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Abstract
Rickart C∗-algebras are unital and satisfy polar decomposition. We proved that if a
unital C∗-algebra A satisfies polar decomposition and admits “good” faithful tracial
states thenA is a RickartC∗-algebra. Via polar decompositionwe characterized tracial
states among all states on aRickartC∗-algebra.Wepresented the triangle inequality for
Hermitian elements and traces on Rickart C∗-algebra. For a block projection operator
and a trace on a Rickart C∗-algebra we proved a new inequality. As a corollary, we
obtain a sharp estimate for a trace of the commutator of any Hermitian element and a
projection. Also we give a characterization of traces in a wide class of weights on a
von Neumann algebra.
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1 Introduction

Dimension functions and traces on C∗-algebras are fundamental tools in the opera-
tor theory and its applications. Therefore, they have been actively studied in recent
decades, see [26,27,35,41,46,50,51]. Here we study traces on Rickart C∗-algebras.
A Rickart C∗-algebra is a C∗-algebra within which the right annihilator of any ele-
ment equals the principal right ideal generated by some projection. These algebras
were introduced by Rickart [49] and were named ℵ1-AW*-algebras by Kaplansky
[45]. Today Rickart C∗-algebras and their Jordan counterparts are actively studied
objects, see [2,4,6,7,30,39,40,47,52], and [57]. In Rickart C∗-algebras left projecti-
ons are equivalent to right projections [1]. These algebras are unital and satisfy polar
decomposition ( [3, Corollary 3.5], [38, Corollary 7.4]). Recall that a C∗-algebra A
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satisfies polar decomposition [8], if for any X ∈ A, there exists a partial isometry
U such that X = U |X |. Here we prove that if a unital C∗-algebra A satisfies polar
decomposition and admits “good” faithful tracial states thenA is a RickartC∗-algebra
(Theorem 3.11). Polar decomposition allows us to characterize tracial states among
all states on a Rickart C∗-algebra A by the inequality ϕ(U PU∗) ≤ ϕ(P) for all par-
tial isometries U ∈ A and projections P ∈ A (Theorem 3.9). The characterization
of traces on C∗-algebras is an urgent problem and attracts the attention of a large
group of researchers, see [9–13,32,36,43,48,54]. We also presented characterizations
of the traces in a broad class of weights on von Neumann algebras (Lemma 3.5,
Theorem 3.10). As a consequence from it we give characterization of tracial states
among all states on arbitrary C∗-algebra A by inequality ϕ(|X |) ≤ ϕ(Y ) for all Her-
mitian X ,Y ∈ A with −Y ≤ X ≤ Y (Theorem 3.6, Remark 3.7), cf. with Gardner’s
characterization of tracial states by the inequality |ϕ(X)| ≤ ϕ(|X |) for all X ∈ A in
[36].

Originally studied by Gohberg and Krein in [37], the block projection operators
admit a natural extension to the setting of quasi-normed ideals and noncommu-
tative integration. Let n ≥ 2 and projections P1, . . . , Pn ∈ A be such that
P1 + · · · + Pn = I . Define a block projection operator Pn : A → A by the for-
mula Pn(X) = ∑n

k=1 Pk X Pk for all X ∈ A. For a trace ϕ on a Rickart C∗-algebraA
and for all Hermitian X ∈ A we proved the inequality ϕ(|X − Pn(X)|) ≤ Cnϕ(|X |),
where Cn = 2 − 22−n for all n ≥ 2 (Theorem 3.12). As its consequence we obtain
a sharp estimate for a trace of the commutator of any Hermitian element and a pro-
jection (Corollary 3.13). Block projection operators on a von Neumann algebras (and
on algebras of measurable with respect to semifinite normal traces operators) were
investigated in [14,31]. In this case we established several uniform submajorization
inequalities for block projection operators in [25].

2 Preliminaries

2.1 Weights and traces on C∗-algebras

A C∗-algebra is a complex Banach ∗-algebra A such that ‖A∗A‖ = ‖A‖2 for all
A ∈ A. For a C∗-algebra A by Apr, Asa and A+ we denote its subsets of projections
(A = A∗ = A2), Hermitian elements (A∗ = A) and positive elements, respectively.
If A ∈ A, then |A| = √

A∗A ∈ A+. If A ∈ Asa then A+ = (|A| + A)/2 and
A− = (|A| − A)/2 lie in A+ and A = A+ − A−, A+A− = 0. If I is the unit of the
algebra A and P ∈ Apr then P⊥ = I − P .

