CONDUCT OF MODERN SCIENCE – 2015

November 30 - December 7, 2015

MATERIALS

OF XI INTERNATIONAL RESEARCH AND PRACTICE CONFERENCE

20

volume

MATERIALS

OF XI INTERNATIONAL RESEARCH AND PRACTICE CONFERENCE

CONDUCT OF MODERN
SCIENCE - 2015

November 30 - December 7, 2015

Medicine
Biological sciences
Chemistry and
chemical technology

Science and Education Ltd Sheffield UK

2015

MATERIALS

OF THE XI INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE

«CONDUCT OF MODERN SCIENCE - 2015»

November 30 - December 7, 2015

Volume 20
Medicine
Biological sciences
Chemistry and chemical technology

Sheffield SCIENCE AND EDUCATION LTD 2015

MORPHOLOGY

Лагодская И.Я., Лагодская Л.И. Анализ летальных случаев от восходящего паралича Ландри
BIOLOGICAL SCIENCES
SYSTEMATICS AND GEOGRAPHY OF PLANTS
Агапова А.Е. География высших растений
STRUCTURAL BOTANY AND BIOCHEMISTRY
Шупранова Л.В., Грицай З.В. Метаболічні зміни в насінні аборигенного і інтродукованих видів роду Асег L.в умовах міського середовища
и развитие растений томата (Solanum lycopersicum L.)
Чекалина Н.В., Белова Т.А. Физиологические особенности культурных растений в условиях совместного роста с сорняками
Трубников А.М., Янков Н.В. Оценка особенностей содержания фотосинтетических пигментов в листьях древесных растений
RESOURCES AND PLANT INTRODUCTION
Антохова В.С. Характеристика системи озеленення міст
MICROBIOLOGY
Міхєєв А.О. Адаптація мікроорганізмів
Додонова А.Ш., Кабдеш И.М. Энтомопатогенные свойства
Bacillus thuringiensis 60 Агапова А.Е. Цели микробиологии 64
Атапова А.Е. Цели микроонологии
THEOLOGY
Березуцкая Л.А. Распространение речного бобра (Castor fiber) в основных водотоках Днепровского бассейна типичной лесостепи
HUMAN PHYSIOLOGY AND ANIMALS
Горбань Д.Д. Особливості мікроциркуляції крові у студентів з різними типами вищої нервової діяльності
дневной сонливости у детей школьного возраста

К.б.н. Додонова А.Ш., Кабдеш И.М.

Карагандинский государственный университет им. академика Е.А. Букетова, Казахстан

ЭНТОМОПАТОГЕННЫЕ СВОЙСТВА BACILLUS THURINGIENSIS

Многие виды насекомых, как известно, являются вредителями растений, паразитами и переносчиками возбудителей болезней человека, полезных животных и растений. Изобретены самые разные способы и средства истребления насекомых и защиты от них человека, животных и растений. До последнего времени наиболее распространенным был химический метод борьбы с насекомыми. Но этот метод при высокой эффективности имеет три основных недостатка: во-первых, химические инсектициды в большинстве своем универсальны и убивают не только вредных, но и полезных насекомых (опылителей, энтомофагов); во-вторых, они загрязняют окружающую среду; в-третьих, за многолетнюю практику применения инсектицидов многие виды насекомых приобрели устойчивость к ним (примерно 260 видов вредителей сельского и лесного хозяйства и 170 видов паразитов человека и сельскохозяйственных животных). Все это вынудило пересмотреть практику использования химических инсектицидов и по-новому оценить химический метод контроля. Сейчас наиболее перспективным считается экологический подход, предусматривающий рациональное сочетание современных защитных приемов и биометода, в частности, использования энтомопатогенных бактерий как естественных паразитов насекомых. [1]

Энтомопатогенные бактерии, представляющие интерес для биологической защиты растений, относятся к трем семействам порядка эубактерий (Eubacteriales): Pseudomonadales, Enterobacteriales и Bacillales.

Bacillus thuringiensis (Bt) — наиболее распространенный вид энтомопатогенных бактерий. На основе разных подвидов создана серия биопрепаратов для защиты растений. В отличие от других видов рода Bacillus эта бактерия образует кристаллы. Впервые она была выделена Луи Пастером из гусениц тутового шелкопряда в конце XIX в., но идентифицирована германским ученым Берлинером из Тюрингии в 1911 г. Встречается повсеместно в почве, на поверхности листьев, в телах насекомых [2].

