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For the energy spectrum obtained for monoscale Cantor set the correct analytical calculations of the 
specific heat in the frame of the Boltzmann–Maxwell statistics have been performed. These evaluations 
were realized with the help of Mellin’s transform. The accurate analytical expressions for the specific heat 
in all temperature range were obtained. They demonstrate the log-periodic behavior in low-temperature 
and non-oscillatory behavior in high-temperature regions, accordingly. The accurate value of the limiting 
temperature determining the boundary between these two regions was found and evaluated.
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1. Introduction

The experimental discovery of quasi-crystals by Shechtman 
et al. [1] produced a great interest in the understanding of the 
properties of these systems, as was shown later by the great 
amount of theoretical and experimental work that followed. The 
fact that they are in some sense midway between disorder (many 
of their physical properties exhibit an erratic appearance) and or-
der (their definition, and construction, follows purely deterministic 
rules) makes them attractive objects of research. Since their first 
experimental realization in quasi-periodic GaAs–AlAs heterostruc-
tures in 1985 by Merlin and collaborators [2], their interest has 
only increased. More specifically, the Molecular Beam Epitaxy tech-
nique has produced and driven a multiplication of possible such 
structures (Fibonacci, Thue–Morse, double-period sequences; other 
possibilities could be Cantor sets, prime numbers, etc.). The be-
havior of a variety of particles and quasi-particles (electrons, pho-
tons, plasmon-polaritons, magnons) in quasi-periodic sequences 
has been and is currently being studied [3–11]. Now, there is 
a common feature which can be considered as the basic signa-
ture of such structures, and this is a fractal energy spectrum. 
These spectra tend, however, to be quite complex. In order to en-
lighten the thermodynamic consequences of fractal energy spectra, 
in Refs. [12,13] and [14], one- and multiscale fractal energy spec-
tra were studied within Boltzmann statistics. It was shown that the 
scale invariance of the spectrum has strong consequences on the 
thermodynamical quantities. In particular, the specific heat oscil-
lates log-periodically as a function of the temperature. Moreover, 
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general scaling arguments and a detailed analysis of the integrated 
density of states allowed for a quantitative prediction of the av-
erage value (which is related to the average density of states), 
period and amplitude of the oscillations. Moreover, these results 
were extended to N-particle systems described by quantum statis-
tics [15]; it was shown that for phonons, and for bosons in general, 
the Boltzmann scenario survives the inclusion of quantum symme-
tries. The fermionic case is more delicate, however, in some special 
cases, log-periodic oscillations can still be observed.

The aim of this present work is to demonstrate analytical calcu-
lations of the specific heat in the frame of the Maxwell–Boltzmann 
statistics for fractal energy spectrum obtained from monoscale 
Cantor set in all temperature range. The possibility of realization 
of the correct calculations is based on the general formula for the 
elements of the Cantor set that has been used in papers [12,14]. 
In these papers for analytical proof of existence of the log-periodic 
oscillations that appeared in the specific heat behavior for the sim-
plest case of monoscale energy spectrum of the Cantor set the 
Poisson summation formula was used. But in the frame of this 
approach the region of log-periodic behavior was not evaluated 
properly and expression for the specific heat out of this region was 
also not shown. But with the help of Mellin’s transform it becomes 
possible to determine the limits of the log-periodic region and 
find analytical expressions for the specific heat in these two oscil-
lation/non-oscillation regimes. In the given paper with the usage 
of Mellin’s transformation it becomes possible to realize accurate 
analytical calculations for the specific heat associated with more 
general monoscale Cantor set in comparison with results consid-
ered earlier in paper [14]. It is necessary to note that approach 
based on Mellin’s transform is rather productive and it was ap-
plied with success for the solution of the problems related to the 
anomalous dielectric relaxation [16,17], thermodynamics of spin 
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systems with hierarchy-subordinated dynamics [18] and calcula-
tion of the moment of inertia of the heated finite Fermi-systems 
[19] for analytical extraction of the oscillating components of the 
desired physical values.

