ORIGINAL PAPER

Hyponormal measurable operators, affiliated to a semifinite von Neumann algebra

Airat Bikchentaev[1](http://orcid.org/0000-0001-5992-3641)

Received: 21 June 2024 / Accepted: 20 September 2024 © Tusi Mathematical Research Group (TMRG) 2024

Abstract

Let *M* be a von Neumann algebra of operators on a Hilbert space H and τ be a faithful normal semifinite trace on *M*, $S(M, \tau)$ be the ^{*}-algebra of all τ -measurable operators. Assume that an operator $T \in S(\mathcal{M}, \tau)$ is paranormal or ^{*}-paranormal. If *Tⁿ* is τ -compact for some $n \in \mathbb{N}$ then *T* is τ -compact; if $T^n = 0$ for some $n \in \mathbb{N}$ then $T = 0$; if $T^3 = T$ then $T = T^*$; if $T^2 \in L_1(\mathcal{M}, \tau)$ then $T \in L_2(\mathcal{M}, \tau)$ and $||T||_2^2 = ||T^2||_1$. If an operator $T \in S(\mathcal{M}, \tau)$ is hyponormal and $T^{*p}T^q$ is τ -compact for some $p, q \in \mathbb{N} \cup \{0\}, p+q \ge 1$ then *T* is normal. If $T \in S(\mathcal{M}, \tau)$ is *p*-hyponormal for some $0 < p \le 1$ then the operator $(T^*T)^p - (TT^*)^p$ cannot have the inverse in *M*. If an operator $T \in S(M, \tau)$ is hyponormal (or cohyponormal) and the operator $T²$ is Hermitian then *T* is normal.

Keywords Hilbert space · Von Neumann algebra · Normal trace · Measurable operator · Hyponormal operator · Paranormal operator

Mathematics Subject Classification 46L51 · 47B20

1 Introduction

Let a von Neumann algebra M of operators act on a Hilbert space H , let *I* be the unit of *M*, let τ be a faithful normal semifinite trace on *M*. Let $S(M, \tau)$ be the ^{*}-algebra of all τ -measurable operators, $|A| = \sqrt{A^*A}$ for $A \in S(\mathcal{M}, \tau)$. Hyponormal (i.e. *A*∗*A* ≥ *AA*∗) bounded operators have many good properties and have long attracted attention of large group of investigators, see, for example, [\[1](#page-15-0), [19,](#page-15-1) [21](#page-15-2)[–23,](#page-15-3) [25](#page-15-4), [27](#page-15-5), [31,](#page-16-0) [33,](#page-16-1) [36,](#page-16-2) [37](#page-16-3), [44](#page-16-4), [46](#page-16-5)]. In 2014 the author started the research of unbounded hyponormal operators from $S(\mathcal{M}, \tau)$, see [\[6](#page-15-6)]. An operator $A \in S(\mathcal{M}, \tau)$ is called *p*-*hyponormal* for some number $0 < p < 1$, if $(A^*A)^p > (AA^*)^p$; *quasinormal*, if it commutes with

Communicated by Lyudmila Turowska.

 \boxtimes Airat Bikchentaev Airat.Bikchentaev@kpfu.ru

¹ Kazan Federal University, 18 Kremlyovskaya str, P.O. Box 420008, Kazan, Russia

A^{*}*A*. Every quasinormal operator $A \in S(\mathcal{M}, \tau)$ is hyponormal [\[7](#page-15-7), Theorem 2.9]. Every *p*-hyponormal operator $A \in S(\mathcal{M}, \tau)$ is paranormal [\[11,](#page-15-8) Theorem 4.4], i.e.,

$$
2|A|^2 \le \lambda^{-1}|A^2|^2 + \lambda I \quad \text{for all} \quad \lambda > 0. \tag{1.1}
$$

If a paranormal operator $A \in S(M, \tau)$ has the inverse $A^{-1} \in M$ then A^{-1} is also paranormal [\[8](#page-15-9), item (iii) of Theorem 2], see also [\[9\]](#page-15-10). If an operator $A \in S(\mathcal{M}, \tau)$ is hyponormal and $(\lambda I + A)^{-1} \in \mathcal{M}$ for some $\lambda \in \mathbb{C}$ then $(\lambda I + A)^{-1}$ is hyponormal [\[8,](#page-15-9) Proposition 2]. If a hyponormal operator $A \in S(\mathcal{M}, \tau)$ has the inverse $A^{-1} \in S(\mathcal{M}, \tau)$ then *A*−¹ is also hyponormal, see Solution 9.16 in [\[35\]](#page-16-6). Every hyponormal operator $A \in S(\mathcal{M}, \tau)$ is ^{*}-paranormal [\[11](#page-15-8), item (i) of Theorem 3.6], i.e.

$$
2|A^*|^2 \le \lambda^{-1}|A^2|^2 + \lambda I \quad \text{for all} \quad \lambda > 0. \tag{1.2}
$$

If a hyponormal operator $A \in S(\mathcal{M}, \tau)$ has a right inverse in $S(\mathcal{M}, \tau)$ then A is invertible in $S(\mathcal{M}, \tau)$ [\[13](#page-15-11), Theorem 3]. Every τ -compact *p*-hyponormal operator is normal [\[6](#page-15-6), Theorem 2.2]. If an operator $A \in S(\mathcal{M}, \tau)$ is *p*-hyponormal and $|A^*| \ge$ $\mu(\infty; A)I$ then *A* is normal [\[9](#page-15-10), Theorem 4.1]. Let *M* be a *factor*, i.e., $M \cap M' = \mathbb{C}I$. If an operator $A \in \mathcal{M}$ is hyponormal and compact relative $\mathcal M$ then A is normal [\[2,](#page-15-12) Theorem]; see also [\[10](#page-15-13), Section 4].

