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Abstract: The quality of modern measuring instruments has a strong influence on the speed of
diagnosing diseases of the human musculoskeletal system. The research is focused on automatization
of the method of gait analysis. The study involved six healthy subjects. The subjects walk straight.
Each subject made several gait types: casual walking and imitation of a non-standard gait, including
shuffling, lameness, clubfoot, walking from the heel, rolling from heel to toe, walking with hands in
pockets, and catwalk. Each type of gait was recorded three times. For video fixation, the Vicon Nexus
system was used. A total of 27 reflective markers were placed on the special anatomical regions. The
goniometry methods were used. The walk data were divided by steps and by step phases. Kinematic
parameters for estimation were formulated and calculated. An approach for data clusterization is
presented. For this purpose, angle data were interpolated and the interpolation coefficients were
used for clustering the data. The data were processed and four cluster groups were found. Typical
angulograms for cluster groups were presented. For each group, average angles were calculated. A
statistically significant difference was found between received cluster groups.

Keywords: gait; step phases; clustering high-dimensional data; Vicon; machine learning

1. Introduction

Today, there are many reasons why a person’s motor functions are impaired, in
particular, a normal gait worsens. Such diseases include blood stroke after which one side
of the body is partially or completely paralyzed. Disabled persons with spinal cord injury
in various regions, patients with scoliosis, osteochondrosis, hemiparesis (unilateral paresis)
of cerebral genesis [1,2], etc. have similar problems. Infantile cerebral palsy also influences
movement disorders. Gait features depend on the physiological characteristics of a person,
age, and mental state [3,4]. Gait analysis is an important clinical tool for planning clinical
treatments. It is being actively introduced into the sport industry to predict injury.

There are various studies in this field. Locomotion research is important for a patient’s
diagnosis. D. Kaplun et al. [5] describe an automatic orientation algorithm based on the
alignment of the virtual anatomical axis of the lower leg of a 3D model with the vertical axis
of rectangular coordinates in a three-dimensional space. The accuracy of the orientation of
the stump greatly influences the patient’s locomotion. A digital twin was obtained with
the 3D. The spatial orientation of the model was determined by the angles between the
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projections of the anatomical axis on the plane of the Cartesian coordinate system. To rotate
a digital 3D model, a set of transformations was used following the approach of rotation
matrices. In 3D space, rotation around the Z axis is described by a matrix transformation.
The development shows that the use of a 3D model simplifies and speeds up the process of
solving physiological problems.

M. Baltin et al. [6] studied changes in the range of motion of the hind limbs of rats
induced by epidural stimulation in the acute phase of SCI and recovery of movements was
assessed. A kinematic analysis of complete stepping cycles was performed for animals
of each group. Vicon Nexus 2.5 software was used to manually complete the 3D motion
model and remove artifacts from the recording. In each group of test rats, the data of the
average values of 30 steps in the angles in the phases of one step were researched. For each
group of test rats, the average angles (beyond 30 steps) for each step phase were researched.
The data were obtained in the form of angulograms. This approach is convenient for
visualizing the change of the values of the angles in the phases of the step, as well as for
further statistical analysis.

Research by Hiroaki Hobara et al. [7] investigates the movement of a person with
prostheses upstairs. The study was carried out using an eight-camera motion analysis
system (VICON 512, Oxford Metrics, Oxford, UK). Kinematic parameters such as the angle
at the hip and knee (and their swing average flexion rate) were calculated. During the
swing, the average flexion rate of the hip and knee was found. Changes in angles in the
step phases were analyzed. Research by A. Gawłowska et al. [8] similarly describes a
person’s upper body movement using different sets of prostheses. To obtain kinematic data,
a motion capture system OptiTrack Flex 13 (NaturalPoint, Corvallis, OR, USA) was used.
Average movement speed and average vertical ground reaction force were also calculated.
Present-day practice is more focused on angles benchmarking. It can be not only joint
angles but, e.g., abduction and adduction or flexion and extension [9,10]. These studies
illustrate motion capture system benefits and provide numerical results from experiments.
However, an urgent task is to obtain a technique that helps to decrease the time of diseases
diagnosis, as well as to adjust the applied therapy, depending on the current state of the
patient [11,12].