2. Monoscale cantor sets thermodynamics

In paper [16] for construction of the fractal energy spectrum 
the generalized Cantor set model is suggested, which, in turn, can 
be monoscale or multiscale. The essence of the suggested con-
structions is reduced to the following scheme. On the initial step 
n = 0 we have the continuous segment [0, 1]. On the step n = 1
the set S(l, m) is generated by division of the initial segment 
on j (l-accepts the integer values) equal segments of the length 
l−1 numbered from 0 up to l − 1. Then l − m segments are ex-
cluded and as the result in the Cantor spectrum m segments are 
remained (m < l). In order to keep the spectrum width � = 1 the 
segments with numbers 0 and l −1 cannot be excluded. We should 
note that at the given l and m, 

(m−2
l−2

)
different combinations of m

segments exist (and, hence, 
(m−2

l−2

)
of different sets S(l, m)). The 

sets are differentiated from each other with the help of notation 
S(l, m; b1, b2, . . . , bm), where the combination {b1, b2, . . . , bm} de-
fines a set containing numbers of non-excluded segments. In accor-
dance with limitations imposed above they should satisfy to condi-
tion 0 = b1 < b2 < . . . < bm = l − 1. After selection of one of possi-
ble combinations it should be kept during the whole construction 
process that is necessary for conservation of the given fractal struc-
ture. For the general monoscale S(l, m; b1, b2, . . . , bm) the fractal 
dimension (box-counting dimension) is equaled to dbox = ln m/ ln l.

It is necessary also to reproduce an expression for the energy 
spectrum that is obtained from monoscale Cantor set of the gen-
eral form S(l, m; b1, b2, . . . , bm) in a discrete case

Sn(l,m;b1,b2, . . . ,bm) = E−
n ∪ E+

n , (1)

where

E−
n =

{
n∑

k=1

bk

lk

}
, E+

n =
{

n∑
k=1

bk

lk
+ 1

ln

}
, (2)

expressions define the smallest and the highest energies of any 
interval of the generalized Cantor set, correspondingly. For a 
monoscale Cantor set, analytical expressions can be derived for 
the thermodynamic functions. Regarding to the energy spec-
tra given by Eq. (1), the partition function for the monoscale 
S(l, m; b1, b2, . . . , bm) in the nth step of the generation process 
can be obtained as [14]

Zn(T ) =
[

1 + exp

(
−β

ln

)] n∏
k=1

[∑
bk

exp

(
−βbk

lk

)]
. (3)

From this expression for the partition function, using the equa-
tion Cn(T ) = −β2∂2 ln Zn(T )/∂β2, the specific heat Cn(T ) can be 
obtained [16]

Cn(T ) =
[

2ln

β
cosh

(
β

2ln

)]−2

+β2
n∑

k=1

∑
bk

exp
(−βbk

lk

)∑
bk

b2
k exp

(−βbk
lk

) − [∑
bk

exp
(βbk

lk

)]2

[
lk

∑
bk

exp
(−βbk

lk

)]2
.

(4)

In the n → ∞ limit, only the second term is survived and then 
we have
Cn(T ) = β2

×
∞∑

k=1

∑
bk

exp
(−βbk

lk

)∑
bk

b2
k exp

(−βbk
lk

) − [∑
bk

exp
(βbk

lk

)]2

[
lk

∑
bk

exp
(−βbk

lk

)]2
.

(5)

This equation looks rather complicated and so it should be 
evaluated numerically for obtaining the desired temperature de-
pendence of the specific heat. The standard way is in construction 
of the desired spectra and then the numerical differentiation of the 
partition function obtained. But an attentive analysis shows that 
for some specific cases expression (5) can be considerably simpli-
fied analytically.

In [14] the simplest case related to consideration of a monoscale 
Cantor set was considered. This approach is based on division the 
spectral branch into l subsegments and after that only the first and 
the last one are selected, i.e. S(l, 2; 0, l − 1). But the triadic Cantor 
set represents itself the simplest case when it becomes possible to 
perform the summation 

∑
bk

and thereby simplify Eq. (5). Finally, 
we have

C∞(T ) =
∞∑

k=1

[
2lk T

l − 1
cosh

(
l − 1

2lk T

)]−2

. (6)

From this expression with the help of the Poisson summation 
formula it becomes possible to obtain the analytical expression 
for the specific heat [16], which proves its log-periodic behavior. 
But we want to stress here that this case is not a unique example 
which admits the rigorous analytical results.