Amappingϕ : A+ → [0,+∞] is called aweight on aC∗-algebraA, ifϕ(X+Y ) =
ϕ(X)+ϕ(Y ), ϕ(λX) = λϕ(X) for all X ,Y ∈ A+, λ ≥ 0 (moreover, 0·(+∞) ≡ 0).
For a weight ϕ define

M+
ϕ = {X ∈ A+ : ϕ(X) < +∞}, Msa

ϕ = linRM
+
ϕ , Mϕ = linCM

+
ϕ .

The restriction ϕ|M+
ϕ
can always be extended by linearity to a functional on Mϕ ,

which we denote by the same letter ϕ. Such an extension allows us to identify finite
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weights (i.e., ϕ(X) < +∞ for all X ∈ A+) with positive functionals onA. A positive
linear functional ϕ on A with ‖ϕ‖ = 1 is called a state. A weight ϕ is called faithful,
if ϕ(X) = 0 (X ∈ A+) ⇒ X = 0; a trace, if ϕ(Z∗Z) = ϕ(Z Z∗) for all Z ∈ A. A
trace ϕ on a C∗-algebra A is called semifinite, if ϕ(A) = sup{ϕ(B) : B ∈ A+, B ≤
A, ϕ(B) < +∞} for every A ∈ A+.

LetH be aHilbert space over the fieldC,B(H) be the∗-algebra of all linear bounded
operators onH. The strong operator topology (i.e., so-topology) is the locally convex
topology generated by seminorms X ∈ B(H) �→ ‖Xξ‖, ξ ∈ H. By Gelfand–Naimark
theorem every C∗-algebra is isometrically isomorphic to a concrete C∗-algebra of
operators on a Hilbert spaceH [29, II.6.4.10]. By the commutant of a set X ⊂ B(H)

we mean the set

X ′ = {Y ∈ B(H) : XY = Y X for all X ∈ X }.

A ∗-subalgebra A of the algebra B(H) is said to be a von Neumann algebra acting
on a Hilbert space H, if A = A′′. A weight ϕ on von Neumann algebra A is called
normal, if Xi ↗ X (Xi , X ∈ A+) �⇒ ϕ(X) = supϕ(Xi ); semifinite, if the set
Mϕ is ultraweakly dense in A (see [56, Definition VII.1.1]). Let ϕ be a weight on a
C∗-algebra A. Let us define the seminorm

‖A‖ϕ = inf{ϕ(A1 + A2) : A = A1 − A2, A1, A2 ∈ M+
ϕ }

on the real vector space Msa
ϕ . If ϕ be a faithful normal semifinite weight on a von

Neumann algebraA then the function A �→ ‖A‖ϕ (A ∈ Msa
ϕ ) is a norm onMsa

ϕ [53,
Corollary 15.5]. Using Upmeier’s results [59], it is actually proved in [5, Theorem
1.4.2] that a weight on a von Neumann algebra A is a trace if and only if ϕ(SAS) =
ϕ(A) for any A ∈ A+ and a symmetry S ∈ Asa.

2.2 Representations of C∗-algebras

The universal representation of a C∗-algebra A is the pair

{π,H} =
∑

ϕ∈S(A)

⊕ {πϕ,Hϕ},

whereS(A) is the set of all states onA, (πϕ,Hϕ) is theGelfand–Naimark–Segal repre-
sentation of a C∗-algebraA, associated with ϕ. In this case the von Neumann algebra
M = π(A)′′, generated by π(A), is called the universal enveloping von Neumann
algebra of C∗-algebra A [55, Chap. III, Definition 2.3].

Let ϕ be a positive linear functional on a C∗-algebra A and π be the universal
representation of A. By construction of π an arbitrary state on A turns into a vector
state on π(A), hence it is extended to normal state on the universal enveloping algebra
M = π(A)′′. Hence for ϕ there exists a positive normal functional ϕ̂ on the universal
enveloping von Neumann algebra such that ϕ̂(π(A)) = ϕ(A) (A ∈ A+).
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A representation with a trace of a C∗-algebra A is a pair (π, ν) with the following
properties:

(i) π is a nondegenerate representation of a C∗-algebra A on some Hilbert space;
(ii) ν is a faithful normal trace on the von Neumann algebra π(A)′′;
(iii) π(A) ∩ Nν generate the von Neumann algebra π(A)′′, where

Nν = {A ∈ π(A)′′ : ν(A∗A) < +∞}.

Let A be a C∗-algebra, (π, ν) be a representation of A with a trace. Then ν is
semifinite and ϕ = (ν ◦ π)|A+ is a lower semicontinuous trace on A. Conversely, let
ϕ be a lower semicontinuous semifinite trace onA. Then there exists a representation
of A with a trace (π, ν) ([34, 6.6]), which is called associated with ϕ, and ν is called
a natural trace. In this case, the relation

ν(π(A)) = ϕ(A) for all A ∈ A+ (1)

holds (see [34, Proposition 6.6.5 (i)]).