Considering clusterization approaches, the proposed method allows taking into ac-
count the form of angle time series. Thus, the most common approach is to use peaks of
angle functions [13] or even average values [14] for clusterization. There are more compli-
cated methods to form data for clusterization [15], but that involves manual processing or
questions the accuracy of automatic processing. The proposed parameters describe change
range (in different part of gait phase) of some kinematic parameter (e.g., peaks). Such
description is rather sketchy and does not take into account the curve form of kinematic
parameter time-series. The proposed approach offers a solution. Obviously, the method
or/and the order of approximation influence the quality of the following data processing,
and this topic should also be investigated.

Therefore, in most articles, the researchers aim to analyze time-series of measured
data and piecewise linear (usually constant) functions used for clusterization. The research
is focused on convolution of the time-series data to parameters vector using higher order
polynomial interpolation. Such technique allows obtaining the classification of patients by
kinematic parameters, and the approach allows segregate patients in cluster groups for the
following diagnostics.

2. Materials and Methods
2.1. Experiment Design

Optoelectronic motion capture is widely used in biomechanics. Vicon is a system
consisting of several Vicon Vero 2.2 digital infrared cameras (Vicon Motion Systems, Oxford,
UK) with adjustable lenses and focus, and elaborated software for primary data processing
and visualization Vicon Nexus 2.9.3. The scheme of cameras mounting is shown in Figure 1.
Angle orientation is set by two angles a1 and a2 and shown in Figure 1. The field of view
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of Vicon Vero 2.2 digital infrared cameras was 50.1◦ × 98.1◦ (FoV1 and FoV2 in Figure 1
respectively). In Figure 1, the area covered by cameras is marked by the gray area.
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Figure 1. Arrangement of cameras on the working area.

Calibration and synchronization were carried out using the Active Wand calibration
marker (Vicon Motion Systems, Oxford, UK). The standard video was obtained through a
Sony camera. Kinematic data were collected at a sampling rate of 100 Hz and transferred
to a personal computer using Vicon Nexus 2.9.3 software. The walkway was about 4 m.

The study involved six healthy subjects: 3 men and 3 women aged 20–26 years (mean
age 24.16 years; SD 1.83), mean height 1.73 m (SD 0.07), and mean weight 69.5 kg (SD 14.6).
The study protocol was approved by the Local Ethics Committee of the Federal State
Autonomous Educational Institution of Higher Education KFU (protocol No. 12 dated
18 September 2018). All subjects were in socks and thin, tight clothing. A total of 27 reflec-
tive markers (14 mm diameter sphere) were placed on the following anatomical regions:
calcaneus, toe, first metatarsal head, outer lateral malleolus, inner medial malleolus, tibia,
outer or inner knee, femur, pelvic bones, and ilium. Markers’ location scheme is shown in
Figure 2.

To increase the number of observations, the subjects performed different types of gait.
The subjects walked straight. Each subject carried out several gait types: casual walking
(T1), run (T2), and additionally imitation of a non-standard gait, including shuffling (T3),
lameness (T4), clubfoot (T5), walking from the heel (T6), rolling from heel to toe (T7),
walking with hands in pockets (T8), and catwalk (T9). Each type of gait was retested three
times. The subjects did not have any vascular disease, skin problems, or balance limitations.
They did not have operations on their lower limbs or serious injuries. The subjects were
marked by letter F or M (depending on sex) and number. Non-standard gaits were used
by subjects to increase the number of observations. Additionally, it allows to analyze the
deviations in gait parameters in case of simulations.
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The data from the cameras were transferred into Vicon Nexus 2.9.3 software. For the
primary check, 3D reconstruction was used. It allows identifying and removal artifacts in
the record. The following steps were taken: carry out identification for each marker on
the screen; build a skeleton using the created markers; create areas (for example, foot, calf,
thigh, etc.); create links between areas; calibrate this skeleton for each frame; and import a
.c3d file. The created skeleton can be saved and successfully applied to the tracing. Thus,
a three-dimensional array of x, y, z coordinates was obtained. It is possible to restore the
trajectory of markers in case of their loss [16–19].