We obtain the following results. Let an operator $T \in S(\mathcal{M}, \tau)$ be paranormal or *-paranormal. If T^n is τ -compact for some $n \in \mathbb{N}$ then *T* is τ -compact; if $T^n = 0$ for some $n \in \mathbb{N}$ then $T = 0$; if $T^3 = T$ then $T = T^*$; if $T^2 \in L_1(\mathcal{M}, \tau)$ then $T \in L_2(\mathcal{M}, \tau)$ and $||T||_2^2 = ||T^2||_1$ (Theorem [3.3\)](#page-3-0). If an operator $T \in S(\mathcal{M}, \tau)$ is hyponormal and $T^*P T^q$ is τ -compact for some $p, q \in \mathbb{N} \cup \{0\}, p + q \ge 1$ then T is normal (Theorem [3.7\)](#page-7-0). For $\mathcal{M} = \mathcal{B}(\mathcal{H})$, $\tau = \text{tr}$ and $p, q \in \mathbb{N}$ this assertion was proved by Istrățescu [\[32](#page-16-7), Theorem 1.2] in different way. If an operator $T \in S(\mathcal{M}, \tau)$ is *p*-hyponormal for some $0 < p < 1$ then the operator $(T^*T)^p - (TT^*)^p$ cannot have the inverse in *M* (Theorem [3.9\)](#page-7-1). In particular, a positive self-commutator cannot have the inverse in *M*. For $M = B(H)$, $\tau = \text{tr}$ and $p = 1$ Theorem [3.9](#page-7-1) was proved by Putnam [\[38\]](#page-16-8) in different way. For Hermitian operators $A, B \in S(\mathcal{M}, \tau)$ the following conditions are equivalent: (i) an operator $A + iB$ is hyponormal; (ii) an operator $aA + ibB$ is hyponormal for some numbers $a, b > 0$. If an operator A is invertible in $S(\mathcal{M}, \tau)$ then (i) and (ii) are equivalent to the following condition: (iii) an operator $A^{-1} - iB$ is hyponormal (Theorem [3.19\)](#page-12-0). If an operator $T \in S(\mathcal{M}, \tau)$ is hyponormal (or cohyponormal) and the operator T^2 is Hermitian then *T* is normal (Theorem [3.21,](#page-13-0) Corollary [3.22\)](#page-13-1). Let Hermitian operators $A, B \in S(\mathcal{M}, \tau)$ and $A^2 = I$. If an operator $A + iB$ is hyponormal (or cohyponormal) then it is normal (Theorem [3.23\)](#page-13-2). The results are mostly new even for the pair $\mathcal{M} = \mathcal{B}(\mathcal{H})$, $\tau = \text{tr}$.

2 Notation, definitions and preliminaries

Let *M* be a von Neumann algebra of operators on the Hilbert space H , \mathcal{M}^{pr} be the lattice of projections ($P = P^2 = P^*$) in *M*, *I* be the unit of *M*, $P^{\perp} = I - P$ for

P ∈ M^{pr} . An operator *U* ∈ *M* is called an *isometry*, if *U*^{*}*U* = *I*. Let M^{sym} = {*S* ∈ $M: S^2 = I$.

An operator on *H* (not necessarily bounded or densely defined) is said to be *affiliated to the von Neumann algebra M* if it commutes with any unitary operator from the commutant \mathcal{M}' of the algebra \mathcal{M} . Let τ be a faithful normal semifinite trace on \mathcal{M} [\[24](#page-15-14), Chap. 1, §1.15]. A closed operator *X*, affiliated to *M* and possessing a domain $\mathfrak{D}(X)$ everywhere dense in $\mathcal H$ is said to be τ -*measurable* if, for any $\varepsilon > 0$, there exists a projection $P \in \mathcal{M}^{pr}$ such that $P\mathcal{H} \subset \mathfrak{D}(X)$ and $\tau(P^{\perp}) < \varepsilon$. The set $S(\mathcal{M}, \tau)$ of all τ -measurable operators is a $*$ -algebra under passage to the adjoint operator, multiplication by a scalar, and operations of strong addition and multiplication resulting from the closure of the ordinary operations [\[24](#page-15-14), Chap. 2, §2.3].

Let \mathcal{L}^+ , \mathcal{L}^h and \mathcal{L}^{id} denote the positive part, the Hermitian part and the idempotent part ($A^2 = A$) of a family $\mathcal{L} \subset S(\mathcal{M}, \tau)$, respectively. We denote by \leq the partial order in *S*(*M*, τ)^h generated by its proper cone *S*(*M*, τ)⁺. If *X* \in *S*(*M*, τ) and *X* = *U*|*X*| is the polar decomposition of *X*, then $U \in \mathcal{M}$ and $|X| = \sqrt{X^*X} \in S(\mathcal{M}, \tau)^+$.

Let $[A, B] = AB - BA$ be the commutator of operators $A, B \in S(\mathcal{M}, \tau), \sigma(A)$ and [*A*∗, *A*] be the spectrum and the self-commutator of an operator *A*, respectively. An operator $A \in S(\mathcal{M}, \tau)$ is called *p*-*hyponormal* for some number $0 \lt p \leq 1$, if $(A^*A)^p \ge (AA^*)^p$; *p*-*cohyponormal*, if A^* is *p*-hyponormal. The sets

$$
U(\varepsilon,\delta) = \{ X \in S(\mathcal{M}, \tau) : ||XP|| \le \varepsilon \text{ and } \tau(P^{\perp}) \le \delta \text{ for some } P \in \mathcal{M}^{pr} \},
$$

where $\varepsilon > 0$, $\delta > 0$, form a base at 0 for a metrizable vector topology t_{τ} on $S(\mathcal{M}, \tau)$, called *the measure topology* [\[24,](#page-15-14) Chap. 2, §2.5]. Equipped with this topology, *S*(*M*,τ) is a complete topological *-algebra in which *M* is dense. We will write $X_n \xrightarrow{\tau} X$ if a sequence of τ -measurable operators $\{X_n\}_{n=1}^{\infty}$ converges to $X \in S(\mathcal{M}, \tau)$ in the measure topology on *S*(M , τ). The generalized singular value function $\mu(\cdot; X) : t \to$ $\mu(t; X)$ of the τ -measurable operator *X* is defined by setting

$$
\mu(t; X) = \inf\{\|XP\|: \ P \in \mathcal{M}^{pr} \text{ and } \tau(P^{\perp}) \le t\}, \quad t > 0.
$$

It is a non-increasing right-continuous function.

Lemma 2.1 [\[26\]](#page-15-15) *Let X*, $Y \in S(\mathcal{M}, \tau)$ *. Then,*

(i) $\mu(t; X) = \mu(t; |X|) = \mu(t; X^*)$ *for all t* > 0*;*

(ii) $\mu(t; \lambda X) = |\lambda| \mu(t; X)$ *for all* $\lambda \in \mathbb{C}$ *and* $t > 0$ *;*

(iii) *if* $|X| \leq |Y|$ *, then* $\mu(t; X) \leq \mu(t; Y)$ *for all t* > 0*;*

(iv) $\mu(s + t; X + Y) \leq \mu(s; X) + \mu(t; Y)$ for all $s, t > 0$;

(v) $\mu(t; |X|^p) = \mu(t; X)^p$ for all $0 < p < +\infty$ and $t > 0$.

