



## Structure of copper(II) complexes grown from ionic liquids – 1-ethyl-3-methylimidazolium acetate or chloride

Nikita Yu. Serov, Valery G. Shtyrlin, Daut R. Islamov, Olga N. Kataeva and Dmitry B. Krivolapov

Acta Cryst. (2018). E74, 981-986



IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.





Received 6 February 2018 Accepted 9 June 2018

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary

**Keywords:** crystal structure; copper(II) complexes; ionic liquids; paddle-wheel.

CCDC references: 1585836; 1585835; 1585834; 1585833

Supporting information: this article has supporting information at journals.iucr.org/e





## Structure of copper(II) complexes grown from ionic liquids – 1-ethyl-3-methylimidazolium acetate or chloride

Nikita Yu. Serov,<sup>a</sup>\* Valery G. Shtyrlin,<sup>a</sup> Daut R. Islamov,<sup>a</sup> Olga N. Kataeva<sup>b</sup> and Dmitry B. Krivolapov<sup>b</sup>

<sup>a</sup>Department of Chemistry, Kazan State University, Kremlevskaya St. 18, 420008, Kazan, Russian Federation, and <sup>b</sup>Institute of Organic & Physical Chemistry, Arbuzov Str.8, 420088 Kazan, Russian Federation. \*Correspondence e-mail: serov.nikita@gmail.com

Crystals of four new copper(II) complexes have been grown from copper(II) acetate/chloride-1-ethyl-3-methylimidazolium acetate/chloride-water systems and characterized by X-ray analysis. The first complex, bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[chloridocuprate(II)], [Emim]<sub>2</sub>[Cu<sub>2</sub>(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>4</sub>- $Cl_2$  (1) (Emim is 1-ethyl-3-methylimidazolium,  $C_6H_{11}N_2$ ), contains  $[Cu_2(C_2H_3O_2)_4Cl_2]^{2-}$  coordination anions with a paddle-wheel structure and ionic liquid cations. Two of the synthesized complexes are one-dimensional polymers, namely *catena*-poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetatodicuprate(II)]- $\mu$ -chlorido] monohydrate], {[Emim][Cu<sub>2</sub>(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>4</sub>Cl]·H<sub>2</sub>O}<sub> $\mu$ </sub> (2), and catena-poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]- $\mu$ -acetato]], {[Emim][Cu<sub>2</sub>(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>5</sub>]}<sub>n</sub> (3). In these compounds, the  $Cu_2(C_2H_3O_2)_4$  units with a paddle-wheel structure are connected to each other through chloride (in 2) or acetate (in 3) anions to form parallel chains, between which cations of ionic liquid are situated. The last compound, bis(1-ethyl-3methylimidazolium) tetra-µ-acetato-bis[aquacopper(II)] tetra-µ-acetato-bis[acetatocuprate(II)] dihydrate,  $[\text{Emim}]_2[\text{Cu}_2(\text{C}_2\text{H}_3\text{O}_2)_4(\text{H}_2\text{O})_2][\text{Cu}_2(\text{C}_2\text{H}_3\text{O}_2)_6]$ .  $2H_2O$  (4), contains two different binuclear coordination units (neutral and anionic), connected through hydrogen bonds between water molecules and acetate ions.

## 1. Chemical context

Ionic liquids (ILs) with melting point below 373 K were discovered in 1888 (Gabriel & Weiner, 1888), but have been specific laboratory substances for a long time. However, over the past two decades ionic liquids have been of increased interest for researchers owing to the awareness of their unique properties, such as low dielectric permeability, low movability, wide range of liquid states, high ionic density, high ionic conductivity, good solubility for many substances, very low volatility among others (Buszewski et al., 2006; Hallett & Welton, 2011). It is important that the properties of ionic liquids can be varied not only by structural design, but also by mixing with other substances, especially with water (Kohno & Ohno, 2012). The use of ILs as unique solvents for the replacement of traditional solvents and the synthesis of new substances from ionic liquids are the goals of many investigations. The application of ILs has already allowed the synthesis of new polyoxometallates, transition metal clusters, main-group element clusters and nanomaterials; the most important catalytic organic syntheses have also been performed in ionic liquids under mild conditions (Sasaki et al., 2005; Ahmed & Ruck, 2011; Betz *et al.*, 2011; Jlassi *et al.*, 2014). Importantly, many oxidation reactions in organic syntheses are catalysed by copper(II) compounds, which is why the synthesis and structural investigation of copper(II) complexes grown from ILs are real scientific tasks. Of particular importance are polynuclear compounds as materials with interesting magnetic and electric properties.



Copper(II) complexes, containing the products of ionic liquid cation C—H bond activation, have previously been isolated from the 1-ethyl-3-methylimidazolium acetate (EmimAcO)–copper(II) acetate  $[Cu(AcO)_2]$ –water–air (O<sub>2</sub>) system in the 323–358 K temperature range (Shtyrlin *et al.*, 2014). In the present work, the new complexes **1-4** have been obtained from the same and similar (where the acetate ion is replaced by chloride) systems and their structures investigated by single crystal X-ray analysis.



**Figure 1** Compound **1** with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x, 1 - y, 2 - z.]

| Table 1                                     |    |
|---------------------------------------------|----|
| Metal-metal distances (Å) in complexes 1-4. |    |
| Compound                                    | Cu |

| Compound  | Cu-Cu distance            |
|-----------|---------------------------|
| Complex 1 | 2.7173 (7)                |
| Complex 2 | 2.657 (3) and 2.669 (3)   |
| Complex 3 | 2.6571 (6) and 2.6685 (6) |
| Complex 4 | 2.6469 (7) and 2.6592 (8) |

Compounds 2-4 each contain two crystallographically independent clusters.

#### 2. Structural commentary

Compound 1 consists of two 1-ethyl-3-methylimidazolium cations and a binuclear complex anion  $[Cu_2(AcO)_4Cl_2]^{2-}$  in which two copper(II) atoms are bonded through four bridging acetate ions. Two chloride ions are situated in the axial positions of both metal atoms, forming the axis of a paddle-wheel structure with the copper(II) ions (Fig. 1).

Compound 2 is a polymer; in the main chain chloride ions and the two copper(II) ions, connected by four acetate ions, alternate with each other (Fig. 2). Disordered 1-ethyl-3methylimidazolium cations and water molecules are present in the regions between the polyanionic chains. The interatomic  $Cu \cdots Cu$  distances in the clusters decrease (Table 1) with the transition from the binuclear compound 1 to the polymer 2.

Compound 3 is also a polymer, but differs from 2 in the bridging ligand between clusters and the absence of water molecules (Fig. 3). It is evident that the replacement of the chloride ion by acetate leads to a significant increase in the copper-copper distances between neighboring cluster units. However, the interatomic metal-metal distances in the clusters are practically unchanged (Table 1).

Compound **4** has the most interesting structure because it contains two different clusters (Fig. 4). One of them is anionic



#### Figure 2

Compound **2** with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 2 - x, 1 - y, -z; (ii) 2 - x, 1 - y, 1 - z; (iii) x, y, -1 + z; (iv) 1 - x, 1 - y, 1 - z.]



Figure 3

Compound **3** with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 2 - x, 2 - y, 2 - z; (ii) 1 - x, 2 - y, 1 - z.]

and comprises two copper(II) ions and six acetate ions, four of which act as bridges between metal atoms. The other cluster is not charged and differs from the first by the non-bridging ligands (in this case they are water molecules). Furthermore, compound 4 contains 1-ethyl-3-methylimidazolium ions and water molecules. The metal-metal distances in the clusters in 4 are somewhat shorter than in the polymeric compounds 2 and 3 (Table 1).

#### 3. Supramolecular features

In the crystal of **1**, weak interactions are found between the  $[Cu_2(AcO)_4Cl_2]^{2-}$  anion and the surrounding six 1-ethyl-3methylimidazolium cations, namely C1-H1...O2, C2-H2...O5 and C3-H3...O3 contacts (see Table 2 for details). The last contact is relatively short and probably the strongest of them. Two different orientations of the paddle-wheels units form herringbone motif (Fig. 5).

Polymeric chains in 2 propagate along the *c*-axis direction (Fig. 6). The water molecule forms hydrogen bonds with oxygen atoms of the acetate residues of two neighbouring clusters in one chain (see Table 3). Those interactions decrease



Figure 4

Compound 4 with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 2 - x, 1 - y, -z; (ii) -x, -y, 1 - z.]

| Table 2                           |      |
|-----------------------------------|------|
| Hydrogen-bond geometry (Å, °) for | : 1. |

| $D - H \cdots A$         | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|--------------------------|----------------|-------------------------|--------------|------------------|
| $C8-H8C\cdots Cl1^{i}$   | 0.98           | 2.83                    | 3,550 (3)    | 131              |
| $C4-H4B\cdots Cl1$       | 0.98           | 2.95                    | 3.731 (3)    | 137              |
| $C4-H4A\cdots Cl1^{ii}$  | 0.98           | 2.84                    | 3.651 (3)    | 141              |
| $C5-H5A\cdots Cl1^{iii}$ | 0.99           | 2.91                    | 3.808 (3)    | 151              |
| $C2-H2\cdots O5^{iii}$   | 0.95           | 2.57                    | 3.295 (3)    | 134              |
| C3−H3···O3 <sup>ii</sup> | 0.95           | 2.20                    | 3.115 (3)    | 160              |
| $C1-H1\cdots O2$         | 0.95           | 2.55                    | 3.182 (3)    | 124              |
| $C1-H1\cdots Cl1$        | 0.95           | 2.95                    | 3.619 (3)    | 128              |
|                          |                |                         |              |                  |

Symmetry codes: (i)  $-x - \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (ii)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (iii) x + 1, y, z.

the Cu–Cl–Cu angle from  $180^{\circ}$  to  $169.5^{\circ}$  on the side of water molecule and distort the linearity of the polymeric chains.

In 3, the polymeric chains are not linear because neighbouring  $Cu_2(AcO)_4$  fragments are connected by acetate ions (Fig. 7). The C-H···O interactions (see Table 4) between 1-ethyl-3-methylimidazolium cations and the anionic chains additionally stabilize the polymeric structure of 3.

The crystal structure of **4** contains ordered layers (Fig. 8). Chains are formed by the alternating binuclear clusters,



Figure 5 The packing of compound **1**, viewed along the *a* and *b* axes.

## research communications

Table 3Hydrogen-bond geometry (Å, °) for 2.

| $D - H \cdots A$                       | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $O9B - H2WB \cdots O4$                 | 0.91 (2) | 2.01 (2)                | 2.91 (2)     | 172 (18)                             |
| $O9A - H1WA \cdots O6^{i}$             | 0.90(2)  | 2.3 (2)                 | 2.94 (3)     | 131 (23)                             |
| $O9A - H2WA \cdots O4$                 | 0.90(2)  | 2.19 (5)                | 3.08 (2)     | 172 (18)                             |
| $C14B - H14D \cdots O6^{ii}$           | 0.98     | 2.65                    | 3.49 (2)     | 144                                  |
| $C12B - H12B \cdots O9B^{iii}$         | 0.95     | 2.27                    | 3.16 (3)     | 155                                  |
| $C10B-H10D\cdots Cl1^{iv}$             | 0.98     | 2.85                    | 3.78 (5)     | 158                                  |
| $C9B - H9B \cdot \cdot \cdot Cl1^{iv}$ | 0.95     | 2.84                    | 3.67 (2)     | 147                                  |
| $C14A - H14B \cdots Cl1$               | 0.98     | 2.82                    | 3.72 (3)     | 154                                  |
| $C12A - H12A \cdots O9A^{iii}$         | 0.95     | 2.19                    | 3.13 (3)     | 168                                  |
| $C11A - H11A \cdots Cl1^{v}$           | 0.95     | 2.88                    | 3.77 (3)     | 155                                  |
| $C10A - H10B \cdots O9A^{vi}$          | 0.98     | 2.26                    | 2.82 (4)     | 115                                  |
| $C10A - H10A \cdots O3^{iv}$           | 0.98     | 2.56                    | 3.50 (5)     | 161                                  |
| $C9A - H9A \cdots O2^{vii}$            | 0.95     | 2.48                    | 3.11 (3)     | 124                                  |
| $C9A - H9A \cdots Cl1^{iv}$            | 0.95     | 2.65                    | 3.51 (2)     | 151                                  |
| $C2-H2C\cdots O9B^{vii}$               | 0.98     | 2.52                    | 3.48 (3)     | 165                                  |

bonded by  $O-H\cdots O$  hydrogen bonds between the coordinated water molecules and acetate ions as ligands (O5– H5 $B\cdots$ O11, see Table 5). The other water molecule, which is not coordinated to copper(II), also plays an important role in crystal lattice formation – this water molecule connects two neighbouring chains through the O5–H5 $\cdots$ O12, O12–



Figure 6

The packing of compound 2, viewed along the a and c axes.



The packing of compound 3, viewed along the b axis.

| Table 4                           |    |
|-----------------------------------|----|
| Hydrogen-bond geometry (Å, °) for | 3. |

| $D - \mathbf{H} \cdots A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|---------------------------|------|-------------------------|--------------|-----------------------------|
| $C6-H6A\cdots O7$         | 0.98 | 2.50                    | 3.320 (4)    | 141                         |
| $C14-H14A\cdots O5^{i}$   | 0.99 | 2.47                    | 3.329 (3)    | 145                         |
| $C13-H13\cdots O8^{ii}$   | 0.95 | 2.38                    | 3.229 (4)    | 148                         |
| $C8-H8C\cdots O7^{iii}$   | 0.98 | 2.55                    | 3.522 (4)    | 170                         |
| $C11-H11\cdots O1^{iv}$   | 0.95 | 2.40                    | 3.317 (3)    | 162                         |
| C11-H11···O5              | 0.95 | 2.55                    | 3.192 (3)    | 125                         |
|                           |      |                         |              |                             |

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 2, -y + 2, -z + 1; (iv) -x + 2, -y + 2, -z + 2.

Table 5Hydrogen-bond geometry (Å, °) for 4.

| $D - H \cdot \cdot \cdot A$ | D-H       | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------|-----------|-------------------------|--------------|-----------------------------|
| $O12-H1O\cdots O7^{i}$      | 0.91 (3)  | 2.21 (3)                | 3.034 (4)    | 150 (4)                     |
| O12−H2O···O10               | 0.87 (18) | 2.09 (3)                | 2.910(4)     | 158 (4)                     |
| $O5-H5\cdots O12^{ii}$      | 0.84      | 1.95                    | 2.786 (5)    | 171                         |
| O5−H5 <i>B</i> ···O11       | 0.88(3)   | 1.84 (3)                | 2.696 (3)    | 165 (4)                     |
| $C2-H2A\cdots O11^{iii}$    | 0.98      | 2.56                    | 3.390 (4)    | 142                         |
| $C2-H2C\cdots O1^{iii}$     | 0.98      | 2.39                    | 3.370 (4)    | 174                         |
| C10−H10B····O6              | 0.98      | 2.46                    | 3.229 (4)    | 135                         |
| $C11 - H11 \cdots O10^{iv}$ | 0.95      | 2.43                    | 3.364 (4)    | 166                         |
| $C11 - H11 \cdots O11^{iv}$ | 0.95      | 2.59                    | 3.291 (4)    | 131                         |
| C12−H12···O1                | 0.95      | 2.31                    | 3.234 (5)    | 163                         |
| $C14 - H14B \cdots O7^{v}$  | 0.99      | 2.57                    | 3.522 (7)    | 162                         |
| $C16-H16C\cdots O11^{iv}$   | 0.98      | 2.54                    | 3.232 (6)    | 127                         |
| C16−H16 <i>B</i> ···O3      | 0.98      | 2.64                    | 3.598 (5)    | 162                         |

Symmetry codes: (i) -x, -y, -z + 1; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z; (iv) x, y + 1, z; (v) -x, -y + 1, -z + 1.

 $H10\cdots07$  and  $O12-H20\cdots010$  hydrogen bonds. The C-H $\cdots$ O interactions (see Table 5) between the 1-ethyl-3methylimidazolium cations and acetate residues are also relevant for binding the polymeric chains.

