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Разработка новых материалов – перспективное
направление развития аналитической химии и дру�
гих научно�технических отраслей [1]. Достижения
нанотехнологий – наноразмерные и нанострукту�
рированные материалы с уникальными характери�
стиками – находят все более широкое применение в
решении задач разделения, концентрирования и
распознавания различных соединений [2]. Сочета�
ние особых свойств таких материалов с высокой из�
бирательностью, характерной для биохимических
методов анализа, позволяет создать принципиально
новые аналитические устройства, востребованные
для решения задач биомедицины (персонифициро�
ванная медицина, клинический анализ, внелабора�
торные индивидуальные средства диагностики),
фармацевтики (скрининг новых лекарственных
препаратов, фармакокинетика) и экологического
мониторинга (индивидуальное и групповое опреде�
ление экотоксикантов). Это, в частности, нашло от�
ражение в закреплении соответствующих направ�
лений исследований в перечне критических техно�
логий РФ (биокаталитические, биосинтетические и
биосенсорные технологии, нано�, био�, информа�
ционные, когнитивные технологии). Вместе с тем,
использование новых современных материалов
не сводится к механическому совмещению от�
дельных биологических и вспомогательных ком�
понентов. Размер наночастиц, наличие в них
функциональных групп, необходимых для функ�

ционирования биосенсора, а также особенности
внедрения наноматериалов в макроскопические
системы, такие как модифицирующие слои сен�
соров и биосенсоров, предъявляют особые требо�
вания как к процессам “сборки” чувствительных
слоев, так и к их составу и особенностям изучения
на этапах оптимизации и тестирования соответ�
ствующих аналитических устройств. Примени�
тельно к электрохимическим преобразователям
сигнала особое внимание уделяется вопросам
обеспечения электрической коммуникации пер�
вичного преобразователя и биохимического ком�
понента. Она опосредована каскадами промежу�
точных реакций, включающих электронообменные
процессы, сорбционно�каталитические стадии и
собственно биохимическое распознавание молекул
аналитов. Разнообразие поведения сложных ги�
бридных структур обеспечивает высокую чув�
ствительность определения аналитов и открывает
новые возможности дизайна (био)сенсоров, на�
правленные на их миниатюризацию, совмести�
мость с имеющимися средствами измерения и на
использование в специальных условиях, напри�
мер, при имплантации датчика или удаленной ре�
гистрации его сигнала по радиоканалу. Все это
определяет актуальность обобщения имеющихся
литературных данных, посвященных отдельным
аспектам применения таких “умных” материалов
в составе биосенсоров.
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Настоящий обзор посвящен применению в со�
ставе электрохимических биосенсоров дендриме�
ров (от греч. “dendron” – дерево). Это гиперраз�
ветвленные полимеры, содержащие центральное
ядро, на котором посредством ветвления наращи�
вают функционализированные повторяющиеся
единицы [3]. Являясь индивидуальными соеди�
нениями, дендримеры в силу большой молеку�
лярной массы, объемной структуры и значитель�
ного числа функциональных групп на поверхно�
сти проявляют свойства, более типичные для
наночастиц, состоящих из агрегатов низкомоле�
кулярных органических соединений и их ком�
плексов. Дендримеры применяют в качестве сор�
бентов, стабилизаторов биологических препаратов,
их вводят в состав катализаторов и модифицирую�
щих добавок. Применение дендримеров в составе
биосенсорных устройств отражено в ряде обзоров
[2–5]. В настоящей работе основное внимание уде�
лено принципам функционирования биосенсоров,
включающих дендримеры, и аналитическим харак�

теристикам определения с их помощью органиче�
ских соединений биологического значения.

Общая характеристика дендримеров. Дендри�
меры – это монодисперсные трехмерные сверх�
разветвленные наноразмерные полимерные ар�
хитектуры с очень высокой плотностью поверх�
ностных функциональных групп. Их получают,
последовательно наращивая число слоев путем
присоединения структурно однотипных элемен�
тов к так называемым точкам ветвления. Число
таких слоев определяет генерацию (поколение)
дендримера. Наиболее распространенные денд�
римеры на основе полиалкиленамидов и аминов
относятся к четвертой генерации. Молекулы
дендримера состоят из трех различных доменов:
ядра, дендрона и концевых функциональных
групп (рис. 1). Отдельные ветви молекулы фор�
мируют внутренние полости (дендримерные ще�
ли), в ряде случаев доступные для низкомолеку�
лярных соединений, для которых дендримеры
выступают в качестве молекулярных “контейне�
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ров”. Свойства дендримеров и возможность при�
менения в составе биосенсоров в большей степени
определяются периферическими функциональны�
ми группами, хотя внутренняя функциональность
дендримерных трещин и центрального ядра также
имеют значение [2].

Синтез дендримеров на основе полифункцио�
нальных мономеров типа ARB2, где А и В реагиру�
ют только друг с другом, но не с себе подобными,
теоретически предсказан еще в 1941 г. [6], а досту�
пен стал лишь с 1980�х годов. Дендримеры полу�
чают с использованием двух подходов (дивер�
гентного [7] и конвергентного [8]), в которых рост
ответвлений достигается через последовательное
сопряжение и/или реакции присоединения и сня�
тия защитных групп (рис. 2). Дивергентный под�
ход успешно используют для синтеза дендримеров
полиамидоамина (ПАМАМ), полипропиленими�
на (ППИ), поли�L�лизина, меламина, лимонной
кислоты и полиглицерина [9, 10]. Он разработан
независимо несколькими исследовательскими
группами [7]. Конвергентный подход, в котором
рост молекулы идет “внутрь” за счет связывания
концевых групп в каждом домене мономера, реа�
лизован при получении дендримеров полиэстера,
полиэфира и меламина. На основе указанных ба�
зовых методов разработаны и иные подходы, та�
кие как двухступенчатый конвергентный рост,
двойной экспоненциальный рост и ортогональное
связывание [11–14]. Всего существует более ста се�
мейств дендримеров с различными внутренними и
внешними функциональными группами. 

Общими периферийными группами в дендри�
мерах являются –NH2, –COOH, –OH, –СНО. Их
использовали для получения более чем 1000 ти�
пов биоконьюгатов с биохимическими компо�
нентами, необходимыми для функционирования

биосенсоров. Помимо генерации дендримеры ча�
сто характеризуют особенностями пространствен�
ного строения молекулы, выделяя такие формы,
как звезда, шар, конус, чаша, турбина, крест, сне�
жинка, гантель и т.д. [15–22].

Несмотря на разнообразие синтезированных
дендримеров, значительная часть публикаций
посвящена ПАМАМ, коммерчески доступным в
нескольких генерациях и модификациях перифе�
рических функциональных групп. Форма
ПАМАМ зависит от поколения, физико�химиче�
ских свойств ядра и дендрона. Они претерпевают
конформационные изменения и, как правило,
становятся более компактными с увеличением
номера поколения. ПАМАМ 4–8 поколения име�
ют форму мягких сфер, для более высоких генера�
ций – твердых сфер [23].

Применение дендримеров в составе электрохи4
мических биосенсоров. Изначально стимулом для
применения дендримеров в составе биосенсор�
ных устройств было достижение высокой эффек�
тивности иммобилизации биомолекул. Это свя�
зано со стабилизирующим действием разветвлен�
ных полимеров на трехмерную структуру белков и
нуклеиновых кислот. Благодаря большому числу
полярных и ионизированных группировок на по�
верхности молекул дендримера они легко адсор�
бируют биополимеры с помощью многоточечных
слабых взаимодействий на поверхности и в поло�
стях. Поскольку дендримеры ограниченно рас�
творимы в воде и полярных органических раство�
рителях, после адсорбции дендримеры можно до�
статочно легко осадить на рабочей поверхности
биосенсора, формируя, таким образом, его биочув�
ствительный слой. Благодаря монодисперсности
дендримеры обладают хорошо воспроизводимыми
характеристиками модифицирующих покрытий,

Дивергентный подход

Конвергентный подход

– ядро, – дендрон 1�го поколения, – дендрон 2�го поколения,

– дендрон 3�го поколения, – функциональная группа

Рис. 2. Дивергентный и конвергентный рост дендримерной структуры.
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что выгодно отличает их от полидисперсных мате�
риалов со сходными функциями, например, поли�
мерами или наночастицами [2, 3].