In the given work we suggest the following monoscale set ad-
mitting some simplifications of the general expression (5) for the 
specific heat. Really, we consider the modified set when after divi-
sion of the spectral branch on l segments we keep also segments 
with numbers ck = p(k − 1), k = 1, 2, . . . , m, where p accepts the 
integer numbers and l − 1 must be multiply to the number p ex-
cept m = (l − 1)/p + 1. In the result of these manipulations we 
obtain monoscale Cantor set of the type S(l, m; 0, p, 2p, .., l − 1). 
In this case the analytical evaluation of summation 

∑
bk

remains 
possible and after its realization it allows to simplify expression 
for the specific heat (5)

C∞(T ) =
∞∑

k=1

(
pβ

2lk

)2[ 1

sinh2(pβ/2lk)
− m2

sinh2(mpβ/2lk)

]
. (7)

In Fig. 1 we demonstrate two finite approximations of the spe-
cific heat behavior for monoscale Cantor sets in log-scale. We want 
to stress three basic points specifying this dependence. Firstly, the 
behavior of the specific heat at low T represents itself an os-
cillating function and the number of the oscillations which are
controlled by the length of the chosen step participating in the 
generation process. With increasing of number of periods a new 
period appears in the low temperature region. The function Cn(T )

oscillates around a particular value that is defined by the fractal 
dimensionality of the set considered. In the cases shown in Fig. 1, 
we have d1 = ln 6/ ln 11, d2 = ln 2/ ln 11. Thirdly, note that in the 
oscillating regime, Cn(T ) represents itself a log-periodic function. 
Below, based on exact analytical calculations we are going to prove 
of the periodicity phenomenon of such type. The log-periodic phe-
nomenon is appeared only in the oscillating regime.

We want to note that the main reason of the log-periodic os-
cillations in temperature dependence of the specific heat is related 
to the usage of the fractal model for the energy spectrum. Really, 
fractals have the property of a discrete scaling invariance, which is 
a lower symmetry than the scaling invariance [20]. It means that 
the functional equation for the observed physical value Φ(x)

Φ(λx) = γ Φ(x), (8)
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Fig. 1. Finite approximations of the specific heat for the sets S(11, 6; 0, 2, 4, 6, 8, 10)

(thick lines) and S(11, 2; 0, 10) (thin lines). In both cases, the dotted line cor-
responds to n = 4 and the solid one to the values n = 5. The horizontal lines 
represent the corresponding fractal dimensionalities. The vertical lines represent 
the corresponding temperatures T0. The dashed line represents the functions 
C<∞(T ) (T < T02) and C>∞(T ) (T ≥ T02) for the set S(11, 2; 0, 10).

determining the scale invariance property of the considered sys-
tem, is satisfied only for a certain special choice of λ (and also 
of γ ), namely, on an infinite set of discrete values λn = λn , where 
λ is the fundamental scaling parameter. In the result of this prop-
erty on the power-law dependence Φ(x) = Axν , where A is some 
constant and the exponent is ν = lnγ / ln λ, being a solution of the 
functional equation (8), the perturbation is imposed. This pertur-
bation is periodic in the logarithmic scale [20]

Φ(x) = xν W (ln x/ ln λ). (9)

Here W (y) is a periodic function having the unit period 
(W (y + 1) = W (y)). Function W (y) can be represented as a 
Fourier series

W (y) =
∞∑

k=−∞
cke2πkiy,

here, the ck are the Fourier series coefficients, whose specific ex-
pressions depend on the choice of the function Φ(x).

Expression for the specific heat (7) at low temperatures satisfies 
to the functional equation (8) and has the form

C∞(l · T ) = C∞(T ).

So, in accordance with (9), expression (7) can be presented in 
the form

C∞(T ) =
∞∑

k=−∞
ck T 2π ik/ ln l.

In the next section we will determine the decomposition 
Fourier coefficients ck .

3. Analytical calculation of the specific heat

For the proving of the log-periodic behavior of the specific heat 
one can subject by Mellin’s transformation equation (7):

C∞(β)
MT= Ĉ∞(s) =

∞∫
C∞(β)βs−1dβ. (10)
0

Fig. 2. Schematic of the pole positions for the function (10) and the contours L± in 
the complex plane.

