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Abstract

Rickart C*-algebras are unital and satisfy polar decomposition. We proved that if a
unital C*-algebra A satisfies polar decomposition and admits “good” faithful tracial
states then A is a Rickart C*-algebra. Via polar decomposition we characterized tracial
states among all states on a Rickart C*-algebra. We presented the triangle inequality for
Hermitian elements and traces on Rickart C*-algebra. For a block projection operator
and a trace on a Rickart C*-algebra we proved a new inequality. As a corollary, we
obtain a sharp estimate for a trace of the commutator of any Hermitian element and a
projection. Also we give a characterization of traces in a wide class of weights on a
von Neumann algebra.
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1 Introduction

Dimension functions and traces on C*-algebras are fundamental tools in the opera-
tor theory and its applications. Therefore, they have been actively studied in recent
decades, see [26,27,35,41,46,50,51]. Here we study traces on Rickart C*-algebras.
A Rickart C*-algebra is a C*-algebra within which the right annihilator of any ele-
ment equals the principal right ideal generated by some projection. These algebras
were introduced by Rickart [49] and were named N1-AW*-algebras by Kaplansky
[45]. Today Rickart C*-algebras and their Jordan counterparts are actively studied
objects, see [2,4,6,7,30,39,40,47,52], and [57]. In Rickart C*-algebras left projecti-
ons are equivalent to right projections [1]. These algebras are unital and satisfy polar
decomposition ( [3, Corollary 3.5], [38, Corollary 7.4]). Recall that a C*-algebra A
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satisfies polar decomposition [8], if for any X € .4, there exists a partial isometry
U such that X = U|X|. Here we prove that if a unital C*-algebra A satisfies polar
decomposition and admits “good” faithful tracial states then A is a Rickart C*-algebra
(Theorem 3.11). Polar decomposition allows us to characterize tracial states among
all states on a Rickart C*-algebra .4 by the inequality (U PU*) < ¢(P) for all par-
tial isometries U € A and projections P € A (Theorem 3.9). The characterization
of traces on C*-algebras is an urgent problem and attracts the attention of a large
group of researchers, see [9-13,32,36,43,48,54]. We also presented characterizations
of the traces in a broad class of weights on von Neumann algebras (Lemma 3.5,
Theorem 3.10). As a consequence from it we give characterization of tracial states
among all states on arbitrary C*-algebra A by inequality ¢(|X|) < ¢(Y) for all Her-
mitian X, Y € A with —Y < X < Y (Theorem 3.6, Remark 3.7), cf. with Gardner’s
characterization of tracial states by the inequality |¢(X)| < ¢(]X|) for all X € A in
[36].

Originally studied by Gohberg and Krein in [37], the block projection operators
admit a natural extension to the setting of quasi-normed ideals and noncommu-
tative integration. Let n > 2 and projections Pi,...,P, € A be such that
Py + --- + P, = I. Define a block projection operator P,: A — A by the for-
mula P, (X) = > }_, PxX Py for all X € A. For a trace ¢ on a Rickart C*-algebra A
and for all Hermitian X € A we proved the inequality ¢(|X — P, (X)]) < Ch,o(|X]),
where C,, =2 — 22" foralln > 2 (Theorem 3.12). As its consequence we obtain
a sharp estimate for a trace of the commutator of any Hermitian element and a pro-
jection (Corollary 3.13). Block projection operators on a von Neumann algebras (and
on algebras of measurable with respect to semifinite normal traces operators) were
investigated in [14,31]. In this case we established several uniform submajorization
inequalities for block projection operators in [25].

2 Preliminaries
2.1 Weights and traces on C*-algebras

A C*-algebra is a complex Banach x-algebra A such that ||A*A|| = ||A|? for all
A € A. For a C*-algebra A by AP", A% and A" we denote its subsets of projections
(A = A* = A?), Hermitian elements (A* = A) and positive elements, respectively.
If A € A, then |A| = VA*A € AT.If A € A% then Ay = (|A| + A)/2 and
A_ = (JA|—A)/2liecin At and A = A, — A_, AL A_ = 0.If I is the unit of the
algebra A and P € AP then P+ =1 — P.

A mapping g : AT — [0, +o0]is called @ weight ona C*-algebra A, if p(X +Y) =
e(X)+o(Y), @OX)=rpX)forallX,Y € AT, A > 0(moreover, 0-(4+00) = 0).
For a weight ¢ define

gﬁ;f ={X e A": ¢p(X) < 400}, me = linRi)ﬁ;f, m, = lin(cim;r.