Помимо стабилизации биополимеров выявле�
ны и другие преимущества использования денд�
римеров в составе биосенсоров. К ним относятся
высокая плотность функциональных групп, ис�
пользуемых для ковалентной иммобилизации
белков и нуклеиновых кислот, сохранение диф�
фузионной проницаемости слоя для низкомоле�
кулярных носителей заряда, совместимость с тра�
диционными модификаторами – медиаторами
электронного переноса и кофакторами фермен�
тов. Включение дендримеров в состав биосенсо�
ров повышает чувствительность сигнала, снижает
неспецифическое связывание мешающих компо�
нентов, обеспечивает более высокую доступность
центра связывания биокомпонента для определя�
емого соединения и более высокую стабильность
отклика по сравнению с аналогичными кон�
струкциями на основе традиционных полимер�
ных носителей (желатин, производные целлюло�
зы и полисилоксаны). 

За последние 10 лет опубликовано свыше
100 работ, посвященных использованию дендри�
меров в составе биосенсоров. Следует отметить,
что помимо гиперразветвленных полимеров тер�
мин “дендример” иногда используют в отноше�
нии высокопористых композитных материалов,
содержащих поверхностные функциональные
группы, участвующие в модификации или кова�
лентном связывании биополимеров. Подобные
структуры получают с помощью золь–гель моди�
фикации поверхности электродов с помощью по�
ликонденсации замещенных силанов и силокса�
нов [24]. В отличие от дендримеров, такие мате�
риалы не отличаются строго определенным
составом и помимо ковалентно связанных повто�
ряющихся единиц содержат аморфные области
гидратированных олигомеров и низкомолекуляр�
ных компонентов, удерживаемых во внутренних
слоях. Таким образом, речь идет не об индивиду�
альных соединениях, как в случае гиперразветв�
ленных полимеров, а о составных композитах, не
имеющих определенного стехиометрического со�
става. Указанные “дендримероподобные” мате�
риалы применяют в составе электрохимических
сенсоров и биосенсоров в сходных с дендримера�
ми целях. Они могут включать электрохимически
активные группы или служить матрицей для им�
мобилизации дополнительных модификаторов. 

Композитные материалы из наночастиц метал4
лов и дендримеров. Значительное количество ра�
бот посвящено композитным покрытиям, полу�

чаемым путем сочетания электростатической ад�
сорбции катионов благородных металлов в слое
дендримера с последующим их химическим вос�
становлением [25–31]. При этом образуются уль�
трамалые частицы свободных металлов, обладаю�
щие высокой каталитической активностью, в ря�
де случаев – медиаторными свойствами. Помимо
сорбционного концентрирования исходных ка�
тионов металлов, молекулы дендримера играют
роль защитной оболочки образующихся наноча�
стиц, препятствуя их агрегации и ограничивая их
рост. Это позволяет получать наночастицы метал�
лов определенного размера, равномерно распре�
деленные в органической матрице.

Для синтеза нанодисперсий металлов сначала
готовят растворы, содержащие дендримеры и со�
ли металлов или их комплексов в водной или вод�
но�органической фазе. Условия получения рас�
творов должны обеспечивать гидролитическую
устойчивость катиона металла и его электростати�
ческое взаимодействие с дендримером. Для частиц
золота и платины используют анионные комплек�
сы в сочетании с аминозамещенными дендриме�
рами, для свободных катионов металлов – произ�
водные с терминальными карбоксильными и кар�
бамидными группами. 

Размер образующихся наночастиц металлов
определяется, прежде всего, числом функцио�
нальных групп дендримера, участвующих в коор�
динации ионов металлов. Для старших поколе�
ний число атомов в образующихся нанокластерах
может в несколько раз превышать число центров
координации. Для 1–3 поколения оптимальным
считается стехиометрическое соотношение коли�
честв вещества металла и функциональных групп
дендримера. Высокая унификация размера обра�
зующихся нанокластеров металлов неоднократно
подтверждалась данными трансмиссионной элек�
тронной микроскопии. Близкий размерный состав
получаемых наночастиц предположительно свя�
зан с самоагрегацией первично образующихся
кластеров, которая определяется гидрофильно�
гидрофобным балансом поверхности и внутрен�
ней полости молекулы дендримера. Дополнитель�
ная модификация поверхностных групп реакци�
онноспособными фрагментами, участвующими в
восстановлении ионов металлов (например, в
случае ППИ – остатками мальтозы [28]), способ�
ствует уменьшению размера наночастиц метал�
лов и увеличению их дисперсности. Средний раз�
мер частиц в зависимости от природы металла и
лиганда варьирует от 1.2 до 3.5 нм, что существен�
но меньше, чем при ограничении роста наноча�
стиц цитрат�ионами (образуются частицы разме�
ром 13–100 нм) и сопоставимо с результатами при�
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менения в тех же целях меркаптанов (5–10 нм, все
данные для наночастиц серебра и золота [29]). 

Реакция ассоциатов металлов и дендримеров с
восстановителями протекает достаточно медлен�
но – в течение суток и более. После получения
инкапсулированные частицы металлов иммоби�
лизуют на поверхности носителей, используя для
этого ковалентную пришивку к поверхности с по�
мощью тиолированных линкеров [29], включение
в органические и неорганические гели [24] и по�
лиэлектролитные комплексы [4]. Для предотвра�
щения агрегации частиц металлов на данной ста�
дии их дополнительно обрабатывают стабилиза�
торами, например, для Ag и Au реагентами с
карбоксильными и тиольными группами соответ�
ственно [32, 33]. 

Дендримеры с редокс4активными функциональ4
ными группами. Агрегаты наночастиц металлов и
дендримерной “капсулы” находят применение в
электрокатализе, но они как правило малоактив�
ны в медиаторном переносе электрона. Это огра�
ничивает их использование в электрохимических
биосенсорах, где лимитирующей стадией часто
является перенос электрона от биологического
компонента. Для улучшения электрической ком�
муникации синтезированы функционализиро�
ванные дендримеры, концевые группы которых
ковалентно связаны с электрохимически актив�
ными фрагментами, способными к обратимому
окислению–восстановлению на электроде.

Среди таких материалов наиболее известны
дендримерные производные ферроцена. Они отли�
чаются высокой эффективностью переноса элек�
трона, химически и электрохимически устойчивы.
Реакция обратимого окисления–восстановления
ферроцен–ферроциний не зависит от рН среды.
Это особенно важно при определении субстратов
оксидоредуктаз, окисление которых сопровожда�
ется выделением ионов водорода.

Эффективность переноса электрона ферро�
цензамещенных дендримеров 0, 1 и 2 поколения с
9, 18 и 27 ферроценовыми фрагментами соответ�
ственно оценивали с помощью зондовой элек�
трохимической микроскопии [34]. Дендримеры
иммобилизовали путем электростатической ад�
сорбции на подложке, которой придавали отри�
цательный заряд обработкой арилдиазониевой
солью и ее восстановлением. Обратимость пере�
носа электрона снижалась при увеличении разме�
ра непроводящей капсулы дендримера. Интерес�
но, что при использовании растворимых (диффу�
зионно свободных) медиаторов электронного
переноса (алкилпроизводные ферроцена) реали�
зуется челночный механизм переноса электрона
между медиатором и ферроценильными группа�
ми дендримера, но не между диффузионно сво�
бодным медиатором и электродом. 