Lemma 2.1 Let ϕ be a lower semicontinuous semifinite trace on a C∗-algebra A,
(π, ν) and M be defined as above.

(i) If A ∈ A+ and a number p > 0, then π(Ap) = π(A)p.
(ii) If A ∈ A, then |π(A)| = π(|A|).
(iii) If A ∈ Mϕ , then π(A) ∈ Mν and ν(π(A)) = ϕ(A).

Proof (i). Recall that if A ∈ A+, then π(A) ∈ M+. Step 1. For a rational number
p > 0 the assertion can easily be deduced from the relation

π(XY ) = π(X)π(Y ) for all X ,Y ∈ A. (2)

Step 2. For an irrational number p > 0 we choose a sequence {pn}∞n=1 of positive
rational numbers convergent to p. Applying ‖ · ‖-continuity of the mapping

x �→ Ax (x > 0; an element A ∈ A+ is fixed)

and ‖ · ‖-continuity of the representation (π, ν), and taking into account Step 1 we
obtain the required assertion.

(ii). Follows by (2), the relation π(X∗) = π(X)∗ for all X ∈ A and item (i) with
p = 1/2.

(iii). For A ∈ Mϕ there exist the sets {λk}nk=1 ⊂ C and {Ak}nk=1 ⊂ M+
ϕ such that

A = ∑n
k=1 λk Ak . By (1) we have π(Ak) ∈ M+

ν for all k = 1, . . . , n. Therefore,
π(A) = ∑n

k=1 λkπ(Ak) ∈ Mν and

ν(π(A)) =
n∑

k=1

λkν(π(Ak)) =
n∑

k=1

λkϕ(Ak) = ϕ(A)

by the correctness of the linear extension of the trace ν toMν . ��
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3 Traces on Rickart C∗-algebras

Lemma 3.1 Let A be a Rickart C∗-algebra and X ∈ Asa, Y ∈ Asa. If −Y ≤ X ≤ Y
then 2|X | ≤ Y +UYU for some unitary element U ∈ Asa.

Proof Since a Rickart C∗-algebra A is unital [52, Lemma 2.2] and every element
Z ∈ Asa possesses a well defined support projection [28], we can literally repeat the
proof of [14, Theorem 1]. ��

Lemma 3.2 (cf. [14, Corollary 1]) LetA be a Rickart C∗-algebra. Then for any finite
set {Ak}nk=1 ⊂ Asa there exists a unitary element U ∈ Asa such that

|A1 + · · · + An| ≤ |A1| + · · · + |An| +U (|A1| + · · · + |An|)U
2

.

Proof We sum the inequalities

−|Ak | ≤ Ak ≤ |Ak |, k = 1, . . . , n,

term by term and obtain −|A1| − · · · − |An| ≤ A1 + · · · + An ≤ |A1| + · · · + |An|.
Now for a pair of elements

X = A1 + · · · + An ∈ Asa, Y = |A1| + · · · + |An| ∈ A+

we apply Lemma 3.1. ��

Theorem 3.3 Let ϕ be a trace on a Rickart C∗-algebraA. For any finite set {Ak}nk=1 ⊂
Asa we have

ϕ
(∣
∣
∣

n∑

k=1

Ak

∣
∣
∣
)

≤
n∑

k=1

ϕ(|Ak |).

Corollary 3.4 Let ϕ be a trace on a Rickart C∗-algebra A. If X ∈ Asa, Y ∈ A+ with
−Y ≤ X ≤ Y , thenϕ(|X |) ≤ ϕ(Y ). In particular, if A, B ∈ Asa thenϕ(|AB+BA|) ≤
ϕ(A2 + B2).

Proof By Lemma 3.1 there exists a unitary element U ∈ Asa such that 2|X | ≤ Y +
UYU . Hence by monotonocity of a trace ϕ on the cone A+ we have

2ϕ(|X |) = ϕ(2|X |) ≤ ϕ(Y +UYU ) = ϕ(Y ) + ϕ(UYU ) = 2ϕ(Y ).

If A, B ∈ Asa then−A2−B2 ≤ AB+BA ≤ A2+B2 by the inequalities (A±B)2 ≥ 0.
��
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Lemma 3.5 Let a weight ϕ on a von Neumann algebraA be a) normal and semifinite
or b) finite. Then the following conditions are equivalent:

(i) ϕ(|X |) ≤ ϕ(Y ) for all X ∈ Asa, Y ∈ A+ with −Y ≤ X ≤ Y ;
(ii) ϕ(|AB + BA|) ≤ ϕ(A2 + B2) for all A, B ∈ Asa;
(iii) ϕ is a trace.