#### 4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.58; Groom *et al.*, 2016) revealed 258 structures with the  $Cu_2(AcO)_4$  fragment. In many of these structures such clusters are included several times. The distribution of  $Cu \cdots Cu$  distances in such fragments is shown in Fig. 9. From a comparison of Fig. 9 and Table 1, it can be seen that the  $Cu \cdots Cu$  distances in the title compounds are longer than the



**Figure 8** The packing of compound **4**, viewed along the *b* axis.

Table 6Experimental details.

|                                                                                | 1                                          | 2                                                                                | 3                                          | 4                                                                                                                   |
|--------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Crystal data                                                                   |                                            |                                                                                  |                                            |                                                                                                                     |
| Chemical formula                                                               | $(C_6H_{11}N_2)_2[Cu_2(C_2H_3O_2)_4Cl_2]$  | $\begin{array}{c} (C_6H_{11}N_2)[Cu_2(C_2H_3O_2)_4Cl] \cdot \\ H_2O \end{array}$ | $(C_6H_{11}N_2)[Cu_2(C_2H_3O_2)_5]$        | $\begin{array}{c} (C_6H_{11}N_2)_2[Cu_2(C_2H_3O_2)_6] \\ [Cu_2(C_2H_3O_2)_4(H_2O)_2] \\ \cdot \\ 2H_2O \end{array}$ |
| M <sub>r</sub>                                                                 | 656.49                                     | 527.89                                                                           | 533.47                                     | 1139.00                                                                                                             |
| Crystal system, space group                                                    | Monoclinic, $P2_1/n$                       | Monoclinic, $P2_1/c$                                                             | Triclinic, $P\overline{1}$                 | Triclinic, $P\overline{1}$                                                                                          |
| Temperature (K)                                                                | 150                                        | 198                                                                              | 198                                        | 198                                                                                                                 |
| a, b, c (Å)                                                                    | 8.2264 (14), 12.956 (2),<br>13.173 (2)     | 8.438 (4), 16.315 (7), 15.131 (7)                                                | 8.0542 (9), 8.1633 (9),<br>16.7195 (19)    | 7.9526 (5), 8.0951 (5),<br>18.8886 (11)                                                                             |
| $\alpha, \beta, \gamma$ (°)                                                    | 90, 96.471 (3), 90                         | 90, 96.53 (1), 90                                                                | 98.126 (3), 94.745 (3),<br>92.964 (3)      | 79.1770 (16), 78.9500 (16),<br>89.9320 (15)                                                                         |
| $V(Å^3)$                                                                       | 1395.0 (4)                                 | 2069.7 (16)                                                                      | 1082.3 (2)                                 | 1171.46 (12)                                                                                                        |
| Z                                                                              | 2                                          | 4                                                                                | 2                                          | 1                                                                                                                   |
| Radiation type                                                                 | Μο Κα                                      | Μο Κα                                                                            | Μο Κα                                      | Μο Κα                                                                                                               |
| $\mu \ (\mathrm{mm}^{-1})$                                                     | 1.76                                       | 2.23                                                                             | 2.02                                       | 1.88                                                                                                                |
| Crystal size (mm)                                                              | $0.30 \times 0.20 \times 0.20$             | $0.11 \times 0.08 \times 0.07$                                                   | $0.30 \times 0.20 \times 0.20$             | $0.30 \times 0.27 \times 0.22$                                                                                      |
| Data collection                                                                |                                            |                                                                                  |                                            |                                                                                                                     |
| Diffractometer                                                                 | Bruker Kappa APEX DUO<br>CCD               | Bruker SMART APEX II<br>CCD                                                      | Bruker Kappa APEX DUO<br>CCD               | Bruker Kappa APEX DUO<br>CCD                                                                                        |
| Absorption correction                                                          | Multi-scan ( <i>SADABS</i> ; Bruker, 2015) | Multi-scan ( <i>SADABS</i> ; Bruker, 2015)                                       | Multi-scan ( <i>SADABS</i> ; Bruker, 2015) | Multi-scan ( <i>SADABS</i> ; Bruker, 2015)                                                                          |
| $T_{\min}, T_{\max}$                                                           | 0.620, 0.719                               | 0.795, 0.858                                                                     | 0.583, 0.688                               | 0.605, 0.685                                                                                                        |
| No. of measured, independent<br>and observed $[I > 2\sigma(I)]$<br>reflections | 9428, 4275, 2956                           | 35161, 4229, 2504                                                                | 11652, 4343, 3662                          | 20914, 4775, 3593                                                                                                   |
| R <sub>int</sub>                                                               | 0.039                                      | 0.105                                                                            | 0.025                                      | 0.037                                                                                                               |
| $(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$                             | 0.717                                      | 0.625                                                                            | 0.625                                      | 0.625                                                                                                               |
| Refinement                                                                     |                                            |                                                                                  |                                            |                                                                                                                     |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                            | 0.041, 0.094, 1.02                         | 0.082, 0.265, 1.08                                                               | 0.029, 0.107, 0.81                         | 0.034, 0.101, 1.42                                                                                                  |
| No. of reflections                                                             | 4275                                       | 4229                                                                             | 4343                                       | 4775                                                                                                                |
| No. of parameters                                                              | 167                                        | 319                                                                              | 278                                        | 307                                                                                                                 |
| No. of restraints                                                              | 0                                          | 93                                                                               | 0                                          | 72                                                                                                                  |
| H-atom treatment                                                               | H-atom parameters constrained              | H atoms treated by a mixture<br>of independent and<br>constrained refinement     | H-atom parameters<br>constrained           | H atoms treated by a mixture<br>of independent and<br>constrained refinement                                        |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$   | 0.56, -0.56                                | 1.70, -0.94                                                                      | 0.38, -0.46                                | 0.40, -0.57                                                                                                         |

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXS97 (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

mean value of other structures deposited in the CSD. It should be mentioned that in **1** the Cu $\cdot\cdot\cdot$ Cu distance is very close to the maximum distance shown in Fig. 9. This long Cu $\cdot\cdot\cdot$ Cu distance can be explained by the strong interaction between the copper(II) atoms and the chloride ions.



Figure 9

Histogram of the distribution of Cu $\cdots$ Cu distances in the Cu<sub>2</sub>(AcO)<sub>4</sub> fragment based on a fragment search in the CSD.

### 5. Synthesis and crystallization

#### Synthesis of 1:

A mixture of 1-ethyl-3-methylimidazolium acetate (0.70 g, 4.1 mmol), copper(II) chloride dihydrate (0.14 g, 0.82 mmol) and water (0.037 g, 2.05 mmol) was stirred in a closed vial at 333 K for 40 h. After several weeks, green crystals (yield 51%) were formed from the solution.

#### Synthesis of 2:

A mixture of 1-ethyl-3-methylimidazolium chloride (0.60 g, 4.1 mmol), copper(II) acetate hydrate (0.40 g, 2 mmol) and water (0.60 g, 33 mmol) was stirred in a closed vial at 343 K for 20 h. After several weeks, a green precipitate had formed from the solution. This precipitate consisted of crystals of compounds 1 and 2 with 1 predominant (and hence the yield of 2 was not determined).

#### Synthesis of 3:

A mixture of 1-ethyl-3-methylimidazolium acetate (0.70 g, 4.1 mmol) and copper(II) acetate hydrate (0.16 g, 0.80 mmol) was stirred in a closed vial at 323 K for 20 h. After several weeks, blue crystals (yield 41%) were formed from the solution.

#### Synthesis of 4:

A mixture of 1-ethyl-3-methylimidazolium acetate (1.0 g, 5.9 mmol), copper(II) acetate hydrate (0.078 g, 0.39 mmol) and copper(II) chloride dihydrate (0.133 g, 0.78 mmol) was stirred in a closed vial at 323 K for 30 h. After several weeks, blue crystals were formed from the solution. The yield was not determined because the precipitate additionally contained small green crystals of complex **1**. In the absence of copper(II) chloride, compound **3** was grown from the solution.

### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. In **2**, the Emim cations and water molecules are disordered over two positions with an occupancy ratio of 0.513 (12):0.487 (12) and were refined with constraints and restraints. In **4**, the water molecules refined using restraints. Water H atoms were located in difference-Fourier maps and refined using constraints with  $U_{iso}(H) =$  $1.2U_{eq}(O)$ . C-bound H atoms were positioned geometrically and refined using a riding model with C-H = 0.95 (aromatic), 0.98 (methyl or 0.99 Å (methylene bridges) with  $U_{iso}(H) =$  $1.2U_{eq}(C)$  or  $1.5U_{eq}(Cmethyl)$ .

### **Funding information**

Funding for this research was provided by: RFBR (grant No. 16-33-00641).

#### References

- Ahmed, E. & Ruck, M. (2011). Dalton Trans. 40, 9347-9357.
- Betz, D., Altmann, P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2011). Coord. Chem. Rev. 255, 1518–1540.
- Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buszewski, B., Kowalska, S. & Stepnowski, P. (2006). J. Sep. Sci. 29, 1116–1125.
- Gabriel, S. & Weiner, J. (1888). Ber. Dtsch. Chem. Ges. 21, 2669-2679.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hallett, J. P. & Welton, T. (2011). Chem. Rev. 111, 3508-3576.
- Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). *Eur. J. Inorg. Chem.* pp. 4541–4550.
- Kohno, Y. & Ohno, H. (2012). Chem. Commun. 48, 7119-7130.
- Sasaki, T., Zhong, C., Tada, M. & Iwasawa, Y. (2005). Chem. Commun. pp. 2506–2508.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shtyrlin, V. G., Serov, N. Y., Islamov, D. R., Konkin, A. L., Bukharov, M. S., Gnezdilov, O. I., Krivolapov, D. B., Kataeva, O. N., Nazmutdinova, G. A. & Wendler, F. (2014). *Dalton Trans.* 43, 799–805.

## Acta Cryst. (2018). E74, 981-986 [https://doi.org/10.1107/S2056989018008538]

## Structure of copper(II) complexes grown from ionic liquids – 1-ethyl-3-methylimidazolium acetate or chloride

## Nikita Yu. Serov, Valery G. Shtyrlin, Daut R. Islamov, Olga N. Kataeva and Dmitry B. Krivolapov

## **Computing details**

For all structures, data collection: *APEX2* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXL2014* (Sheldrick, 2015); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015).

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[chloridocuprate(II)] (1)

| Crystal data                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(C_{6}H_{11}N_{2})_{2}[Cu_{2}(C_{2}H_{3}O_{2})_{4}Cl_{2}]$ $M_{r} = 656.49$ Monoclinic, $P2_{1}/n$ $a = 8.2264 (14) Å$ $b = 12.956 (2) Å$ $c = 13.173 (2) Å$ $\beta = 96.471 (3)^{\circ}$ $V = 1395.0 (4) Å^{3}$ $Z = 2$                              | F(000) = 676<br>$D_x = 1.563 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 1837 reflections<br>$\theta = 3.0-27.3^{\circ}$<br>$\mu = 1.76 \text{ mm}^{-1}$<br>T = 150  K<br>Prism, green<br>$0.30 \times 0.20 \times 0.20 \text{ mm}$               |
| Data collection                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                            |
| Bruker Kappa APEX DUO CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>(SADABS; Bruker, 2015)<br>$T_{min} = 0.620, T_{max} = 0.719$ | 9428 measured reflections<br>4275 independent reflections<br>2956 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.039$<br>$\theta_{max} = 30.6^{\circ}, \theta_{min} = 2.2^{\circ}$<br>$h = -11 \rightarrow 11$<br>$k = -10 \rightarrow 18$<br>$l = -18 \rightarrow 18$                                  |
| Refinement<br>Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.041$<br>$wR(F^2) = 0.094$<br>S = 1.02<br>4275 reflections<br>167 parameters<br>0 restraints                                                              | Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.041P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.56$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.56$ e Å <sup>-3</sup> |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x           | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|-------------|--------------|--------------|-----------------------------|
| Cu1  | 0.01642 (4) | 0.45929 (2)  | 0.90665 (2)  | 0.01685 (9)                 |
| C11  | 0.04928 (8) | 0.39420 (5)  | 0.73731 (4)  | 0.02395 (15)                |
| C1   | 0.4413 (3)  | 0.5224 (2)   | 0.74431 (19) | 0.0231 (6)                  |
| H1   | 0.3838      | 0.4770       | 0.7842       | 0.028*                      |
| C3   | 0.4986 (3)  | 0.6537 (2)   | 0.64963 (19) | 0.0225 (5)                  |
| H3   | 0.4899      | 0.7163       | 0.6119       | 0.027*                      |
| C2   | 0.5964 (3)  | 0.5110 (2)   | 0.72166 (18) | 0.0213 (5)                  |
| H2   | 0.6691      | 0.4563       | 0.7432       | 0.026*                      |
| C5   | 0.7800 (3)  | 0.6095 (2)   | 0.6145 (2)   | 0.0288 (6)                  |
| H5A  | 0.8726      | 0.5765       | 0.6570       | 0.035*                      |
| H5B  | 0.8027      | 0.6844       | 0.6115       | 0.035*                      |
| C4   | 0.2199 (3)  | 0.6570 (2)   | 0.7028 (2)   | 0.0371 (7)                  |
| H4A  | 0.2306      | 0.7253       | 0.7349       | 0.056*                      |
| H4B  | 0.1562      | 0.6119       | 0.7431       | 0.056*                      |
| H4C  | 0.1639      | 0.6637       | 0.6334       | 0.056*                      |
| C6   | 0.7667 (5)  | 0.5654 (3)   | 0.5090 (3)   | 0.0567 (11)                 |
| H6A  | 0.7434      | 0.4914       | 0.5118       | 0.085*                      |
| H6B  | 0.8701      | 0.5760       | 0.4800       | 0.085*                      |
| H6C  | 0.6780      | 0.6000       | 0.4661       | 0.085*                      |
| N2   | 0.6290 (3)  | 0.59310 (17) | 0.66186 (15) | 0.0197 (4)                  |
| N1   | 0.3825 (3)  | 0.61269 (18) | 0.69846 (16) | 0.0229 (5)                  |
| C7   | -0.1284 (3) | 0.6607 (2)   | 0.91709 (19) | 0.0202 (5)                  |
| C8   | -0.1941 (4) | 0.7589 (2)   | 0.8675 (2)   | 0.0356 (7)                  |
| H8A  | -0.1342     | 0.7751       | 0.8093       | 0.053*                      |
| H8B  | -0.1806     | 0.8154       | 0.9172       | 0.053*                      |
| H8C  | -0.3105     | 0.7503       | 0.8436       | 0.053*                      |
| O2   | 0.2268 (2)  | 0.53434 (15) | 0.93042 (13) | 0.0275 (4)                  |
| 01   | -0.0893 (2) | 0.58958 (14) | 0.86038 (13) | 0.0247 (4)                  |
| 05   | -0.1994 (2) | 0.39387 (15) | 0.91833 (13) | 0.0259 (4)                  |
| O3   | 0.1164 (2)  | 0.34246 (14) | 0.98635 (13) | 0.0269 (4)                  |
| C9   | 0.2752 (3)  | 0.5904 (2)   | 1.00540 (19) | 0.0198 (5)                  |
| C10  | 0.4370 (3)  | 0.6439 (2)   | 1.0025 (2)   | 0.0310 (6)                  |
| H10A | 0.5123      | 0.5981       | 0.9714       | 0.047*                      |
| H10B | 0.4833      | 0.6613       | 1.0722       | 0.047*                      |
| H10C | 0.4208      | 0.7073       | 0.9620       | 0.047*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|---------------|--------------|--------------|
| Cu1 | 0.01653 (14) | 0.01755 (17) | 0.01630 (13) | -0.00107 (13) | 0.00116 (10) | 0.00019 (12) |
| Cl1 | 0.0271 (3)   | 0.0263 (4)   | 0.0192 (3)   | -0.0040 (3)   | 0.0056 (2)   | -0.0033 (2)  |
| C1  | 0.0252 (13)  | 0.0205 (14)  | 0.0240 (12)  | 0.0004 (11)   | 0.0042 (10)  | 0.0053 (10)  |
| C3  | 0.0234 (13)  | 0.0223 (14)  | 0.0214 (12)  | -0.0019 (11)  | 0.0011 (10)  | 0.0031 (10)  |
| C2  | 0.0263 (13)  | 0.0184 (13)  | 0.0192 (11)  | 0.0010 (11)   | 0.0019 (10)  | 0.0007 (10)  |
| C5  | 0.0235 (13)  | 0.0382 (18)  | 0.0261 (13)  | 0.0003 (13)   | 0.0091 (10)  | 0.0058 (12)  |
| C4  | 0.0233 (14)  | 0.0389 (19)  | 0.0506 (18)  | 0.0063 (14)   | 0.0103 (13)  | 0.0048 (15)  |
| C6  | 0.059 (2)    | 0.078 (3)    | 0.0387 (18)  | -0.010 (2)    | 0.0296 (17)  | -0.0144 (19) |
| N2  | 0.0214 (10)  | 0.0201 (12)  | 0.0179 (9)   | -0.0024 (9)   | 0.0029 (8)   | 0.0016 (8)   |
| N1  | 0.0218 (11)  | 0.0228 (12)  | 0.0245 (10)  | 0.0015 (10)   | 0.0045 (8)   | 0.0037 (9)   |
| C7  | 0.0172 (11)  | 0.0171 (13)  | 0.0252 (12)  | -0.0012 (11)  | -0.0022 (9)  | 0.0018 (10)  |
| C8  | 0.0506 (19)  | 0.0222 (16)  | 0.0320 (15)  | 0.0109 (14)   | -0.0052 (13) | 0.0056 (12)  |
| O2  | 0.0181 (9)   | 0.0361 (12)  | 0.0288 (9)   | -0.0099 (9)   | 0.0053 (7)   | -0.0080 (9)  |
| O1  | 0.0305 (10)  | 0.0208 (10)  | 0.0225 (9)   | 0.0058 (9)    | 0.0018 (7)   | 0.0022 (8)   |
| 05  | 0.0225 (9)   | 0.0322 (12)  | 0.0235 (9)   | -0.0080 (9)   | 0.0041 (7)   | -0.0014 (8)  |
| 03  | 0.0359 (11)  | 0.0205 (10)  | 0.0230 (9)   | 0.0067 (9)    | -0.0030 (8)  | -0.0012 (8)  |
| C9  | 0.0142 (11)  | 0.0172 (13)  | 0.0276 (12)  | 0.0010 (10)   | 0.0006 (9)   | 0.0043 (11)  |
| C10 | 0.0185 (13)  | 0.0301 (16)  | 0.0458 (16)  | -0.0052 (12)  | 0.0097 (11)  | -0.0057 (14) |
|     |              |              |              |               |              |              |