Влияние микроокружения ферроценильных
фрагментов в составе дендримера на их электро�

химические характеристики подтверждено срав�
нением поведения линейного и гиперразветвлен�
ного метилсилоксана с ковалентно связанными
ферроценильными фрагментами [35]. Гиперраз�
ветвленный полимер показал более высокие зна�
чения константы скорости переноса электрона и
тока обмена, что было объяснено более высокой
концентрацией противоионов в глобуле дендри�
мера. 

Близким аналогом ферроцена является ко�
бальтоцен, способный к обратимому одноэлек�
тронному окислению−восстановлению [36].
Дендримеры 1–3 поколения, монозамещенные
кобальтоцениевым фрагментом 1, способны к од�
ноэлектронному окислению в воде и полярных
органических растворителях. Перенос электрона
подавляется при адсорбции β�циклодекстрина.

Наибольшая чувствительность электрохими�
ческой регистрации сигнала такого сенсора до�
стигается для дендримера второго поколения. За�
висимость потенциала полуволны и обратимость
переноса электрона от рН и размера глобулы денд�
римера связаны с электростатическими взаимо�
действиями и реакциями протонирования–депро�
тонирования карбоксильных групп полимера.

Дендримеры 2 с 2, 4, 8, 16, 32 и 64 концевыми
порфириновыми фрагментами в свободном со�
стоянии и в виде комплексов с ионами Zn(II) изу�
чали методом циклической вольтамперометрии
[37]. Отмечено отсутствие зависимости редокс�
потенциала порфириновых фрагментов от их
числа в молекуле дендримера. 
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Ферментные сенсоры с включением дендриме4
ров. Наиболее широко дендримеры используют в
сочетании с оксидоредуктазами. Сигнал соответ�
ствующих биосенсоров связан с окислением–
восстановлением продукта биохимической реак�
ции или кофактора фермента. Дендримеры с
включением наночастиц металлов или редокс�ак�
тивных групп обеспечивают усиление сигнала и
снижение рабочего потенциала его измерения за
счет включения в цепь переноса заряда или обес�
печения наиболее благоприятной ориентации
фермента (его кофактора) в биочувствительном
слое. Характеристики определения субстратов
ферментов с помощью биосенсоров с включени�
ем дендримеров приведены в табл. 1.

ПАМАМ с ковалентно связанными ферроце�
новыми фрагментами использовали в составе
“безреагентного” ферментного сенсора на глю�
козу [38]. Для этого концевые аминогруппы
ПАМАМ модифицировали ферроценальдегидом,
затем дендример вводили в монослой цистамина
на золотом рабочем электроде. Иммобилизацию
фермента проводили, окисляя периодатом саха�
ридный фрагмент молекулы. Суспензии дендри�
мера и фермента осаждали на электрод послойно
для увеличения общего количества фермента в
составе биосенсора (рис. 3). Поверхностная кон�
центрация ферроцена, участвующего в переносе
электрона, по данным циклической вольтамперо�
метрии (ЦВА) составила 2.5 × 10–9 моль/см2, или
32% от общего числа ферроценовых фрагментов в

составе дендримера (для пяти слоев дендример–
фермент). Аналогично иммобилизовали фермент
на молекулах дендримера с концевыми ферроце�
новыми группами, включенных в состав самоор�
ганизуюшегося монослоя [39].

Предложена [40] обратная последовательность
включения в состав сенсора ферроцена и дендри�
мера: Au электрод покрывали тиолированным
производным ферроцена, после чего ковалентно
иммобилизовали ПАМАМ и глюкозооксидазу.
Сигналом служил ток медиатора электронного пе�
реноса, регистрируемый при 0.35 В. Следует отме�
тить, что чувствительность этого биосенсора усту�
пает другим прототипам с теми же модификатора�
ми (табл. 1).

Предложены композитные покрытия на стек�
лоуглеродном электроде, модифицированном
многостенными углеродными нанотрубками,
ПАМАМ (4 поколение) с концевыми карбок�
сильными группами и наночастицами Au как ос�
нова для конструирования амперометрического
глюкозного сенсора [41]. Иммобилизацию фер�
мента проводили путем его физической адсорб�
ции на модифицирующем покрытии с последую�
щим покрытием белковой пленки нафионом.
Биосенсор характеризуется высокой чувстви�
тельностью и стабильностью сигнала и широким
линейным диапазоном определяемых содержа�
ний, что делает его перспективным для создания
портативного глюкометра.
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Таблица 1. Характеристики ферментных сенсоров с включением дендримеров в состав чувствительного слоя

Фермент Определяемое 
соединение

Дендример 
(редокс�активная группа)

Аналитические 
характеристики* Литература

Глюкозооксидаза Глюкоза ПАМАМ (ферроцен) cв 40 мМ, cmin 1 мкМ, время 
отклика 6 с

[38]

То же ПАМАМ (наночастицы 
золота)

ДОС 1–5 мМ, cmin 0.6 мМ [40]

» То же ДОС 0.1–15.8 мкМ, 
cmin 0.05 мкМ, чувствительность 
2.9 мкA мM–1 cм–2, время откли�
ка менее 5 с

[41]

» ПАМАМ (наночастицы 
платины)

ДОС 0.02–10 мМ, cmin 4 мкМ [42]

» ПАМАМ (наночастицы 
платины), диоксид титана

ДОС 2 мкМ–12 мМ, cmin 1 мкМ, 
время отклика менее 3 с

[43]

» Порфириновый 
комплекс кобальта

cв 1 мМ, cmin 5.33 мкМ, чувстви�
тельность 16.57 мкA мM–1 cм–2, 
измерение в присутствии аскор�
биновой и мочевой кислоты

[44]

Глюкозооксидаза–
пероксидаза

» ПАМАМ (пероксидаза) Время жизни биосенсора 68 дней [45]

Глюкозооксидаза, 
стрептокиназа

» Полиглицерин ДОС 1–50 мМ, время жизни 60 ч [46]

Глюкозооксидаза–
пероксидаза

» ППИ cв 4 мМ, cmin 12.8–22.1 мкМ, чув�
ствительность 0.51 мкA мM–1

[47]

Глюкозооксидаза 
(ингибирование)

Ртуть(II) ПАМАМ  cmin 100 нМ [48, 49]

Лакказа Катехол ПАМАМ (наночастицы 
золота)

ДОС 0.1–50 мкМ, cmin 0.05 мкМ [50]

Тирозиназа Пеницилламин То же cmin 54 нМ [51]

Холинэстераза, 
холиноксидаза

Ингибиторы ПАМАМ cmin 1.3 × 10–3 (ДДВФ)**, 
0.01 (карбофуран), 
0.03 (эзерин) мкг/кг

[52, 53]

Ацетилхолинэсте�
раза

Карбофуран ПАМАМ (наночастицы 
золота)

ДОС 4.8–90 нМ, cmin 4.0 нМ [54]

Фруктозодегидроге�
наза

Фруктоза ПАМАМ (феррицианид) ДОС 0.25–5.0 мМ, время отклика 
35 с

[55]

Алкогольдегидроге�
наза, пиранозоок�
сидаза

Этанол, глюкоза ПАМАМ cв 0.5 мМ, 11 ч работы в потоке [56]

Алкогольоксидаза Этанол То же ДОС 0.025–1.0 мМ, 
cmin 0.016 мМ, время отклика 100 с

[57]

* cв – верхняя граница диапазона определяемых содержаний, ДОС – диапазон определяемых содержаний, cmin – предел об�
наружения.
** ДДВФ – диметилдихлорвинилфосфат.

В качестве матрицы для иммобилизации глю�
козооксидазы использовали гибридный матери�
ал, включающий мезопористые частицы оксида
кремния и наночастицы платины, инкапсулиро�
ванные в ПАМАМ и размещенные на поверхно�

сти стеклоуглерода [42]. Присутствие наночастиц
платины в модифицирующем слое облегчает пе�
ренос электрона между активным центром фер�
мента и электродом и повышает чувствитель�
ность определения глюкозы с помощью ЦВА.
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Аналогичная медиаторная система была включе�
на в нанотрубки диоксида титана [43]. 