Proof (i)⇒(iii). For arbitrary A, B ∈ Asa wehave−|A| ≤ A ≤ |A|,−|B| ≤ B ≤ |B|.
We sum these inequalities term by term and obtain

−|A| − |B| ≤ A + B ≤ |A| + |B| for all A, B ∈ Asa.

Now by (i) we have the inequality ϕ(|A + B|) ≤ ϕ(|A| + |B|) = ϕ(|A|) + ϕ(|B|)
for all A, B ∈ Asa and ϕ is a trace by Theorem 2 of [54] in the case a) (Theorem 1 of
[54] in the case b)).

(ii)⇒(i). For arbitrary X ∈ Asa, Y ∈ A+ with −Y ≤ X ≤ Y there exist A ∈ Asa,
B ∈ A+ such that X = AB + BA, Y = A2 + B2 by [18, Lemma 1].

The implications (iii)⇒(i), (iii)⇒(ii) are established in Corollary 3.4. ��
Theorem 3.6 Let a positive linear functional ϕ on a C∗-algebra A meet one of the
following conditions:

(i) ϕ(|X |) ≤ ϕ(Y ) for all X ∈ Asa, Y ∈ A+ with −Y ≤ X ≤ Y ;
(ii) ϕ(|AB + BA|) ≤ ϕ(A2 + B2) for all A, B ∈ Asa.

Then the functional ϕ is tracial.

Proof Note first that if ϕ is a tracial functional on A then conditions (i) and (ii) are
met, see Remark 3.7 below. Assume now that condition i) is met.

Consider the universal enveloping von Neumann algebra of a C∗-algebra A [55,
III.2]. Let π be the corresponding universal representation of a C∗-algebra A and ϕ̂

be a positive normal functional on M = π(A)′′ such that ϕ̂(π(A)) = ϕ(A) for all
A ∈ A. Consider the operators X̂ ∈ Msa and Ŷ ∈ M+ with −Ŷ ≤ X̂ ≤ Ŷ . It follows
by Kaplansky density theorem that there exist bounded nets {Xα} from π(A)sa and
{Yα} from π(A)+, which so-converge to X̂ , Ŷ . Let {Hα} and {Kα} be such that

Xα = π(Hα) and Yα = π(Kα).

We can assume that Hα ∈ Asa, Kα ∈ A+ and −Kα ≤ Hα ≤ Kα . Indeed, let
Z = π(A) ∈ π(A)+. If

A = B + iC (B,C ∈ Asa; i ∈ C, i2 = −1),

then π(A) = π(B) + iπ(C) and π(C) = 0, hence Z = π(B). On the other hand, we
have Z1/2 = π(A′) for some A′ ∈ Asa. Now

Z = Z1/2Z1/2 = π(A′)π(A′) = π(A′2) and A′2 ≥ 0.

Hence we can assume that A = A′2 ∈ A+.
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Note that Ŷ − X̂ , Ŷ + X̂ ∈ M+. We proved that there exist nets {Tα} and {Sα} in
A+ such that π(Tα) → Ŷ − X̂ and π(Sα) → Ŷ + X̂ in the so-topology. Put

Hα = Tα − Sα

2
, Kα = Tα + Sα

2
.

Thus, there exist boundednets {Hα} inAsa and {Kα} inA+ such that−Kα ≤ Hα ≤ Kα

and π(Hα) → X̂ and π(Kα) → Ŷ in the so-topology. Note that−π(Kα) ≤ π(Hα) ≤
π(Kα). By item (i) of Lemma 3.5 we have

ϕ̂(|π(Hα)|) ≤ ϕ̂(π(Kα)).

We now take into account so-continuity of the functional calculus, pass to the limit in
the so-topology in the latter inequality and obtain

ϕ̂(|X̂ |) ≤ ϕ̂(Ŷ ).

By item (i) of Lemma 3.5 ϕ̂ is a tracial functional on M. Now for all X ,Y ∈ A we
have

ϕ(XY ) = ϕ̂(π(XY )) = ϕ̂(π(X)π(Y )) =
= ϕ̂(π(Y )π(X)) = ϕ̂(π(Y X)) = ϕ(Y X).