Atomic displacement parameters  $(\mathring{A}^2)$ 

## Geometric parameters (Å, °)

| Cu1—O1               | 1.9642 (18) | C4—H4B             | 0.9800    |
|----------------------|-------------|--------------------|-----------|
| Cu1—O3               | 1.9685 (18) | C4—H4C             | 0.9800    |
| Cu1—O2               | 1.9788 (18) | C6—H6A             | 0.9800    |
| Cu1—O5               | 1.9887 (18) | С6—Н6В             | 0.9800    |
| Cu1—Cl1              | 2.4282 (7)  | С6—Н6С             | 0.9800    |
| Cu1—Cu1 <sup>i</sup> | 2.7173 (7)  | C7—O1              | 1.251 (3) |
| C1—C2                | 1.351 (4)   | C7—O3 <sup>i</sup> | 1.265 (3) |
| C1—N1                | 1.379 (3)   | C7—C8              | 1.503 (4) |
| C1—H1                | 0.9500      | C8—H8A             | 0.9800    |
| C3—N1                | 1.322 (3)   | C8—H8B             | 0.9800    |
| C3—N2                | 1.324 (3)   | C8—H8C             | 0.9800    |
| С3—Н3                | 0.9500      | O2—C9              | 1.254 (3) |
| C2—N2                | 1.368 (3)   | O5—C9 <sup>i</sup> | 1.258 (3) |
| С2—Н2                | 0.9500      | O3—C7 <sup>i</sup> | 1.265 (3) |
| C5—N2                | 1.467 (3)   | C9—O5 <sup>i</sup> | 1.258 (3) |
| C5—C6                | 1.494 (4)   | C9—C10             | 1.505 (3) |
| С5—Н5А               | 0.9900      | C10—H10A           | 0.9800    |
| С5—Н5В               | 0.9900      | C10—H10B           | 0.9800    |
| C4—N1                | 1.463 (3)   | C10—H10C           | 0.9800    |
| C4—H4A               | 0.9800      |                    |           |
|                      |             |                    |           |
| O1—Cu1—O3            | 165.96 (7)  | H4B—C4—H4C         | 109.5     |
| O1—Cu1—O2            | 88.59 (8)   | С5—С6—Н6А          | 109.5     |
| O3—Cu1—O2            | 89.32 (8)   | С5—С6—Н6В          | 109.5     |
|                      |             |                    |           |

## Acta Cryst. (2018). E74, 981-986

| O1—Cu1—O5                | 91.28 (8)  | H6A—C6—H6B              | 109.5       |
|--------------------------|------------|-------------------------|-------------|
| O3—Cu1—O5                | 87.37 (8)  | С5—С6—Н6С               | 109.5       |
| O2—Cu1—O5                | 165.81 (7) | H6A—C6—H6C              | 109.5       |
| O1—Cu1—Cl1               | 96.00 (5)  | H6B—C6—H6C              | 109.5       |
| O3—Cu1—Cl1               | 98.04 (6)  | C3—N2—C2                | 108.8 (2)   |
| O2—Cu1—Cl1               | 97.48 (5)  | C3—N2—C5                | 125.1 (2)   |
| O5—Cu1—Cl1               | 96.65 (5)  | C2—N2—C5                | 126.0 (2)   |
| O1—Cu1—Cu1 <sup>i</sup>  | 82.04 (5)  | C3—N1—C1                | 108.5 (2)   |
| O3—Cu1—Cu1 <sup>i</sup>  | 83.92 (5)  | C3—N1—C4                | 125.1 (2)   |
| O2—Cu1—Cu1 <sup>i</sup>  | 80.81 (5)  | C1—N1—C4                | 126.4 (2)   |
| O5—Cu1—Cu1 <sup>i</sup>  | 85.11 (5)  | O1C7O3 <sup>i</sup>     | 125.4 (2)   |
| Cl1—Cu1—Cu1 <sup>i</sup> | 177.41 (3) | O1—C7—C8                | 117.9 (2)   |
| C2-C1-N1                 | 106.8 (2)  | O3 <sup>i</sup> —C7—C8  | 116.7 (2)   |
| C2-C1-H1                 | 126.6      | С7—С8—Н8А               | 109.5       |
| N1—C1—H1                 | 126.6      | С7—С8—Н8В               | 109.5       |
| N1—C3—N2                 | 108.8 (2)  | H8A—C8—H8B              | 109.5       |
| N1—C3—H3                 | 125.6      | С7—С8—Н8С               | 109.5       |
| N2—C3—H3                 | 125.6      | H8A—C8—H8C              | 109.5       |
| C1—C2—N2                 | 107.1 (2)  | H8B—C8—H8C              | 109.5       |
| C1—C2—H2                 | 126.5      | C9—O2—Cu1               | 127.14 (16) |
| N2—C2—H2                 | 126.5      | C7—O1—Cu1               | 125.64 (16) |
| N2—C5—C6                 | 111.3 (2)  | C9 <sup>i</sup> —O5—Cu1 | 121.34 (17) |
| N2—C5—H5A                | 109.4      | C7 <sup>i</sup> —O3—Cu1 | 122.82 (17) |
| С6—С5—Н5А                | 109.4      | O2—C9—O5 <sup>i</sup>   | 125.5 (2)   |
| N2—C5—H5B                | 109.4      | O2—C9—C10               | 116.8 (2)   |
| С6—С5—Н5В                | 109.4      | O5 <sup>i</sup> —C9—C10 | 117.7 (2)   |
| H5A—C5—H5B               | 108.0      | C9—C10—H10A             | 109.5       |
| N1—C4—H4A                | 109.5      | C9—C10—H10B             | 109.5       |
| N1—C4—H4B                | 109.5      | H10A—C10—H10B           | 109.5       |
| H4A—C4—H4B               | 109.5      | C9—C10—H10C             | 109.5       |
| N1—C4—H4C                | 109.5      | H10A—C10—H10C           | 109.5       |
| H4A—C4—H4C               | 109.5      | H10B—C10—H10C           | 109.5       |
|                          |            |                         |             |

Symmetry code: (i) -x, -y+1, -z+2.

## Hydrogen-bond geometry (Å, °)

| D—H···A                     | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------------|------|-------|-----------|-------------------------|
| C8—H8C···Cl1 <sup>ii</sup>  | 0.98 | 2.83  | 3.550 (3) | 131                     |
| C4—H4 <i>B</i> ···Cl1       | 0.98 | 2.95  | 3.731 (3) | 137                     |
| C4—H4A···Cl1 <sup>iii</sup> | 0.98 | 2.84  | 3.651 (3) | 141                     |
| C5—H5A···Cl1 <sup>iv</sup>  | 0.99 | 2.91  | 3.808 (3) | 151                     |
| C2—H2···O5 <sup>iv</sup>    | 0.95 | 2.57  | 3.295 (3) | 134                     |
| С3—Н3…ОЗ <sup>ііі</sup>     | 0.95 | 2.20  | 3.115 (3) | 160                     |
| C1—H1…O2                    | 0.95 | 2.55  | 3.182 (3) | 124                     |
| C1—H1···Cl1                 | 0.95 | 2.95  | 3.619 (3) | 128                     |

Symmetry codes: (ii) -*x*-1/2, *y*+1/2, -*z*+3/2; (iii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iv) *x*+1, *y*, *z*.

*catena*-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-chlorido] monohydrate] (2)

F(000) = 1080

 $\theta = 2.4 - 21.6^{\circ}$  $\mu = 2.23 \text{ mm}^{-1}$ 

T = 198 K

Prism, green

 $0.11 \times 0.08 \times 0.07 \text{ mm}$ 

 $D_{\rm x} = 1.694 {\rm Mg} {\rm m}^{-3}$ 

Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 718 reflections

### Crystal data

 $(C_{6}H_{11}N_{2})[Cu_{2}(C_{2}H_{3}O_{2})_{4}Cl] \cdot H_{2}O$   $M_{r} = 527.89$ Monoclinic,  $P2_{1}/c$  a = 8.438 (4) Å b = 16.315 (7) Å c = 15.131 (7) Å  $\beta = 96.53 (1)^{\circ}$   $V = 2069.7 (16) \text{ Å}^{3}$  Z = 4

### Data collection

| Bruker Smart APEX II CCD                 | 35161 measured reflections                                         |
|------------------------------------------|--------------------------------------------------------------------|
| diffractometer                           | 4229 independent reflections                                       |
| Radiation source: fine-focus sealed tube | 2504 reflections with $I > 2\sigma(I)$                             |
| Graphite monochromator                   | $R_{\rm int} = 0.105$                                              |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 26.4^{\circ},  \theta_{\rm min} = 1.8^{\circ}$ |
| Absorption correction: multi-scan        | $h = -10 \rightarrow 10$                                           |
| (SADABS; Bruker, 2015)                   | $k = -20 \rightarrow 20$                                           |
| $T_{\min} = 0.795, \ T_{\max} = 0.858$   | $l = -16 \rightarrow 18$                                           |
|                                          |                                                                    |

## Refinement

| Refinement on $F^2$             | Hydrogen site location: mixed                         |
|---------------------------------|-------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent           |
| $R[F^2 > 2\sigma(F^2)] = 0.082$ | and constrained refinement                            |
| $wR(F^2) = 0.265$               | $w = 1/[\sigma^2(F_o^2) + (0.1024P)^2 + 19.8459P]$    |
| S = 1.08                        | where $P = (F_o^2 + 2F_c^2)/3$                        |
| 4229 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                   |
| 319 parameters                  | $\Delta  ho_{ m max} = 1.70 \ { m e} \ { m \AA}^{-3}$ |
| 93 restraints                   | $\Delta \rho_{\min} = -0.94 \text{ e} \text{ Å}^{-3}$ |
|                                 |                                                       |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | у          | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|------------|------------|-----------------------------|-----------|
| C1  | 0.7268 (11) | 0.5647 (5) | 0.4896 (7) | 0.035 (2)                   |           |
| C2  | 0.5618 (11) | 0.6017 (6) | 0.4836 (8) | 0.045 (3)                   |           |
| H2A | 0.5704      | 0.6610     | 0.4938     | 0.067*                      |           |
| H2B | 0.5025      | 0.5769     | 0.5289     | 0.067*                      |           |
| H2C | 0.5055      | 0.5913     | 0.4245     | 0.067*                      |           |
| C3  | 0.8705 (10) | 0.3595 (5) | 0.5044 (7) | 0.0313 (19)                 |           |
| C4  | 0.7916 (12) | 0.2770 (6) | 0.5083 (8) | 0.044 (3)                   |           |
| H4A | 0.7423      | 0.2618     | 0.4488     | 0.067*                      |           |
| H4B | 0.7096      | 0.2796     | 0.5491     | 0.067*                      |           |
| H4C | 0.8717      | 0.2359     | 0.5295     | 0.067*                      |           |
|     |             |            |            |                             |           |