The restriction <p|§m$ can always be extended by linearity to a functional on 9i,,
which we denote by the same letter ¢. Such an extension allows us to identify finite
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weights (i.e., 9(X) < +oo forall X € A™T) with positive functionals on A. A positive
linear functional ¢ on A with ||¢|| = 1 is called a state. A weight ¢ is called faithful,
ifp(X) =0 (X € AY) = X =0; atrace,if o(Z*Z) = o(ZZ*) forall Z € A. A
trace ¢ on a C*-algebra A is called semifinite, if p(A) = sup{p(B) : B € AT, B <
A, ¢(B) < 400} forevery A € AT.

Let H be a Hilbert space over the field C, 5(H) be the x-algebra of all linear bounded
operators on H. The strong operator topology (i.e., so-topology) is the locally convex
topology generated by seminorms X € B(H) +— || X£|, & € H. By Gelfand—Naimark
theorem every C*-algebra is isometrically isomorphic to a concrete C*-algebra of
operators on a Hilbert space H [29, 11.6.4.10]. By the commutant of a set X C B(H)
we mean the set

X ={Y e B(H): XY =YX forall X € X}.

A x-subalgebra A of the algebra B(7H) is said to be a von Neumann algebra acting
on a Hilbert space H, if A = A”. A weight ¢ on von Neumann algebra A4 is called
normal, if X; /' X (X;, X € AY) = @(X) = supo(X;); semifinite, if the set
M, is ultraweakly dense in A (see [56, Definition VII.1.1]). Let ¢ be a weight on a
C*-algebra A. Let us define the seminorm

IAlly = inf{p(A1 + A2): A= A;— Ay, Ay, Ay € M)

on the real vector space E)ﬁfpa. If ¢ be a faithful normal semifinite weight on a von
Neumann algebra A then the function A — [|A|l, (A € 93“(‘3;) is a norm on smg; [53,
Corollary 15.5]. Using Upmeier’s results [59], it is actually proved in [5, Theorem
1.4.2] that a weight on a von Neumann algebra A is a trace if and only if ¢(SAS) =
@(A) forany A € A' and a symmetry S € A%,

2.2 Representations of C*-algebras

The universal representation of a C*-algebra A is the pair

9 = 37 g ).
peS(A)

where S(A) is the set of all states on A, (17, ) is the Gelfand-Naimark—Segal repre-
sentation of a C*-algebra A, associated with ¢. In this case the von Neumann algebra
M = 7 (A)’, generated by w(A), is called the universal enveloping von Neumann
algebra of C*-algebra A [55, Chap. III, Definition 2.3].

Let ¢ be a positive linear functional on a C*-algebra A4 and 7 be the universal
representation of .A. By construction of 7 an arbitrary state on A turns into a vector
state on 7 (A), hence it is extended to normal state on the universal enveloping algebra
M = 7w (A)". Hence for ¢ there exists a positive normal functional ¢ on the universal
enveloping von Neumann algebra such that (7 (A)) = ¢(A) (A € A™).
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A representation with a trace of a C*-algebra A is a pair (7, v) with the following
properties:
(i) 7 is a nondegenerate representation of a C*-algebra A on some Hilbert space;
(ii) v is a faithful normal trace on the von Neumann algebra 7 (A)”;
(iii) 7(A) NN, generate the von Neumann algebra 7 (A)”, where

M, ={Aen(A”: v(A*A) < +o0).

Let A be a C*-algebra, (;r, v) be a representation of A with a trace. Then v is
semifinite and ¢ = (v o )| 4+ is a lower semicontinuous trace on .A. Conversely, let
¢ be a lower semicontinuous semifinite trace on .A. Then there exists a representation
of A with a trace (7, v) ([34, 6.6]), which is called associated with ¢, and v is called
a natural trace. In this case, the relation

v(T(A)) = ¢(A) forall A e AT (1)

holds (see [34, Proposition 6.6.5 (i)]).
Lemma 2.1 Let ¢ be a lower semicontinuous semifinite trace on a C*-algebra A,
(7, v) and M be defined as above.
(i) If A € AT and a number p > 0, then w(AP) = w(A)?.
(i) If A € A, then |t (A)| = m(JA)).
(iii) If A € My, then m(A) € M, and v(w(A)) = p(A).
Proof (i). Recall that if A € AT, then w(A) € M™. Step 1. For a rational number
p > 0 the assertion can easily be deduced from the relation