Bacillus thuringiensis — энтомопатогенный аэробный почвенный грамположительный микроорганизм, обладающий способностью в ходе споруляции образовывать кристаллоподобные включения, состоящие из энтомоцидных белков — эндотоксинов (также называемых Сту-белками) [5]. Хемоорганогетеротроф, факультативный анаэроб. Подвижны, образуют термоустойчивую спору, располо-

женную субтерминально. В центре клетки располагается кристалл токсина. Кристаллы имеют бипирамидальную, кубическую или округлую форму и расположены в спорангии на противоположном по отношению к споре конце клетки [3].

Предложено различать Bt по серовариантам, биовариантам, фаговариантам, патовариантам, т. е. по антигенным и биохимическим свойствам, чувствительности к фагам, и патогенности для насекомых соответственно. В настоящее время для идентификации Bt используют молекулярно-биологические методы, такие как полимеразная цепная реакция (ПЦР). Для биозащиты важно разделение на патоварианты, из которых наибольшее значение имеют три: A, B и C. Патовариант A включает подвиды Bt, патогенные для отрядов Lepidoptera, B – для Diptera, C – для Coleoptera.

K метаболитам Bt относят ферменты, антибиотики и токсины [2]. Среди этих токсичных продуктов выделяют 4 компонента:

α-экзотоксин, или фосфолипаза С, – продукт растущих клеток бактерий.
 Токсическое действие фермента связывают с индуцируемым им распадом незаменимых фосфолипидов в ткани насекомого, что приводит к гибели последнего.

- β-экзотоксин – накапливается в культуральной жидкости при росте клеток. Считают, что молекула β-токсина состоит из нуклеотида, связанного через рибозу и глюкозу с аллослизевой кислотой. Его действие, видимо, обусловлено ингибированием нуклеотидазы и ДНК-зависимой РНК-полимеразы, связанных с АТФ, что приводит к прекращению синтеза РНК. По сравнению с другими токсинами действует медленнее, в основном при переходе от одного цикла развития к другому. По наблюдениям, β-экзотоксин – мутаген, поражающий генетический аппарат особей.

- ү-экзотоксин – малоизученный компонент, неидентифицированный фер-

мент (или группа ферментов).

- δ-эндотоксин — параспоральный кристаллический эндотоксин. Образуется в процессе споруляции бактерии в противоположной от формирующейся споры части бактерии. На завершающей стадии спорообразования токсин приобретает форму 8-гранного кристалла. Кристаллы состоят из белка, аминокислотный состав которого близок для различных штаммов. Различие в восприимчивости некоторых видов насекомых к действию кристалла, по-видимому, связано с присутствием специальных кишечных протеаз, осуществляющих гидролиз кристаллов *in vivo*. Такими протеазами обладают не все насекомые, отсюда и избирательность действия δ-токсина. Чтобы насекомое погибло, кристаллы должны попасть в его организм. После поглощения кристаллов гусеницы перестают питаться. Первичным местом действия δ-токсина является средний отдел кишечника [4]. Белковые кристаллы эндотоксина образуются одновременно со спорами по одному, реже по два в каждой бактериальной клетке.

Основной вклад в развитие инфекционного процесса при заражении Bt вносит белковый кристаллический δ -эндотоксин. У разных подвидов бактерий кристаллы отличаются по форме и размерам. Так, у бактерий подвида kurstaki кристаллы бипирамидальной формы, israelensis — округлые, а tenebrionis — квадрат-

ные. Кристаллический эндотоксин слабоустойчив к действию температуры, нерастворим в воде и органических растворителях, однако легко растворяется до протоксина в слабощелочной среде [2].

В настоящее время описано более 60 подвидов *Вt*. Продуцируемые ими токсины различаются по специфичности энтомоцидного действия. Известны токсины, с высокой специфичностью убивающие отдельных представителей отрядов *Lepidoptera* (семейства Cry1 и Cry9), *Coleoptera* (семейство Cry3) и *Diptera* (семейства Cry4 и Cry11) на стадии личинки. Эндотоксины Cry2 обладают двойной специфичностью — для *Lepidoptera* и *Diptera*.