| C5   | 0.7238 (11)         | 0.4373 (6)            | -0.0335 (8)          | 0.039(2)        |                        |
|------|---------------------|-----------------------|----------------------|-----------------|------------------------|
| C6   | 0.5583 (11)         | 0.4033 (6)            | -0.0541 (8)          | 0.047 (3)       |                        |
| H6A  | 0.4831              | 0.4484                | -0.0686              | 0.070*          |                        |
| H6B  | 0.5286              | 0.3735                | -0.0023              | 0.070*          |                        |
| H6C  | 0.5553              | 0.3659                | -0.1050              | 0.070*          |                        |
| C7   | 1.1261 (10)         | 0.3598 (5)            | 0.0057 (6)           | 0.0283 (18)     |                        |
| C8   | 1.2080 (12)         | 0.2769 (5)            | 0.0107 (7)           | 0.039 (2)       |                        |
| H8A  | 1.1734              | 0.2453                | 0.0601               | 0.059*          |                        |
| H8B  | 1.3239              | 0.2846                | 0.0203               | 0.059*          |                        |
| H8C  | 1.1796              | 0.2472                | -0.0452              | 0.059*          |                        |
| N1A  | 0.142(3)            | 0.2561(15)            | 0.263(3)             | 0.035 (4)       | 0.513 (12)             |
| N2A  | 0.382(2)            | 0.3105(12)            | 0.232(c)             | 0.033(3)        | 0.513(12)              |
| C9A  | 0.230(2)            | 0.3252(13)            | 0.2752(17)           | 0.030(4)        | 0.513(12)              |
| Н9А  | 0.1871              | 0.3779                | 0.2847               | 0.036*          | 0.513(12)<br>0.513(12) |
| C10A | -0.029(3)           | 0.248(3)              | 0.264(3)             | 0.050           | 0.513(12)<br>0.513(12) |
| H10A | -0.0673             | 0.2935                | 0.2989               | 0.075*          | 0.513(12)<br>0.513(12) |
| H10R | -0.0523             | 0.1960                | 0.2920               | 0.075*          | 0.513(12)<br>0.513(12) |
| H10C | -0.0817             | 0.1500                | 0.2024               | 0.075*          | 0.513(12)              |
| C11A | 0.0317<br>0.247(3)  | 0.2502<br>0.1042 (17) | 0.2054               | 0.075           | 0.513(12)<br>0.513(12) |
|      | 0.247(3)            | 0.1942(17)<br>0.1383  | 0.240 (4)            | 0.048(3)        | 0.513(12)<br>0.513(12) |
| C12A | 0.2197<br>0.201 (2) | 0.1363                | 0.2332               | $0.038^{\circ}$ | 0.513(12)<br>0.513(12) |
| U12A | 0.391 (3)           | 0.2208 (14)           | 0.248 (3)            | 0.049(3)        | 0.513(12)<br>0.513(12) |
| C12A | 0.4850              | 0.1300<br>0.2747(17)  | 0.2337<br>0.2777(16) | $0.039^{\circ}$ | 0.513(12)<br>0.513(12) |
|      | 0.505 (5)           | 0.3747(17)<br>0.2585  | 0.2777 (10)          | 0.039(7)        | 0.515(12)<br>0.512(12) |
| ПІЗА | 0.3941              | 0.3383                | 0.3224               | 0.071*          | 0.515(12)              |
| C14A | 0.4592              | 0.4204                | 0.2980               | $0.0/1^{*}$     | 0.513(12)              |
| UI4A | 0.569 (4)           | 0.390 (2)             | 0.1685 (19)          | 0.105 (14)      | 0.513(12)              |
| HI4A | 0.6144              | 0.3386                | 0.1681               | 0.15/*          | 0.513 (12)             |
| HI4B | 0.6516              | 0.4320                | 0.1956               | 0.15/*          | 0.513 (12)             |
| HI4C | 0.4816              | 0.4077                | 0.1445               | 0.15/*          | 0.513 (12)             |
| NIB  | 0.193 (3)           | 0.2668 (17)           | 0.257 (4)            | 0.035 (4)       | 0.487 (12)             |
| N2B  | 0.429 (2)           | 0.3195 (12)           | 0.2470 (14)          | 0.033 (3)       | 0.487 (12)             |
| C9B  | 0.280 (3)           | 0.3363 (14)           | 0.2557 (18)          | 0.030 (4)       | 0.487 (12)             |
| H9B  | 0.2379              | 0.3900                | 0.2605               | 0.036*          | 0.487 (12)             |
| C10B | 0.023 (3)           | 0.261 (3)             | 0.261 (4)            | 0.054 (9)       | 0.487 (12)             |
| H10D | -0.0221             | 0.3163                | 0.2634               | 0.081*          | 0.487 (12)             |
| H10E | 0.0026              | 0.2302                | 0.3138               | 0.081*          | 0.487 (12)             |
| H10F | -0.0270             | 0.2328                | 0.2075               | 0.081*          | 0.487 (12)             |
| C11B | 0.302 (4)           | 0.2041 (17)           | 0.251 (4)            | 0.048 (5)       | 0.487 (12)             |
| H11B | 0.2753              | 0.1475                | 0.2496               | 0.058*          | 0.487 (12)             |
| C12B | 0.448 (4)           | 0.2333 (15)           | 0.247 (6)            | 0.049 (5)       | 0.487 (12)             |
| H12B | 0.5438              | 0.2031                | 0.2453               | 0.059*          | 0.487 (12)             |
| C13B | 0.564 (3)           | 0.3763 (13)           | 0.246 (2)            | 0.052 (6)       | 0.487 (12)             |
| H13C | 0.6156              | 0.3674                | 0.1909               | 0.062*          | 0.487 (12)             |
| H13D | 0.6435              | 0.3656                | 0.2975               | 0.062*          | 0.487 (12)             |
| C14B | 0.506 (2)           | 0.4652 (12)           | 0.2484 (14)          | 0.042 (5)       | 0.487 (12)             |
| H14D | 0.3952              | 0.4686                | 0.2213               | 0.063*          | 0.487 (12)             |
| H14E | 0.5732              | 0.5001                | 0.2154               | 0.063*          | 0.487 (12)             |
| H14F | 0.5131              | 0.4837                | 0.3103               | 0.063*          | 0.487 (12)             |

| C11  | 0.9622 (3)   | 0.49055 (16) | 0.24814 (16) | 0.0444 (6)  |            |
|------|--------------|--------------|--------------|-------------|------------|
| Cul  | 0.98839 (12) | 0.49546 (7)  | 0.41183 (7)  | 0.0314 (3)  |            |
| Cu2  | 0.98635 (12) | 0.49562 (7)  | 0.08689 (7)  | 0.0303 (3)  |            |
| 01   | 0.7800 (8)   | 0.5456 (5)   | 0.4194 (5)   | 0.0452 (17) |            |
| O2   | 0.7991 (8)   | 0.5550 (4)   | 0.5671 (5)   | 0.0444 (17) |            |
| 03   | 0.8907 (8)   | 0.3873 (4)   | 0.4302 (5)   | 0.0419 (16) |            |
| O4   | 0.9075 (9)   | 0.3949 (4)   | 0.5780 (4)   | 0.0430 (17) |            |
| 05   | 0.7770 (8)   | 0.4478 (5)   | 0.0462 (5)   | 0.0471 (18) |            |
| O6   | 0.7989 (8)   | 0.4548 (5)   | -0.0980 (5)  | 0.053 (2)   |            |
| O7   | 1.0869 (8)   | 0.3877 (4)   | 0.0774 (4)   | 0.0406 (16) |            |
| 09A  | 0.715 (3)    | 0.3631 (15)  | 0.7359 (15)  | 0.056 (5)   | 0.513 (12) |
| H2WA | 0.77 (2)     | 0.367 (12)   | 0.689 (10)   | 0.067*      | 0.513 (12) |
| H1WA | 0.72 (3)     | 0.413 (7)    | 0.761 (16)   | 0.067*      | 0.513 (12) |
| O9B  | 0.691 (3)    | 0.4074 (14)  | 0.7142 (16)  | 0.056 (5)   | 0.487 (12) |
| H2WB | 0.766 (18)   | 0.406 (14)   | 0.675 (9)    | 0.067*      | 0.487 (12) |
| H1WB | 0.72 (4)     | 0.367 (19)   | 0.75 (2)     | 0.067*      | 0.487 (12) |
| 08   | 1.1090 (8)   | 0.3948 (4)   | -0.0674 (4)  | 0.0392 (16) |            |
|      |              |              |              |             |            |

Atomic displacement parameters  $(Å^2)$ 

| $U^{23}$ -0.001 (4) 0.013 (5) -0.005 (4) -0.002 (5) -0.014 (5) -0.022 (5) -0.007 (4) 0.000 (4) -0.001 (7) 0.011 (6)                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} -0.001 (4) \\ 0.013 (5) \\ -0.005 (4) \\ -0.002 (5) \\ -0.014 (5) \\ -0.022 (5) \\ -0.007 (4) \\ 0.000 (4) \\ -0.001 (7) \\ 0.011 (6) \end{array}$ |
| $\begin{array}{c} 0.013 (5) \\ -0.005 (4) \\ -0.002 (5) \\ -0.014 (5) \\ -0.022 (5) \\ -0.007 (4) \\ 0.000 (4) \\ -0.001 (7) \\ 0.011 (6) \end{array}$               |
| $\begin{array}{c} -0.005 (4) \\ -0.002 (5) \\ -0.014 (5) \\ -0.022 (5) \\ -0.007 (4) \\ 0.000 (4) \\ -0.001 (7) \\ 0.011 (6) \end{array}$                            |
| $\begin{array}{c} -0.002 (5) \\ -0.014 (5) \\ -0.022 (5) \\ -0.007 (4) \\ 0.000 (4) \\ -0.001 (7) \\ 0.011 (6) \end{array}$                                          |
| $\begin{array}{c} -0.014 (5) \\ -0.022 (5) \\ -0.007 (4) \\ 0.000 (4) \\ -0.001 (7) \\ 0.011 (6) \end{array}$                                                        |
| -0.022 (5)<br>-0.007 (4)<br>0.000 (4)<br>-0.001 (7)<br>0.011 (6)                                                                                                     |
| -0.007 (4)<br>0.000 (4)<br>-0.001 (7)<br>0.011 (6)                                                                                                                   |
| 0.000 (4)<br>-0.001 (7)<br>0.011 (6)                                                                                                                                 |
| -0.001(7)                                                                                                                                                            |
| 0.011 (6)                                                                                                                                                            |
| 0.011 (0)                                                                                                                                                            |
| 0.009 (7)                                                                                                                                                            |
| 0.008 (14)                                                                                                                                                           |
| -0.008 (8)                                                                                                                                                           |
| 0.009 (9)                                                                                                                                                            |
| 0.029 (13)                                                                                                                                                           |
| 0.02 (2)                                                                                                                                                             |
| -0.001 (7)                                                                                                                                                           |
| 0.011 (6)                                                                                                                                                            |
| 0.009 (7)                                                                                                                                                            |
| 0.005 (16)                                                                                                                                                           |
| -0.008 (8)                                                                                                                                                           |
| 0.009 (9)                                                                                                                                                            |
| 0.018 (15)                                                                                                                                                           |
| 0.005 (11)                                                                                                                                                           |
| -0.0070 (11)                                                                                                                                                         |
| -0.0041 (5)                                                                                                                                                          |
| -0.0005(5)                                                                                                                                                           |
|                                                                                                                                                                      |

| 01  | 0.030 (3) | 0.059 (4)  | 0.044 (4)  | 0.013 (3)   | -0.007 (3) | -0.006 (4)  |
|-----|-----------|------------|------------|-------------|------------|-------------|
| O2  | 0.038 (4) | 0.049 (4)  | 0.046 (4)  | 0.009 (3)   | 0.003 (3)  | -0.003 (3)  |
| O3  | 0.055 (4) | 0.028 (3)  | 0.042 (4)  | -0.009 (3)  | 0.003 (3)  | -0.009(3)   |
| O4  | 0.062 (5) | 0.028 (4)  | 0.038 (4)  | -0.009 (3)  | -0.001(3)  | -0.003(3)   |
| 05  | 0.029 (3) | 0.053 (5)  | 0.057 (4)  | -0.011 (3)  | -0.006 (3) | -0.007 (4)  |
| 06  | 0.031 (4) | 0.074 (6)  | 0.053 (4)  | -0.005 (4)  | 0.000 (3)  | -0.025 (4)  |
| O7  | 0.056 (4) | 0.029 (3)  | 0.036 (4)  | 0.015 (3)   | 0.002 (3)  | 0.000 (3)   |
| 09A | 0.056 (8) | 0.061 (12) | 0.054 (11) | -0.032 (10) | 0.016 (7)  | -0.023 (10) |
| O9B | 0.056 (8) | 0.061 (12) | 0.054 (11) | -0.032 (10) | 0.016 (7)  | -0.023 (10) |
| 08  | 0.057 (4) | 0.025 (3)  | 0.038 (4)  | 0.013 (3)   | 0.015 (3)  | 0.001 (3)   |
|     |           |            |            |             |            |             |

Geometric parameters (Å, °)

| C1—01     | 1.240 (12) | C14A—H14B             | 0.9800     |
|-----------|------------|-----------------------|------------|
| C1—O2     | 1.269 (12) | C14A—H14C             | 0.9800     |
| C1—C2     | 1.511 (12) | N1B—C9B               | 1.348 (17) |
| C2—H2A    | 0.9800     | N1B—C11B              | 1.382 (17) |
| C2—H2B    | 0.9800     | N1B—C10B              | 1.45 (2)   |
| C2—H2C    | 0.9800     | N2B—C9B               | 1.309 (18) |
| C3—O3     | 1.241 (11) | N2B—C12B              | 1.42 (2)   |
| C3—O4     | 1.261 (11) | N2B—C13B              | 1.47 (2)   |
| C3—C4     | 1.506 (12) | C9B—H9B               | 0.9500     |
| C4—H4A    | 0.9800     | C10B—H10D             | 0.9800     |
| C4—H4B    | 0.9800     | C10B—H10E             | 0.9800     |
| C4—H4C    | 0.9800     | C10B—H10F             | 0.9800     |
| C5—O5     | 1.250 (12) | C11B—C12B             | 1.33 (2)   |
| C5—O6     | 1.256 (13) | C11B—H11B             | 0.9500     |
| C5—C6     | 1.502 (12) | C12B—H12B             | 0.9500     |
| С6—Н6А    | 0.9800     | C13B—C14B             | 1.531 (18) |
| С6—Н6В    | 0.9800     | C13B—H13C             | 0.9900     |
| С6—Н6С    | 0.9800     | C13B—H13D             | 0.9900     |
| C7—O8     | 1.239 (11) | C14B—H14D             | 0.9800     |
| С7—О7     | 1.255 (11) | C14B—H14E             | 0.9800     |
| С7—С8     | 1.518 (11) | C14B—H14F             | 0.9800     |
| C8—H8A    | 0.9800     | Cl1—Cu1               | 2.463 (3)  |
| C8—H8B    | 0.9800     | Cl1—Cu2               | 2.473 (3)  |
| C8—H8C    | 0.9800     | Cu1—O1                | 1.954 (7)  |
| N1A—C9A   | 1.350 (17) | Cu1—O2 <sup>i</sup>   | 1.966 (7)  |
| N1A—C11A  | 1.383 (17) | Cu1—O3                | 1.981 (7)  |
| N1A—C10A  | 1.45 (2)   | Cu1—O4 <sup>i</sup>   | 1.990 (7)  |
| N2A—C9A   | 1.308 (18) | Cu1—Cu1 <sup>i</sup>  | 2.657 (3)  |
| N2A—C12A  | 1.42 (2)   | Cu2—O5                | 1.965 (6)  |
| N2A—C13A  | 1.47 (2)   | Cu2—O7                | 1.967 (6)  |
| С9А—Н9А   | 0.9500     | Cu2—O8 <sup>ii</sup>  | 1.969 (6)  |
| C10A—H10A | 0.9800     | Cu2—O6 <sup>ii</sup>  | 1.974 (7)  |
| C10A—H10B | 0.9800     | Cu2—Cu2 <sup>ii</sup> | 2.669 (3)  |
| C10A—H10C | 0.9800     | O2—Cu1 <sup>i</sup>   | 1.966 (7)  |
| C11A—C12A | 1.33 (2)   | O4—Cu1 <sup>i</sup>   | 1.990 (7)  |
|           |            |                       |            |

| C11A—H11A                   | 0.9500           | O6—Cu2 <sup>ii</sup>  | 1.974 (7)   |
|-----------------------------|------------------|-----------------------|-------------|
| C12A—H12A                   | 0.9500           | O9A—H2WA              | 0.90 (2)    |
| C13A—C14A                   | 1.529 (16)       | O9A—H1WA              | 0.90 (2)    |
| C13A—H13A                   | 0.9900           | O9B—H2WB              | 0.909 (19)  |
| C13A—H13B                   | 0.9900           | O9B—H1WB              | 0.90 (2)    |
| C14A—H14A                   | 0.9800           | O8—Cu2 <sup>ii</sup>  | 1.969 (6)   |
|                             |                  |                       |             |
| O1—C1—O2                    | 125.3 (8)        | C9B—N2B—C12B          | 108.6 (17)  |
| 01                          | 118.1 (9)        | C9B—N2B—C13B          | 128.7 (18)  |
| O2—C1—C2                    | 116.6 (9)        | C12B—N2B—C13B         | 122.5 (19)  |
| C1—C2—H2A                   | 109.5            | N2B—C9B—N1B           | 110.6 (16)  |
| C1—C2—H2B                   | 109.5            | N2B—C9B—H9B           | 124.7       |
| H2A—C2—H2B                  | 109.5            | N1B—C9B—H9B           | 124.7       |
| C1—C2—H2C                   | 109.5            | N1B—C10B—H10D         | 109.5       |
| H2A—C2—H2C                  | 109.5            | N1B—C10B—H10E         | 109.5       |
| H2B—C2—H2C                  | 109.5            | H10D—C10B—H10E        | 109.5       |
| O3—C3—O4                    | 125.9 (9)        | N1B—C10B—H10F         | 109.5       |
| O3—C3—C4                    | 117.9 (9)        | H10D—C10B—H10F        | 109.5       |
| O4—C3—C4                    | 116.2 (9)        | H10E—C10B—H10F        | 109.5       |
| C3—C4—H4A                   | 109.5            | C12B—C11B—N1B         | 111.2 (19)  |
| C3—C4—H4B                   | 109.5            | C12B—C11B—H11B        | 124.4       |
| H4A—C4—H4B                  | 109.5            | N1B—C11B—H11B         | 124.4       |
| C3—C4—H4C                   | 109.5            | C11B—C12B—N2B         | 104.4 (19)  |
| H4A—C4—H4C                  | 109.5            | C11B—C12B—H12B        | 127.8       |
| H4B—C4—H4C                  | 109.5            | N2B—C12B—H12B         | 127.8       |
| O5—C5—O6                    | 124.2 (9)        | N2B—C13B—C14B         | 110.3 (18)  |
| O5—C5—C6                    | 118.3 (10)       | N2B—C13B—H13C         | 109.6       |
| O6—C5—C6                    | 117.5 (10)       | C14B—C13B—H13C        | 109.6       |
| С5—С6—Н6А                   | 109.5            | N2B—C13B—H13D         | 109.6       |
| С5—С6—Н6В                   | 109.5            | C14B—C13B—H13D        | 109.6       |
| H6A—C6—H6B                  | 109.5            | H13C—C13B—H13D        | 108.1       |
| С5—С6—Н6С                   | 109.5            | C13B—C14B—H14D        | 109.5       |
| H6A—C6—H6C                  | 109.5            | C13B—C14B—H14E        | 109.5       |
| H6B—C6—H6C                  | 109.5            | H14D—C14B—H14E        | 109.5       |
| 08—C7—07                    | 126.2 (8)        | C13B—C14B—H14F        | 109.5       |
| 08-C7-C8                    | 117.4 (8)        | H14D—C14B—H14F        | 109.5       |
| 07                          | 116.3 (8)        | H14E—C14B—H14F        | 109.5       |
| C7—C8—H8A                   | 109.5            | Cu1—Cl1—Cu2           | 169.49 (13) |
| C7-C8-H8B                   | 109.5            | $O1$ — $Cu1$ — $O2^i$ | 167 4 (3)   |
| H8A - C8 - H8B              | 109.5            | 01 - Cu1 - 03         | 88 4 (3)    |
| C7 - C8 - H8C               | 109.5            | $O^{2i}$ Cu1 $O^{2i}$ | 89.5 (3)    |
| H8A - C8 - H8C              | 109.5            | $01 - Cu1 - 04^{i}$   | 90.7(3)     |
| H8B-C8-H8C                  | 109.5            | $O2^{i}$ Cu1 $O4^{i}$ | 88 7 (3)    |
| C9A = N1A = C11A            | 106.5 (17)       | $O_2 = Cu1 = O_4^{i}$ | 167.6(3)    |
| C9A = N1A = C10A            | 127.1 (18)       | O1-Cu1-Cl1            | 954(2)      |
| $C_{11} = N_{14} = C_{104}$ | 126 (2)          | $\Omega^{2i}$ Cul Cll | 97.7(2)     |
| C9A = N2A = C12A            | $105 \ 8 \ (17)$ | $O_2 - Cu_1 - Cl_1$   | 969(2)      |
| C9A = N2A = C13A            | 123 7 (19)       | $O4^{i}$ Cu1 Cl1      | 95 5 (2)    |
| U/11 112/1 U1J/1            | 122.1 (17)       |                       | JJ.J (4)    |