7(XY)=a(X)m(Y) forall X,Y € A. 2)
Step 2. For an irrational number p > 0 we choose a sequence {p,};> | of positive
rational numbers convergent to p. Applying || - ||-continuity of the mapping

x> A% (x> 0; anelement A e AT isfixed)

and || - ||-continuity of the representation (i, v), and taking into account Step 1 we
obtain the required assertion.
(ii). Follows by (2), the relation 7 (X*) = w(X)* for all X € A and item (i) with
(iii). For A € 9, there exist the sets {A¢};_; C Cand {Ag}]_;, C sm; such that
A =" AAk. By (1) we have w(Ag) € 9T forall k = 1,. .., n. Therefore,
w(A) =Y i M (Ag) € M, and

v (A) =Y v(T(Ar) = Y e(Ar) = p(A)

k=1 k=1

by the correctness of the linear extension of the trace v to 901,,. O
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3 Traces on Rickart C*-algebras

Lemma 3.1 Let A be a Rickart C*-algebraand X € A, Y ¢ A2 If—Y <X <Y
then 2|1X| <Y 4+ UYU for some unitary element U € A%,

Proof Since a Rickart C*-algebra A is unital [52, Lemma 2.2] and every element
Z € A% possesses a well defined support projection [28], we can literally repeat the
proof of [14, Theorem 1]. O

Lemma 3.2 (cf. [14, Corollary 1)) Let A be a Rickart C*-algebra. Then for any finite
set {Ar};_, C A% there exists a unitary element U € A% such that

ALl 4+ + A+ U(AL +-- -+ [ADU

AL+ + Ayl < >

Proof We sum the inequalities
—lAkl = Ak = JAkl, k=1,....n,

term by term and obtain —|Aj| — - — Ay < A1+ -+ Ay < AL+ F+ ALl
Now for a pair of elements

X=Ai+ - 4+A, €A, Y=|A||+ - +]|A,] € AT

we apply Lemma 3.1. O

Theorem 3.3 Let ¢ be a trace on a Rickart C*-algebra A. For any finite set {Ar};_, C
A we have

o[ Ar]) = 3 wae.
k=1 k=1

Corollary 3.4 Let ¢ be a trace on a Rickart C*-algebra A. If X € A%, Y € AT with
—Y < X <Y, thenp(IX|) < @(Y). Inparticular, if A, B € A* thenp(|AB+BA|) <
@(A% + B?).

Proof By Lemma 3.1 there exists a unitary element U € A% such that 2|X| < Y +
UYU. Hence by monotonocity of a trace ¢ on the cone A" we have

20(1X) = ¢Q2IX]) = (Y + UYU) = ¢(Y) + 9(UYU) = 2¢(Y).

IfA, B e Asathen—Az—Bz < AB+BA < A2+B2b the inequalities (A:l:B)z > 0.
y q
]
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Lemma 3.5 Let a weight ¢ on a von Neumann algebra A be a) normal and semifinite
or b) finite. Then the following conditions are equivalent:

i) (X)) <o) forall X ¢ A Y € AT with—Y <X <Y,

(i) ¢(|AB + BA|) < ¢(A%2 + B?) forall A, B € A%;
(iii) ¢ is a trace.

Proof (i)=>(iii). Forarbitrary A, B € A wehave —|A| < A < |A|,—|B| < B < |B|.
We sum these inequalities term by term and obtain

—|A|—|B| <A+ B<|A|+|B| forall A,Be A%

Now by (i) we have the inequality ¢ (|A + B|) < ¢(|A| + |B]) = ¢(|A]) + ¢(|B])
forall A, B € A% and ¢ is a trace by Theorem 2 of [54] in the case a) (Theorem 1 of
[54] in the case b)).

(i))=(i). For arbitrary X € A%, Y € AT with =Y < X <Y there exist A € A%,
B € At suchthat X = AB+ BA,Y = A% + B?> by [18, Lemma 1].

The implications (iii)=(i), (iii)=>(ii) are established in Corollary 3.4. m]

Theorem 3.6 Let a positive linear functional ¢ on a C*-algebra A meet one of the
following conditions:

W) ¢(X) < oY) forall X € A% Y € At with—Y <X <Y;
(ii) (|AB + BA|) < ¢(A*> + B?) forall A, B € A%

Then the functional ¢ is tracial.