Большинство энтомоцидных белков имеют молекулярную массу 130-145 kDa (представители семейств Cry1, Cry4, Cry9 и др.). Попадая в кишечник насекомых, они подвергаются действию присутствующих там протеиназ, образуя устойчивые к дальнейшему протеолизу фрагменты 60-70 kDa — так называемые «истинные токсины». Для этих белков показана четко выраженная доменная структура. С-концевой район достаточно консервативен среди разных классов энтомоцидных белков. При протеолизе он легко деградирует путём отщепления небольших фрагментов с молекулярной массой 15-35 kDa, в свою очередь быстро подвергающихся дальнейшему гидролизу. N-концевой район (соответствующий «истинному токсину») относительно устойчив к протеолизу и гораздо более вариабелен у разных белков, нежели С-концевой район. Таким образом, исходные 130-145 kDa белки представляют собой протоксины, нуждающиеся в активации протеиназами кишечного сока насекомых.

Группа токсинов, к которой принадлежат представители семейств Cry2, Cry3, Cry10 и Cry11, включает в себя белки с молекулярной массой 60-70 kDa. По первичной структуре они напоминают N-концевые участки («истинные токсины») 130-145 kDa белков [5].

Механизм действия эндотоксинов Bacillus thuringiensis.

При попадании в кишечник насекомого белковый кристалл растворяется в щелочной среде кишечного сока (рН 9.5-10.5); растворенные протоксины активируются протеолитическими трипсино- и химотрипсиноподобными ферментами кишечника до «истинных токсинов» (рис.1).

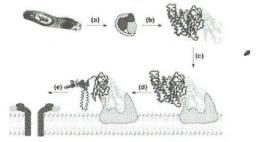


Рисунок 1. Механизм действия Сту-токсинов.

(а)- кристалл попадает в кишечник насекомого и растворяется; (b) – белок подвергается ферментативному гидролизу, образуется «истинный токсин»; (c) – II и III домены взаимодействуют с мембранным белком – рецептором; (d) – изменяется конформация I-го домена; (e) – несколько молекул токсина образуют в мембране пору или ионный канал.

Следующей стадией токсического воздействия является связывание «истинного токсина» с аффинным к нему белком (рецептором) на апикальной мембране эпителиальных клеток кишечника. Связывание токсина с рецептором является обратимым [5, 6, 7]. Далее происходит перестройка конформации молекулы токсина с последующим внедрением его в мембранный бислой. После этого связывание токсина с мембраной становится необратимым [5, 8]. Видимо, одновременно с внедрением в мембрану происходит ассоциация нескольких молекул токсина [5, 9]. Ансамбль трансмембранных участков ассоциированных молекул токсина образует пору или ионный канал. В первом случае (образование поры), происходит гибель клеток по механизму коллоидно-осмотического лизиса. Во втором (образование ионного канала) — вследствие резкого изменения ионного состава и рН внутриклеточной среды [5].

Другой гипотетический механизм образования поры в мембранах клеток — мишеней заключается в следующем. После взаимодействия петель второго домена с рецептором он меняет свою конформацию, затрагивая при этом пару спиралей первого домена, наиболее тесно взаимодействующих со вторым. В результате чего петли и шпильки, соединяющие α-спирали и расположенные ближе к мембране клетки-мишени входят в липидный бислой. Это, в свою очередь, вызывает некоторые повреждения мембраны, в результате которых его α-спирали пронзают мембрану и образуют пору [5].

Таким образом, из всего вышеописанного можно сделать вывод, что на данный момент существует множество подвидов Bt, отличающихся в той или иной степени вирулентности и эффективности против различных видов насекомых. Кроме того, на основе исследований зарубежных ученых следует, что большинство штаммов Bt содержит комбинации разных Cry-токсинов. Эти комбинации, как правило, проявляют синергический эффект. Синергизм может наблюдаться между кристаллами и спорами Bt. Хотя действие кристалла — ключевой момент в проявлении токсичности Bt, иногда необходимо присутствие и спор и кристаллов [2].

Литература:

- 1. Кандыбин Н.В. Бактериальные средства борьбы с грызунами и вредными насекомыми: теория и практика. М.: Агропромиздат, Москва: 1989. 5 с.
- 2. Штерншис М.В. и др. Биологическая защита растений. М.: КолосС, Москва: 2004. С. 118-143
- 3. Bacillus thuringiensis [Электронный ресурс] Режим доступа: https://ru.wikipedia.org. Дата доступа: 25.11.2015

4. Промышленная биотехнология // Биотехнология в сельском хозяйстве // Энтомопатогенные препараты на основе бактерий [Электронный ресурс] – Режим доступа: http://biotechnolog.ru. – Дата доступа: 25.11.2015

5. Статьи // Эндотоксины Bacillus thuringiensis [Электронный ресурс] – Ре-

жим доступа: http://rusbiotech.ru - Дата доступа: 25.11.2015

6. Hofmann C., P. Luthy, Binding and activity of Bacillus thuringiensis delta-endotoxin to invertebrate cells, 1986, Arch. Microbiology, 146: 7-11.