| C12A—N2A—C13A  | 129.8 (19) | O1—Cu1—Cu1 <sup>i</sup>                 | 83.2 (2)   |
|----------------|------------|-----------------------------------------|------------|
| N2A—C9A—N1A    | 111.4 (16) | $O2^{i}$ —Cu1—Cu1 <sup>i</sup>          | 84.2 (2)   |
| N2A—C9A—H9A    | 124.3      | O3—Cu1—Cu1 <sup>i</sup>                 | 83.9 (2)   |
| N1A—C9A—H9A    | 124.3      | $O4^{i}$ —Cu1—Cu1 <sup>i</sup>          | 83.7 (2)   |
| N1A-C10A-H10A  | 109.5      | Cl1—Cu1—Cu1 <sup>i</sup>                | 178.39 (9) |
| N1A—C10A—H10B  | 109.5      | O5—Cu2—O7                               | 90.1 (3)   |
| H10A—C10A—H10B | 109.5      | O5—Cu2—O8 <sup>ii</sup>                 | 88.6 (3)   |
| N1A—C10A—H10C  | 109.5      | O7—Cu2—O8 <sup>ii</sup>                 | 167.0 (3)  |
| H10A—C10A—H10C | 109.5      | O5—Cu2—O6 <sup>ii</sup>                 | 166.7 (3)  |
| H10B—C10A—H10C | 109.5      | O7—Cu2—O6 <sup>ii</sup>                 | 88.5 (3)   |
| C12A—C11A—N1A  | 107.8 (19) | O8 <sup>ii</sup> —Cu2—O6 <sup>ii</sup>  | 89.8 (3)   |
| C12A—C11A—H11A | 126.1      | O5—Cu2—Cl1                              | 97.1 (2)   |
| N1A—C11A—H11A  | 126.1      | O7—Cu2—Cl1                              | 97.3 (2)   |
| C11A—C12A—N2A  | 108.2 (19) | O8 <sup>ii</sup> —Cu2—Cl1               | 95.7 (2)   |
| C11A—C12A—H12A | 125.9      | O6 <sup>ii</sup> —Cu2—Cl1               | 96.2 (2)   |
| N2A—C12A—H12A  | 125.9      | O5—Cu2—Cu2 <sup>ii</sup>                | 83.6 (2)   |
| N2A—C13A—C14A  | 112 (2)    | O7—Cu2—Cu2 <sup>ii</sup>                | 83.7 (2)   |
| N2A—C13A—H13A  | 109.2      | O8 <sup>ii</sup> —Cu2—Cu2 <sup>ii</sup> | 83.3 (2)   |
| C14A—C13A—H13A | 109.2      | O6 <sup>ii</sup> —Cu2—Cu2 <sup>ii</sup> | 83.2 (2)   |
| N2A—C13A—H13B  | 109.2      | Cl1—Cu2—Cu2 <sup>ii</sup>               | 178.82 (9) |
| C14A—C13A—H13B | 109.2      | C1—O1—Cu1                               | 124.9 (6)  |
| H13A—C13A—H13B | 107.9      | $C1$ — $O2$ — $Cu1^i$                   | 122.4 (6)  |
| C13A—C14A—H14A | 109.5      | C3—O3—Cu1                               | 123.6 (6)  |
| C13A—C14A—H14B | 109.5      | $C3-O4-Cu1^i$                           | 122.9 (6)  |
| H14A—C14A—H14B | 109.5      | C5—O5—Cu2                               | 124.6 (7)  |
| C13A—C14A—H14C | 109.5      | C5—O6—Cu2 <sup>ii</sup>                 | 124.5 (6)  |
| H14A—C14A—H14C | 109.5      | C7—O7—Cu2                               | 123.0 (6)  |
| H14B—C14A—H14C | 109.5      | H2WA—O9A—H1WA                           | 105 (5)    |
| C9B—N1B—C11B   | 105.1 (17) | H2WB—O9B—H1WB                           | 105 (5)    |
| C9B—N1B—C10B   | 126.4 (19) | C7—O8—Cu2 <sup>ii</sup>                 | 123.8 (6)  |
| C11B—N1B—C10B  | 128 (2)    |                                         |            |

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*.

## Hydrogen-bond geometry (Å, °)

| D—H···A                                                   | D—H      | Н…А      | D····A   | <i>D</i> —H··· <i>A</i> |
|-----------------------------------------------------------|----------|----------|----------|-------------------------|
| O9 <i>B</i> —H2 <i>WB</i> ···O4                           | 0.91 (2) | 2.01 (2) | 2.91 (2) | 172 (18)                |
| O9 <i>A</i> —H1 <i>WA</i> ···O6 <sup>iii</sup>            | 0.90 (2) | 2.3 (2)  | 2.94 (3) | 131 (23)                |
| O9 <i>A</i> —H2 <i>WA</i> ···O4                           | 0.90 (2) | 2.19 (5) | 3.08 (2) | 172 (18)                |
| C14 <i>B</i> —H14 <i>D</i> ···O6 <sup>iv</sup>            | 0.98     | 2.65     | 3.49 (2) | 144                     |
| C12 <i>B</i> —H12 <i>B</i> ····O9 <i>B</i> <sup>v</sup>   | 0.95     | 2.27     | 3.16 (3) | 155                     |
| C10B—H10D····Cl1 <sup>vi</sup>                            | 0.98     | 2.85     | 3.78 (5) | 158                     |
| C9 <i>B</i> —H9 <i>B</i> ····Cl1 <sup>vi</sup>            | 0.95     | 2.84     | 3.67 (2) | 147                     |
| C14 <i>A</i> —H14 <i>B</i> ···Cl1                         | 0.98     | 2.82     | 3.72 (3) | 154                     |
| C12 <i>A</i> —H12 <i>A</i> ···O9 <i>A</i> <sup>v</sup>    | 0.95     | 2.19     | 3.13 (3) | 168                     |
| C11A—H11A···Cl1 <sup>vii</sup>                            | 0.95     | 2.88     | 3.77 (3) | 155                     |
| C10 <i>A</i> —H10 <i>B</i> ···O9 <i>A</i> <sup>viii</sup> | 0.98     | 2.26     | 2.82 (4) | 115                     |

| C10A—H10A····O3 <sup>vi</sup>                | 0.98 | 2.56 | 3.50 (5) | 161 |  |
|----------------------------------------------|------|------|----------|-----|--|
| C9 <i>A</i> —H9 <i>A</i> ···O2 <sup>ix</sup> | 0.95 | 2.48 | 3.11 (3) | 124 |  |
| C9A—H9A···Cl1 <sup>vi</sup>                  | 0.95 | 2.65 | 3.51 (2) | 151 |  |
| C2—H2 $C$ ···O9 $B^{ix}$                     | 0.98 | 2.52 | 3.48 (3) | 165 |  |

Symmetry codes: (iii) *x*, *y*, *z*+1; (iv) -*x*+1, -*y*+1, -*z*; (v) *x*, -*y*+1/2, *z*-1/2; (vi) *x*-1, *y*, *z*; (vii) -*x*+1, *y*-1/2, -*z*+1/2; (viii) *x*-1, -*y*+1/2, *z*-1/2; (ix) -*x*+1, -*y*+1, -*z*+1.

Z = 2

F(000) = 548

 $\theta = 2.5 - 30.5^{\circ}$ 

 $\mu = 2.02 \text{ mm}^{-1}$ 

T = 198 K

Prism, blue

 $D_{\rm x} = 1.637 {\rm Mg} {\rm m}^{-3}$ 

 $0.30 \times 0.20 \times 0.20$  mm

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 4553 reflections

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-acetato]] (3)

### Crystal data

 $(C_{6}H_{11}N_{2})[Cu_{2}(C_{2}H_{3}O_{2})_{5}]$   $M_{r} = 533.47$ Triclinic,  $P\overline{1}$  a = 8.0542 (9) Å b = 8.1633 (9) Å c = 16.7195 (19) Å a = 98.126 (3)°  $\beta = 94.745$  (3)°  $\gamma = 92.964$  (3)° V = 1082.3 (2) Å<sup>3</sup>

### Data collection

| Bruker Kappa APEX DUO CCD<br>diffractometer | 11652 measured reflections<br>4343 independent reflections          |
|---------------------------------------------|---------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube    | 3662 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                      | $R_{\rm int} = 0.025$                                               |
| $\varphi$ and $\omega$ scans                | $\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 1.2^{\circ}$ |
| Absorption correction: multi-scan           | $h = -7 \rightarrow 10$                                             |
| (SADABS; Bruker, 2015)                      | $k = -10 \rightarrow 10$                                            |
| $T_{\min} = 0.583, \ T_{\max} = 0.688$      | $l = -20 \rightarrow 20$                                            |

## Refinement

| Refinement on $F^2$             | Hydrogen site location: inferred from                  |
|---------------------------------|--------------------------------------------------------|
| Least-squares matrix: full      | neighbouring sites                                     |
| $R[F^2 > 2\sigma(F^2)] = 0.029$ | H-atom parameters constrained                          |
| $wR(F^2) = 0.107$               | $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$                   |
| <i>S</i> = 0.81                 | where $P = (F_o^2 + 2F_c^2)/3$                         |
| 4343 reflections                | $(\Delta/\sigma)_{\rm max} = 0.044$                    |
| 278 parameters                  | $\Delta  ho_{ m max} = 0.38 \ { m e} \ { m \AA}^{-3}$  |
| 0 restraints                    | $\Delta  ho_{ m min} = -0.46 \ { m e} \ { m \AA}^{-3}$ |
|                                 |                                                        |

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|-------------|--------------|-----------------------------|
| Cu1 | 0.92345 (4) | 0.99123 (3) | 0.92550 (2)  | 0.01579 (11)                |
| Cu2 | 0.56051 (4) | 0.98913 (3) | 0.57530(2)   | 0.01600 (11)                |
| 07  | 0.7481 (2)  | 0.8938 (2)  | 0.52154 (11) | 0.0256 (4)                  |

Acta Cryst. (2018). E74, 981-986

| 05             | 0.7615 (3)             | 0.9983 (2) | 0.82103 (10)               | 0.0239 (4) |
|----------------|------------------------|------------|----------------------------|------------|
| 02             | 1.1356 (2)             | 1.0928 (2) | 0.89944 (11)               | 0.0269 (4) |
| 08             | 0.6506 (2)             | 0.9156 (2) | 0.39488 (10)               | 0.0254 (4) |
| 04             | 0.8587 (2)             | 1.2104 (2) | 0.97397 (10)               | 0.0266 (4) |
| O6             | 0.6474 (2)             | 1.0114 (2) | 0.69902 (11)               | 0.0261 (4) |
| 09             | 0.4417 (2)             | 0.7682 (2) | 0.55935 (11)               | 0.0287 (5) |
| O10            | 0.3447 (2)             | 0.7862 (2) | 0.43204 (11)               | 0.0272 (4) |
| 01             | 1.2610 (2)             | 1.1154 (2) | 1.02491 (11)               | 0.0315 (5) |
| 03             | 0.9849(3)              | 1.2283 (2) | 1.09893 (11)               | 0.0291 (5) |
| N1             | 0.6086 (3)             | 0.4848(3)  | 0.78982 (12)               | 0.0236(5)  |
| N2             | 0.4357(3)              | 0.6683 (3) | 0 76515 (14)               | 0.0281(5)  |
| C7             | 0.7587(3)              | 0.8778(3)  | 0.44641(15)                | 0.0201(5)  |
| C1             | 1 2586 (3)             | 1,1306(3)  | 0.95090(15)                | 0.0209(5)  |
| C9             | 0.3605(3)              | 0.7127(3)  | 0.49278 (16)               | 0.0207(5)  |
| C3             | 0.9005(3)<br>0.8935(3) | 1.2817(3)  | 1.04474(15)                | 0.0217(5)  |
| C11            | 0.5735(3)              | 0.6410(3)  | 0.80908 (16)               | 0.0177(5)  |
| H11            | 0.6350                 | 0.7209     | 0.80908 (10)               | 0.0203 (0) |
| $C_{4}$        | 0.0330<br>0.8185 (4)   | 1.4451(3)  | 1.06738(17)                | 0.030      |
|                | 0.0103 (4)             | 1.4451 (5) | 1.00738 (17)               | 0.0302 (0) |
|                | 0.7874                 | 1.5500     | 1.0055                     | 0.045*     |
|                | 0.7874                 | 1.4537     | 1.1232                     | 0.045*     |
| 114C           | 0.7190<br>0.7508 (3)   | 0.0663 (3) | 1.0304<br>0.74538 (13)     | 0.043      |
| C <sup>8</sup> | 0.7398(3)              | 0.9003(3)  | 0.74550(15)<br>0.41572(18) | 0.0191(3)  |
|                | 0.9134 (3)             | 0.8105(5)  | 0.41372 (18)               | 0.0303 (0) |
|                | 0.8907                 | 0.7754     | 0.5571                     | 0.046      |
| HðB            | 0.9454                 | 0.7162     | 0.4432                     | 0.046*     |
| Hac            | 1.0064                 | 0.8971     | 0.4268                     | 0.046*     |
| 02             | 1.41/1 (4)             | 1.1998 (4) | 0.92301 (19)               | 0.0323 (7) |
| HZA            | 1.5008                 | 1.1108     | 0.9223                     | 0.048*     |
| H2B            | 1.4593                 | 1.2996     | 0.9602                     | 0.048*     |
| H2C            | 1.3944                 | 1.2280     | 0.8683                     | 0.048*     |
| C13            | 0.4900 (4)             | 0.4082 (4) | 0.73099 (17)               | 0.0360 (7) |
| HI3            | 0.4849                 | 0.2961     | 0.7057                     | 0.043*     |
| C14            | 0.7545 (4)             | 0.4061 (4) | 0.82256 (17)               | 0.0331 (7) |
| HI4A           | 0.7178                 | 0.2979     | 0.8376                     | 0.040*     |
| HI4B           | 0.8061                 | 0.4770     | 0.8723                     | 0.040*     |
| C15            | 0.8825 (4)             | 0.3799 (4) | 0.76169 (19)               | 0.0360 (7) |
| H15A           | 0.8301                 | 0.3149     | 0.7113                     | 0.054*     |
| H15B           | 0.9740                 | 0.3201     | 0.7838                     | 0.054*     |
| H15C           | 0.9267                 | 0.4876     | 0.7504                     | 0.054*     |
| C12            | 0.3825 (4)             | 0.5232 (4) | 0.71625 (18)               | 0.0410 (8) |
| H12            | 0.2863                 | 0.5066     | 0.6784                     | 0.049*     |
| C10            | 0.2743 (4)             | 0.5423 (3) | 0.4847 (2)                 | 0.0415 (8) |
| H10A           | 0.3418                 | 0.4724     | 0.5158                     | 0.062*     |
| H10B           | 0.2605                 | 0.4930     | 0.4274                     | 0.062*     |
| H10C           | 0.1644                 | 0.5506     | 0.5056                     | 0.062*     |
| C6             | 0.8976 (5)             | 0.8706 (5) | 0.71030 (18)               | 0.0480 (9) |
| H6A            | 0.8610                 | 0.8196     | 0.6546                     | 0.072*     |
| H6B            | 0.9253                 | 0.7838     | 0.7432                     | 0.072*     |