Описан [44] прямой электронный перенос на
глюкозооксидазу, иммобилизованную на стекло�
углеродном электроде, модифицированном денд�
ритным поли[мезо�тетракис(2�тиенил)порфири�
натом] кобальта(II) и одностенными углеродными
нанотрубками. Иммобилизованная глюкозоокси�
даза демонстрирует обратимую реакцию быстрого
переноса электрона (константа скорости 1.01 с–1) с
низким потенциалом измерения вольтамперомет�
рического отклика (–0.2 В). Возможно измерение
уровня глюкозы на фоне 0.2 мМ мочевой и аскор�
биновой кислот.

ПАМАМ с ковалентно пришитой пероксида�
зой использовали для физической адсорбции
глюкозооксидазы путем ее включения в поли�
электролитные комплексы с полиакриловой кис�
лотой на золотом электроде [45]. Особенностью
предлагаемого способа иммобилизации является
зависимость характеристик покрытия от рН сре�
ды. В кислой среде за счет депротонирования ка�
тионных компонентов слой сжимался, защищая
ферменты от внешнего воздействия, а в нейтраль�
ной и слабощелочной средах восстанавливал
свою активность. Аналитические характеристики
биосенсора в работе не приводятся.

Полиглицерин 4 поколения (48 гидроксидных
групп на молекулу) использовали для иммобили�
зации глюкозооксидазы и стрептокиназы и со�
здания биосенсора для определения глюкозы и
оценки совместимости крови [46]. Ферменты им�
мобилизовали путем ковалентного присоединения
к терминальным гидроксидным группам с помо�

щью 1�циано�4�(диметиламино)пиридиний тет�
рафторбората. Дендример совместно с фосфоли�
пидом электростатически иммобилизовали на
пленке полианилина, получаемой электрохимиче�
ски на платиновом электроде. 

Совместную иммобилизацию глюкозооксида�
зы и пероксидазы использовали для чувствитель�
ного определения глюкозы с помощью сенсора на
основе электрода, модифицированного ППИ 1–3
поколения 3 с терминальными метилферроце�
нильными фрагментами [47] (рис. 3). 

Дендример 3 осаждали из дихлорметана на пла�
тиновом электроде с последующей иммобилиза�
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тельно окисленной периодатом глюкозооксидазы (GOD) и дендримера с ковалентно пришитым ферроценом.
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цией пероксидазы и глюкозооксидазы кросс�
сшивкой парами глутарового альбумина. Макси�
мальный отклик зафиксирован для поверхностной
концентрации дендримера 1.8 × 10–9 моль/см2 (в
пересчете на ферроцен). При переходе от первого к
третьему поколению дендримера предел обнару�
жения глюкозы повышался от 12.8 до 22.1 мкМ из�
за стерических препятствий электронного обмена
и снижения эффективности медиаторного пере�
носа электрона.

Монослои ПАМАМ использовали для физи�
ческой адсорбции глюкозооксидазы на золотых
электродах пьезокварцевых преобразователей
сигнала [48]. Полученные глюкозные сенсоры
апробированы для определения неорганической
ртути, ингибитора фермента [49].

Обобщая результаты, полученные с помощью
глюкозных сенсоров с включением дендримеров,
можно отметить значительное различие в достиг�
нутых характеристиках определения субстрата.
Однако следует иметь в виду, что задачи определе�
ния глюкозы в биологических жидкостях и про�
дуктах питания не связаны с определением сверх�
низких содержаний, поэтому основное внимание
исследователи уделяют стабилизации отклика и
увеличению времени жизни биосенсора.

Кроме глюкозооксидазы применяют дендри�
меры в составе биосенсоров на основе ряда дру�
гих ферментов. Так, установлен прямой элек�
тронный перенос с участием лакказы, ковалентно
связанной с дендримером ПАМАМ с концевыми

карбоксилатными группами (3 поколение), со�
держащим наночастицы золота [50]. Дендример
ковалентно пришивали карбодиимидным спосо�
бом к аминогруппам полимера диаминопроиз�
водного тиофена, находящегося на электроде
(рис. 4). Поверх слоя дендримера аналогичным
образом ковалентно связывали лакказу. Скорость
гетерогенного переноса электрона (1.28 с–1) сопо�
ставима с характеристикой фермента, включен�
ного в липидные бислои. Электрокаталитические
свойства полученного ферментного сенсора изу�
чали в реакции окисления катехола. Исключение
наночастиц золота из состава дендримера повы�
шало нижнюю границу определяемых содержа�
ний и предел обнаружения катехола в 5 раз, что
свидетельствует об их участии в электронном пе�
реносе в пределах слоя.

Композит ПАМАМ (4 поколение) и наноча�
стиц Au, ковалентно связанный со слоем 3�мер�
каптопропионовой кислоты на золотом электро�
де, использовали для сорбционной иммобилиза�
ции тирозиназы [51]. Присутствие наночастиц Au
снижает сопротивление переноса заряда модифи�
цирующего слоя в 3.5 раза по сравнению с глад�
ким золотом. Биосенсор использовали для опре�
деления пеницилламина по реакции с продуктом
ферментативного окисления катехола, субстрата
тирозиназы – реакция (1). Этот сенсор может
найти применение в контроле данного препарата
в его лекарственных формах.
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Рис. 4. Лакказный сенсор на основе электрода, модифицированного политиофеном и композитом дендримера
ПАМАМ с наночастицами Au.
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(1)

Разработаны холинэстеразные сенсоры на
основе Au и углеродных электродов, в которых
ПАМАМ (4 поколение) использовали как мат�
рицу для иммобилизации ацетил� и бутирилхо�
линэстеразы [52, 53]. Дендримеры перед нане�
сением на золотой электрод смешивали с 1�гек�
садекантиолом, который, связываясь с золотом

посредством связей Au–S, формировал поверх�
ностный слой, удерживающий дендример за
счет гидрофобных взаимодействий. Сигналом
биосенсора служил ток окисления пероксида
водорода, образующегося в последовательно�
сти реакций (2) ферментативного превращения
ацетилхолина. 

(2)

Ферментные сенсоры демонстрировали высо�
кую чувствительность сигнала к специфическим
ингибиторам холинэстеразы, превышающую
чувствительность аналогичного биосенсора, в ко�
тором ферменты иммобилизовали на пленке по�
лианилина [53]. Это связано с благоприятной
пространственной организацией поверхностного
слоя и электростатическим контролем переноса
заряженного субстрата.

Карбофуран определяли по его ингибирующе�
гому действию на ацетилхолинэстеразу, иммоби�
лизованную методом послойного нанесения (lay�
er�by�layer) совместно с углеродными нанотруб�
ками и ПАМАМ с наночастицами золота [54].
Модифицирующая пленка улучшала электрохи�
мические характеристики сенсора и условия из�
мерения сигнала. 

Электрохимический биосенсор на фруктозу
получен путем иммобилизации фруктозодегид�
рогеназы на золотом электроде, модифицирован�
ном цистамином и ПАМАМ 2–4 поколения [55].
Сигналом служил ток диффузионно свободного
медиатора (феррицианид�ион), регистрируемый
при 350 мВ. Биосенсор показал высокую чувстви�
тельность определения фруктозы в пищевых про�
дуктах, правильность результатов определения
контролировали методом ВЭЖХ.

Возможен непрерывный мониторинг содер�
жания этанола, глюкозы, растворенного кисло�
рода и плотности клеток в культуральной жидко�
сти для контроля технологических процессов
дрожжевого брожения [56]. Для этого разработан
гибридный датчик с оптоволоконным кислород�
ным сенсором и золотым планарным электродом,
модифицированным самоорганизующимся мо�

нослоем цистамина с включением ПАМАМ в ка�
честве матрицы для сорбционной иммобилиза�
ции оксидоредоуктаз. После адсорбции фермен�
тов их подвергали кросс�сшивке глутаровым
альдегидом. Гибридный сенсор обладает высокой
стабильностью сигнала: после 11 ч непрерывной
работы в потоке потери не превышали 6% перво�
начальной активности ферментов.