Proof Note first that if ¢ is a tracial functional on A then conditions (i) and (ii) are
met, see Remark 3.7 below. Assume now that condition i) is met.

Consider the universal enveloping von Neumann algebra of a C*-algebra A [55,
II1.2]. Let 7 be the corresponding universal representation of a C*-algebra A and @
be a positive normal functlonal on M = JT(A)/ " such that go(rr(A)) = ¢(A) for all
A € A. Consider the operators X e M®andY € M+ with —Y < X < Y. It follows
by Kaplansky density theorem that there exist bounded nets {X,} from 7 (A)% and
{Y,} from w (A)™, which so-converge to X , Y. Let {H,} and {K} be such that

Xy =7m(Hy) and Y, = w(Ky).

We can assume that H, € A%, K, € At and —K, < H, < K,. Indeed, let
Z=mn(A) en(A)*T.If

A=B+iC (B,Ce A% ieC,i*=-1),

then 7(A) = 7(B) 4+ in(C) and 7 (C) = 0, hence Z = 7 (B). On the other hand, we
have Z'/2 = 7 (A’) for some A’ € A%. Now

Z=2"727'72=gAYn(A) =7(A%) and A > 0.
Hence we can assume that A = A2 € AT,
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Note that ¥ — X Y +. X e /\/lJr We proved that there exist nets {7, } and {S,} in
A" such that 7(Ty) — ¥ — X and 7(Sq) — ¥ + X in the so-topology. Put

T, — S, Ty + S
Haz%, Ky = “er 2.

Thus, there exist bounded nets { Hy } in A% and { Ko }in AT suchthat — K, < H, < K,
and 7w (Hy) — X and 7 (Ky) — Y in the so- -topology. Note that —7(Ky) < w(Hy) <
7 (Ky). By item (i) of Lemma 3.5 we have

Pl (Ho)D) < 9((Ko)).

We now take into account so-continuity of the functional calculus, pass to the limit in
the so-topology in the latter inequality and obtain

230X < @().

By item (i) of Lemma 3.5 ¢ is a tracial functional on M. Now for all X, Y € A we
have

P(XY) = 9(n(XY)) = 9 (X)7(Y)) =
= (Y)m(X)) = 9w (Y X)) = p(Y X).

Thus, ¢ is a tracial functional on A. O

Remark 3.7 Let ¢ be a lower semicontinuous semifinite trace on a C*-algebra A [34,
6.1.1]. Then ¢(|X]) < @(¥) forall X € A%, Y € AT with =Y < X < Y. In
particular, o(|AB 4+ BA|) < ¢(A% + B?) for all A, B € A%, Indeed, let (1, v) be a
representation of the C*-algebra A, assosiated with the trace ¢. Then for a “natural”
faithful normal trace v on a von Neumann algebra M = 7(A)” relation (1) holds.
For X € A%, Y € AT with =Y < X <Y we have —w(¥Y) < m(X) < mw(Y). Then
by item (ii) of Lemma 2.1 and Lemma 3.5 we obtain

e(IX])) = v (X)) = v(x (X)) = v(@ (X)) = @(Y).

Corollary 3.8 Leta C*-algebra A be suchthat |X| <Y forall X € A®, Y € AY with
—Y < X < Y. Then the algebra A is abelian.

Proof Any positive functional ¢ on A is subject to the inequality of item (i) of Theo-
rem 3.6. It implies that any positive functional on A is tracial, i. e. p(XY) = ¢(Y X)
holds for all elements X, Y € A. Since the set of all positive linear functionals separate
points of the algebra .4, from the latter condition we have XY = Y X forall X,Y € A.
Therefore the C*-algebra A is abelian. O

Theorem 3.9 For a positive linear functional ¢ on a Rickart C*-algebra A the fol-
lowing conditions are equivalent:
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(1) ¢ is tracial;
(i) @(UPU*) < @(P) for all partial isometries U € A and P € AP".

Proof (i)=(ii). Let A € A and P € AP". By the inequality A*A < ||A||>I we obtain
PA*AP < P -||A||*I - P = || A||> P and by monotonocity of the functional ¢ on AT
and its homogeneity we have

@(APA*) = (AP - PA*) = p(PA*AP) < |A|¢(P).