2.2. Data Processing

The input data are presented in the following structure:

{ti, mi1(xi1, yi1, zi1), . . . , min(xin, yin, zin)}, i = (1, m), (1)

where ti—time data, mi—marker data, xi, yi, zi—marker coordinates, m—number of frames,
and n—number of markers.

The X and Y axes were placed in the horizontal plane. The Z-axis was normal to the
plane X-Y. The subject moved in the X-Z plane. The data were used to assess joint angle
estimation [20].

The algorithm performing the following operations:

(1) Reading a file in .c3d format;
(2) Data visualization;
(3) Dividing the entire dataset into steps (touching the toe of the floor was step completing

criteria);
(4) Assignment the stance phase and the swing phase at each step by searching for the

local minimum of the heel movement trajectory [21].

The output of the aforementioned algorithm is an indices array, which allows dividing
the data into steps and step phases. The developed software makes it possible to calculate
the stride length, maximum and average height, and swing around the movement. These
operations were calculated using a local minimum in projection onto each of the three
orthogonal planes. Vectors constituting the required angles can be found by equations:

AB = B− A
BC = C− B
CD = D− C
DE = E− D
EF = F− E
FG = G− F

(2)
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Next, the angles in the hip, knee, and ankle joint at each moment of time can be
calculated according to the equations [6]:

∠ABC = arccos
(

AB·BC
|AB|·|BC|

)
∠CDE = arccos

(
CD·DE
|CD|·|DE|

)
∠EFG = arccos

(
EF·FG
|EF|·|FG|

) (3)

The obtained values of the angles (3), divided by phases, were saved in a file for
further processing. To study the pattern of the movement, the changes in the angles in the
stance phase and the swing phase were approximated by a seventh-degree polynomial
function [22]. In Figure 3, initial data values (blue bubble) and polynomial approximation
of swing and stance phases (orange lines) in knee angle are shown. Figure 4 illustrates
the same but for hip angle. As a result of the operations, approximation coefficients were
found for each record.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 13 
 

 

calculate the stride length, maximum and average height, and swing around the move-
ment. These operations were calculated using a local minimum in projection onto each of 
the three orthogonal planes. Vectors constituting the required angles can be found by 
equations: 

⎩⎪⎨
⎪⎧𝐴𝐵 = 𝐵 − �̅�𝐵𝐶 = �̅� − 𝐵𝐶𝐷 = 𝐷 − �̅�𝐷𝐸 = 𝐸 − 𝐷𝐸𝐹 = 𝐹 − 𝐸𝐹𝐺 = �̅� − 𝐹

 (2)

Next, the angles in the hip, knee, and ankle joint at each moment of time can be 
calculated according to the equations [6]: 

⎩⎪⎪
⎨⎪⎪
⎧∠𝐴𝐵𝐶 = arccos 𝐴𝐵 ⋅ 𝐵𝐶|𝐴𝐵| ⋅ |𝐵𝐶|∠𝐶𝐷𝐸 = arccos 𝐶𝐷 ⋅ 𝐷𝐸|𝐶𝐷| ⋅ |𝐷𝐸|∠𝐸𝐹𝐺 = arccos 𝐸𝐹 ⋅ 𝐹𝐺|𝐸𝐹| ⋅ |𝐹𝐺|

 (3)

The obtained values of the angles (3), divided by phases, were saved in a file for 
further processing. To study the pattern of the movement, the changes in the angles in the 
stance phase and the swing phase were approximated by a seventh-degree polynomial 
function [22]. In Figure 3, initial data values (blue bubble) and polynomial approximation 
of swing and stance phases (orange lines) in knee angle are shown. Figure 4 illustrates the 
same but for hip angle. As a result of the operations, approximation coefficients were 
found for each record. 

  

(a) (b) 

Figure 3. Change in the hip angle in swing phase (a), stance phase (b). Figure 3. Change in the hip angle in swing phase (a), stance phase (b).

Sensors 2022, 22, x FOR PEER REVIEW 6 of 13 
 

 

  

(a) (b) 

Figure 4. Change in the knee angle in swing phase (a), stance phase (b). 