Разработан амперометрический биосенсор на
основе алкогольоксидазы, иммобилизованной на
ПAMAM [57], с высокой стабильностью и чув�
ствительностью сигнала на этанол. В качестве
преобразователя сигнала использовали золотой
электрод, покрытый монослоем цистамина. Сиг�
налом служил ток восстановления растворенного
кислорода, потребляемого при ферментативном
окислении этанола. Измерение проводили при
0.7 В относительно Ag/AgCl�электрода. Биосен�
сор продемонстрировал стабильность – сохране�
ние 67% первоначальной чувствительности от�
клика при хранении в течение 1 мес. при 4°C, вос�
производимость и субстратную специфичность
отклика при определении этанола в алкогольных
напитках, в том числе в режиме проточно�инжек�
ционного анализа. 

ДНК4сенсоры. К данной категории биосенсо�
ров относят устройства, в составе которых при�
сутствуют компоненты, производные от натив�
ной ДНК или нуклеотидов, ее составляющих. Это
в основном олигонуклеотиды, комплементарные
ключевым последовательностям генов (ДНК�
зонды) [58]. Их используют для регистрации ги�
бридизации, свидетельствующей о присутствии
соответствующих мишеней в биологическом об�
разце (как правило, после увеличения количества

O
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генетического материала с помощью ДНК�ам�
плификации). Такие ДНК�сенсоры применяют
для диагностики заболеваний, установления по�
лиморфизма генов, определения в пищевых про�
дуктах тканей генномодифицированных организ�
мов, для раннего обнаружения биомаркеров он�
кологических заболеваний. Помимо них, в
составе ДНК�сенсоров присутствуют полностью
синтетические последовательности (аптамеры),
которые получают сочетанием комбинаторной
химии и аффинной хроматографии для специфи�
ческого связывания молекул определяемых со�
единений [59]. Аптамеры не имеют аналогов в со�
ставе нативной ДНК, они имеют сложную трех�
мерную структуру и могут включать фрагменты
небиологического происхождения (гибридные
молекулы ДНК�РНК [60], ковалентно пришитые
флуорогены и хромофоры [61] и т.д.). Некоторые
аптамеры проявляют каталитические свойства
(так называемые ДНКзимы, аптазимы, рибозимы
[62]). ДНК�сенсоры с включением аптамеров на�
зывают также аптасенсорами. К числу синтетиче�
ских аналогов ДНК также относят пептидные
нуклеиновые кислоты, в которых нуклеиновые
основания входят в состав пептидной последова�
тельности. Пептидные нуклеиновые кислоты бо�
лее устойчивы к гидролизу, не несут отрицатель�
ного заряда и способны к гибридизации наряду с
их природными аналогами.

Нативную ДНК в составе биосенсоров исполь�
зуют редко из�за трудности достижения воспро�
изводимого сигнала и многообразия факторов,
влияющих на отклик такого биосенсора. Исклю�
чением является применение нативной ДНК для
регистрации ее повреждения активными форма�
ми кислорода и для определения противораковых
препаратов, повреждающих структуру ДНК рако�
вой клетки [63].

Использование дендримеров в составе ДНК�
сенсоров независимо от природы биохимическо�
го компонента имеет ряд особенностей. Во�пер�
вых, увеличивается значимость стерических фак�
торов. Это связано с более высокими, чем для
ферментов, требованиями обеспечения доступа
определяемых соединений (прежде всего, олиго�
нуклеотидов) к центрам связывания ДНК�зонда.
Во�вторых, меньшее значение приобретает фак�
тор многофункциональности молекул дендриме�
ра, поскольку размещение ДНК ограничено не
столько числом поверхностных функциональных
групп носителя, сколько собственными размера�
ми молекулы биохимического рецептора. Во
многих случаях решающее значение приобретает
электростатический контроль иммобилизации и
последующих биохимических и электрохимиче�
ских реакций. Олигонуклеотиды обладают высо�
ким отрицательным зарядом фосфатных групп
остова молекулы, которые, отталкиваясь или
притягиваясь к полярным группировкам дендри�

меров, определяют эффективность как переноса
биомолекул в поверхностный слой, так и элек�
трической коммуникации биосенсора при изме�
рении сигнала. Наконец, дендримеры могут иг�
рать в ДНК�сенсорах ту же роль, что и в фермент�
ных сенсорах (носители медиаторов или редокс�
активных фрагментов), если используются как
метки или как медиаторы для регистрации фер�
ментативных реакций, применяемых для усиле�
ния сигнала ДНК�сенсоров.

Все ДНК�сенсоры с включением дендримеров
можно разделить на биосенсоры c сэндвичевым
форматом измерения сигнала и “безреагентные”
биосенсоры. В первом случае регистрируется
электрохимический сигнал метки, присоединяе�
мой к поверхностному слою вместе с молекулой
аналита посредством двух различных ДНК�зон�
дов, комплементарных различным участкам био�
логической мишени. В англоязычной литературе
за ними закрепились названия “связывающий”
(capture) и “регистрирующий” (signalling или re�
porter). В “безреагентных” ДНК�сенсорах реги�
стрируется изменение характеристик слоя (элек�
тропроводность и проницаемость для низкомоле�
кулярных носителей заряда) в результате
присоединения биологической мишени с помощью
спектроскопии электрохимического импеданса.
Аналитические характеристики соответствующих
биосенсоров для регистрации гибридизационных
взаимодействий приведены в табл. 2. 

При использовании сэндвичевого формата из�
мерения сигнала [64] сначала биологическую ми�
шень фиксировали на поверхности сенсора в реак�
ции комплементарного связывания с ДНК�зон�
дом, включенным в состав самоорганизующегося
слоя меркаптопропионовой кислоты и дендриме�
ра ПАМАМ, частично модифицированного фер�
роценом. Далее биосенсор обрабатывали вторым
олигонуклеотидом, несущим в качестве метки
фермент щелочную фосфатазу. Реакцию послед�
ней с п�аминофенилфосфатом регистрировали
амперометрически по медиаторному переносу
электрона (рис. 5). Присоединение фермента�мет�
ки к слою гибридизированных олигонуклеодитов
осуществляли посредством стрептавидин�биоти�
нового связывания.

Аналогичный способ иммобилизации в само�
организующемся слое реализован в ДНК�сенсоре
с включением полиаминированного ПАМАМ
как матрицы для иммобилизации олигомера,
комплементарного биологической мишени [65].
После гибридизации концентрацию продукта ре�
гистрировали в сэндвичевом формате, обрабаты�
вая электрод вторым ДНК�зондом, несущим мо�
лекулы дендримера с наночастицами Au. Сигна�
лом служил ток редокс�индикатора – комплекса
рутения(III), пропорциональный концентрации
наночастиц Au в поверхностном слое. 
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Помимо щелочной фосфатазы в качестве мет�
ки гибридизации комплементаных нуклеотидных
последовательностей использовали эстеразу из
Alicyclobacillus acidocaldarius [74]. Иммобилиза�
цию тиолированного ДНК�зонда на Au�электро�
де осуществляли по концевой тиольной группе.
Комплементарную последовательность кова�
лентно модифицировали с помощью дендримера
ПАМАМ на ядре цистамина. Фермент�метку ко�
валентно связывали с концевыми аминогруппа�
ми дендримера. Образование продукта гибриди�
зации регистрировали по концентрации продукта
ферментативного гидролиза эфира нитрофенола. 