7. Hofmann C., P. Luthy, R. Hutter, V. Pliska, Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane membrane vesicles of the cabbage butterfly (Pieris brassicae), 1988, European Journal of Biochemistry, 173: 85-91.

8. Ihara H., E. Kuroda, A. Wadano, M. Himeno, Specific toxicity of d-endotoxins from Bacillus thuringiensis to Bombyx mori, 1993, Bioscience, Biotechnology, Bi-

ochemistry, 57: 200-204.

9. Masson L, Tabashnik BE, Liu YB, Brousseau R, Schwartz JL., Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel, Journal of Biological Chemistry 1999 Nov 5;274(45):31996-2000.

Агапова А.Е

Саратовский аграрный университет им. Н.И Вавилова, Россия

ЦЕЛИ МИКРОБИОЛОГИИ

Микробиология – наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами или микробами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами, населяющими нашу планету, животными, растениями и человеком. В область интересов микробиологии входит их систематика, морфология, физиология, биохимия, эволюция, роль в экосистемах, а также возможности практического использования.

Разделы микробиологии: <u>бактериология, микология, вирусология</u> и т. д. В зависимости от экологических особенностей микроорганизмов, условий их обитания, сложившихся отношений с окружающей средой, и в зависимости от практических потребностей человека, наука о микробах в своем развитии дифференцировалась на такие специальные дисциплины как общая микробиология, медициская, промышленная (или техническая), космическая, геологическая, сельскохозяйственная и ветеринарная микробиология.

У каждой отдельной отрасли микробиологии есть свои цели и методы, которые позволяют их достигать. В частности, медицинская микробиология ставит целью изучить максимально возможное количество патогенных и условно-патогенных микроорганизмов, их взаимодействие с организмом человека, а также возможные способы противодействия контактам с инфекциями и их лечения.

Совершенствование микробной диагностики, ликвидация очагов патогенной микрофлоры в биосфере, а также вакцинная профилактика дополняют методы медицинской микробиологии. При этом, вследствие недостатка финансирования и изза возможного риска нарушения процессов в биоценозах, пока нет возможности полностью избавиться от возбудителей инфекционных заболеваний. Однако уже на современном этапе санитария и гигиена, микробиология и иммунология позволяют значительно снижать количество такого рода патологий и их осложнений.

Промышленная микробиология ставит целью изучить свойства микробов, которые возможно применить на различных стадиях производства. В частности, наиболее перспективным направлениям таких научных разработок является применение бактерий для разложения промышленных отходов. В сельскохозяйственной микробиологии целью является потенциальное применение мельчайших организмов для повышения урожайности культур и возможной борьбы с вредителями и сорняками.

Ветеринарная микробиология, так же как и медицинская, изучает возбудителей заболеваний у животных. Методы выявления недугов, их диагностика и лечение у друзей наших меньших столь же актуальны, как и у людей. Водная микробиология занимается изучением состава микроорганизмов Мирового океана с целью систематизации знаний и потенциального их применения в промышленности или сельском хозяйстве.

Санитарная микробиология изучает пищевые продукты и выявляет в них микробов. Ее целью остается совершенствование методов, позволяющих проверять партии продукции пищевого назначения. Вторая задача — противодействие эпидемиям инфекционных заболеваний и оптимизация режимов нахождения подей в различных учреждениях, опасных с точки зрения эпидемии контактных инфекций.

Изучить определенный микроорганизм — это значит определить особенности его морфологии, оценить полноту биохимических реакций, на протекание которых он способен, распознать его РНК, отнести к определенному царству и назвать штамм. Такой объем работы требуется выполнить при открытии новой культуры.

Также медицинская микробиология имеет свои задачи: найти возбудителя заболевания в биологических жидкостях и в тканях, являющихся мишенями для вирулентных инфекций, выявить наличие патогена по серологическим маркерам, определить чувствительность человека к некоторым заболеваниям. Эти задачи решают микробиологические, микроскопические, биологические, серологические и аллергические методы.

Литература:

- 1. Работнова И. Л., Общая микробиология, 1966 г.
- 2. Воробьев А.А., Быков А.С., Атлас по медицинской микробиологии, вирусологии и иммунологии, 2003 г.
 - 3. Фробишер М., Основы микробиологии, 1965 г