Thus, ϕ is a tracial functional on A. ��
Remark 3.7 Let ϕ be a lower semicontinuous semifinite trace on a C∗-algebra A [34,
6.1.1]. Then ϕ(|X |) ≤ ϕ(Y ) for all X ∈ Asa, Y ∈ A+ with −Y ≤ X ≤ Y . In
particular, ϕ(|AB + BA|) ≤ ϕ(A2 + B2) for all A, B ∈ Asa. Indeed, let (π, ν) be a
representation of the C∗-algebra A, assosiated with the trace ϕ. Then for a “natural”
faithful normal trace ν on a von Neumann algebra M = π(A)′′ relation (1) holds.
For X ∈ Asa, Y ∈ A+ with −Y ≤ X ≤ Y we have −π(Y ) ≤ π(X) ≤ π(Y ). Then
by item (ii) of Lemma 2.1 and Lemma 3.5 we obtain

ϕ(|X |) = ν(π(|X |)) = ν(|π(X)|) ≤ ν(π(Y )) = ϕ(Y ).

Corollary 3.8 Let a C∗-algebraA be such that |X | ≤ Y for all X ∈ Asa, Y ∈ A+ with
−Y ≤ X ≤ Y . Then the algebra A is abelian.

Proof Any positive functional ϕ on A is subject to the inequality of item (i) of Theo-
rem 3.6. It implies that any positive functional on A is tracial, i. e. ϕ(XY ) = ϕ(Y X)

holds for all elements X ,Y ∈ A. Since the set of all positive linear functionals separate
points of the algebraA, from the latter condition we have XY = Y X for all X ,Y ∈ A.
Therefore the C∗-algebra A is abelian. ��
Theorem 3.9 For a positive linear functional ϕ on a Rickart C∗-algebra A the fol-
lowing conditions are equivalent:

123



A. Bikchentaev

(i) ϕ is tracial;
(ii) ϕ(U PU∗) ≤ ϕ(P) for all partial isometries U ∈ A and P ∈ Apr.

Proof (i)⇒(ii). Let A ∈ A and P ∈ Apr. By the inequality A∗A ≤ ‖A‖2 I we obtain
PA∗AP ≤ P · ‖A‖2 I · P = ‖A‖2P and by monotonocity of the functional ϕ onA+
and its homogeneity we have

ϕ(APA∗) = ϕ(AP · PA∗) = ϕ(PA∗AP) ≤ ‖A‖2ϕ(P).

(ii)⇒(i). Let A ∈ A with ‖A‖ = 1 be arbitrary and U ∈ A be a partial isometry.
We can choose convex combinations of projections

Xn =
mn∑

k=1

λ
(n)
k P(n)

k , λ
(n)
k > 0, k = 1, . . . ,mn,

mn∑

k=1

λ
(n)
k = 1, {Pk}mn

k=1 ⊂ Apr, n ∈ N,

so that Xn
‖·‖−→ A∗A as n → ∞, see the implication (R)⇒(CP) in Theorem 6.1.2

[28]. Hence

UXnU
∗ ‖·‖−→ U A∗AU∗ as n → ∞

by continuity of the product operation in A. Note that

ϕ(UXnU
∗) =

mn∑

k=1

λ
(n)
k ϕ(U P(n)

k U∗) ≤
mn∑

k=1

λ
(n)
k ϕ(P(n)

k ) = ϕ(Xn)

for all n ∈ N. We pass here to the limit as n → ∞, and by the automatic continuity
of the positive linear functional ϕ conclude that

ϕ(U A∗AU∗) ≤ ϕ(A∗A).

LetU be the partial isometry from thepolar decomposition A = U |A|of the element A.
Then |A∗| = U |A|U∗ and U∗A = |A|. Therefore, U A∗AU∗ = AA∗ and ϕ(AA∗) ≤
ϕ(A∗A).

Now we consider the element A∗ instead of A in the foregoing proof, apply the
equality (A∗)∗ = A, and analogously obtain ϕ(A∗A) ≤ ϕ(AA∗). ��
Theorem 3.10 Let ϕ be a normal semifinite weight on a von Neumann algebraA such
that ϕ(QPQ) ≤ ϕ(P) for all P, Q ∈ Apr. Then ϕ is a trace.

Proof It follows by item (iv) of Theorem 3.4 in [11] that for every projection T ∈ Apr

with ϕ(T ) < ∞ the reduced weight ϕT on the reduced algebra TAT is a trace. Hence
ϕ is a trace by [54, Lemma 2]. ��

For other trace characterizations see [15–17,17,19–24,58] and references therein.
If A is a bounded operator on the Hilbert space H and 0 ≤ A ≤ I , then {A1/n}

is a monotone increasing sequence of operators whose strong-operator limit is the
projection on the closure of the range of A [44, Lemma 5.1.5].
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Theorem 3.11 Let a unital C∗-algebra A satisfy polar decomposition. Assume that
for every A ∈ A, ‖A‖ = 1, with the polar decomposition A = U |A| there exists a
faithful tracial functional ϕA on A with the following property:

ϕA(P − |A|1/n) → 0 as n → ∞, (3)

where P = U∗U. Then A is a Rickart C∗-algebra.