Let *m* be the linear Lebesgue measure on \mathbb{R} . Noncommutative Lebesgue L_p -space $(0 < p < \infty)$, associated with (\mathcal{M}, τ) , may be defined as

$$
L_p(\mathcal{M}, \tau) = \{ X \in S(\mathcal{M}, \tau) : \ \mu(\cdot; X) \in L_p(\mathbb{R}^+, m) \}
$$

with the *F*-norm (norm for $1 \leq p < \infty$) $||X||_p = ||\mu(\cdot; X)||_p$, $X \in L_p(\mathcal{M}, \tau)$. The extension of τ to the unique linear functional on the whole space $L_1(\mathcal{M}, \tau)$ we denote by the same letter τ . The set

$$
S_0(\mathcal{M}, \tau) = \{ X \in S(\mathcal{M}, \tau) : \mu(\infty; X) := \lim_{t \to +\infty} \mu(t; X) = 0 \}
$$

of τ -compact operators is a t_{τ} -closed ideal in $S(\mathcal{M}, \tau)$.

If $M = B(H)$, the ^{*}-algebra of all bounded linear operators on *H*, and $\tau = \text{tr}$, then *S*(*M*, τ) coincides with *B*(*H*), *S*₀(*M*, τ) coincides with the ideal *S*_∞(*H*) of compact (i.e., completely continuous) operators on H , the topology t_{τ} coincides with the $\| \cdot \|$ -topology, the space $L_p(\mathcal{M}, \tau)$ coincides with the Shatten–von Neumann *-ideal $S_p(\mathcal{H})$ in $B(\mathcal{H})$ and

$$
\mu(t; X) = \sum_{n=1}^{\infty} s_n(X) \chi_{[n-1,n)}(t), \quad t > 0,
$$

where ${s_n(X)}_{n=1}^{\infty}$ is the sequence of *s*-numbers of the operator *X*; χ_A is the indicator function of the set $A \subset \mathbb{R}$ [\[28,](#page-15-16) Chap. II].

3 When a hyponormal *-***-measurable operator is normal?**

Let τ be a faithful normal semifinite trace on a von Neumann algebra *M*.

Lemma 3.1 (cf. [\[34,](#page-16-9) Lemma]) If numbers $p, q, r > 0$ with $1/p + 1/q = 1/r$ and $A \in L_p(\mathcal{M}, \tau)$ *,* $B \in L_q(\mathcal{M}, \tau)$ *,* $X \in \mathcal{M}$ then $AXB \in L_r(\mathcal{M}, \tau)$ and $\|AXB\|_r \leq$ $||X|| ||A||_p ||B||_q$.

Corollary 3.2 *If* $p > 0$ *and* $A \in L_p(\mathcal{M}, \tau)$ *then* $A^n \in L_{p/n}(\mathcal{M}, \tau)$ *and* $||A^n||_{p/n} \le$ $||A||_p^n$ *for all* $n \in \mathbb{N}$ *.*

In particular, if $A = A^n \in L_p(\mathcal{M}, \tau)$ then $A \in L_{p/n}(\mathcal{M}, \tau)$; for $B = A^{n-1}$ we have $B^2 = A^n A^{n-2} = AA^{n-2} = B$ for $n \ge 3$. If $A = A^2 \in S(\mathcal{M}, \tau)$ then $\mu(t; A) \in$ {0}∪[1, +∞) for all *^t* > 0 [\[16,](#page-15-17) Theorem 3]. Therefore, if *^A* ⁼ *^A*² [∈] *^L ^p*(*M*,τ) and $0 < q < p$ then $A \in L_q(\mathcal{M}, \tau)$ and $||A||_q^q \le ||A||_p^p$.

Theorem 3.3 *Let an operator* $T \in S(\mathcal{M}, \tau)$ *be paranormal or* $*$ *-paranormal.*

(i) *If* $T^n \in S_0(\mathcal{M}, \tau)$ *for some* $n \in \mathbb{N}$ *then* $T \in S_0(\mathcal{M}, \tau)$ *;* (ii) *if* $T^n = 0$ *for some* $n \in \mathbb{N}$ *then* $T = 0$ *;* (iii) *if* $T^3 = T$ *then* $T = T^*$; $f(T^2 \in L_1(\mathcal{M}, \tau) \text{ then } T \in L_2(\mathcal{M}, \tau) \text{ and } ||T||_2^2 = ||T^2||_1.$

Proof (i). Let $T \in S(\mathcal{M}, \tau)$ be paranormal and $T^n \in S_0(\mathcal{M}, \tau)$, a number $\varepsilon > 0$ be arbitrary. *Step 1*. If $n = 2$ then from [\(1.1\)](#page-1-0) by items (i), (ii), (iv) and (v) of Lemma [2.1](#page-2-0) we have

$$
2\mu(2t;T)^2 = 2\mu(2t;T^*T) \le \lambda^{-1}\mu(t;T^{2*}T^2) + \lambda\mu(t;I) = \lambda^{-1}\mu(2t;T^2)^2 + \lambda < \varepsilon^{-1}\varepsilon^2 + \varepsilon = 2\varepsilon
$$

B Birkhäuser

for all $t > t_0$ and numbers $\lambda = \varepsilon$ and $t_0 > 0$ such that $\mu(t; T^2) < \varepsilon$ for $t > t_0$. Therefore, $T \in S_0(\mathcal{M}, \tau)$.

Step 2. For $n \geq 3$ we show that $T^{n-1} \in S_0(\mathcal{M}, \tau)$. If $T^{n-2} \in S_0(\mathcal{M}, \tau)$ then $T^{n-1} = T \cdot T^{n-2} \in S_0(\mathcal{M}, \tau)$. Assume that $T^{n-2} \notin S_0(\mathcal{M}, \tau)$. Then $a := \mu(\infty; T^{n-2}) > 0$. Multiply both sides of inequality [\(1.1\)](#page-1-0) from the left by the operator $(T^*)^{n-2}$ and from the right by the operator T^{n-2} and obtain

$$
2|T^{n-1}|^2 \le \lambda^{-1}T^{*n}T^n + \lambda (T^*)^{n-2}T^{n-2} \quad \text{for all} \quad \lambda > 0. \tag{3.1}
$$

Let a number $t_1 > 0$ with $\mu(t; T^n)^2 < \frac{\varepsilon^2}{8a^2}$ for $t > t_1$. Put $\lambda := \frac{\varepsilon}{4a^2}$ and choose a number $t_2 > 0$ such that $\mu(t; T^{n-2}) < 2a$ for $t > t_2$. Then from [\(3.1\)](#page-4-0) and items (i), (ii), (iv) and (v) of Lemma [2.1](#page-2-0) we have for all $t > \max\{t_1, t_2\}$ the estimate

$$
2\mu(2t; T^{n-1})^2 = 2\mu(2t; (T^*)^{n-1}T^{n-1}) \le \lambda^{-1}\mu(t; T^n)^2 + \lambda\mu(t; T^{n-2})^2
$$

$$
< \frac{4a^2}{\varepsilon} \cdot \frac{\varepsilon^2}{8a^2} + \frac{\varepsilon}{4a^2} \cdot 4a^2 = \frac{3}{2}\varepsilon.
$$

Thus, $T \in S_0(\mathcal{M}, \tau)$. Repeating Step 2 *n* − 3 times, we obtain $T^2 \in S_0(\mathcal{M}, \tau)$ and apply Step 1.