Разработан электрохимический ДНК�сенсор
на основе металлодендримера – производного са�
лицилальдимина кобальта(II). В качестве биоре�
цептора использовали аминированный 21�мерный
олигонуклеотид NH2�5'�GAGGAGTTGGGGGAG�
CACATT�3', нанесенный с помощью послойной
иммобилизации [68]. Комплементарный олигонук�
леотид определяли по подавлению сигнала кобаль�
та(II), измеренного с помощью квадратноволновой
вольтамперометрии. Кроме того, гибридизация со�
провождалась увеличением сопротивления перено�
са заряда, контролируемого с помощью спектро�
скопии электрохимического импеданса. Чув�
ствительность импедиметрической регистрации
сигнала образования продукта гибридизации со�

ставила 1.29 кОм/нмоль л–1. Кроме того, предло�
жено регистрировать продукт комплементарных
взаимодействий по току интеркалятора – соеди�
нения, встраивающегося в структуру двунитевой
ДНК, но не способного к аналогичному взаимо�
действию с однонитевыми компонентами. В дан�
ном случае в качестве интеркалятора использова�
ли противораковый антрациклиновый препарат
дауномицин [66]. 

Разработан способ высокочувствительного
определения ДНК по току электрокаталитиче�
ского окисления гидразина, ковалентно связан�
ного с дендримером ПАМАМ (4 поколение) с
концевыми аминогруппами [67]. Схема форми�
рования поверхностного слоя биосенсора и реги�
страции сигнала приведена на рис. 6. Преобразова�
телем сигнала служит электрод, модифицирован�
ный продуктом электрополимеризации тертиофена,
несущего карбоксильные группы. Далее к полимеру
посредством карбодиимидного связывания кова�
лентно пришивается дендример, несущий наноча�
стицы Au. Тиолированный ДНК�зонд образует
монослой на золоте, а второй зонд, несущий био�
тин, комплементарно реагирует с продуктом вза�
имодействия первого зонда и определяемой по�
следовательности. После этого к полученной
конструкции присоединяется авидин�гидразид,
обладающий электрокаталитическими свойства�

Таблица 2. Характеристики ДНК�сенсоров с включением дендримеров для регистрации гибридизационных вза�
имодействий

Формат измерения 
сигнала

Дендример 
(редокс�активная группа)

Аналитические характеристики 
определения Литература

ДНК�сенсоры с использованием электрохимически активных меток (ферментов)

Сэндвичевый ПАМАМ–ферроцен ДОС 0.1 нМ–10 мкМ комплемен�
тарной мишени

[64]

ПАМАМ (наночастицы золота)–
комплекс Ru(III)

ДОС 1.1 × 10–11–2.7 × 10–14 М ком�
плементарного олигонуклеотида, 
cmin 1.4 × 10–14 М

[65]

ПАМАМ ДОС 10 фМ–10 мкМ, cmin 0.45 фМ [68]

ПАМАМ–ферроцен ДОС 1 нМ–1 мкМ, cmin 1 нМ [69]

По току металлодендри�
мера или интеркалятора

Металлодендример Со(II) cmin 3.4 × 10–13 М (импеданс),
 8 × 10–12 М (по току дауномицина)

[67, 68]

Импедиметрические ДНК�сенсоры

Редокс�индикатор 
[Fe(CN)6]3–/4–

ПАМАМ в составе биологической 
мишени

ДОС 10–10–10–7 М, cmin 10–10 М [71]

ПАМАМ–углеродные нанотрубки ДОС 0.5–500 пM, cmin 0.1 пМ [72]

ППИ–наночастицы золота ДОС 0.01–5 нМ [73]

ПАМАМ–наноточки GaN ДОС 10–18–10–9 М, cmin 0.1 аМ [74]

ППИ–салицилальдиминовый 
комплекс Ni

cmin 5 нМ [75]
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ми в реакции окисления пероксида водорода.
Биосенсор характеризуется сверхвысокой чув�
ствительностью (регистрация до 4500 молекул
ДНК в 10 мкл пробы) и стабильностью отклика
вследствие исключения фермента, наименее
устойчивой части биосенсора.

Предложено использовать в качестве зонда
пептидные нуклеиновые кислоты, включенные в
самоорганизующийся слой на поверхности золо�
того электрода [75]. Для подавления неспецифи�
ческой сорбции компонентов пробы биосенсор
дополнительно обрабатывали 6�меркапто�1�гекса�
нолом. Сигналом служил ток окисления ферроце�
на, ковалентно связанного с поламинированным
дендримером ПАМАМ (сэндвичевый формат ана�
лиза), который регистрировали с помощью квад�
ратно�волновой вольтамперометрии при 0.3 В.

Импедиметрические ДНК3сенсоры регистриру�
ют изменение сопротивления переноса заряда из�
за уплотнения поверхностного слоя при включе�
нии в него объемной молекулы дендримера, либо
электростатического отталкивания отрицательно
заряженного редокс�индикатора (феррицианид�
ионы) при увеличении заряда двунитевой ДНК
относительно заряда зонда. Разработанные кон�
струкции биосенсоров различаются строением
поверхностного слоя и природой ДНК�зонда.

Описана иммобилизация аминированного
ДНК�зонда к меркаптоуксусной кислоте в составе

монослоя на золотом электроде. Взаимодействие с
меченной дендримером биологической мишенью
приводило к резкому увеличению концентрации
отрицательно заряженных олигонуклеотидов
вблизи электрода и повышению сопротивления
ДНК [69]. Аналогичным образом регистрировали
гибридизацию ДНК при иммобилизации зонда на
поверхности слоя углеродных нанотрубок [70].

ППИ (4 поколение) [71] использовали как
матрицу для наночаcтиц Au, на поверхности ко�
торых закрепляли тиолированный ДНК�зонд.
Сигналом сенсора служило изменение сопротив�
ления переноса заряда в результате связывания
комплементарного олигонуклеотида.

Дополнительное уплотнение поверхностного
слоя происходит при иммобилизации дендриме�
ра ПАМАМ (4.5 поколение) совместно с нано�
трубками нитрида галлия [72]. При этом суще�
ственно увеличивается регулярность и плотность
заполнения поверхности электрода, что позволя�
ет регистрировать вплоть до 0.1 аттомоль целевой
последовательности ДНК в пробе. Использова�
ние наноточек позволяет контролировать проце�
дуру иммобилизации по уровню флуоресценции
слоя. 

Разработан ДНК�сенсор на основе никельсо�
держащего производного 4 дендримера ППИ (1–
3 поколение) [73]. Дендример демонстрировал
процесс обратимого окисления−восстановления

Fc–D

HS

Тиолированный
ДНК�зонд

Биотинированный
зонд 2

Биологическая
мишень

Конъюгат
щелочная

фосфатаза – 
стрептавидин

Fc+

Fc

n�Аминофенол

n�Аминофенилфосфат

…

O

NH

Рис. 5. ДНК�сенсор для определения гибридизации зонда с биологической мишенью с помощью сэндвичевого анали�
за. ДНК�зонд несет ферментную метку, присоединенную посредством стрептавидин�биотинового связывания. Сиг�
налом служит ток окисления продукта ферментативной реакции п�аминофенола.
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комплекса никеля(II) в поверхностном слое при
достаточно высокой его проницаемости для но�

сителей заряда (коэффициент диффузии 3.6 ×
× 10⎯7 см2/с). 
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Гибридизация увеличивала электронный об�
мен и ток восстановления феррицианида, однако
сопротивление на межфазной границе при этом
увеличивалось из�за включения в него непрово�
дящего олигонуклеотида – мишени. 

Аптасенсоры. Выше отмечено, что аптасенсо�
ры содержат в составе чувствительного слоя син�
тетические олигонуклеотиды (аптамеры), не име�
ющие структурных аналогов в нативной молекуле
ДНК. Для разработки новых способов регистра�
ции сигнала часто используют аптамеры на тром�
бин – сериновую протеазу, участвующую в свер�
тывании крови. Для тромбина получены несколь�
ко типов аптамеров, специфичных к гепарин� и
фибриноген�связывающим участкам белка. Раз�
работан импедиметрический сенсор, в котором
аптамер 5'�NH2�(CH2)6�GGTTGGTGTGGTTGG�
3' иммобилизовали с помощью кросс�сшивки глу�
таровым альдегидом к концевым аминогруппам
ПАМАМ (4 поколение) [76]. Сам дендример был
ковалентно связан с поверхностью золотого элек�
трода, модифицированного цистамином, по ана�
логичной реакции. Аптасенсор позволяет опреде�
лять 1–50 нМ тромбина по величине сопротивле�
ния переноса заряда, измеряемого в присутствии
феррицианид�ионов как редокс�индикаторов. 

