N = 10.
Сплошными линиями обозначено точное решение, точками — прибли-
женное, штриховой линией — прямая β = k0p, определяющая часть
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Рис. 21. Первые семь дисперсионных кривых β = β(p) для волновода кругового
сечения.
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Рис. 22. Первые семь дисперсионных кривых β = β(k) для волновода кругового
сечения, β1(k) = β2(k), β5(k) = β6(k).
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границы области K. Все дисперсионные кривые лежат выше этой
прямой.

На рис. 22 сплошными линиями изображены первые семь дис-
персионных кривых β = β(k) исходной задачи (P∞). Штриховыми
линиями — прямые β = k

√
ε+ и β = k

√
ε∞, определяющие границы

области Λ.
Представим теперь результаты численного исследования зависи-

мости точности метода от параметров Nh — общего числа точек сетки
и N — числа Фурье-гармоник. Для фиксированного параметра p = 1
разыскивались собственные значения βh задачи (Ph), а затем срав-
нивались с точными. Результаты вычислений представлены в табли-
це 1 для βh4 . Из этой таблицы видно, что достаточно выбрать N = 1
или N = 2 и при этом |β4 − βh4 |/|β4| ≈ 0.7h2.

Таблица 1. Зависимость e = h−2|β4 − βh
4 |/|β4| при p = 1 от h и N .

N \ Nh(nΓ) 45(16) 330(52) 1125(92) 2881(152)
1 0.64 0.748 0.631 0.668
3 0.641 0.748 0.631 0.668
5 0.641 0.748 0.631 0.668
7 0.641 0.748 0.631 0.668
15 0.642 0.748 0.631 0.668

§ 3. Волновод квадратного поперечного сечения

Рассмотрим однородный волновод с поперечным сечением в виде
единичного квадрата и проницаемости ε = 2.08, для которого извест-
ны результаты физических экспериментов [35]. Круг Ω расположим
так, чтобы центр круга совпадал с центром квадрата Ωi, радиус R
круга выберем равным 1.5. Пример триангуляции области Ω приве-
ден на рис. 23.

На рис. 24 сплошными линиями показаны первые четыре диспер-
сионные кривые β = β(p) задачи (P), построенные на сетке с общим
числом узлов Nh = 2500 и вычисленные при количестве Фурье-гармо-
никN = 10. Нижняя кривая является кратной β1(p) = β2(p), две дру-
гие пересекаются. Экспериментальные данные обозначены точками.
График показывает хорошее соответствие между полученными при-
ближенными решениями и экспериментальными данными. На рис. 25
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Рис. 23. Триангуляция области для волновода квадратного поперечного сече-
ния, R = 1.5, Nh = 151.

изображены соответствующие им дисперсионные кривые β = β(k) за-
дачи (P∞).

Представим теперь результаты численного исследования зависи-
мости точности метода от параметров Nh и N при p = 1. В отли-
чие от волновода кругового поперечного сечения в данном случае не
известно точное решение. Поэтому за “точное решение задачи” при-
нималось приближенное решение, полученное на сетке с числом уз-
лов Nh = 6000 (nΓ = 212). Результаты вычислений представлены
в таблице 2 для третьего собственного значения β3. Из этой табли-
цы можно заключить, что достаточно выбрать N , равное 3, и при
этом |β4 − βh4 |/|β4| ≈ 1.6h2.

Таблица 2. Зависимость e = h−2|β3 − βh
3 |/|β3| при p = 1 от h и N .

N | Nh(nΓ) 31(16) 341(50) 1012(92)
1 2.26 1.6 1.61
3 2.27 1.61 1.64
5 2.27 1.61 1.64
7 2.27 1.61 1.64
15 2.27 1.61 1.64

§ 4. Волновод прямоугольного поперечного сечения

Приведем еще один пример волновода, для которого известны
экспериментальные данные [35]. Рассмотрим однородный волновод,
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Рис. 24. Первые четыре дисперсионные кривые β = β(p) для волновода квадрат-
ного сечения.

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

k

β

Λ 

Рис. 25. Первые четыре дисперсионные кривые β = β(k) для волновода квадрат-
ного сечения, β1(k) = β2(k).
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поперечное сечение которого представляет собой прямоугольник раз-
мером 1.5× 1 с ε = 2.08. Круг Ω расположим так, чтобы центр круга
совпадал с центром прямоугольника Ωi, радиус R круга выберем рав-
ным 1.5. Пример триангуляции области Ω приведен на рис. 26.
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Рис. 26. Триангуляция области для волновода прямоугольного сечения, R = 1.5,
Nh = 148.