| H6C  | 0.9964     | 0.9458     | 0.7102     | 0.072*     |
|------|------------|------------|------------|------------|
| C16  | 0.3528 (4) | 0.8234 (4) | 0.7685 (2) | 0.0467 (9) |
| H16A | 0.2508     | 0.8140     | 0.7961     | 0.070*     |
| H16B | 0.3242     | 0.8465     | 0.7133     | 0.070*     |
| H16C | 0.4278     | 0.9139     | 0.7984     | 0.070*     |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$      | U <sup>23</sup> |
|-----|--------------|--------------|--------------|--------------|---------------|-----------------|
| Cu1 | 0.01738 (19) | 0.01679 (18) | 0.01239 (18) | 0.00049 (13) | -0.00352 (12) | 0.00242 (13)    |
| Cu2 | 0.01685 (19) | 0.01832 (18) | 0.01209 (18) | 0.00081 (13) | -0.00266 (13) | 0.00212 (13)    |
| O7  | 0.0227 (10)  | 0.0340 (10)  | 0.0206 (10)  | 0.0092 (8)   | 0.0008 (8)    | 0.0035 (8)      |
| O5  | 0.0274 (10)  | 0.0272 (10)  | 0.0155 (9)   | 0.0027 (8)   | -0.0073 (7)   | 0.0024 (7)      |
| O2  | 0.0239 (11)  | 0.0349 (11)  | 0.0221 (10)  | -0.0033 (8)  | 0.0013 (8)    | 0.0069 (8)      |
| 08  | 0.0207 (10)  | 0.0351 (10)  | 0.0193 (9)   | 0.0049 (8)   | -0.0002 (8)   | 0.0001 (8)      |
| O4  | 0.0345 (12)  | 0.0228 (9)   | 0.0204 (10)  | 0.0101 (8)   | -0.0057 (8)   | -0.0020 (8)     |
| 06  | 0.0273 (11)  | 0.0355 (11)  | 0.0144 (9)   | 0.0051 (8)   | -0.0071 (8)   | 0.0040 (8)      |
| 09  | 0.0337 (12)  | 0.0232 (9)   | 0.0291 (10)  | -0.0033 (8)  | -0.0020 (9)   | 0.0082 (8)      |
| O10 | 0.0321 (11)  | 0.0216 (9)   | 0.0261 (10)  | -0.0046 (8)  | -0.0020 (8)   | 0.0028 (8)      |
| 01  | 0.0248 (11)  | 0.0426 (12)  | 0.0262 (10)  | -0.0107 (9)  | -0.0023 (8)   | 0.0093 (9)      |
| O3  | 0.0421 (13)  | 0.0211 (9)   | 0.0221 (10)  | 0.0089 (8)   | -0.0072 (9)   | -0.0008 (8)     |
| N1  | 0.0285 (13)  | 0.0216 (11)  | 0.0193 (11)  | -0.0012 (9)  | 0.0016 (9)    | -0.0006 (9)     |
| N2  | 0.0268 (13)  | 0.0292 (12)  | 0.0292 (12)  | 0.0016 (10)  | 0.0068 (10)   | 0.0048 (10)     |
| C7  | 0.0158 (13)  | 0.0113 (11)  | 0.0236 (13)  | -0.0017 (9)  | 0.0005 (10)   | -0.0032 (9)     |
| C1  | 0.0198 (14)  | 0.0170 (12)  | 0.0259 (14)  | 0.0004 (10)  | 0.0021 (11)   | 0.0036 (10)     |
| C9  | 0.0199 (13)  | 0.0169 (12)  | 0.0287 (14)  | 0.0022 (10)  | 0.0028 (11)   | 0.0038 (10)     |
| C3  | 0.0192 (13)  | 0.0184 (12)  | 0.0218 (13)  | 0.0004 (10)  | 0.0023 (10)   | 0.0043 (10)     |
| C11 | 0.0234 (15)  | 0.0242 (13)  | 0.0265 (14)  | -0.0063 (11) | 0.0040 (11)   | -0.0005 (11)    |
| C4  | 0.0350 (17)  | 0.0220 (13)  | 0.0331 (15)  | 0.0093 (12)  | 0.0015 (13)   | 0.0000 (12)     |
| C5  | 0.0247 (14)  | 0.0169 (11)  | 0.0150 (13)  | -0.0028 (10) | -0.0038 (11)  | 0.0050 (9)      |
| C8  | 0.0193 (15)  | 0.0312 (15)  | 0.0406 (17)  | 0.0043 (12)  | 0.0075 (12)   | 0.0005 (13)     |
| C2  | 0.0230 (16)  | 0.0332 (15)  | 0.0423 (17)  | -0.0027 (12) | 0.0096 (13)   | 0.0085 (13)     |
| C13 | 0.0410 (19)  | 0.0334 (16)  | 0.0273 (15)  | -0.0029 (14) | -0.0010 (13)  | -0.0122 (12)    |
| C14 | 0.0397 (18)  | 0.0304 (15)  | 0.0307 (15)  | 0.0070 (13)  | 0.0022 (13)   | 0.0085 (12)     |
| C15 | 0.0322 (17)  | 0.0310 (15)  | 0.0429 (18)  | -0.0018 (13) | 0.0015 (14)   | 0.0013 (13)     |
| C12 | 0.0364 (19)  | 0.054 (2)    | 0.0273 (16)  | -0.0020 (15) | -0.0063 (13)  | -0.0040 (14)    |
| C10 | 0.043 (2)    | 0.0216 (14)  | 0.057 (2)    | -0.0115 (13) | -0.0064 (16)  | 0.0083 (14)     |
| C6  | 0.053 (2)    | 0.073 (2)    | 0.0240 (15)  | 0.0370 (19)  | 0.0071 (15)   | 0.0124 (15)     |
| C16 | 0.0346 (19)  | 0.048 (2)    | 0.065 (2)    | 0.0147 (15)  | 0.0178 (17)   | 0.0199 (17)     |

Geometric parameters (Å, °)

| Cu1—O2               | 1.9684 (19) | C1—C2   | 1.505 (4) |  |
|----------------------|-------------|---------|-----------|--|
| Cu1—O4               | 1.9714 (18) | C9—C10  | 1.505 (4) |  |
| Cu1—O3 <sup>i</sup>  | 1.9755 (17) | C3—C4   | 1.506 (3) |  |
| Cu1—O1 <sup>i</sup>  | 1.9811 (19) | C11—H11 | 0.9500    |  |
| Cu1—O5               | 2.1012 (17) | C4—H4A  | 0.9800    |  |
| Cu1—Cu1 <sup>i</sup> | 2.6685 (6)  | C4—H4B  | 0.9800    |  |
|                      |             |         |           |  |

Acta Cryst. (2018). E74, 981-986

| Cu2—O7                             | 1.9607 (19) | C4—H4C              | 0.9800    |
|------------------------------------|-------------|---------------------|-----------|
| Cu2—O9                             | 1.9706 (18) | C5—C6               | 1.501 (4) |
| Cu2—O10 <sup>ii</sup>              | 1.9742 (18) | C8—H8A              | 0.9800    |
| Cu2—O8 <sup>ii</sup>               | 1.9774 (18) | C8—H8B              | 0.9800    |
| Cu2—O6                             | 2.1077 (18) | C8—H8C              | 0.9800    |
| Cu2—Cu2 <sup>ii</sup>              | 2.6571 (6)  | C2—H2A              | 0.9800    |
| O7—C7                              | 1.255 (3)   | C2—H2B              | 0.9800    |
| O5—C5                              | 1.254 (3)   | C2—H2C              | 0.9800    |
| O2—C1                              | 1.253 (3)   | C13—C12             | 1.344 (4) |
| O8—C7                              | 1.255 (3)   | С13—Н13             | 0.9500    |
| O8—Cu2 <sup>ii</sup>               | 1.9774 (18) | C14—C15             | 1.510 (4) |
| O4—C3                              | 1.246 (3)   | C14—H14A            | 0.9900    |
| O6—C5                              | 1.247 (3)   | C14—H14B            | 0.9900    |
| О9—С9                              | 1.256 (3)   | C15—H15A            | 0.9800    |
| O10—C9                             | 1.251 (3)   | С15—Н15В            | 0.9800    |
| O10—Cu2 <sup>ii</sup>              | 1.9742 (18) | С15—Н15С            | 0.9800    |
| 01—C1                              | 1.260 (3)   | C12—H12             | 0.9500    |
| O1—Cu1 <sup>i</sup>                | 1.9811 (19) | C10—H10A            | 0.9800    |
| 03-C3                              | 1.260 (3)   | C10—H10B            | 0.9800    |
| O3—Cu1 <sup>i</sup>                | 1.9755 (17) | C10—H10C            | 0.9800    |
| N1-C11                             | 1.324 (3)   | C6—H6A              | 0.9800    |
| N1—C13                             | 1.371 (4)   | C6—H6B              | 0.9800    |
| N1-C14                             | 1.471 (3)   | C6—H6C              | 0.9800    |
| N2-C11                             | 1.319 (3)   | C16—H16A            | 0.9800    |
| N2-C12                             | 1 368 (4)   | C16—H16B            | 0.9800    |
| N2-C16                             | 1.500 (1)   | $C_{16}$ -H16C      | 0.9800    |
| C7—C8                              | 1 503 (4)   |                     | 0.9000    |
| 0, 00                              | 1.505 (1)   |                     |           |
| O2—Cu1—O4                          | 90.22 (9)   | N2—C11—H11          | 125.3     |
| O2—Cu1—O3 <sup>i</sup>             | 88.50 (9)   | N1—C11—H11          | 125.3     |
| O4—Cu1—O3 <sup>i</sup>             | 167.17 (7)  | C3—C4—H4A           | 109.5     |
| O2—Cu1—O1 <sup>i</sup>             | 167.09 (7)  | C3—C4—H4B           | 109.5     |
| O4—Cu1—O1 <sup>i</sup>             | 89.57 (9)   | H4A—C4—H4B          | 109.5     |
| $O3^{i}$ —Cu1—O1 <sup>i</sup>      | 88.85 (9)   | C3—C4—H4C           | 109.5     |
| O2—Cu1—O5                          | 103.44 (8)  | H4A—C4—H4C          | 109.5     |
| O4—Cu1—O5                          | 90.86 (7)   | H4B—C4—H4C          | 109.5     |
| $O3^{i}$ —Cu1—O5                   | 101.85 (7)  | O6—C5—O5            | 121.9 (3) |
| $O1^{i}$ —Cu1—O5                   | 89.47 (8)   | O6—C5—C6            | 119.6 (2) |
| $\Omega_{2}$ —Cu1—Cu1 <sup>i</sup> | 84.72 (5)   | 05                  | 118.5 (2) |
| $O4-Cu1-Cu1^i$                     | 80.15 (5)   | C7—C8—H8A           | 109.5     |
| $O3^{i}$ — $Cu1$ — $Cu1^{i}$       | 87.02.(5)   | C7—C8—H8B           | 109.5     |
| $O1^{i}$ $Cu1$ $Cu1^{i}$           | 82,53 (5)   | H8A - C8 - H8B      | 109.5     |
| 05—Cu1—Cu1 <sup>i</sup>            | 167.97 (6)  | C7—C8—H8C           | 109.5     |
| 07—Cu2—O9                          | 89 95 (8)   | H8A - C8 - H8C      | 109.5     |
| $07 - Cu^2 - O10^{ii}$             | 89 75 (8)   | H8B-C8-H8C          | 109.5     |
| $09-012 - 010^{ii}$                | 167 61 (7)  | C1 - C2 - H2A       | 109.5     |
| $07 - Cu^2 - 0.8^{ii}$             | 167 52 (7)  | C1 - C2 - H2R       | 109.5     |
| $09-002-08^{ii}$                   | 88 09 (8)   | $H^2A - C^2 - H^2B$ | 109.5     |
| C/ C42 C0                          | 00.07 (0)   |                     | 107.0     |

| O10 <sup>ii</sup> —Cu2—O8 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89.52 (8)                | C1—C2—H2C                                 | 109.5        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|--------------|
| O7—Cu2—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102.37 (8)               | H2A—C2—H2C                                | 109.5        |
| O9—Cu2—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.56 (7)               | H2B—C2—H2C                                | 109.5        |
| O10 <sup>ii</sup> —Cu2—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.60 (7)                | C12—C13—N1                                | 106.4 (3)    |
| O8 <sup>ii</sup> —Cu2—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90.10 (7)                | C12—C13—H13                               | 126.8        |
| O7—Cu2—Cu2 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83.53 (5)                | N1—C13—H13                                | 126.8        |
| $09-Cu2-Cu2^{ii}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86.21 (5)                | N1-C14-C15                                | 111.6 (2)    |
| $010^{ii}$ —Cu2—Cu2 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81.44 (5)                | N1-C14-H14A                               | 109.3        |
| $08^{ii}$ Cu2 Cu2 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84.05 (5)                | C15-C14-H14A                              | 109.3        |
| $06-Cu^2-Cu^{2ii}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170 92 (5)               | N1—C14—H14B                               | 109.3        |
| C7 - 07 - C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 124 17 (16)              | C15-C14-H14B                              | 109.3        |
| $C_{2}^{-} = C_{2}^{-} C_$ | 124.17(10)<br>139.44(18) | $H_{14A}$ $C_{14}$ $H_{14B}$              | 109.5        |
| $C_1 = C_2 = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122.82 (16)              | $C_{14}$ $C_{15}$ $H_{15A}$               | 100.0        |
| $C_1 = O_2 = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122.02(10)<br>122.70(17) | C14 = C15 = H15R                          | 109.5        |
| $C_{1}^{2} = 0.04 - C_{11}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122.70(17)<br>127.05(15) |                                           | 109.5        |
| $C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 127.95 (15)              |                                           | 109.5        |
| $C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 141.70 (19)              | C14—C15—H15C                              | 109.5        |
| C9—09—Cu2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.40 (15)              | HISA—CIS—HISC                             | 109.5        |
| C9—O10—Cu2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 126.01 (17)              | HI5B—CI5—HI5C                             | 109.5        |
| C1—O1—Cul <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 124.53 (17)              | C13—C12—N2                                | 108.1 (3)    |
| $C3-O3-Cul^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.18 (17)              | C13—C12—H12                               | 125.9        |
| C11—N1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.5 (2)                | N2—C12—H12                                | 125.9        |
| C11—N1—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 126.6 (2)                | C9—C10—H10A                               | 109.5        |
| C13—N1—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124.9 (2)                | C9—C10—H10B                               | 109.5        |
| C11—N2—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.7 (2)                | H10A—C10—H10B                             | 109.5        |
| C11—N2—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 126.7 (3)                | С9—С10—Н10С                               | 109.5        |
| C12—N2—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125.6 (3)                | H10A—C10—H10C                             | 109.5        |
| O8—C7—O7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.5 (2)                | H10B-C10-H10C                             | 109.5        |
| O8—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.3 (2)                | С5—С6—Н6А                                 | 109.5        |
| O7—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.2 (2)                | С5—С6—Н6В                                 | 109.5        |
| 02—C1—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.2 (2)                | H6A—C6—H6B                                | 109.5        |
| O2—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.1 (2)                | С5—С6—Н6С                                 | 109.5        |
| O1—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.7 (2)                | H6A—C6—H6C                                | 109.5        |
| O10—C9—O9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125.9 (2)                | H6B—C6—H6C                                | 109.5        |
| 010-09-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116.6 (2)                | N2—C16—H16A                               | 109.5        |
| 09—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117.5 (2)                | N2-C16-H16B                               | 109.5        |
| 04-03-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.6 (2)                | H16A—C16—H16B                             | 109.5        |
| 04-C3-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.9(2)                 | $N_{2}$                                   | 109.5        |
| 03-C3-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.4(2)                 | $H_{16A}$ $-C_{16}$ $H_{16C}$             | 109.5        |
| N2 C11 N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117.4(2)<br>100 A(2)     | HIGH CIG HIGC                             | 109.5        |
| N2—C11—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.4 (2)                |                                           | 109.5        |
| $C_{\rm H}2^{\rm H}$ O8 C7 O7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4.(3)                  | C12 N2 C11 N1                             | 0.3(3)       |
| Cu2 = 08 = 07 = 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -17857(17)               | $C_{12}$ $N_2$ $C_{11}$ $N_1$             | 0.3(3)       |
| $C_{u2} = 00 = 07 = 00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/0.3/(1/)               | C10 - N2 - C11 - N1 $C12 - N1 - C11 - N2$ | 1/9.2(2)     |
| $U_{12} - U_{1} - U_{1} - U_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.0(4)                  | C13 - N1 - C11 - N2                       | 0.0(3)       |
| $U_2 - U_1 - U_1 - U_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/0.93 (1/)              | $C_14$ — $N_1$ — $C_{11}$ — $N_2$         | 1/7.5 (2)    |
| Cu1 - O2 - C1 - O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.9 (4)                 | $Cu_2 - O_6 - C_5 - O_5$                  | -174.30 (18) |
| Cu1—O2—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 177.00 (18)              | Cu2—O6—C5—C6                              | 5.5 (4)      |
| Cu1 <sup>1</sup> —O1—C1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.8 (4)                  | Cu1—O5—C5—O6                              | -167.95 (18) |
| Cu1 <sup>1</sup> —O1—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -174.07 (18)             | Cu1—O5—C5—C6                              | 12.2 (4)     |