Proof Let A, P, ϕA be given as in the formulation of the theorem, and An = |A|1/n
for all n ∈ N. Then P ∈ Apr, P|A| = |A| and 0 ≤ An ≤ An+1 ≤ P for all n ∈ N. Let
(π, ν) be the representation of a C∗-algebra A, associated with a trace ϕA (see [34,
6.6.4]). Then relation (1) holds for the “natural” faithful normal semifinite trace ν on
the von Neumann algebra M = π(A)′′, generated by π(A) (see [34, A.60]). Hence
ν(I ) = ϕA(I ) < +∞. For operators

Bn = π(An) = π(|A|)1/n, n ∈ N,

we have 0 ≤ Bn ≤ Bn+1 ≤ I for all n ∈ N. Hence by Vigier theorem (see, for
example, [44, Lemma 5.1.4]) there exists

Q = sup
n≥1

Bn = lim
n→∞ Bn ∈ Mpr,

where the limit is taken in the so-topology on M. The projection Q is the support
projection of the operatorπ(|A|) andπ(|A|) = Qπ(|A|). Let us show that Q = π(P).
We have

π(P)Q = π(P) lim
n→∞ Bn = lim

n→∞ π(P)Bn = lim
n→∞ π(P|A|)π(|A|1/n−1) =

= lim
n→∞ Bn = Q,

i.e., Q ≤ π(P). Obviously, by (1) we obtain

ϕA(P − An) = ν(π(P − An)) = ν(π(P) − π(An)) = ν(π(P) − Bn) =
= ν(π(P) − Q + Q − Bn) = ν(π(P) − Q) + ν(Q − Bn), n ∈ N.

Via the so-continuity of the normal functional ν we have ν(Q − Bn) → 0 as n → ∞.
Therefore, ν(π(P) − Q) = 0 via (3). Since ν is faithful, we obtain Q = π(P).

Let us prove that A is a weakly Rickart C∗-algebra (see [52, Definition 3.2]).
Assume that X ∈ A with AX = 0. Let us show that PX = 0. Since AXX∗A∗ = 0,
we have

π(AXX∗A∗) = π(A)π(X)π(X)∗π(A)∗ = 0. (4)

Since the von Neumann algebraM is a weakly Rickart C∗-algebra, via (4) we obtain

0 = Qπ(X)π(X)∗Q = π(P)π(X)π(X)∗π(P) = π(PXX∗P).
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Nowby (1) we have 0 = ν(π(PXX∗P)) = ϕA(PXX∗P) and, since ϕA is faithful, we
obtain PXX∗P = |X∗P|2 = 0. Therefore, ‖|X∗P|2‖ = ‖|X∗P|‖2 = ‖X∗P‖2 = 0
and X∗P = 0. Thus PX = (X∗P)∗ = 0 andA is a weakly RickartC∗-algebra. Since
A is unital, it is a Rickart C∗-algebra by [8, Section 4, Theorem 1]. ��
Theorem 3.12 Let ϕ be a trace on a Rickart C∗-algebra A, A ∈ Asa, n ≥ 2 and
P1, . . . , Pn ∈ Apr be with P1 + · · · + Pn = I , Pn(A) = ∑n

k=1 Pk APk. Then we have

(i) ϕ(|A − Pn(A)|) ≤ Cnϕ(|A|), where Cn = 2 − 22−n for all n ≥ 2;
(ii) ϕ(|Pn(A)|) ≤ ϕ(Pn(|A|)) for all n ≥ 2.

Proof (i). It is clear that Pk Pm = 0 for k �= m, where k,m = 1, . . . , n. Since A ∈ Asa

and Pn(A) ∈ Asa, we conclude that A − Pn(A) ∈ Asa.
Step 1. Consider A ∈ A+ and n ≥ 2. By [14, Lemma 2] we have the representation

Pn(A) = 1

2n−1

2n−1
∑

k=1

Sk ASk, (5)

where the unitaries Sk ∈ Asa, k = 1, . . . , 2n−1, have the form P1 ± P2 ± · · · ± Pn .
Denote P1 + P2 + · · · + Pn = I by S2n−1 . Then

A − Pn(A) =
2n−1−1∑

k=1

1

2n−1 (A − Sk ASk)

and by Theorem 3.3 we obtain

ϕ(|A − Pn(A)|) = 1

2n−1 ϕ
(∣
∣
∣

2n−1−1∑

k=1

(A − Sk ASk)
∣
∣
∣
)

≤ 1

2n−1

2n−1−1∑

k=1

ϕ(|A − Sk ASk |) ≤

≤ 1

2n−1

2n−1−1∑

k=1

(ϕ(A) + ϕ(Sk ASk)) = 2(2n−1 − 1)

2n−1 ϕ(A) =

= (2 − 22−n)ϕ(A).