Let now an operator $T \in S(\mathcal{M}, \tau)$ be ^{*}-paranormal and $T^n \in S_0(\mathcal{M}, \tau)$.

Step 1a. If $n = 2$ then from [\(1.2\)](#page-1-1) by items (i), (ii), (iv) and (v) of Lemma [2.1](#page-2-0) we have

$$
2\mu(2t;T)^2 = 2\mu(2t;TT^*) \le \lambda^{-1}\mu(t;T^{2*}T^2) + \lambda\mu(t;I) = \lambda^{-1}\mu(2t;T^2)^2 + \lambda < \varepsilon^{-1}\varepsilon^2 + \varepsilon = 2\varepsilon
$$

for all $t > t_0$ and numbers $\lambda = \varepsilon$ and $t_0 > 0$ such that $\mu(t; T^2) < \varepsilon$ for $t > t_0$. Therefore, $T \in S_0(\mathcal{M}, \tau)$.

Step 2a. For $n \geq 3$ we show that $T^{n-2} \in S_0(\mathcal{M}, \tau)$. Multiply both sides of inequality [\(1.2\)](#page-1-1) from the left by the operator $(T^*)^{n-2}$ and from the right by the operator *T*^{*n*−2}, and achieve

$$
2(T^*)^{n-2}T \cdot T^*T^{n-2} \le \lambda^{-1}T^{n*}T^n + \lambda (T^*)^{n-2}T^{n-2} \text{ for all } \lambda > 0.
$$

Assume that $T^{n-2} \notin S_0(\mathcal{M}, \tau)$. Then $a := \mu(\infty; T^{n-2}) > 0$. Almost verbatim repetition of reasoning of Step 2 yields that

$$
2\mu(2t; T^*T^{n-2})^2 \le \frac{3}{2}\varepsilon \text{ for all } t > \max\{t_1, t_2\},\
$$

the numbers t_1 , t_2 were defined in Step 2. Therefore, $T^*T^{n-2} \in S_0(\mathcal{M}, \tau)$. If $n = 3$ then $T^*T^{n-2} = T^*T \in S_0(\mathcal{M}, \tau)$ and $T \in S_0(\mathcal{M}, \tau)$ by definition of the ideal $S_0(\mathcal{M}, \tau)$ and items (i) and (v) of Lemma [2.1.](#page-2-0) If $n > 3$ then

$$
|T^{n-2}|^2 = (T^*)^{n-3} \cdot T^*T^{n-2} \in S_0(\mathcal{M}, \tau)
$$

and again $T^{n-2} \in S_0(\mathcal{M}, \tau)$. By repeating above mentioned reasoning for τ -compact operator T^{n-2} , for even number $n = 2k$ through $k-1$ steps we obtain $T^2 \in S_0(\mathcal{M}, \tau)$ and apply Step 1a. If $n = 2k + 1$ is odd then through k steps we obtain $T \in S_0(\mathcal{M}, \tau)$. (ii). Let an operator $T \in S(\mathcal{M}, \tau)$ be paranormal and $T^n = 0$. If $n = 2$ then from (1.1) we obtain

$$
0 \le 2T^*T \le \lambda I \quad \text{for all} \quad \lambda > 0. \tag{3.2}
$$

Let $\lambda \rightarrow 0+$ and pass to limits in the topology t_{τ} in inequalities [\(3.2\)](#page-5-0), we have $T^*T = 0$ and $T = 0$. If $n \geq 3$ then multiply both sides of inequality [\(1.1\)](#page-1-0) from the left by the operator $(T^*)^{n-2}$ and from the right by the operator T^{n-2} , and achieve

$$
0 \le 2(T^*)^{n-1}T^{n-1} \le \lambda (T^*)^{n-2}T^{n-2} \text{ for all } \lambda > 0.
$$

Again let $\lambda \to 0+$ and pass to limits in the topology t_{τ} in these inequalities, we have $T^{n-1} = 0$. By repeating above mentioned procedure several times, we obtain $T^2 = 0$.

The case of a ^{*}-paranormal operator $T \in S(\mathcal{M}, \tau)$ with $T^n = 0$ is dealt with in a similar way.

(iii). Let $T \in S(\mathcal{M}, \tau)$ and $T^3 = T$. Then $T = P - Q$ for some $P, Q \in S(\mathcal{M}, \tau)$ ^{id} with $PQ = QP = 0$ [\[18,](#page-15-18) Proposition 1]. Note that $T^2 = P + Q \in S(\mathcal{M}, \tau)^{id}$.

For a paranormal operator *T* from [\(1.1\)](#page-1-0) with $\lambda = 1$ we obtain

$$
2(P - Q)^{*}(P - Q) \le (P + Q)^{*}(P + Q) + I.
$$
 (3.3)

Multiply both sides of inequality [\(3.3\)](#page-5-1) from the left by the operator $(P - Q)^*$ and from the right by the operator $P - Q$, and achieve

$$
(P + Q)^{*}(P + Q) \leq (P - Q)^{*}(P - Q).
$$

Hence $P^*Q + Q^*P \leq 0$. Now from [\(3.3\)](#page-5-1) follows the inequality

$$
0 \le P^*P + Q^*Q \le 3(P^*Q + Q^*P) + I \le I,
$$

in particular, we have $P^*P \leq I$ and $Q^*Q \leq I$. Therefore, $||P^*P|| = ||P||^2 \leq 1$ and *P* ∈ *M*^{pr}; analogously we have $Q \in M$ ^{pr}. Thus, $T = P - Q \in S(\mathcal{M}, \tau)^h$.