Двойное – ферментативное и электроката�
литическое – усиление сигнала реализовано в
аптасенсоре на тромбин, включающем аптамер
5'�SH(CH2)6�GTTGGTGTGGTTGG�3' на по�
верхности наночастиц Au [77]. Частицы получали
восстановлением тетрахлорозолотой кислоты
боргидридом натрия в присутствии ПАМАМ (по�
коление 4.5) с карбоксильными концевыми груп�
пами. Тромбин, связываясь с аптамером, фикси�
ровал агрегаты дендримера с наночастицами на
поверхности золотого электрода. Образование
комплекса регистрировали с помощью индика�
торной реакции окисления глюкозы в присут�
ствии глюкозодегидрогеназы. Наночастицы Au
специфично окисляют кофактор данного фермен�
та, NADH (никотинамидаденин динуклеотид),
обеспечивая каталитический цикл, а присутствие
дендримера как матрицы, удерживающей наноча�
стицы, многократно умножает число превращаю�
щихся молекул субстрата в расчете на одну молеку�
лу тромбина. Аптасенсор позволяет определять
1.0 × 10–14–5.0 × 10–9 М тромбина (cmin 3.3 × 10–15 М).

Тот же принцип мультипликативности реали�
зован в биосенсоре, занимающем промежуточное
положение между ДНК� и аптасенсором [78]. В
нем используют Au электрод, покрытый моно�
слоем тиолированного ДНК�зонда. Его включа�
ют в реакцию гибридизации с комплементарны�
ми последовательностями, присоединенными к
наночастицам Au. Стерический контроль реак�
ции гибридизации обеспечивается размерами на�
ночастиц, которые не допускают участия в реак�

ции всех олигонуклеотидов на их поверхности.
В результате формируется дендримерный высо�
копористый слой, в котором связи между повто�
ряющимися фрагментами обеспечивают ко�
роткие участки гибридированных фрагментов
ДНК�зондов. После такой модификации к оста�
ющимся свободными зондам присоединяют
квадруплексы – особые формы аптамеров с цен�
тральным плоским квадратом гуаниновых остат�
ков. Данный аптамер специфически связывается
с миоглобином, играющим роль медиатора элек�
тронного переноса. Поскольку миоглобин при
такой архитектуре поверхностного слоя распола�
гается далеко от электрода, его присутствие реги�
стрируют по оксидазной функции в биокаталити�
чесском восстановлении пероксида водорода.
Органическим субстратом этой реакции служит
фенотиазиновый краситель метиленовый синий,
ток которого регистрируют с помощью квадрат�
но�волновой вольтамперометрии. Биосенсор
имеет высокую чувствительность отклика в отно�
шении олигонуклеотидной последовательности,
использованной для “сборки” дендримерной
конструкции. Сигнал метиленового синего про�
порционален логарифму концентрации аналита в
интервале концентраций 1.0 фМ–10 нМ (cmin 0.5
фМ).

Иммуносенсоры. Применение дендримеров в
составе иммуносенсоров обусловливает схемы
определения, во многом аналогичные применяе�
мым в ДНК�сенсорах (см. прямое сравнение
ДНК� и иммуносенсоров [69]). В сэндвичевом ва�
рианте иммуноанализа последовательно прибав�
ляют реагенты, несущие определяемые и видо�
специфичные антитела, меченные ферментами
или электрохимически активными комплексами.
Дендримеры можно использовать как на стадии
иммобилизации антител, увеличивая их поверх�
ностную концентрацию, так и в качестве носите�
лей меток, повышая аналитический сигнал за
счет увеличения числа редокс�центров, участву�
ющих в переносе электрона. При этом сочетание
различных реагентов (антитела, метки, дендри�
меры) в иммуносенсорах в целом осуществляется
проще, чем в ДНК�сенсорах, за счет значительно�
го числа потенциальных центров связывания –
функциональных групп белков. Предпочтение
отдается карбодиимидному связыванию, хотя
электростатическая адсорбция и включение в по�
лимерные пленки, в том числе белковые матрицы
альбумина и желатина, также дают удовлетвори�
тельные результаты. Особенностью иммуносен�
соров независимо от способа регистрации сигна�
ла является нелинейный сигмоидный характер
градуировочной зависимости обычно в коорди�
натах сигнал метки – логарифм концентрации
аналита. Чувствительность метода выражают ве�
личиной предела обнаружения, медианы (кон�
центрации, отвечающей 50%�ному изменению

2
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сигнала относительно достигаемого максимума)
либо интервалом концентраций, в пределах кото�
рого наблюдается изменение сигнала метки. Из
них только предел обнаружения приводится во
всех публикациях. Аналитические характеристи�
ки иммуносенсоров с включением дендримеров
приведены в табл. 3.

Использовали сэндвичевый вариант иммуно�
анализа, в котором видоспецифичные антитела
коньюгированы с щелочной фосфатазой [79].
Концентрацию фермента регистрировали по току
медиатора – ферроцена, ковалентно связанного с
ПАМАМ, при добавлении в раствор п�аминофе�
нилфосфата, субстрата фермента.

Оценена чувствительность регистрации нано�
частиц Ag, инкапсулированных в ПАМАМ 5–7
поколения на основе ядра этилендиамина с кон�
цевыми гидроксильными группами [80]. Концен�
трацию метки определяли методом инверсион�
ной вольтамперометрии, растворив Ag в азотной
кислоте. Предел обнаружения 22.5 фемтомоль се�
ребра(I) в 25 мл раствора. 

Разработан иммуносенсор на основе металло�
оксидного электрода ITO (оксид индия и олова),
покрытого дендримером ПАМАМ (поколение 4)
с ферроценильными концевыми группами [81].
Антитела иммобилизировали посредством стреп�
тавидин�биотинового связывания. Меткой слу�
жила щелочная фосфатаза, сигнал которой уси�
ливали, вводя в систему гидразин для регенера�
ции аминофенола из продукта его анодного
окисления. Установлена зависимость чувстви�
тельности иммуносенсора от поверхностной кон�
центрации дендримера и степени его дериватиза�
ции ферроценовыми фрагментами (5–20% кон�
цевых групп). 

Для диагностики рака легких разработан ампе�
рометрический иммуносенсор [82], для изготовле�
ния которого на Au�электроде электрохимически
получали композитное покрытие политиофена,
несущего карбоксильные группы, с включением
наночастиц Au. Поламинированный дендример
ковалентно сшивали с композитным слоем, далее
на него аналогичным образом наносили антитела
на аннексин II и гидразин. Сигналом служил ток

Таблица 3. Аналитические характеристики иммунoсенсоров с включением дендримеров

Аналит Метка Состав слоя  cmin Литература

Антитела к биотину Щелочная 
фосфатаза

Стеклоуглерод, покрытый аддуктом 
ПАМАМ–ферроцен и антителами

0.1 мкг/мл [79]

Иммуноглобулины 
мыши IgG 

То же Электрод из оксида индия и 
олова (ITO) с физически адсорбиро�
ванным аддуктом ПАМАМ–ферроцен

10 пг/мл
(100 фг/мл в присут�
ствии гидразина)

[81]

Биомаркеры рака 
легких (аннексин II 
и MUC5AC)

Глюкозоок�
сидаза

Стеклоуглеродный электрод, покры�
тый карбоксилированным политиофе�
ном с наночастицами золота, дендри�
мером и антителами

0.051 нг/мл
аннексина II

[82]

Антитела к биотину Пероксидаза Золотой тонкопленочный электрод с 
физически адсорбированным аддуктом 
ПАМАМ–ферроцен, стрептавидин и 
антитела

1 нМ [83]