| Cu2 <sup>ii</sup> —O10—C9—O9  | -1.2 (4)     | C11—N1—C13—C12 | -0.2 (3)   |
|-------------------------------|--------------|----------------|------------|
| Cu2 <sup>ii</sup> —O10—C9—C10 | 179.0 (2)    | C14—N1—C13—C12 | -177.8 (3) |
| Cu2—O9—C9—O10                 | -0.4 (4)     | C11—N1—C14—C15 | -105.3 (3) |
| Cu2—O9—C9—C10                 | 179.4 (2)    | C13—N1—C14—C15 | 71.8 (4)   |
| Cu1—O4—C3—O3                  | 3.2 (4)      | N1-C13-C12-N2  | 0.4 (4)    |
| Cu1—O4—C3—C4                  | -176.27 (19) | C11—N2—C12—C13 | -0.4 (3)   |
| Cu1 <sup>i</sup> O3O4         | -2.8 (4)     | C16—N2—C12—C13 | -179.3 (3) |
| Cu1 <sup>i</sup> —O3—C3—C4    | 176.66 (19)  |                |            |
|                               |              |                |            |

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+2; (ii) -*x*+1, -*y*+2, -*z*+1.

Hydrogen-bond geometry (Å, °)

| D—H···A                               | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |  |
|---------------------------------------|-------------|--------------|--------------|---------|--|
| С6—Н6А…О7                             | 0.98        | 2.50         | 3.320 (4)    | 141     |  |
| C14—H14 <i>A</i> ···O5 <sup>iii</sup> | 0.99        | 2.47         | 3.329 (3)    | 145     |  |
| C13—H13····O8 <sup>iv</sup>           | 0.95        | 2.38         | 3.229 (4)    | 148     |  |
| C8—H8 <i>C</i> ···O7 <sup>v</sup>     | 0.98        | 2.55         | 3.522 (4)    | 170     |  |
| C11—H11…O1 <sup>i</sup>               | 0.95        | 2.40         | 3.317 (3)    | 162     |  |
| C11—H11…O5                            | 0.95        | 2.55         | 3.192 (3)    | 125     |  |
|                                       |             |              |              |         |  |

Symmetry codes: (i) -x+2, -y+2, -z+2; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+2, -z+1.

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[aquacopper(II)] tetra-µ-acetato-bis[acetatocuprate(II)] dihydrate (4)

Crystal data

| $(C_6H_{11}N_2)_2[Cu_2(C_2H_3O_2)_6]$    | Z = 1                                                 |
|------------------------------------------|-------------------------------------------------------|
| $[Cu_2(C_2H_3O_2)_4(H_2O)_2]\cdot 2H_2O$ | F(000) = 588                                          |
| $M_r = 1139.00$                          | $D_{\rm x} = 1.615 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Triclinic, $P\overline{1}$               | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 7.9526 (5)  Å                        | Cell parameters from 4961 reflections                 |
| b = 8.0951 (5) Å                         | $\theta = 2.6 - 29.6^{\circ}$                         |
| c = 18.8886 (11)  Å                      | $\mu = 1.88 \text{ mm}^{-1}$                          |
| $\alpha = 79.1770 \ (16)^{\circ}$        | T = 198  K                                            |
| $\beta = 78.9500 \ (16)^{\circ}$         | Prism, blue                                           |
| $\gamma = 89.9320 \ (15)^{\circ}$        | $0.30 \times 0.27 \times 0.22 \text{ mm}$             |
| $V = 1171.46 (12) Å^3$                   |                                                       |
| Data collection                          |                                                       |

| Bruker Kappa APEX DUO CCD                | 20914 measured reflections                                                |
|------------------------------------------|---------------------------------------------------------------------------|
| diffractometer                           | 4775 independent reflections                                              |
| Radiation source: fine-focus sealed tube | 3593 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                   | $R_{\rm int}=0.037$                                                       |
| $\varphi$ and $\omega$ scans             | $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 1.1^{\circ}$ |
| Absorption correction: multi-scan        | $h = -9 \rightarrow 9$                                                    |
| (SADABS; Bruker, 2015)                   | $k = -10 \rightarrow 10$                                                  |
| $T_{\min} = 0.605, \ T_{\max} = 0.685$   | $l = -23 \rightarrow 23$                                                  |
| Refinement                               |                                                                           |
| Refinement on $F^2$                      | $R[F^2 > 2\sigma(F^2)] = 0.034$                                           |

Refinement on  $F^2$ Least-squares matrix: full

 $wR(F^2) = 0.101$ 

| S = 1.42                      | H atoms treated by a mixture of independent     |
|-------------------------------|-------------------------------------------------|
| 4775 reflections              | and constrained refinement                      |
| 307 parameters                | $w = 1/[\sigma^2(F_o^2) + (0.038P)^2]$          |
| 72 restraints                 | where $P = (F_0^2 + 2F_c^2)/3$                  |
| Hydrogen site location: mixed | $(\Delta/\sigma)_{\rm max} = 0.001$             |
|                               | $\Delta  ho_{ m max} = 0.40$ e Å <sup>-3</sup>  |
|                               | $\Delta  ho_{ m min}$ = -0.56 e Å <sup>-3</sup> |
|                               |                                                 |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x           | у           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|-------------|---------------|-----------------------------|--|
| Cul | 0.91056 (4) | 0.44336 (4) | 0.06690 (2)   | 0.01957 (12)                |  |
| Cu2 | 0.09960 (5) | 0.06109 (5) | 0.43531 (2)   | 0.02361 (12)                |  |
| 01  | 0.7251 (3)  | 0.5696 (3)  | 0.02852 (12)  | 0.0273 (5)                  |  |
| O2  | 0.8722 (3)  | 0.6597 (3)  | -0.08616 (12) | 0.0277 (5)                  |  |
| 03  | 0.9897 (3)  | 0.6526 (3)  | 0.09078 (13)  | 0.0316 (6)                  |  |
| O4  | 1.1418 (3)  | 0.7477 (3)  | -0.02273 (13) | 0.0289 (5)                  |  |
| 011 | 0.4649 (3)  | 0.2016 (3)  | 0.23534 (13)  | 0.0355 (6)                  |  |
| 06  | 0.2604 (3)  | 0.1127 (3)  | 0.49611 (13)  | 0.0356 (6)                  |  |
| 05  | 0.7795 (3)  | 0.3431 (3)  | 0.17670 (13)  | 0.0354 (6)                  |  |
| Н5  | 0.8414      | 0.2734      | 0.1976        | 0.053*                      |  |
| 09  | -0.1846 (3) | 0.1702 (3)  | 0.55415 (14)  | 0.0366 (6)                  |  |
| O7  | 0.0942 (3)  | 0.0128 (3)  | 0.60447 (12)  | 0.0333 (6)                  |  |
| 08  | -0.0205 (3) | 0.2707 (3)  | 0.44485 (14)  | 0.0386 (6)                  |  |
| O10 | 0.2485 (3)  | 0.1352 (3)  | 0.32793 (13)  | 0.0378 (6)                  |  |
| C1  | 0.7382 (4)  | 0.6483 (4)  | -0.03698 (18) | 0.0220 (7)                  |  |
| N2  | 0.4809 (4)  | 0.7850 (4)  | 0.19273 (18)  | 0.0449 (8)                  |  |
| C3  | 1.0864 (4)  | 0.7590 (4)  | 0.04339 (19)  | 0.0256 (7)                  |  |
| N1  | 0.2327 (5)  | 0.6858 (4)  | 0.25088 (17)  | 0.0476 (9)                  |  |
| C5  | 0.2322 (4)  | 0.0782 (4)  | 0.56465 (18)  | 0.0246 (7)                  |  |
| O12 | 0.0083 (5)  | 0.1154 (5)  | 0.23115 (18)  | 0.0715 (10)                 |  |
| C9  | 0.3888 (4)  | 0.2120 (4)  | 0.29812 (18)  | 0.0259 (7)                  |  |
| C7  | -0.1375 (4) | 0.2826 (4)  | 0.4983 (2)    | 0.0317 (8)                  |  |
| C2  | 0.5825 (4)  | 0.7351 (4)  | -0.0578 (2)   | 0.0310 (8)                  |  |
| H2A | 0.6105      | 0.7943      | -0.1090       | 0.046*                      |  |
| H2B | 0.5461      | 0.8161      | -0.0258       | 0.046*                      |  |
| H2C | 0.4896      | 0.6514      | -0.0520       | 0.046*                      |  |
| C4  | 1.1405 (5)  | 0.9151 (4)  | 0.0676 (2)    | 0.0367 (9)                  |  |
| H4A | 1.2383      | 0.9718      | 0.0315        | 0.055*                      |  |
| H4B | 1.1735      | 0.8834      | 0.1156        | 0.055*                      |  |
| H4C | 1.0447      | 0.9913      | 0.0713        | 0.055*                      |  |
| C6  | 0.3746 (5)  | 0.1154 (5)  | 0.6017 (2)    | 0.0392 (9)                  |  |
| H6A | 0.4806      | 0.0680      | 0.5794        | 0.059*                      |  |

| H6B  | 0.3451      | 0.0651      | 0.6541      | 0.059*      |
|------|-------------|-------------|-------------|-------------|
| H6C  | 0.3911      | 0.2375      | 0.5960      | 0.059*      |
| C10  | 0.4686 (5)  | 0.3206 (5)  | 0.3413 (2)  | 0.0465 (10) |
| H10A | 0.5846      | 0.3585      | 0.3149      | 0.070*      |
| H10B | 0.4743      | 0.2547      | 0.3899      | 0.070*      |
| H10C | 0.3985      | 0.4186      | 0.3471      | 0.070*      |
| C12  | 0.4448 (6)  | 0.6441 (5)  | 0.1662 (2)  | 0.0482 (10) |
| H12  | 0.5179      | 0.5991      | 0.1290      | 0.058*      |
| C13  | 0.2902 (6)  | 0.5817 (5)  | 0.2016 (2)  | 0.0490 (10) |
| H13  | 0.2315      | 0.4858      | 0.1944      | 0.059*      |
| C11  | 0.3486 (5)  | 0.8073 (5)  | 0.2436 (2)  | 0.0471 (10) |
| H11  | 0.3385      | 0.8960      | 0.2705      | 0.056*      |
| C8   | -0.2333 (5) | 0.4447 (5)  | 0.4944 (2)  | 0.0477 (10) |
| H8A  | -0.3362     | 0.4323      | 0.4742      | 0.072*      |
| H8B  | -0.1591     | 0.5367      | 0.4627      | 0.072*      |
| H8C  | -0.2665     | 0.4698      | 0.5438      | 0.072*      |
| C16  | 0.6413 (5)  | 0.8940 (6)  | 0.1651 (3)  | 0.0675 (14) |
| H16A | 0.6340      | 0.9661      | 0.1180      | 0.101*      |
| H16B | 0.7406      | 0.8228      | 0.1584      | 0.101*      |
| H16C | 0.6539      | 0.9644      | 0.2008      | 0.101*      |
| C14  | 0.0722 (6)  | 0.6606 (8)  | 0.3061 (3)  | 0.0893 (19) |
| H14A | 0.0901      | 0.5741      | 0.3483      | 0.107*      |
| H14B | 0.0479      | 0.7670      | 0.3242      | 0.107*      |
| C15  | -0.0685 (7) | 0.6127 (11) | 0.2825 (3)  | 0.140 (4)   |
| H15A | -0.0972     | 0.7036      | 0.2451      | 0.209*      |
| H15B | -0.1654     | 0.5886      | 0.3242      | 0.209*      |
| H15C | -0.0442     | 0.5115      | 0.2615      | 0.209*      |
| H5B  | 0.678 (3)   | 0.307 (5)   | 0.202 (2)   | 0.062 (14)* |
| H1O  | -0.052 (5)  | 0.106 (6)   | 0.2779 (14) | 0.074*      |
| H2O  | 0.090 (4)   | 0.146 (6)   | 0.251 (2)   | 0.074*      |
|      |             |             |             |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|-------------|-------------|-------------|---------------|---------------|---------------|
| Cu1 | 0.0164 (2)  | 0.0196 (2)  | 0.0217 (2)  | -0.00175 (15) | -0.00105 (16) | -0.00408 (16) |
| Cu2 | 0.0196 (2)  | 0.0277 (2)  | 0.0207 (2)  | -0.00132 (16) | 0.00128 (16)  | -0.00271 (17) |
| 01  | 0.0197 (12) | 0.0294 (12) | 0.0302 (13) | 0.0025 (9)    | -0.0013 (10)  | -0.0033 (10)  |
| O2  | 0.0187 (12) | 0.0347 (13) | 0.0275 (13) | 0.0010 (10)   | -0.0030 (10)  | -0.0025 (10)  |
| O3  | 0.0368 (14) | 0.0260 (12) | 0.0329 (14) | -0.0069 (10)  | -0.0032 (11)  | -0.0115 (10)  |
| O4  | 0.0296 (13) | 0.0234 (12) | 0.0345 (14) | -0.0046 (10)  | -0.0049 (11)  | -0.0088 (10)  |
| 011 | 0.0304 (13) | 0.0434 (15) | 0.0287 (14) | -0.0085 (11)  | 0.0083 (11)   | -0.0109 (11)  |
| 06  | 0.0279 (13) | 0.0488 (16) | 0.0276 (14) | -0.0085 (11)  | -0.0039 (11)  | -0.0026 (11)  |
| O5  | 0.0292 (14) | 0.0439 (16) | 0.0265 (14) | -0.0061 (12)  | 0.0031 (11)   | 0.0011 (11)   |
| 09  | 0.0312 (14) | 0.0347 (14) | 0.0415 (16) | 0.0082 (11)   | 0.0008 (12)   | -0.0087 (12)  |
| O7  | 0.0253 (13) | 0.0492 (16) | 0.0243 (13) | -0.0052 (11)  | -0.0029 (10)  | -0.0063 (11)  |
| 08  | 0.0412 (15) | 0.0295 (14) | 0.0399 (16) | 0.0062 (11)   | 0.0000 (12)   | -0.0020 (11)  |
| O10 | 0.0242 (13) | 0.0605 (17) | 0.0232 (13) | -0.0128 (12)  | 0.0036 (10)   | -0.0027 (12)  |
| C1  | 0.0207 (16) | 0.0183 (16) | 0.0291 (18) | -0.0031 (12)  | -0.0061 (14)  | -0.0085 (13)  |
|     |             |             |             |               |               |               |