For a ^{*}-paranormal operator *T* from [\(1.2\)](#page-1-1) for $\lambda = 1$ we obtain

$$
2TT^* \le T^{*2}T^2 + I. \tag{3.4}
$$

Note that *T*^{*} is also a tripotent, i. e., $T^{*3} = T^*$. Multiply both sides of inequality [\(3.4\)](#page-5-2) from the left by the operator T^* and from the right by the operator T and obtain

$$
(T^*T)^2 \leq T^*T.
$$

Hence by functional calculus of self-adjoint operators we have $T^*T \leq I$ and $||T^*T|| =$ $||T||^2$ < 1. Thus,

$$
||P - Q|| = ||T|| \le 1, \quad ||P + Q|| = ||T^2|| \le ||T|| \, ||T|| \le 1
$$

by submultiplicativity of the C^* -norm $\|\cdot\|$ on M. Now by the triangle inequality for the norm $\|\cdot\|$ we obtain

$$
2||P|| = ||2P|| = ||(P - Q) + (P + Q)|| \le ||P - Q|| + ||P + Q|| \le 2
$$

and $P \in \mathcal{M}^{pr}$; analogously we have $Q \in \mathcal{M}^{pr}$. Thus, $T = P - Q \in S(\mathcal{M}, \tau)^{h}$.

(iv). If $A \in L_2(\mathcal{M}, \tau)$ then $A^2 \in L_1(\mathcal{M}, \tau)$ and $||A^2||_1 \leq ||A||_2^2$ by Corollary [3.2.](#page-3-1) We have

$$
\mu(t;T)^2 \le \mu(t;T^2) \quad \text{for all} \quad t > 0
$$

by [\[9](#page-15-10), Proposition 3.5] and [\[11](#page-15-8), Proposition 3.9]. Therefore,

$$
\|T\|_2^2 = \int_0^{+\infty} \mu(t; T)^2 dt \le \int_0^{+\infty} \mu(t; T^2) dt = \|T^2\|_1 \le \|T\|_2^2 < +\infty
$$

and $||T||_2^2 = ||T^2||_1$. Theorem is proved.

Corollary 3.4 (cf. [\[11,](#page-15-8) Corollary 3.10(iii)]) *Let an operator* $T \in S(\mathcal{M}, \tau)$ *be paranormal or* $*$ *-paranormal. Then we have the equivalence* $T \in S_0(\mathcal{M}, \tau) \Leftrightarrow T^n \in$ $S_0(\mathcal{M}, \tau)$ *for some (and, hence, for all)* $n \in \mathbb{N}$.

Corollary 3.5 *Let an operator* $T \in S(\mathcal{M}, \tau)$ *be p-hyponormal for some* $0 \lt p \lt 1$ *.*

- (i) *If* $T^n \in S_0(\mathcal{M}, \tau)$ *for some* $n \in \mathbb{N}$ *then* $T \in S_0(\mathcal{M}, \tau)$ *;*
- (ii) *if* $T^n = 0$ *for some* $n \in \mathbb{N}$ *then* $T = 0$ *;*
- (iii) *if* $T^3 = T$ *then* $T = T^*$;
- $f(x)$ *if* $T^2 \in L_1(\mathcal{M}, \tau)$ *then* $T \in L_2(\mathcal{M}, \tau)$ *and* $||T||_2^2 = ||T^2||_1$.

Proof Every *p*-hyponormal operator $T \in S(\mathcal{M}, \tau)$ is paranormal [\[11](#page-15-8), Theorem 4.4]. \Box

Lemma 3.6 *If an operator* $T \in S(\mathcal{M}, \tau)$ *is hyponormal and* $T^{*p}T^q \in S_0(\mathcal{M}, \tau)$ *for some* $p, q \in \mathbb{N} \cup \{0\}$, $p + q \ge 1$ *then* $T \in S_0(\mathcal{M}, \tau)$.

Proof Without loss of generality assume that *p* = *q* (if *p* < *q* then $(T^*)^{q-p} \cdot T^{*p}T^q \in$ *S*₀(*M*, τ); if $q < p$ then $T^{*p}T^q \cdot T^{p-q} = T^{*p}T^p \in S_0(\mathcal{M}, \tau)$). We apply mathematical induction on $p \in \mathbb{N}$. If $p = 1$ then by items (i) and (iii) of Lemma [2.1](#page-2-0) we have

$$
|T|^2 = T^*T \in S_0(\mathcal{M}, \tau) \Leftrightarrow |T| \in S_0(\mathcal{M}, \tau) \Leftrightarrow T \in S_0(\mathcal{M}, \tau).
$$

$$
\qquad \qquad \Box
$$

Suppose that the assertion holds for all $p = 1, 2, \ldots, n$. Then for the operator

$$
(T^*)^{n+1}T^{n+1} = T^{*n} \cdot T^*T \cdot T^n \in S_0(\mathcal{M}, \tau)
$$

we have

$$
0 \leq T^{*n} \cdot TT^* \cdot T^n \leq T^{*n} \cdot T^*T \cdot T^n \in S_0(\mathcal{M}, \tau),
$$

hence $T^{*n} \cdot TT^* \cdot T^n = |T^*T^n|^2 \in S_0(\mathcal{M}, \tau)$ by item (ii) of Lemma [2.1](#page-2-0) and

$$
|T^*T^n|^2 \in S_0(\mathcal{M}, \tau) \Leftrightarrow |T^*T^n| \in S_0(\mathcal{M}, \tau) \Leftrightarrow T^*T^n \in S_0(\mathcal{M}, \tau)
$$

by items (i) and (v) of Lemma [2.1.](#page-2-0) Now $T^{*n}T^n = (T^*)^{n-1} \cdot T^*T^n \in S_0(\mathcal{M}, \tau)$ and $T \in S_0(\mathcal{M}, \tau)$ by the induction hypothesis. $T \in S_0(\mathcal{M}, \tau)$ by the induction hypothesis.

Theorem 3.7 *If an operator* $T \in S(\mathcal{M}, \tau)$ *is hyponormal and* $T^{*p}T^q \in S_0(\mathcal{M}, \tau)$ *for some p, q* \in N ∪ {0}*, p* + *q* > 1 *then T is normal.*

Proof Follows from Lemma [3.6](#page-6-0) and Theorem 2.2 of [\[6\]](#page-15-6).

Corollary 3.8 [\[32](#page-16-7), Theorem 1.2] *If an operator* $T \in \mathcal{B}(\mathcal{H})$ *is hyponormal and* $T^{*p}T^q$ *is completely continuous for some p,* $q \in \mathbb{N}$ *then T is normal.*

Above we also showed that this Istrătescu Theorem may be deduced from Ando– Berberian–Stampfli Theorem, see [\[1,](#page-15-0) [4,](#page-15-19) [39\]](#page-16-10) and [\[29,](#page-15-20) Problem 206].