На рис. 27 сплошными линиями показаны первые четыре диспер-
сионные кривые β = β(p) задачи (P) для прямоугольного волновода,
построенные на сетке с общим числом узлов Nh = 2179 и вычис-
ленные при количестве Фурье-гармоник N = 10. Экспериментальные
данные обозначены точками. График показывает хорошее соответ-
ствие между полученными приближенными решениями и экспери-
ментальными данными. На рис. 28 изображены соответствующие им
дисперсионные кривые β = β(k) задачи (P∞).

Таблица 3. Зависимость e = h−2|β3 − βh
3 |/|β3| при p = 1 от h и N .

N | Nh(nΓ) 40(17) 304(50) 1016(92)
1 1.36 0.987 0.327
3 1.39 1.19 1.04
5 1.39 1.19 1.05
7 1.39 1.19 1.05
15 1.39 1.19 1.05

Представим теперь результаты численного исследования зависи-
мости точности метода от параметров Nh и N . Так как в данном слу-
чае точное решение не известно, то схема исследования такая же, как
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Рис. 27. Первые четыре дисперсионные кривые для волновода прямоугольного
сечения.
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Рис. 28. Первые четыре дисперсионные кривые для волновода прямоугольного
сечения.
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в случае волновода квадратного сечения: за “точное решение задачи”
принималось приближенное решение, полученное на сетке с общим
числом узлов Nh = 6015 (nΓ = 212). Результаты вычислений пред-
ставлены в таблице 3 для третьего собственного значения β3. Из этой
таблицы можно заключить, что достаточно выбрать число Фурье-
гармоник N = 5, и при этом |β3 − βh3 |/|β3| ≈ 1.1h2.

§ 5. Волновод с поперечным сечением из трех кругов

Рассмотрим однородный волновод, состоящий из трех касающих-
ся друг друга кругов радиуса 0.4. В этом случае не известны ни точ-
ное решение, ни экспериментальные данные. Радиус R круга Ω был
выбран равным 1.5, центр области Ωi совпадает с центром Ω, ε = 2.
Грубая триангуляция области приведена на рис. 29. На рис. 30 изоб-
ражены первые шесть дисперсионных кривых β = β(p) задачи (P),
вычисленные на сетке с общим числом узлов Nh = 2226 при количе-
стве Фурье-гармоник N = 10. Первая и пятая кривые, изображенные
на рисунке, являются кратными: β1(p) = β2(p), β5(p) = β6(p). На
рис. 31 изображены дисперсионные кривые β = β(k) задачи (P∞).
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Рис. 29. Триангуляция области поперечного сечения волновода, состоящего из
трех касающихся друг друга кругов радиуса 0.4, R = 1.5, Nh=243.

Представим результаты численного исследования зависимости
точности метода от параметров Nh и N . Так как и в этом случае
точное решение не известно, то за “точное решение задачи” при-
нималось ее приближенное решение, полученное на сетке с числом
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Рис. 30. Первые шесть дисперсионных кривых для волновода с поперечным се-
чением, состоящим из трех касающихся друг друга кругов.
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Рис. 31. Первые шесть дисперсионных кривых для волновода с поперечным се-
чением, состоящим из трех касающихся друг друга кругов.
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узлов Nh = 6006 (nΓ = 216). Результаты вычислений представле-
ны в таблице 4 для четвертого собственного значения β4. Из этой
таблицы можно заключить, что достаточно выбрать число Фурье-
гармоник N = 5, и при этом |β4 − βh4 |/|β4| ≈ 1.6h2.

Таблица 4. Зависимость e = h−2|β4 − βh
4 |/|β4| при p = 1 от h и N .

N | Nh(nΓ) 78(16) 335(50) 1093(90)
1 0.5 23.3 92.5
3 0.619 1.67 1.56
5 0.62 1.67 1.57
7 0.62 1.67 1.57
15 0.62 1.67 1.57

На рис. 32, 33 представлены изолинии модуля собственных функ-
ций (|H| = (H · H)1/2), соответствующих различным собственным
числам β при значении параметра p = 0.2.
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Рис. 32. Изолинии |H|, Nh = 5032, N = 10, p = 0.2.
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Рис. 33. Изолинии |H|, Nh = 5032, N = 10, p = 0.2.
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Näherungsmethoden bei Eigenwertproblemen // Math. Nachr. —
1977. — V. 78. — P. 145–164.

158. Vanmaele M., Zenishek A. The combined effect of numerical
integration and approximation of the boundary in the finite element
method for eigenvalue problems // Numer. Math. — 1995. — V. 71. —
P. 253–273.