The next step was high-dimensional clustering for received data. As a result of the 
operations, approximation coefficients were found for each record. The main idea is to 
divide all dataset into groups with similar features. For clustering, the k-means method 
was used. The algorithm seeks to minimize the total square-law deviation of cluster 
points from the centers of these clusters. 

‖x − μ ‖ → min,∈  (4)

where k—number of clusters, Si—the full dataset, μi—the cluster center. 
The Euclidean distance was used in Equation (4). To determine the optimal number 

of clusters, the Calinski–Harabasz criterion was applied [23–25]. 
Angle results were averaged for all steps. To estimate deviation in movement, 

standard deviation was used. In this case, the resulting distribution can be presented as 
follows [6]: φ±(τ) = mean φ(τ), N ± std φ(τ), N , (5)

where φ(τ)—angle function, mean (·, k) and std (·, k)—mean and standard deviation of 
function according to steps, Nstep—number of steps. 

To quantify the volume of motion degree, the following equation was used to cal-
culate the range of motion [6]: φ = max φ (τ) − min φ (τ)  (6)

Another parameter for estimating range of motions is the calculation of the triangle 
area. The vertices of triangle are the toe position at the initial moment of time; toe posi-
tion at maximum height; and the hip position at the initial moment of time. The area of a 
triangle can be calculated as half of the vector product: S = 12 max( m⃗ ⋅ k⃗ ) − m⃗ × m⃗ − m⃗  (7)

  

Figure 4. Change in the knee angle in swing phase (a), stance phase (b).



Sensors 2022, 22, 7178 6 of 12

The next step was high-dimensional clustering for received data. As a result of the
operations, approximation coefficients were found for each record. The main idea is to
divide all dataset into groups with similar features. For clustering, the k-means method
was used. The algorithm seeks to minimize the total square-law deviation of cluster points
from the centers of these clusters.

k

∑
i=1

∑
x∈Si
‖x− µi‖2 → min, (4)

where k—number of clusters, Si—the full dataset, µi—the cluster center.
The Euclidean distance was used in Equation (4). To determine the optimal number of

clusters, the Calinski–Harabasz criterion was applied [23–25].
Angle results were averaged for all steps. To estimate deviation in movement, standard

deviation was used. In this case, the resulting distribution can be presented as follows [6]:

ϕ±(τ) = mean
(
ϕ(τ), Nstep

)
± std

(
ϕ(τ), Nstep

)
, (5)

where ϕ(τ)—angle function, mean (·, k) and std (·, k)—mean and standard deviation of
function according to steps, Nstep—number of steps.

To quantify the volume of motion degree, the following equation was used to calculate
the range of motion [6]:

ϕm = max( ϕ+(τ))−min( ϕ−(τ)) (6)

Another parameter for estimating range of motions is the calculation of the triangle
area. The vertices of triangle are the toe position at the initial moment of time; toe position
at maximum height; and the hip position at the initial moment of time. The area of a
triangle can be calculated as half of the vector product:

S =
1
2
‖
(

max(
→
m

X
i ·
→
k i)−

→
m

X
istart
j

)
×
(
→
m

X
istart
j
− →

m
Y
istart
j

)
‖ (7)

2.3. General Pipeline

For further analysis, the code was implemented in MATLAB software. Let us introduce
the general pipeline for data processing (Algorithm 1).

Algorithm 1. Data processing

Input: motion capture data Data
Output: parameter vectors vParam
1. Load Data in structure format according to (1)
2. Data(step)← Divide Data by steps
3. For each step
4. Data(step, phase)← Divide Data by step phases
5. End for
6. For each step and phase
7. Angle(step, phase)← Calculate joint angles by Equations (2) and (3)
8. vParam(step, phase)← Approximate Angle(step, phase)
9. vParam(step, phase)← Calculate volume of motion by Equations (6) and (7)
10. End for

Then, the clusterization (4) was performed for parameter vectors vParam for all datasets.