Theorem 3.9 *If an operator* $T \in S(\mathcal{M}, \tau)$ *is p-hyponormal for some* $0 < p \le 1$ *then the operator* $(T^*T)^p - (TT^*)^p$ *cannot have the inverse in M.*

Proof Let, on the contrary, the operator $(T^*T)^p - (TT^*)^p$ possess the inverse in *M*, i.e. $(T^*T)^p - (TT^*)^p \ge \varepsilon I$ for some number $\varepsilon > 0$. Then $(T^*T)^p \ge (TT^*)^p + \varepsilon I$ and for arbitrary $0 < t < \tau(I)$ we have

$$
\mu(t; T^*T)^p = \mu(t; (T^*T)^p) \ge \mu(t; (TT^*)^p + \varepsilon I) = \varepsilon + \mu(t; (TT^*)^p)
$$

= $\varepsilon + \mu(t; TT^*)^p$ (3.5)

by items (iii) and (v) of Lemma [2.1](#page-2-0) and by the well-known representation

$$
\mu(t; X) = \inf\{s \ge 0 : d_X(s) \le t\}, \quad t > 0,
$$
\n(3.6)

see [\[26,](#page-15-15) Proposition 2.2]. Here $d_X(s) = \tau(E^{|X|}(s, +\infty))$, $s > 0$, is the distribution function of an operator $X \in S(\mathcal{M}, \tau)$ and $E^{|X|}(s, +\infty)$ is the spectral projection of the operator $|X|$, corresponding to the interval $(s, +\infty)$.

On the other hand, by items (i) and (v) of Lemma [2.1](#page-2-0) we have

$$
\mu(t; T^*T) = \mu(t; |T|)^2 = \mu(t; T^*)^2 = \mu(t; |T^*|)^2 = \mu(t; TT^*)
$$

for all $0 < t < \tau(I)$. We obtain a contradiction with [\(3.5\)](#page-7-2). Theorem is proved. \Box

$$
\Box
$$

In particular, a positive self-commutator cannot have the inverse in *M*. Recall that Theorem [3.9](#page-7-1) for $p = 1$ was established by the author via different method in [\[14,](#page-15-21)] Theorem 3] (see also [\[15](#page-15-22), Theorem 2]). For $\mathcal{M} = \mathcal{B}(\mathcal{H})$, $\tau = \text{tr}$ and $p = 1$ Theorem [3.9](#page-7-1) was proved by Putnam [\[38](#page-16-8)]; see also [\[29,](#page-15-20) Problem 236].

Lemma 3.10 [\[20,](#page-15-23) Theorem 17] *We have* $\tau(ST) = \tau(TS)$ *for all* $S, T \in S(\mathcal{M}, \tau)$ *with ST*, $TS \in L_1(\mathcal{M}, \tau)$.

Theorem 3.11 *If* $A, B \in L_2(\mathcal{M}, \tau)$ *, the operator A is hyponormal and B is cohyponormal then* $\|AX - XB\|_2 \geq \|A^*X - XB^*\|_2$ *for all* $X \in \mathcal{M}$ *.*

Proof By Lemma [3.1](#page-3-2) the operators A^*XB , B^*X^*A lie in $L_1(\mathcal{M}, \tau)$, hence by linearity of the extension of the trace τ to $L_1(\mathcal{M}, \tau)$ and by Lemma [3.10](#page-8-0) we obtain

$$
||AX - XB||_2^2 = \tau((AX - XB)^*(AX - XB))
$$

= $\tau(X^*A^*AX) + \tau(B^*X^* \cdot XB) -$
 $-\tau(X^* \cdot A^*XB) - \tau(B^*X^* \cdot AX)$
= $\tau(X^*A^*AX + XBB^*X^*) - \tau(A^*XBX^* + AXB^*X^*).$

The operator $A^*XBX^* + AXB^*X^*$ does not change when we replace A and B with *A*[∗] and *B*∗, respectively. If *A* is hyponormal and *B* is cohyponormal then *X*∗*A*∗*AX* + $XBB^*X^* \geq X^*AA^*X + XB^*BX^*$ and we apply monotonicity of the trace τ on the positive cone $L_1(\mathcal{M}, \tau)^+$.

Corollary 3.12 *If operators* $A, B \in L_2(\mathcal{M}, \tau)$ *are normal then* $||AX - XB||_2 =$ $||A^*X - XB^*||_2$ *for all* $X \in \mathcal{M}$ *.*

Theorem 3.13 Let an operator $A \in S(\mathcal{M}, \tau)$ be hyponormal and $X \in S(\mathcal{M}, \tau)$ with $AX \in L_p(\mathcal{M}, \tau)$ *for some* $\lt p \lt +\infty$ *. Then* $A^*X \in L_p(\mathcal{M}, \tau)$ *with* $||A^*X||_p \le$ $||AX||_p$. For $0 < p \le 2$ the following conditions are equivalent:

(i) $||AX||_p = ||A^*X||_p;$ (ii) $A^*AX = AA^*X;$ (iii) $|AX| = |A^*X|$.

Proof We have

$$
|A^*X|^2 = X^*AA^*X \le X^*A^*AX = |AX|^2,\tag{3.7}
$$

and $\mu(t; A^*X) = \mu(t; |A^*X|^2)^{1/2} \leq \mu(t; |AX|^2)^{1/2} = \mu(t; |AX|)$ for all $t > 0$ by items (i), (iii) and (v) of Lemma [2.1.](#page-2-0) Thus, $A^*X \in L_p(\mathcal{M}, \tau)$ and $||A^*X||_p \le ||AX||_p$ for every $0 < p < +\infty$.