(i))=(i). Let A € A with ||A|| = 1 be arbitrary and U € A be a partial isometry.
We can choose convex combinations of projections

my my
Xo =Y 2 P A >0 k=1 me Y AT =1 (P C AT neN,
k=1 k=1

so that X, M) A*A as n — oo, see the implication (R)=(CP) in Theorem 6.1.2

[28]. Hence

ux,U* L ya*au* as n - oo

by continuity of the product operation in .A. Note that

my my
eUX, UM =Y 1" oWPMU) =3 1"e(P") = p(X,)
k=1 k=1

for all n € N. We pass here to the limit as n — oo, and by the automatic continuity
of the positive linear functional ¢ conclude that

P(UATAU") < p(A™A).

Let U be the partial isometry from the polar decomposition A = U|A| of the element A.
Then |A*| = U|A|U* and U*A = |A|. Therefore, UA*AU* = AA* and p(AA™) <
@(A*A).

Now we consider the element A* instead of A in the foregoing proof, apply the
equality (A*)* = A, and analogously obtain p(A*A) < p(AA™). O

Theorem 3.10 Let ¢ be a normal semifinite weight on a von Neumann algebra A such
that p(QP Q) < ¢(P) forall P, Q € AP". Then ¢ is a trace.

Proof It follows by item (iv) of Theorem 3.4 in [11] that for every projection T € AP"
with ¢(T) < oo the reduced weight g7 on the reduced algebra T AT is a trace. Hence
@ is a trace by [54, Lemma 2]. O

For other trace characterizations see [15-17,17,19-24,58] and references therein.

If A is a bounded operator on the Hilbert space H and 0 < A < I, then {A‘/ "
is a monotone increasing sequence of operators whose strong-operator limit is the
projection on the closure of the range of A [44, Lemma 5.1.5].
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Theorem 3.11 Let a unital C*-algebra A satisfy polar decomposition. Assume that
for every A € A, |A|l = 1, with the polar decomposition A = U|A| there exists a
faithful tracial functional ¢4 on A with the following property:

¢A(P—|A|l/”)—>0 as n — 0o, 3)

where P = U*U. Then A is a Rickart C*-algebra.

Proof Let A, P, 4 be given as in the formulation of the theorem, and A, = |A|1/ n
foralln € N. Then P € AP, P|A| = |A|and0 < A, < A, 41 < P foralln € N. Let
(7, v) be the representation of a C*-algebra 4, associated with a trace ¢4 (see [34,
6.6.4]). Then relation (1) holds for the “natural” faithful normal semifinite trace v on
the von Neumann algebra M = 7 (A)”, generated by 7 (A) (see [34, A.60]). Hence
v(I) = @4(I) < +oo0. For operators

B, = 7(A,) = n(|AD'", neN,

we have 0 < B, < B,4+1 < I for all n € N. Hence by Vigier theorem (see, for
example, [44, Lemma 5.1.4]) there exists

Q =supB, = lim B, € M,
n—o0

n>1

where the limit is taken in the so-topology on M. The projection Q is the support
projection of the operator 7 (|A|) and 7 (|A]) = Qm(]A]). Letus show that Q = 7w (P).
We have

7(P)Q =m(P) lim B, = lim w(P)B, = lim x(P|ADm(|A|'"7) =

= lim B, = 0,

n—oQ
i.e., O < w(P). Obviously, by (1) we obtain

pa(P — Ap) =v(@(P — Ap)) = v(@(P) —7(Ay) =v(@(P) — By) =
=v(@(P)— Q0+ Q0 —By) =v(@(P)—Q)+v(Q—By), neN.
Via the so-continuity of the normal functional v we have v(Q — B,) — Oasn — oo.
Therefore, v(sr(P) — Q) = 0 via (3). Since v is faithful, we obtain Q = 7 (P).
Let us prove that A is a weakly Rickart C*-algebra (see [52, Definition 3.2]).