Using the known expressions

x2

sinh2(x)

MT= 2−sΓ (s + 2)ζ(s + 1), Re s > 0, (11)

where Γ (z) is conventional gamma-function, ζ(z) is Riemann’s
zeta-function and the properties of Mellin’s transform

f (ax) MT= a−s f̂ (s) one can obtain from (7)

Ĉ∞(s) = p−s(1 − m−s)Γ (s + 2)ζ(s + 1)

∞∑
k=1

lks = Ĝ(s)

l−s − 1
,

Ĝ(s) = p−s(1 − m−s)Γ (s + 2)ζ(s + 1), −2 < γ = Re s < 0.

(12)

Here we took into account the fact that existence domain of 
Mellin’s image of the function x2 sinh−2(x) − (mx)2 sinh−2(mx) is 
different from Mellin’s image of the function x2 sinh−2(x) (see 
Eq. (11)) and satisfies to condition: Re s > −2.

Mellin’s image Ĉ∞(s) has simple poles which can be divided 
on two groups. The first group of the poles coincides with zeros of 
denominator of expression (12). They are determined as

l−s = 1 ⇒ exp(−s ln l) = exp(−2π ik)

⇒ s(1)

k = iΩk, k = 0,±1,±2, . . . ,Ω = 2π

ln l
. (13)

The second group is formed by the poles of the gamma-
function entering to expression Ĝ(s)

s + 2 = −k ⇒ s(2)

k = −k − 2,k = 0,1,2, . . . . (14)

The poles {s(1)

k } and {s(2)

k } (see Fig. 2) form two independent 
sets and so the total set of poles of the function Ĉ∞(s) is equaled 
to {sk} = {s(1)

k } ∪ {s(2)

k }.
Then we should come back and realize the inverse Mellin’s 

transform. Adding to the integration line the left or right semi-
circles that form the closed integration contour one can use the 
residue theorem. Finally, we obtain

C∞(β) = 1

2π i

γ +i∞∫
γ −i∞

Ĉ∞(s)β−sds = ±
∑

k

Re ssk

[
Ĉ∞(s)β−s]. (15)

Here the signes “+” and “−” correspond the contour L+ and 
L− , accordingly (see Fig. 2). As one can notice from Fig. 2 the poles 
of the first group {s(1)

k } are located inside the contour L− , while the 
poles of the second group {s(2)} are located inside L+ .
k
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Choosing the contour L+ , we obtain

C>∞(T ) =
∞∑

k=0

Re s−k−2

[
Ĝ(s)

l−s − 1
β−s

]

=
∞∑

k=0

(−1)k(1 − mk+2)(l − 1)k+2ζ(−k − 1)

(lk+2 − 1)k! (pβ)k+2, (16)

where we use the residue values Re s−k−2[Γ (s + 2)] = (−1)k/k!. 
Taking into account also the values

ζ(−2n) = 0, ζ
(−(2n − 1)

) = −B2n/2n, n = 1,2,3, . . . ,

where the constants B2n coincide with Bernoulli’s numbers, we ob-
tain finally from the last expression (16)

C>∞(T ) =
∞∑

n=1

m2n − 1

(l2n − 1)(2n − 2)!
B2n

2n
(pβ)2n. (17)

Additional investigation associated with the convergence of the 
series (17) based on asymptotic behavior of Bernoulli’s numbers 
B2n ≈ 2(−1)n+1(2n)!/(2π)2n (n 	 1) leads us to conclusion that 
this series is convergent at T ≥ T0, where

T0 = mp

2π l
= 1

2π

(
1 + p − 1

l

)
,

1

2π
< T0 <

1

π
. (18)

So, expression (17) for the specific heat is correct for the tem-
perature range T > T0 which defines non-oscillatory regime. We 
want to remark also that for the set S(l, 2; 0, l − 1) which coin-
cides with the partial case at m = 2, p = l − 1, T0 = (1 − l−1)π−1.