Step 2. Let n ≥ 2, A ∈ Asa and A = A+ − A− be the Jordan decomposition
into positive and negative parts with A+A− = 0 and A+ + A− = |A|. For arbitrary
X ,Y ∈ Asa we have ϕ(|X + Y |) ≤ ϕ(|X |) + ϕ(|Y |), see Theorem 3.3. Therefore by
Step 1 for A+ and A− we obtain

ϕ(|A − Pn(A)|) ≤ ϕ(|A+ − Pn(A+)|) + ϕ(|A− − Pn(A−)|) ≤
≤ Cnϕ(A+) + Cnϕ(A−) = Cnϕ(|A|)

with Cn = 2 − 22−n for all n ≥ 2.
Finally, for every number n ≥ 2we consider the one-dimensional projection A(n) ∈

Mn(C), which in an orthonormal basis {ξ1, . . . , ξn} ⊂ C
n has the form a(n)

i j = 1/n for
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all i, j = 1, . . . , n and let ϕ = tr be the canonical trace, 〈·, ·〉 be a scalar product onCn .
For projections Pi = 〈·, ξi 〉ξi , i = 1, . . . , n we have A(n) −Pn(A(n)) = A(n) − 1

n I =
(
1 − 1

n

)
A(n) − 1

n A
(n)⊥, hence |A(n) − Pn(A(n))| =

(
1 − 1

n

)
A(n) + 1

n A
(n)⊥ and

ϕ(|A(n) − Pn(A
(n))|) =

(
1 − 1

n

)
ϕ(A(n)) + 1

n
ϕ(A(n)⊥)

=
(
1 − 1

n

)
· 1 + 1

n
· (n − 1) = 2 − 2

n

for all n ≥ 2. In particular, C2 = 1 is the sharp constant. Thus, for the best possible
constants C̃n in the inequalities ϕ(|A − Pn(A)|) ≤ Cnϕ(|A|) we have the estimates
2 − 2n−1 ≤ C̃n ≤ 2 − 22−n for all n ≥ 3.

(ii). Since−Pk |A|Pk ≤ Pk APk ≤ Pk |A|Pk for all k = 1, . . . , n, we have−Pn(|A|) ≤
Pn(A) ≤ Pn(|A|) for all n ≥ 2, and ϕ(|Pn(A)|) ≤ ϕ(Pn(|A|)) by Corollary 3.4.��
Note that

|PAP⊥ + P⊥AP| = |PAP⊥ − P⊥AP|, [A, P] = −(PAP⊥ − P⊥AP). (6)

The formula S = 2P − I defines a one-to-one correspondence between symmetries
S ∈ Asa and projections P ∈ Apr. Then by (6) we have

|A − SAS| = 2|PAP⊥ + P⊥AP| = 2|[A, P]|.

Corollary 3.13 Let ϕ be a trace on a Rickart C∗-algebra A, A ∈ Asa and P ∈ Apr.
Then ϕ(|[A, P]|) ≤ ϕ(|A|).

For A = M2(C) and P = diag(1, 0), A =
(
0 1
1 0

)

we have |[A, P]| = |A| = I .

Remark 3.14 LetA be a von Neumann algebra and A ∈ Apr. In this case, the assertion
of Corollary 3.13 was proved by another method in Theorem 2 of [21]. Assume
also that P = Pn(A) ∈ Apr. Via representation (5) the projection P is a convex
combination of projections Sk ASk , k = 1, . . . , 2n−1. Since Apr belongs to the set
ext{X ∈ A+ : ‖X‖ ≤ 1} of the extreme points of the positive part of the unit ball of
A [44, Chapter 2, 2.8.14], we infer that A = Sk PSk for all k = 1, . . . , 2n−1.

Proposition 3.15 For all A ∈ Mm(C) and P ∈ Mm(C)pr we have a determinant
relation | det(A − P2(A))| = | det([A, P])|.
Proof Since | det(X)| = det(|X |) for all X ∈ Mm(C), by (6) we have

| det(A − P2(A))| = det(|A − P2(A)|) = det(|PAP⊥ + P⊥AP|) =
= det(|PAP⊥ − P⊥AP|) = det(|[A, P]|) = | det([A, P])|.

��
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Theorem 3.16 Let A = Mm(C) and a unitary element A ∈ A be such that for some
n ≤ m the element U = Pn(A) is also unitary. Then det(U ) = det(A).