3. Results and Discussion

For each record of each subject and each gait type, all aforementioned calculations
were carried out (according to Algorithm 1). Then, clusterization by the coefficients of
the approximating polynomials was carried out. As a result of clustering, the dataset was
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divided into 4 groups. Using t-Distributed Stochastic Neighbor Embedding, clusters are
illustrated and shown in Figure 5.
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Therefore, two subjects F1, F2, F3, and M3 had robust results via gait type. Subjects M1
and M2 appear in the 1st and the 4th cluster groups. For each cluster group, numbers of
gait type records were counted. The gait types with maximum records amount for each
cluster group are presented in Table 1. The 1st group consists of run (T2), walking from the
heel (T6), and walking with hands in pockets (T8). Shuffling (T3) and walking with hands
in pockets (T8) were in the 2nd group. Normal walk (T1) and catwalk (T9) were both in
the 4th group. According to the gait type, the 3rd cluster group major consists of running
type (T2).

Table 1. Cluster groups results.

Group
Hip Angle Knee Angle

Subject ID Gait Type ID
Swing, ◦ Stance, ◦ Swing, ◦ Stance, ◦

1 169 ± 2 168 ± 2 153 ± 4 163 ± 4 F1, M1, M2 T2, T6, T8

2 161 ± 3 161 ± 2 150 ± 4 161 ± 5 F2 T3, T8

3 155 ± 5 161 ± 4 139 ± 8 153 ± 5 F3 T2

4 165 ± 4 167 ± 3 147 ± 5 161 ± 4 M1, M2, M3 T1, T9

Average hip angle in the swing phase for group 1 was equal 169◦ ± 2◦, for group
2—161◦ ± 3◦, for group 3—155◦ ± 5◦, for group 4—165◦ ± 4◦. Average value of the hip
angle in the stance phase for group 1 was equal 168◦ ± 2◦, for group 2—161◦ ± 2◦, for
group 3—161◦ ± 4◦, and for group 4—167◦ ± 3◦. Average knee angle in the swing phase
for group 1 was equal 153◦ ± 4◦, for group 2—150◦ ± 4◦, for group 3—139◦ ± 8◦, and
for group 4—147◦ ± 5◦. Average knee angle in the stance phase for group 1 was equal
163◦ ± 4◦, for group 2—161◦ ± 5◦, for group 3—153◦ ± 5◦, for group 4—161◦ ± 4 ◦ (all
data presented in Table 1).

Statistical differences between all groups in the case of the swing phase (p < 0.05) were
shown by paired-samples t-test. For stance phase, partial statistical differences (p < 0.05)
were found. In Figure 6, box plot and pair statistical differences are shown for hip angle in
the swing phase (Figure 6a), hip angle in the stance phase (Figure 6b), knee angle in the
swing phase (Figure 6c), andknee angle in the stance phase (Figure 6d).
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Figure 6. Data distribution in clusters: (a) hip angle value (◦) in the swing phase, (b) hip angle
value (◦) in the stance phase, (c) knee angle value (◦) in the swing phase, (d) knee angle value (◦) in
the stance phase; significantly difference pairs are marked by *, outliers marked by +.

It should be noted that the average angles in the swing phase change in proportion
to the average angles in the stance phase for the hip and knee angles. This information,
together with the results of the paired-samples t-test, makes it possible to conclude about
the veracity of the distribution into groups. The stance phase takes about 60% of the stride
cycle, which helps to align the body. Perhaps, for this reason, there is no statistical difference
between some groups in the stance phase.

In Figure 7, hip and knee angle results are presented. Here, the thick line—mean
values of angle, dashed line area—standard deviation (function ϕ ± (τ) in Equation (5)) of
an angle [23–25]. The change in the hip angle in the swing phase (Figure 7a), and in stance
phase (Figure 7b), the change in the knee angle in the swing phase (Figure 7c) and in stance
phase (Figure 7d) are shown. Curves have different colors: group 1 is highlighted in red;
group 2—blue; group 3—black; group 4—green. All curves in each of the four images are
located to a greater degree in the same order.

Figure 8 shows the position of the right leg markers for one step in each frame. The
blue line is the trajectory of the ankle movement. Red lines enclose a triangle describing
the subject’s range of motion (7). This method of assessing movement can be used as an
additional criterion for the distribution of subjects into clusters.
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After applying the approach described above, clustered groups of gaits were found.
Therefore, classification can be used to allocate new data of subjects to existing groups. This
will speed up the process of identifying health deviations of new test subjects in future.