Assume that X € A with AX = 0. Let us show that PX = 0. Since AXX*A* = 0,
we have

T(AXX*A") = n(A)n (X)n(X)*7(A)* = 0. 4
Since the von Neumann algebra M is a weakly Rickart C*-algebra, via (4) we obtain

0= 0n(X)n(X)*Q = 7(P)r(X)7(X)*1(P) = 1(PXX*P).
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Now by (1) wehave 0 = v(m (PX X*P)) = ¢4 (P X X*P) and, since g4 is faithful, we

obtain PXX*P = |X*P|> = 0. Therefore, ||| X*P|*|| = [||X*P||*> = | X*P||> =0
and X*P = 0. Thus PX = (X*P)* = 0 and A is a weakly Rickart C*-algebra. Since
A is unital, it is a Rickart C*-algebra by [8, Section 4, Theorem 1]. O

Theorem 3.12 Let ¢ be a trace on a Rickart C*-algebra A, A € A%, n > 2 and
Pi, ..., P, € A" be with Py +---+ P, = I, P,(A) = Y }_, PcAPx. Then we have
(i) ¢(|A — Pu(A)]) < Coo(|A]), where C, =2 — 227" foralln > 2;

(i) @(IPr(A)]) = @(Pu(|AD) foralln = 2.

Proof (i). Itis clear that P, P,, = Ofork # m,wherek,m = 1,...,n.Since A € A%
and P, (A) € A%, we conclude that A — P, (A) € A%,
Step 1. Consider A € A" andn > 2. By [14, Lemma 2] we have the representation

2;1—]

1
Pa(A) = 27 D SkASk, )
k=1

where the unitaries S, € A%, k = 1,...,2" ! have the form P £ P, £ --- + P,.
Denote Py + P, +--- 4+ P, = I by Syu-1. Then

|

1
A=P,(A)= > ST (A = SKASK)
k=1

and by Theorem 3.3 we obtain

211—]_1 2,,_|_1
1 1
(1A = Pu(A))) = —2’1_1(0(‘ Z (A — SkASk)D < 2 Z P(JA — SpASK]) <
k=1 k=1
2l _1
1 2021 — 1)
<51 D @A) +9(SiAS) = = —e(A) =
k=1

= (2 —2"")p(A).

Step 2. Letn > 2, A € A% and A = A, — A_ be the Jordan decomposition
into positive and negative parts with AL A_ = 0 and AL + A_ = |A|. For arbitrary
X,Y € A% we have ¢(|X + Y|) < ¢(IX]) + ¢(|Y]), see Theorem 3.3. Therefore by
Step 1 for A4 and A_ we obtain

P(|A = Pp(A)) = 9(|Ax = Pu(A)D + (A = Pu(A)]) =
< Cup(Ay) + Cup(A) = Cup(|A])

with C,, =2 — 22 forall n > 2.

Finally, for every number n > 2 we consider the one-dimensional projection A e
M, (C), which in an orthonormal basis {&1, ..., &,} € C" has the form al.(j'.’) = 1/n for
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alli, j =1,...,nandletp = trbe the canonical trace, (-, -) be a scalar product on C".
For projections P; = (-, &)&,i = 1,...,n wehave A®™ — P, (AM) = A® — 17 =

(1 — %)A(n) — %A(”)l, hence [A®™ — P, (AM)| = (1 _ %)A(”) + %A(n)L and

1 1
P(1A" =Py (A = (1= ~)p(A®) + ~p(A™)
n n

=(1—l)~1+%-(n—1)=2—3

n n

for all n Z~2. In particular, C, = 1 is the sharp constant. Thus, for the best possible
constants C,, ~in the inequalities ¢ (|A — P, (A)]) < Cre(]A]) we have the estimates
2-2n'<C,<2—2*"foralln > 3.

(i1). Since —Py|A|Py < PrAP, < Pi|A|Pyforallk =1, ...,n,wehave —P,(|A]) <
Pn(A) <P,(JA]) foralln > 2,and ¢ (|P,(A)|) < ¢(P,(]A])) by Corollary 3.4.00

Note that
|[PAPY + PYAP| = |PAP+ — PTAP|, [A,P]=—(PAP+— P1AP). (6)

The formula S = 2P — I defines a one-to-one correspondence between symmetries
S € A% and projections P € AP". Then by (6) we have

|A — SAS| =2|PAP* + PTAP| =2|[A, P]|.

Corollary 3.13 Let ¢ be a trace on a Rickart C*-algebra A, A € A and P € A"
Then ¢(|[A, P1]) < ¢(A].

01

For A = M(C) and P = diag(1,0), A = (1 0

) we have |[A, P]| = |A| = I.