(i)⇒(ii). If $0 < p \le 2$ then by [\(3.7\)](#page-8-1) and by the operator monotonicity of the function $f(t) = t^{p/2}$ on the semiaxis $[0, +\infty)$ we have $|AX|^p - |A^*X|^p \ge 0$. By linearity of the extension of the trace τ to $L_1(\mathcal{M}, \tau)$ we obtain

$$
0 = \|AX\|_p^p - \|A^*X\|_p^p = \tau(|AX|^p) - \tau(|A^*X|^p) = \tau(|AX|^p - |A^*X|^p).
$$

Hence $|AX|^p - |A^*X|^p = 0$ by the faithfulness of the trace τ on the cone $L_1(\mathcal{M}, \tau)^+$, i.e., $|AX|^p = |A^*X|^p$. Thus,

$$
|AX|^2 = (|AX|^p)^{2/p} = (|A^*X|^p)^{2/p} = |A^*X|^2
$$

and $0 = X^*A^*AX - X^*AA^*X = X^*(A^*A - AA^*)X = |\sqrt{A^*A - AA^*}X|^2$, i.e., $\sqrt{A^*A - AA^*}X = 0$ and $A^*AX - AA^*X = \sqrt{A^*A - AA^*}\sqrt{A^*A - AA^*}X = 0$. $(ii) \Rightarrow (iii)$. If $A^*AX = AA^*X$ then

$$
|AX|^2 = X^* \cdot A^*AX = X^* \cdot AA^*X = |A^*X|^2.
$$

 $(iii) \Rightarrow (i)$. We have $|AX|^p = |A^*X|^p$ and

$$
||AX||_p^p = \tau(|AX|^p) = \tau(|A^*X|^p) = ||A^*X||_p^p.
$$

Theorem is proved.

Theorem 3.14 Let an operator $T \in S(\mathcal{M}, \tau)$ be p-hyponormal for some $0 \lt p \lt 1$. *Then* $\text{Ker}(T^*) \subseteq \text{Ker}(T)$ *and if* $T = U|T|$ *is the polar decomposition of* T *then for every* $0 < q \le \min\{2p, 1\}$ *we have* $U^* |T|^q U \ge |T|^q \ge U |T|^q U^*$.

Proof If $A \in S(M, \tau)^+$ then $\text{Ker}(A) = \text{Ker}(A^r)$ for all $r > 0$. It follows from the following arguments: if $0 < \alpha < \beta, \xi \in \mathcal{H}$ and $A^{\alpha} \xi = 0$ then $A^{\beta} \xi = A^{\beta - \alpha} A^{\alpha} \xi = 0$; if $A\xi = 0$ then

$$
0 = \langle A\xi, \xi \rangle = \langle A^{1/2}\xi, A^{1/2}\xi \rangle = \|A^{1/2}\xi\|^2
$$

and $A^{1/2}\xi = 0$.

Since $|T|^2 P \ge |T^*|^2 P$ we have $|T^*|^p = V|T|^p$ for some $V \in \mathcal{M}$ with $||V|| \le 1$ [\[45](#page-16-11), p. 261]. Hence Ker($|T|^p$) \subset Ker($|T^*|^p$) and

$$
Ker(T) = \text{Ker}(|T|) = \text{Ker}(|T|^P) \subseteq \text{Ker}(|T^*|^p) = \text{Ker}(|T^*|) = \text{Ker}(T^*).
$$

Since $|T|^{2p} \ge |T^*|^{2p}$, by the operator monotonicity of the function $f(t) = t^{\frac{q}{2p}}$ on the semiaxis $[0, +\infty)$ we obtain

$$
|T|^q \ge |T^*|^q. \tag{3.8}
$$

Therefore, $U^* |T|^q U \geq U^* |T^*|^q U$. By Hansen inequality [\[30](#page-16-12)] for the operator monotone function $g(t) = t^q$ (*t* > 0) and via the equalities $U^*U|T| = |T|$, $|T^*| = U|T|U^*$ we obtain

$$
U^*|T|^qU \geq |T|^q \geq U^*|T^*|U = U^*(U|T|U^*)^qU \geq U^*U|T|^qU^*U = |T|^q.
$$

On the other hand, by Hansen inequality [\[30](#page-16-12)] for the operator monotone function *g* and inequality [\(3.8\)](#page-9-0) we have $U|T|^qU^* \leq (U|T|U^*)^q = |T^*|^q \leq |T|$ q . \Box

Corollary 3.15 *In conditions of Theorem* [3.14](#page-9-1) *we have*

$$
\mu(t; U^*|T|^q U) = \mu(t; U|T|^q U^*) = \mu(t; |T|^q) = \mu(t; T)^q \text{ for all } t > 0.
$$

Proof By items (i) and (v) of Lemma [2.1](#page-2-0) we have

$$
\mu(t; A^*A) = \mu(t; AA^*) \quad \text{for all} \quad A \in S(\mathcal{M}, \tau) \quad \text{and} \quad t > 0. \tag{3.9}
$$

By item (iii) of Lemma [2.1](#page-2-0) we have

$$
\mu(t; U^* | T |^q U) \ge \mu(t; |T|^q) \ge \mu(t; U | T |^q U^*) \text{ for all } t > 0.
$$

Since $UU^* \leq I$, by [\(3.9\)](#page-10-0) with $A = |T|^{q/2}U$ and items (i), (iii) and (v) of Lemma [2.1](#page-2-0) we obtain

$$
\mu(t; U^*|T|^q U) = \mu(t; |T|^{q/2} U U^*|T|^{q/2}) \leq \mu(t; |T|^q) = \mu(t; T)^q \text{ for all } t > 0.
$$

Analogously, with $A = |T|^{q/2}U^*$ we have $\mu(t; U|T|^qU^*) = \mu(t; |T|^q)$ for all $t > 0$. By items (i) and (v) of Lemma [2.1](#page-2-0) we obtain $\mu(t; |T|^q) = \mu(t; |T|)^q = \mu(t; T)^q$ for all $t > 0$.

Corollary 3.16 *In conditions of Theorem* [3.14](#page-9-1)*, if the operator* $Y := |T|^q - U|T|^qU^*$ *lies in* $L_1(\mathcal{M}, \tau)$ *then* $X := U^* |T|^q U - |T|^q \in L_1(\mathcal{M}, \tau)$ *and* $\tau(X) = \tau(YP) \le$ $\tau(Y)$ *for the projection* $P = UU^*$.

Proof Since $Y \in L_1(\mathcal{M}, \tau)$, we have $X = U^*YU \in L_1(\mathcal{M}, \tau)$. Also $U = UU^*U$ and $P := U U^*$, $Q := U^* U \in \mathcal{M}^{pr}$ [\[29,](#page-15-20) Problem 127]. Then $|T|^p = Q |T|^p$ and

$$
X = U^* |T|^q U - Q|T|^q = U^* [|T|^p, U] \in L_1(\mathcal{M}, \tau).
$$

Since the operator $[|T|^p, U]U^* = |T|^p P - U|T|^q U^* = |T|^p P - U|T|^q U^* P = Y P$ also lies in $L_1(\mathcal{M}, \tau)$, by Lemma [3.10](#page-8-0) and the inequality $P^{\perp} Y P^{\perp} > 0$ we obtain

$$
\tau(X) = \tau(YP) = \tau(Y - YP^{\perp}) = \tau(Y) - \tau(YP^{\perp}) = \tau(Y) - \tau(P^{\perp}YP^{\perp}) \leq \tau(Y).
$$

The assertion is proved.