Currently, there are new techniques for motion capture and analysis of the kinematics
of the movement of an object [26–28]. Each researcher strives to make his concept more
optimal, easier to use, and cheaper. Therefore, the use of 2D technologies such as video
cameras [29,30] is being actively introduced. On one hand, it is easier and cheaper, but
still there is no protocol for such measurements [28]. That leads to different number of
data deviation and questions the received results. Of course, general information such as
body position and orientation can be found by 2D technologies. In contrast, 3D analysis
equipment such as Vicon transmits the most accurate marker position. Placing the markers
on anatomical positions allows to calculate joint angles more accurately. Moreover, while
using video, it is possible to calculate only a plane angle, in contrast to using Vicon. When
it comes to tracking the dynamics of a patient’s condition and adjusting his therapy, it is
necessary to obtain results of high accuracy.

Other studies [31,32] have shown the possibility of preventing a patient from falling
through real-time gait analysis. The proposed method was evaluated by recording the
normal gait and simulating the pathological gait of the subjects. To determine the phases of
the step, it was proposed to use pressure sensors installed in the shoe linings. This solution
allows to simultaneously determine all phases of the gait and the distribution of the load on
the feet, which is important when assessing gait discoordination. This technique provides
a minimum level of discomfort for the object, since there are no direct contacts between
the sensor surface and the human body in the system. The patient can use this measuring
equipment all the time, which means continuous monitoring is possible.

Conducting research in the field of kinematic analysis of motion is possible using
various devices and techniques. Each of them has its advantages and disadvantages;
however, some of them are more applicable in a particular clinical case. Combination of
video fixation and feet pressure sensor is optimal for full-scale research, but it limits by
laboratory capabilities. Researchers should emphasize data processing taking into account
not only the physics of measurement equipment but mathematical formalism.

Comparing to other studies, it can be noticed that there is dispersion in patterns.
It can be explained by common limitations. Not only clusterization methods [14] but
input variables greatly influence the results. Usually easily measured parameters (velocity,
cadence, stride length, etc.) are used [13]. Of course, directly increasing the number of
parameters can solve the problem. On one hand, dependent variables can appear; on the
other hand, it can reduce robustness. Such problems can be solved by dimensionality
reduction methods [14], but still there is no general solution. As for clinic practice, there
are also obstacles. Direct correlation between clusters groups (received by gait data)
and injuries or diseases does not always appear [15,33]. Studies offer ways to meet the
challenges: increase data, increase number of gait phases, etc. Nonetheless, gait parameters
for clustering are a priori selected, and usually describe time series in terms of constants
peaks, excursions, ranges, etc.) [34,35].

Regarding the proposed approach, the time series form was used for clusterization.
We cannot be sure of the stability of the received groups and do not pretend that they will be
the same in case of data augmentation. The research was focused on method and software
development. Conducted research shows results which can be used in the future. However,
more importantly, the paper brought up a point of methods for processing time-series
for clusterization. Focused on interpolation results, a case with minimal deviation from
interpolation (see Figure 4a,b) and a case with deviations (see Figure 3b) were found. We can
only question, how does it influence the final clusterization results? Herewith, two obvious
solutions can be pointed out: applying more complicated functions for interpolation (e.g.,
non-uniform rational B-spline) or using methods of topological data analysis.
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4. Conclusions

This article provides a detailed description of the methodology for distributing data
into groups with different characteristics. It can be helpful to speed up diagnosis of the
patient’s disease and start the treatment in the shortest possible time. Undoubtedly, this
technique can be applied to all patients with musculoskeletal system problems. Moreover,
the results obtained indicate the possibility of using the technique for prosthetics to monitor
the progress of rehabilitation and adjust the treatment method. An approach for data
clusterization was presented. For this purpose, angle data were interpolated and the
interpolation coefficients were used for clustering the data. The data were processed and
four cluster groups were found. Typical angulograms for cluster groups were presented.

The proposed method has obvious limitations involving the degree of approximation.
The noisy input data can influence polynomial vector and consequently clustering results.
To improve the robustness of the method, it is planned to try topological data analysis.
Despite the limitations, the proposed method allows to get objective results.
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