Remark 3.14 Let A be a von Neumann algebra and A € AP". In this case, the assertion
of Corollary 3.13 was proved by another method in Theorem 2 of [21]. Assume
also that P = P,(A) € AP". Via representation (5) the projection P is a convex
combination of projections Sy ASg, k = 1,..., 271 Since APF belongs to the set
ext{X € AT : || X|| < 1} of the extreme points of the positive part of the unit ball of
A [44, Chapter 2, 2.8.14], we infer that A = Sy PSy forallk = 1,...,2" 1.

Proposition 3.15 For all A € M,,(C) and P € M,,(C)P" we have a determinant
relation | det(A — P, (A))| = |det([A, P))|.

Proof Since |det(X)| = det(|X|) for all X € M, (C), by (6) we have

|det(A — P2(A))| = det(|A — P2(A)|) = det(|PAPL + PTAP|) =
=det(|PAPT — PTAP|) = det(|[A, P]|) = | det([A, P))|.

O
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Theorem 3.16 Let A = M, (C) and a unitary element A € A be such that for some
n < m the element U = P, (A) is also unitary. Then det(U) = det(A).

Proof Via representation (5), see also [14, Lemma 2], the unitary U is a convex com-
bination of unitaries Sy ASy, k =1, ..., 27=1_Since the unitaries from .4 belong to
the set ext{X € A : | X| < 1} of the extreme points of the unit ball of A4 [55,
Chap. I, Theorem 10.2], we infer that U = Sy ASy forall k = 1,..., 27=1 Then
we apply theorem on determinant of matrix product, since det(Sx) € {—1, 1} for all
k=1,...,2"1 O

Proposition 3.17 Consider a separable Hilbert space H, an operator A € B(H)%, a
vector & € H and a number ¢ > 0. Then there exists a finite-dimensional projection
P € B(H)P such that P& = & and ||[A, P2 < &, where || - ||2 is the Hilbert—Schmidt

norm.

Proof Lemma of the Weyl-von Neumann theorem proof (see, for example, [42,
Lemma 14.11]) shows us that there exists a finite-dimensional projection P € B(H)P"
such that P& = & and |PTAP + PAPL|, < &. We note that | X ||» = ||| X||» for all
Hilbert—Schmidt operators X € B(H) and apply relations (6). O

Lemma3.18 Let ¢ be a weight on a C*-algebra A, A € MG and B € A™.

(i) We have |p(A)| < [|Ally < @(JA]).
(i) If~A < B < Athen B € M and ||Blly < | All,-

Proof (i). Forall Ay, A, € m;; with A} — A = A we have |¢(A)] < p(A1 + Ap).
Passing to infimum over all such A, A>, we obtain |@(A)| < ||Ally. The inequality
IAlly < @(|A]) follows by the Jordan decomposition A = A, —A_withALA_ =
Oand |[A|=A4 +A_.

(ii). Therelation) < A+ B <2Ayieldsthat A+ B € zm;f andB=(A+B)—A¢€
Sﬁfoa. Since || X ||, = ¢(X) forevery X € 93?‘; we have

(53[5l = 55)

=]
2 g

Therefore via the triangle inequality and additivity of ¢ we obtain

B+A A-B B+ A A—B
18l = | == - ==, <|==1, + 1=, -
2 2 @ 2 [ 2 4

=o(TEE) +o(255) = et = 4l

O

Theorem3.19 Let A € B(H)%, P € B(H)?" and S = 2P — I. Then for all § > 0 we
have —81 — 87 V|[A, P]|> < A— SAS <8I + 87 |[A, P])~
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Proof By the Comb-Simon separating inequality [33, Lemma 3.24] for all § > 0 we
have

A>PAP -8 'PAPTAP + PL(A—-51)PT,
A>PrAPt —s7'PLAPAPT + P(A—5S1)P.

Adding these inequalities term by term, and taking into account the equalities
2PAP +2PtAPt = A+ SAS, PAPYAP+ PTAPAP' =|[A, P]?

we obtain A > SAS — 81 — §~|[A, P]|>. Multiplying both sides of this inequality
on the left and right by the symmetry S, we have SAS > A — 81 — 8~ '|[A, P]|>. O

By item (ii) of Lemma 3.18 and Theorem 3.19 we have

Corollary 3.20 Let ¢ be a state on a unital C*-algebra A, A € A%, P € AP and
S =2P — I. Then for all § > 0 we have ||A — SAS|, <8+ 8 'p([A, P1]%).
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