Альфа�фетопротеин То же Стеклоуглеродный электрод, покры�
тый наночастицами золота с ковалент�
но пришитым ПАМАМ и антителами

1 нг/мл [84]

Сальбутамол » Золотой электрод, модифицированный 
композитом хитозана, феррита, 
ПАМАМ и наночастиц золота

0.06 нг/мл [85]

Бенз[а]пирен » Золотой электрод, покрытый аминиро�
ванным политиофеном с ковалентно 
пришитым ПАМАМ

6.0 пг/мл [86]

Бреветоксин В » Золотой электрод, модифицирован�
ный коньюгатом альбумина с бреве�
токсином

0.01 нг/мл [87]

Антиген рака про�
статы

» Стеклоуглеродный электрод, модифи�
цированный золотыми наночастица�
ми, инкапсулированными ПАМАМ, 
углеродными нанотрубками и хитоза�
ном в ионной жидкости

1 пг/мл (вольтампе�
рометрия), 0.48 пг/мл 
(импедиметрия)

[88]
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биоэлектрокаталитического восстановления пе�
роксида водорода, образующегося в реакции
окисления глюкозы ферментом глюкозооксида�
зой, использованной в качестве метки. Гидразин
выполнял функции катализатора указанной реак�
ции, повышая чувствительность регистрации от�
клика. Иммуносенсор прошел испытания в анали�
зе секрета сквамозных метапластических клеток
(уровень содержания аннексина II 280 ± 8.0 пг/мл).

Предложен [83] универсальный способ реги�
страции сигнала иммуносенсора, включающего в
качестве метки пероксидазу. Золотой электрод
покрывали дендримером ПАМАМ с концевыми
ферроценильными фрагментами, на поверхности
которого с помощью биотинированного эфира
сукцинимида закрепляли коньюгаты стрептави�
дина и специфических антител. Сигнал иммун�
ной реакции с участием меченных пероксидазой
антител регистрировали с помощью 4�хлор�1�
нафтола. Его окисление сопровождается образо�
ванием полимерного непроводящего осадка, бло�
кирующего перенос электрона с ферроцениль�
ных фрагментов дендримера.

Описана [84] аналогичная методика измере�
ния сигнала. Амперометрический иммуносенсор
для определения альфа�фетопротеина включает
стеклоуглеродный электрод, модифицированный
наночастицами Au размером 100 нм, покрытыми
2�аминоэтантионом в качестве линкера и дендри�
мером ПАМАМ (поколение 1.5) с помощью кар�
бодиимидного связывания. На поверхности денд�
римера тем же способом закрепляли монокло�
нальные антитела. Концентрацию фетопротеина
измеряли с использованием коньюгата антител с
пероксидазой, реакцию которой с тионином ре�
гистрировали с помощью циклической линейной
и линейно�ступенчатой вольтамперометрии. До�
стигнутые с помощью иммуносенсора уровни
чувствительности определения фетопротеина до�
статочны для его клинического использования
при прогнозировании развития беременности и
онкологических заболеваний.

Для усиления сигнала метки в сэндвичевом ва�
рианте иммуноопределения сальбутамола исполь�
зовали агрегаты хитозана, частиц феррита,
ПАМАМ и наночастиц Au [85]. Пероксидазу
включали в состав коньюгата антител на углерод�
ных нанотрубках. Это позволило получить элек�
трокаталитический отклик восстановления перок�
сида водорода и снизить более чем на 2 порядка
предел обнаружения аналита. В оптимальных
условиях измерения диапазон линейности для
сальбутамола составил 0.11–1061 нг/мл.

Иммуносенсор на бенз[а]пирен [86] включает
композиты ПАМАМ и наночастиц силиката с ад�
сорбированным метиленовым синим, субстратом
пероксидазы. Вторичные антитела коньюгирова�
ли с пероксидазой. Для улучшения иммобилиза�

ции коньюгата антигена электрод покрывали
продуктом полимеризации 2�амино�5,2':5'2''�тер�
тиофена c ковалентно связанным ПАМАМ (по�
коление 2). Диапазон определяемых содержаний
составил от 0.01 до 2.0 нг/мл. 

Предложено [87] конкурентное определение
бреветоксина B в пищевых продуктах. На поверх�
ности сенсора иммобилизовали коньюгат аналита
с альбумином на наночастицах Au, инкапсулиро�
ванных в ПАМАМ. Активность пероксидазы в со�
ставе коньюгата с антителами определяли с помо�
щью пероксида водорода и о�фенилендиамина.
Иммуносенсор позволяет определять 0.03–8 нг/мл
бреветоксина. 

Антиген, специфичный раку простаты, опреде�
ляли с помощью импедиметрического и вольтампе�
рометрического сенсора на основе Au�электрода,
модифицированного композитным слоем, включа�
ющим тиолированное производное ПАМАМ, мно�
гостенные углеродные нанотрубки и хитозан в
ионной жидкости 1�бутилметилпиролидиний�
бис(трифторметилсульфонил)имид [88]. В вольтам�
перометрическом варианте использовали перокси�
дазный коньюгат, а в состав слоя дополнительно
вводили тионин как субстрата фермента. В импеди�
метрическом варианте включение антигена в состав
слоя регистрировали по увеличению сопротивле�
ния переноса заряда. Иммуносенсор характеризует�
ся высокой стабильностью отклика: через 21 день
после изготовления сохраняется до 90% исходного
значения сигнала. 

Анализ представленных данных по примене�
нию дендримеров в составе электрохимических
сенсоров подтверждает перспективность указан�
ных материалов, связанную с их уникальными
свойствами. Дендримеры способны эффективно
инкапсулировать наночастицы металлов и нести
редокс�медиаторы, ковалентно связанные с кон�
цевыми функциональными группам. Липофиль�
ность и растворимость в воде контролируются
как размерами молекулы (поколением дендриме�
ра), так и функционализацией поверхностного
слоя. В отличие от гидрофильных полимеров,
дендримеры демонстрируют монодисперсность
состава и возможность точечной иммобилиза�
ции, что упрощает конструирование биочувстви�
тельного слоя и повышает воспроизводимость ха�
рактеристик биосенсоров. Коммерчески доступ�
ные препараты ПАМАМ составляют абсолютное
большинство представленных примеров реализа�
ции преимуществ дендримеров, однако появля�
ются исследования и с другими структурами. В
перспективе следует ожидать дальнейшего увели�
чения числа публикаций, посвященных функци�
ональному усложнению дендримеров, в частно�
сти, их сочетанию с короткими биополимерами,
такими как олигонуклеотиды или рецепторные
белки. Применение дендримеров в составе био�
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сенсоров связано также с их возможным приме�
нением в составе средств доставки лекарственных
препаратов, ПАВ и каталитических систем. 

Особо следует отметить применение наноча�
стиц металлов, синтезированных в присутствии
дендримеров, выполняющих функции стабили�
заторов и инкапсулирующих составов. Высокая
стабильность таких гибридных структур, сохра�
нение электрохимической активности наноча�
стиц в составе дендримеров, как и их совмести�
мость с различными методами иммобилизации
биопрепаратов выгодно отличают такие материа�
лы от суспензий наночастиц, полученных по
стандартным методикам – восстановлением в
присутствии цитратов, ПАВ, электрохимическим
диспергированием и другими способами.

Важным преимуществом дендримеров являет�
ся также дискретность изменения их свойств при
изменении числа оболочек (поколения дендри�
мера). Это позволяет выявить роль структурных и
стерических факторов в переносе электрона в по�
верхностном слое, а также подобрать оптималь�
ный его состав в зависимости от решаемой анали�
тической задачи.

Таким образом, применение дендримеров в
составе электрохимических биосенсоров можно
рассматривать как перспективное направление
не только электроанализа, но и смежных областей,
связанных с катализом, синтезом гибридных орга�
но�неорганических материалов, развитием хими�
ческих сенсоров для определения биологически
активных соединений и инструментальных
средств медицинской диагностики.
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