If in denominator of expression (17) one replaces l2n − 1 for l2n

then it becomes possible to realize this summation and receive a 
good approximate expression for the specific heat C>∞(T )

C>∞(T ) 

(

p

2T l

)2[ 1

sinh2(p/(2T l))
− m2

sinh2(mp/(2T l))

]
. (19)

If we choose contour L− , containing poles {s(1)

k } then formulae 
(15) leads to the following result

C<∞(T ) = −
∞∑

k=−∞
Re siΩk

[
Ĝ(s)

l−s − 1
β−s

]

= −Re s0

[
Ĝ(s)

l−s − 1
β−s

]
−

∞∑
k=1

{
Re siΩk

[
Ĝ(s)

l−s − 1
β−s

]

+ Re s−iΩk

[
Ĝ(s)

l−s − 1
β−s

]}
. (20)

Taking into account that lims→0[sζ(s + 1)] = 1, lims→0
1−m−s

l−s−1 =
− ln m

ln l , Re s±iΩk
Ĝ(s)β−s

l−s−1 = 1
ln l Ĝ(±iΩk)β∓iΩk one can obtain from 

(20) the following expression

C<∞(T ) = lnm

ln l
+ 1

ln l

∞∑
k=1

{
Ĝ(iΩk)β−iΩk + Ĝ(−iΩk)β iΩk}. (21)

Extracting the real and imaginary part of Ĝ(±iΩk) one can ob-
tain finally

C<∞(T ) = lnm

ln l
+ 2

ln l

∞∑
k=1

{
Re

[
Ĝ(iΩk)

] · cos(kΩ ln T )

− Im
[
Ĝ(iΩk)

] · sin(kΩ ln T )
}
. (22)

This expression for the specific heat contains the basic informa-
tion about the behavior of heat capacity for the monoscale Cantor 
spectrum: (a) oscillations near fractal dimension ln m/ ln l and log-
periodic property of the function C∞(T ). We want to mark also 
that expression (22) represents itself the analytical continuation 
of expression (17) and, hence, it is correct for the temperature re-
gion T < T0, which determines the oscillating region of the specific 
heat.

In Fig. 1 the boundaries dividing the oscillating and non-
oscillating regions are shown by vertical lines: T = T01 = 6/11π
for the set S(11, 6; 0, 2, 4, 6, 8, 10) and T = T02 = 10/11π for the 
set S(11, 2; 0, 10). From Fig. 1 one can notice that heat capac-
itance for the spectrum S(11, 6; 0, 2, 4, 6, 8, 10) at T > T0 de-
creases monotonically with the growth of temperature while for 
the spectrum S(11, 2; 0, 10) at T > T0 the heat capacitance loses 
its monotone character and has the local maximum. The tempera-
ture corresponding to the maximum point is evaluated numerically 
from the approximate expression for C>∞(T ) (17), which increases 
the characteristic temperature T0 for m = 2, 3, 4.

To illustrate the properties of C<∞(T ) and C>∞(T ) depicted in 
Fig. 1 we also show for the set S(11, 2; 0, 10) the functions C<∞(T )

and C>∞(T ) given by Eqs. (22) and (17) by a dashed line.

4. Summary

In the given paper we demonstrated the accurate prove of 
the log-periodic behavior of the specific heat behavior associated 
with quasi-periodic system with energy spectrum obtained for the 
monoscale Cantor set in the frame of the Maxwell–Boltzmann 
statistics. As the method we used Mellin’s transform, which al-
lows finding in analytic form the log-periodic behavior of the spe-
cific heat. This transformation allowed determining the boundaries 
of the temperature region where the log-periodic behavior takes 
place. In the frame of the suggested approach it became possible 
to evaluate the value of the boundary temperature which depends 
on the structural parameters of the spectrum considered and ob-
tain the clear expression for the specific heat out of the oscillating 
regime, which exhibits monotone/non-monotone behavior depend-
ing of the structure of the spectrum considered.

In conclusion we should add the following remark. A possibil-
ity of an “accurate” (analytical) investigation of thermodynamics 
is related closely with selection of an “idealized” fractal spectrum 
obtained from the generalized Cantor set. But investigation of the 
thermodynamics for “real” spectra associated with quasi-periodic 
structures is possible only with numerical calculations. In paper 
[14], for example, the thermodynamics of tight-binding Fibonacci 
spectrum was performed. This specific spectrum represents it-
self an approximate fractal (not strictly invariant under changes of 
scale), and then many of the properties found previously for the 
Cantor sets can be considered as approximate. This fact is closely 
associated with the interpretation of the meaning of fractal dimen-
sion D , and in the log-periodicity behavior and amplitudes of the 
oscillations that were found by authors of paper [14] for the Fi-
bonacci specific heat can be interpreted only in this sense.
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