Acta Cryst. (2018). E74, 981-986

## electronic reprint

| N2  | 0.045 (2)   | 0.049 (2)   | 0.046 (2)   | 0.0203 (16)  | -0.0117 (16) | -0.0194 (17) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C3  | 0.0210 (17) | 0.0214 (17) | 0.039 (2)   | 0.0035 (13)  | -0.0130 (15) | -0.0093 (15) |
| N1  | 0.056 (2)   | 0.053 (2)   | 0.035 (2)   | 0.0090 (17)  | 0.0004 (16)  | -0.0206 (16) |
| C5  | 0.0262 (18) | 0.0208 (16) | 0.0271 (19) | 0.0037 (13)  | -0.0051 (14) | -0.0056 (13) |
| 012 | 0.087 (3)   | 0.080 (2)   | 0.057 (2)   | 0.012 (2)    | -0.0423 (19) | -0.0094 (19) |
| C9  | 0.0269 (18) | 0.0246 (17) | 0.0231 (18) | 0.0011 (14)  | -0.0010 (15) | -0.0006 (14) |
| C7  | 0.0274 (19) | 0.0299 (19) | 0.040 (2)   | 0.0013 (15)  | -0.0101 (16) | -0.0091 (16) |
| C2  | 0.0200 (17) | 0.0293 (18) | 0.043 (2)   | 0.0009 (14)  | -0.0094 (15) | -0.0026 (16) |
| C4  | 0.040 (2)   | 0.0249 (18) | 0.051 (2)   | -0.0036 (16) | -0.0151 (19) | -0.0178 (17) |
| C6  | 0.030 (2)   | 0.050(2)    | 0.041 (2)   | 0.0032 (17)  | -0.0139 (17) | -0.0107 (18) |
| C10 | 0.057 (3)   | 0.045 (2)   | 0.033 (2)   | -0.021 (2)   | 0.0052 (19)  | -0.0097 (18) |
| C12 | 0.060 (3)   | 0.047 (2)   | 0.044 (3)   | 0.027 (2)    | -0.013 (2)   | -0.022 (2)   |
| C13 | 0.067 (3)   | 0.043 (2)   | 0.041 (2)   | 0.016 (2)    | -0.009 (2)   | -0.0196 (19) |
| C11 | 0.049 (2)   | 0.051 (3)   | 0.048 (3)   | 0.0108 (19)  | -0.012 (2)   | -0.025 (2)   |
| C8  | 0.048 (3)   | 0.034 (2)   | 0.062 (3)   | 0.0153 (18)  | -0.009 (2)   | -0.0132 (19) |
| C16 | 0.040 (3)   | 0.059 (3)   | 0.110 (4)   | 0.009 (2)    | -0.012 (3)   | -0.032 (3)   |
| C14 | 0.067 (3)   | 0.121 (5)   | 0.079 (4)   | -0.023 (3)   | 0.024 (3)    | -0.055 (4)   |
| C15 | 0.068 (4)   | 0.289 (11)  | 0.072 (4)   | -0.041 (5)   | 0.008 (3)    | -0.082 (6)   |
|     |             |             |             |              |              |              |

## Geometric parameters (Å, °)

| Cu1—O3                | 1.967 (2)  | N1—C14   | 1.473 (5)  |  |
|-----------------------|------------|----------|------------|--|
| Cu1—O1                | 1.968 (2)  | C5—C6    | 1.499 (4)  |  |
| Cu1—O4 <sup>i</sup>   | 1.970 (2)  | O12—H1O  | 0.910 (18) |  |
| Cu1—O2 <sup>i</sup>   | 1.984 (2)  | O12—H2O  | 0.874 (19) |  |
| Cu1—O5                | 2.142 (2)  | C9—C10   | 1.520 (5)  |  |
| Cu1—Cu1 <sup>i</sup>  | 2.6469 (7) | C7—C8    | 1.513 (5)  |  |
| Cu2—O8                | 1.967 (2)  | C2—H2A   | 0.9800     |  |
| Cu2—O6                | 1.968 (2)  | C2—H2B   | 0.9800     |  |
| Cu2—O9 <sup>ii</sup>  | 1.978 (2)  | C2—H2C   | 0.9800     |  |
| Cu2—O7 <sup>ii</sup>  | 1.978 (2)  | C4—H4A   | 0.9800     |  |
| Cu2—O10               | 2.121 (2)  | C4—H4B   | 0.9800     |  |
| Cu2—Cu2 <sup>ii</sup> | 2.6592 (8) | C4—H4C   | 0.9800     |  |
| 01—C1                 | 1.266 (4)  | C6—H6A   | 0.9800     |  |
| O2—C1                 | 1.263 (4)  | C6—H6B   | 0.9800     |  |
| O2—Cu1 <sup>i</sup>   | 1.984 (2)  | С6—Н6С   | 0.9800     |  |
| O3—C3                 | 1.258 (4)  | C10—H10A | 0.9800     |  |
| O4—C3                 | 1.263 (4)  | C10—H10B | 0.9800     |  |
| O4—Cu1 <sup>i</sup>   | 1.970 (2)  | C10—H10C | 0.9800     |  |
| О11—С9                | 1.242 (4)  | C12—C13  | 1.331 (6)  |  |
| O6—C5                 | 1.248 (4)  | C12—H12  | 0.9500     |  |
| O5—H5                 | 0.8400     | C13—H13  | 0.9500     |  |
| O5—H5B                | 0.878 (18) | C11—H11  | 0.9500     |  |
| O9—C7                 | 1.253 (4)  | C8—H8A   | 0.9800     |  |
| O9—Cu2 <sup>ii</sup>  | 1.978 (2)  | C8—H8B   | 0.9800     |  |
| O7—C5                 | 1.259 (4)  | C8—H8C   | 0.9800     |  |
| O7—Cu2 <sup>ii</sup>  | 1.978 (2)  | C16—H16A | 0.9800     |  |
| O8—C7                 | 1.253 (4)  | C16—H16B | 0.9800     |  |
|                       |            |          |            |  |

| О10—С9                                  | 1.256 (4)   | C16—H16C      | 0.9800    |
|-----------------------------------------|-------------|---------------|-----------|
| C1—C2                                   | 1.504 (4)   | C14—C15       | 1.363 (6) |
| N2—C11                                  | 1.319 (5)   | C14—H14A      | 0.9900    |
| N2—C12                                  | 1.381 (5)   | C14—H14B      | 0.9900    |
| N2—C16                                  | 1.501 (5)   | С15—Н15А      | 0.9800    |
| C3—C4                                   | 1.511 (4)   | С15—Н15В      | 0.9800    |
| N1—C11                                  | 1.318 (5)   | С15—Н15С      | 0.9800    |
| N1—C13                                  | 1.385 (5)   |               |           |
|                                         |             |               |           |
| O3—Cu1—O1                               | 88.30 (10)  | O8—C7—O9      | 125.6 (3) |
| $O3$ — $Cu1$ — $O4^i$                   | 168.28 (10) | O8—C7—C8      | 117.4 (3) |
| O1—Cu1—O4 <sup>i</sup>                  | 90.23 (9)   | O9—C7—C8      | 117.0 (3) |
| $O3$ — $Cu1$ — $O2^i$                   | 88.82 (10)  | C1—C2—H2A     | 109.5     |
| O1—Cu1—O2 <sup>i</sup>                  | 168.07 (9)  | C1—C2—H2B     | 109.5     |
| $O4^{i}$ — $Cu1$ — $O2^{i}$             | 90.24 (9)   | H2A—C2—H2B    | 109.5     |
| O3—Cu1—O5                               | 94.73 (10)  | C1—C2—H2C     | 109.5     |
| 01—Cu1—O5                               | 99.95 (9)   | H2A—C2—H2C    | 109.5     |
| O4 <sup>i</sup> —Cu1—O5                 | 96.98 (10)  | H2B—C2—H2C    | 109.5     |
| O2 <sup>i</sup> —Cu1—O5                 | 91.83 (9)   | C3—C4—H4A     | 109.5     |
| O3—Cu1—Cu1 <sup>i</sup>                 | 85.55 (7)   | C3—C4—H4B     | 109.5     |
| O1—Cu1—Cu1 <sup>i</sup>                 | 83.63 (7)   | H4A—C4—H4B    | 109.5     |
| $O4^{i}$ —Cu1—Cu1 <sup>i</sup>          | 82.74 (7)   | C3—C4—H4C     | 109.5     |
| O2 <sup>i</sup> —Cu1—Cu1 <sup>i</sup>   | 84.60 (7)   | H4A—C4—H4C    | 109.5     |
| O5—Cu1—Cu1 <sup>i</sup>                 | 176.41 (7)  | H4B—C4—H4C    | 109.5     |
| O8—Cu2—O6                               | 91.32 (11)  | С5—С6—Н6А     | 109.5     |
| O8—Cu2—O9 <sup>ii</sup>                 | 167.41 (10) | С5—С6—Н6В     | 109.5     |
| O6—Cu2—O9 <sup>ii</sup>                 | 88.28 (10)  | H6A—C6—H6B    | 109.5     |
| 08—Cu2—O7 <sup>ii</sup>                 | 87.89 (10)  | С5—С6—Н6С     | 109.5     |
| O6—Cu2—O7 <sup>ii</sup>                 | 167.25 (10) | H6A—C6—H6C    | 109.5     |
| O9 <sup>ii</sup> —Cu2—O7 <sup>ii</sup>  | 89.73 (10)  | H6B—C6—H6C    | 109.5     |
| O8—Cu2—O10                              | 99.52 (10)  | C9—C10—H10A   | 109.5     |
| O6—Cu2—O10                              | 101.45 (9)  | C9—C10—H10B   | 109.5     |
| O9 <sup>ii</sup> —Cu2—O10               | 92.89 (10)  | H10A—C10—H10B | 109.5     |
| O7 <sup>ii</sup> —Cu2—O10               | 91.22 (9)   | C9—C10—H10C   | 109.5     |
| O8—Cu2—Cu2 <sup>ii</sup>                | 84.34 (7)   | H10A—C10—H10C | 109.5     |
| O6—Cu2—Cu2 <sup>ii</sup>                | 83.49 (7)   | H10B-C10-H10C | 109.5     |
| O9 <sup>ii</sup> —Cu2—Cu2 <sup>ii</sup> | 83.11 (7)   | C13—C12—N2    | 108.5 (4) |
| O7 <sup>ii</sup> —Cu2—Cu2 <sup>ii</sup> | 83.77 (7)   | C13—C12—H12   | 125.8     |
| O10—Cu2—Cu2 <sup>ii</sup>               | 173.59 (7)  | N2—C12—H12    | 125.8     |
| C1—O1—Cu1                               | 124.3 (2)   | C12—C13—N1    | 105.6 (4) |
| C1—O2—Cu1 <sup>i</sup>                  | 122.4 (2)   | С12—С13—Н13   | 127.2     |
| C3—O3—Cu1                               | 121.4 (2)   | N1—C13—H13    | 127.2     |
| C3—O4—Cu1 <sup>i</sup>                  | 124.4 (2)   | N1—C11—N2     | 108.6 (4) |
| C5—O6—Cu2                               | 124.5 (2)   | N1-C11-H11    | 125.7     |
| Cu1—O5—H5                               | 109.5       | N2-C11-H11    | 125.7     |
| Cu1—O5—H5B                              | 142 (3)     | С7—С8—Н8А     | 109.5     |
| H5—O5—H5B                               | 100.1       | С7—С8—Н8В     | 109.5     |
| C7—O9—Cu2 <sup>ii</sup>                 | 123.8 (2)   | H8A—C8—H8B    | 109.5     |

| C5—O7—Cu2 <sup>ii</sup> | 123.4 (2) | С7—С8—Н8С     | 109.5     |
|-------------------------|-----------|---------------|-----------|
| C7—O8—Cu2               | 122.9 (2) | H8A—C8—H8C    | 109.5     |
| C9—O10—Cu2              | 137.9 (2) | H8B—C8—H8C    | 109.5     |
| O2—C1—O1                | 125.0 (3) | N2-C16-H16A   | 109.5     |
| O2—C1—C2                | 117.5 (3) | N2-C16-H16B   | 109.5     |
| O1—C1—C2                | 117.5 (3) | H16A—C16—H16B | 109.5     |
| C11—N2—C12              | 107.8 (4) | N2—C16—H16C   | 109.5     |
| C11—N2—C16              | 127.5 (4) | H16A—C16—H16C | 109.5     |
| C12—N2—C16              | 124.7 (4) | H16B—C16—H16C | 109.5     |
| O3—C3—O4                | 125.9 (3) | C15—C14—N1    | 115.7 (5) |
| O3—C3—C4                | 117.1 (3) | C15—C14—H14A  | 108.3     |
| O4—C3—C4                | 117.0 (3) | N1—C14—H14A   | 108.3     |
| C11—N1—C13              | 109.4 (4) | C15—C14—H14B  | 108.3     |
| C11—N1—C14              | 124.7 (4) | N1—C14—H14B   | 108.3     |
| C13—N1—C14              | 125.7 (4) | H14A—C14—H14B | 107.4     |
| O6—C5—O7                | 124.8 (3) | C14—C15—H15A  | 109.5     |
| O6—C5—C6                | 117.2 (3) | C14—C15—H15B  | 109.5     |
| O7—C5—C6                | 118.0 (3) | H15A—C15—H15B | 109.5     |
| H10—012—H2O             | 82 (3)    | C14—C15—H15C  | 109.5     |
| O11—C9—O10              | 122.7 (3) | H15A—C15—H15C | 109.5     |
| O11—C9—C10              | 119.0 (3) | H15B—C15—H15C | 109.5     |
| O10—C9—C10              | 118.3 (3) |               |           |
|                         |           |               |           |

Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x, -y, -z+1.

## *Hydrogen-bond geometry (Å, °)*

| D—H···A                                | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|----------------------------------------|-------------|--------------|--------------|---------|
| 012—H2 <i>O</i> ···O10                 | 0.84 (2)    | 2.14 (3)     | 2.912 (4)    | 152 (4) |
| O5—H5 <i>B</i> …O11                    | 0.85 (2)    | 1.86 (2)     | 2.695 (3)    | 171 (4) |
| C14—H14 <i>B</i> ····O7 <sup>iii</sup> | 0.99        | 2.57         | 3.530(6)     | 162     |
| C16—H16C····O11 <sup>iv</sup>          | 0.98        | 2.56         | 3.239 (5)    | 126     |
| C16—H16 <i>B</i> ···O3                 | 0.98        | 2.65         | 3.598 (5)    | 162     |
| C11—H11…O10 <sup>iv</sup>              | 0.95        | 2.44         | 3.365 (4)    | 166     |
| C11—H11…O11 <sup>iv</sup>              | 0.95        | 2.59         | 3.291 (4)    | 131     |
| C12—H12…O1                             | 0.95        | 2.30         | 3.224 (4)    | 163     |
| C10—H10 <i>B</i> ···O6                 | 0.98        | 2.47         | 3.241 (4)    | 136     |
| $C2-H2C\cdotsO1^{v}$                   | 0.98        | 2.40         | 3.371 (3)    | 173     |
| C2—H2A…O11 <sup>v</sup>                | 0.98        | 2.58         | 3.387 (4)    | 140     |
| O5—H5…O12 <sup>vi</sup>                | 0.84        | 1.96         | 2.789 (4)    | 170     |

Symmetry codes: (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*, *y*+1, *z*; (v) -*x*+1, -*y*+1, -*z*; (vi) *x*+1, *y*, *z*.