Proof Via representation (5), see also [14, Lemma 2], the unitary U is a convex com-
bination of unitaries Sk ASk , k = 1, . . . , 2n−1. Since the unitaries from A belong to
the set ext{X ∈ A : ‖X‖ ≤ 1} of the extreme points of the unit ball of A [55,
Chap. I, Theorem 10.2], we infer that U = Sk ASk for all k = 1, . . . , 2n−1. Then
we apply theorem on determinant of matrix product, since det(Sk) ∈ {−1, 1} for all
k = 1, . . . , 2n−1. ��

Proposition 3.17 Consider a separable Hilbert space H, an operator A ∈ B(H)sa, a
vector ξ ∈ H and a number ε > 0. Then there exists a finite-dimensional projection
P ∈ B(H)pr such that Pξ = ξ and ‖[A, P]‖2 < ε, where ‖·‖2 is the Hilbert–Schmidt
norm.

Proof Lemma of the Weyl–von Neumann theorem proof (see, for example, [42,
Lemma 14.11]) shows us that there exists a finite-dimensional projection P ∈ B(H)pr

such that Pξ = ξ and ‖P⊥AP + PAP⊥‖2 < ε. We note that ‖X‖2 = ‖|X |‖2 for all
Hilbert–Schmidt operators X ∈ B(H) and apply relations (6). ��

Lemma 3.18 Let ϕ be a weight on a C∗-algebra A, A ∈ Msa
ϕ and B ∈ Asa.

(i) We have |ϕ(A)| ≤ ‖A‖ϕ ≤ ϕ(|A|).
(ii) If −A ≤ B ≤ A then B ∈ Msa

ϕ and ‖B‖ϕ ≤ ‖A‖ϕ .

Proof (i). For all A1, A2 ∈ M+
ϕ with A1 − A2 = A we have |ϕ(A)| ≤ ϕ(A1 + A2).

Passing to infimumover all such A1, A2, we obtain |ϕ(A)| ≤ ‖A‖ϕ . The inequality
‖A‖ϕ ≤ ϕ(|A|) follows by the Jordan decomposition A = A+−A− with A+A− =
0 and |A| = A+ + A−.

(ii). The relation 0 ≤ A + B ≤ 2A yields that A + B ∈ M+
ϕ and B = (A + B) − A ∈

Msa
ϕ . Since ‖X‖ϕ = ϕ(X) for every X ∈ M+

ϕ we have

∥
∥
∥
A + B

2

∥
∥
∥

ϕ
= ϕ

( A + B

2

)
,

∥
∥
∥
A − B

2

∥
∥
∥

ϕ
= ϕ

( A − B

2

)
.

Therefore via the triangle inequality and additivity of ϕ we obtain

‖B‖ϕ =
∥
∥
∥
B + A

2
− A − B

2

∥
∥
∥

ϕ
≤

∥
∥
∥
B + A

2

∥
∥
∥

ϕ
+

∥
∥
∥
A − B

2

∥
∥
∥

ϕ
=

= ϕ
( B + A

2

)
+ ϕ

( A − B

2

)
= ϕ(A) = ‖A‖ϕ.

��

Theorem 3.19 Let A ∈ B(H)sa, P ∈ B(H)pr and S = 2P − I . Then for all δ > 0 we
have −δ I − δ−1|[A, P]|2 ≤ A − SAS ≤ δ I + δ−1|[A, P]|2.
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Proof By the Comb–Simon separating inequality [33, Lemma 3.24] for all δ > 0 we
have

A ≥ PAP − δ−1PAP⊥AP + P⊥(A − δ I )P⊥,

A ≥ P⊥AP⊥ − δ−1P⊥APAP⊥ + P(A − δ I )P.

Adding these inequalities term by term, and taking into account the equalities

2PAP + 2P⊥AP⊥ = A + SAS, PAP⊥AP + P⊥APAP⊥ = |[A, P]|2

we obtain A ≥ SAS − δ I − δ−1|[A, P]|2. Multiplying both sides of this inequality
on the left and right by the symmetry S, we have SAS ≥ A − δ I − δ−1|[A, P]|2. ��

By item (ii) of Lemma 3.18 and Theorem 3.19 we have

Corollary 3.20 Let ϕ be a state on a unital C∗-algebra A, A ∈ Asa, P ∈ Apr and
S = 2P − I . Then for all δ > 0 we have ‖A − SAS‖ϕ ≤ δ + δ−1ϕ(|[A, P]|2).
Acknowledgements Researchwas supported by the development programof the Scientific andEducational
Mathematical Center of the Volga Federal District (075-02-2020-1478).
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