159. Zlamal M. Curved elements in finite element method. I. // SIAM J.
Numer. Anal. — 1973. — V. 10, № 1. — P. 229–240.

160. Zlamal M. Curved elements in finite element method. II. // SIAM J.
Numer. Anal. — 1974. — V. 11, № 2. — P. 347–362.



!

оо

со
Ф\

!|а
!

\!
{
ФЁг=
цР15ч5 о= Р с Ё ;Р>.. : н 9 ,*у-:-_'чу5тчэ9 & б 9 

=ыЁ!ц н т-а х
^ .* } Ё = ф ^^- = =ф * = д;3*йо ч *я1 ;:ь_9}Б 'с 5с-' !+\о
с.| т б^ - ц Ф у 9 !

- 5 ! х 0с{
Р о-/Ф 

' 
Ёб] !2 9о'с ^._- + ^ =; 1о]

649;_','ятд+э99Ф6*Ёп п ?5а яы-:':- о г о = н }5г,мЁ| 5 х *:9 *;
^ - сЁ ьте -и
=;Ф.а^з*<!д 1 

^* 
з у ^ 1

ф Ф 
='! 

й ! 
->|(, ! '']! о о 6 ! *б1\ н = .;' о

= 
ь:- Ё э 

= 
х ё:

*аЁ.: )5 ЁЁр *;

='[*; :2 ь ц;ФФ'чт^са'о 5 5 9 й .
ч:*'. с! н Б ю

'6;> .9 9 е яф ё]
х <1'

\о,ь
о.о
0

м
!|
!Ё
ф.ц\'у.н!!5/г:: } д'х9ун{ !>ъ }ч- *' 

^! г*1 г) уЁцн-
= 

)+,( !-{ ц!_*ё ндн
Ё'; 3Ёяч = ;> Р,'! 5,'1х: хч3..-з ддхЁЁ Ё!_\,'
5 я] т -- нк! |+|1н+.з Б; :с{Ё -'()чд^-*\*^д'Ё А * н

д|- -! А[:ч*!я[
оу ;зЁ!и
з9 ;<'!н>ф :'Ёз<н Ёхгъ
=1 т ;!у;]'* {= *\Ан

х 9Б}*(-! ж :!
!- -- ).|
ц.] !'Ё{ )-'(

=ин|+( у
* /-!

Р|*
9
н

'-3 
= 

т*а р, 1! 9' эЁ| : :
]; Ё^ Ёфа+;$;ЁЁ]т0] 5- Ё}г ц г| Р'. *:! -- -Ёх х | 3?а *- €* 2Ё- о';3 ; 

=7_ ; -..= ;г* *Ф: /1 ]у э 0€! -_.:'ё> тЁ цБЁ Р? э6)

1:*:т€; ;Ёв. :\ €1= !х;н9о хщ сЁ..1;3 *1 Ё[5 1, 5т =Ё !Ёз :*;т'=- :/ о ф ! ; *< *'; '!!а ы'] сф

1*д,з:д+€;н; $Ё €;ч €тЁтэ э _= }. о-з€ с3 ='"-! !: ЁЁ ЁР *Ё2 я* !^
ц: _: о! '; с" =с. Ё- ; ч Ё;{ €Ё 

'.||*'

;т :Ё {а;т Ё- Ё= ;а- =!а := }=9.: Б; я '?- ., 9з .9;Ё33 -Ёэ * . Ф. ; 1 -сд :

=5 
Ё!:Ё;3 Ё- Ёй .:= $€€ 

'т 
;>

-= ] := { _ 
- 

(). |-о э \ Ф !]] -с.= !: н ! ; 
'€Ё й;;€ь: аз 6, д:х ёЁц €* *=

ъ= :|ЁрЁЁ ; Ё*'5€, *ЁЁ тц Ён
]: *; =];Ё =т <ц .,*- >|:$ ,\ ; _;!.! в1; *Ёд и;{ }з- "ЁЁ :а; !т ]тЁ€ ъ= €:!: Ё€::х $3= Ё€ёх 

=< ={Ё: :в ЁЁ;з ЁЁ !€= Ё;" Ё1ъ; Ё; Ён
Ёт йЁ 8Ё ад йд €Ёг $Ёь $Ё:; €Ё $Ё
ЁцЁ цЁ } Ё Ёв

сц
н'
ф\
Ф
н
ь

Ф|ч
б!


	0-778170!1426.pdf
	IMG.pdf
	0MAINL2E_book_29_04.pdf
	IMG_0001.pdf