Theorem 3.17 *Let an operator* $U \in \mathcal{M}$ *be a isometry and let a number* $0 < p \leq 1$ *.*

(i) *If* $T \in S(\mathcal{M}, \tau)$ *is paranormal then* UTU^* *is paranormal*; (ii) *if* $A \in S_0(\mathcal{M}, \tau)^+$ *and* $A^p \geq (U A U^*)^p$ *then* $A U = U A$; (iii) *if* $T \in S(\mathcal{M}, \tau)$ *is p-hyponormal then* UTU^* *p-hyponormal.*

Proof (i). We have $P := U U^* \in \mathcal{M}^{pr}$, hence $0 \leq P \leq I$. Multiply both sides of inequality (1.1) from the left by the operator *U* and from the right by the operator U^* , for all $\lambda > 0$ we obtain

$$
2(UTU^*)^*UTU^* = 2UT^*U^* \cdot UTU^* \le \lambda^{-1}UT^*U^* \cdot UTU^* \cdot UTU^* \cdot UTU^* + \lambda P
$$

$$
\le \lambda^{-1}(UTU^*)^{*2} \cdot (UTU^*)^2 + \lambda I.
$$

Thus, the operator UTU^* satisfies inequality [\(1.1\)](#page-1-0). (ii). We have $A^{1/2} \in S_0(\mathcal{M}, \tau)^+$ by item (v) of Lemma [2.1](#page-2-0) and by the definition of the ideal $S_0(\mathcal{M}, \tau)$. Hence the operator $B := UA^{1/2}$ lies in $S_0(\mathcal{M}, \tau)$ and

$$
(B^*B)^p \geq (BB^*)^p,
$$

i.e. the operator *B* is *p*-hyponormal. By Theorem 2.2 of [\[6](#page-15-6)] the operator *B* is normal and

$$
A=UAU^*.
$$

Multiply both sides of the last equality from the right by the operator *U* and obtain $AU = UA$.

(iii). We have $(UT^*U^* \cdot UTU^*)^n = U(T^*T)^nU^*$ for all $n \in \mathbb{N}$.

Step 1. Let $T \in \mathcal{M}$. For every number $\varepsilon > 0$ by Weierstrass Theorem on uniform approximation of continuous functions on (closed) interval we choose a polynomial

$$
\mathcal{P}(t) = a_0 + a_1t + \cdots + a_kt^k, \quad a_0, a_1, \ldots, a_k \in \mathbb{R},
$$

such that $|\mathcal{P}(t) - t^p| < \varepsilon$ for all $0 \le t \le ||T||^2$. Then by Functional Calculus we have

$$
\|\mathcal{P}(T^*T) - (T^*T)^p\| < \varepsilon, \quad \|\mathcal{P}(UT^*TU^*) - (UT^*TU^*)^p\| < \varepsilon
$$

and $||U \mathcal{P}(T^*T)U^* - U(T^*T)^pU^*|| \le ||U|| \cdot ||U^*|| \cdot ||\mathcal{P}(T^*T) - (T^*T)^p|| \le \varepsilon$. Since

$$
\mathcal{P}(UT^*TU^*)=U\mathcal{P}(T^*T)U^*,
$$

by the triangle inequality for the C^* -norm $\|\cdot\|$ we achieve the estimate

$$
||U(T^*T)^pU^* - (UT^*TU^*)^p|| = ||(U(T^*T)^pU^* - UP(T^*T)U^*) + (\mathcal{P}(UT^*TU^*) - (UT^*TU^*)^p)|| < 2\varepsilon.
$$

By arbitrariness of $\varepsilon > 0$ we obtain

$$
U(T^*T)^p U^* = (UT^*TU^*)^p.
$$
\n(3.10)

Step 2. Let $T \in S(\mathcal{M}, \tau)$ and $P_n \in \mathcal{M}^{pr}$ be the spectral projection of the operator *T***T*, corresponding to the interval [0, *n*], $n \in \mathbb{N}$. Then $P_n \xrightarrow{\tau} I$ as $n \to +\infty$ and

$$
n^{p} P_{n} \ge P_{n} (T^{*} T)^{p} P_{n} = (P_{n} T^{*} T P_{n})^{p}, \quad n \in \mathbb{N}.
$$

By Step 1 (see [\(3.10\)](#page-11-0)) we have $U(P_nT^*TP_n)^pU^* = (UP_nT^*TP_nU^*)^p$, $n \in \mathbb{N}$. Passing in these equalities to limits in the topology t_{τ} as $n \to +\infty$, taking into account joint t_{τ} -continuity of multiplication in $S(\mathcal{M}, \tau)$ and t_{τ} -continuity of operator functions $[42,$ Theorem 2.6], we obtain (3.10) .

Step 3. Analogously (see Steps 1, 2) we have $U(TT^*)^pU^* = (UTT^*U^*)^p$. Therefore,

$$
(UT^*U^* \cdot UTU^*)^p = U(T^*T)^pU^* \ge U(TT^*)^pU^* = (UTU^* \cdot UT^*U^*)^p
$$

and Theorem is proved.

Note that for every number $0 < p \le 1$ the set of all *p*-hyponormal operators $T \in S(\mathcal{M}, \tau)$ is t_{τ} -closed in $S(\mathcal{M}, \tau)$ (it follows from t_{τ} -continuity of the involution and the multiplication in $S(\mathcal{M}, \tau)$ and $[42,$ $[42,$ Theorem 2.6]).

Corollary 3.18 *Let* $A \in S_0(\mathcal{M}, \tau)^+$ *and an operator* $U \in \mathcal{M}$ *be an isometry. If* A^p < $(UAU^*)^p$ *for some* $0 < p \le 1$ *then* $AU = UA$ *. If* $T \in S(\mathcal{M}, \tau)$ *is p-cohyponormal then UTU[∗] is p-cohyponormal.*

Proof An operator $B := UA^{1/2} \in S_0(\mathcal{M}, \tau)$ is *p*-cohyponormal. By Corollary 2.3 of [6] the operator *B* is normal. [\[6](#page-15-6)] the operator *B* is normal.

Theorem 3.19 *For* $A, B \in S(\mathcal{M}, \tau)$ ^h *the following conditions are equivalent:*

- (i) *an operator* $A + iB$ *is hyponormal*;
- (ii) *an operator* $aA + ibB$ *is hyponormal for some numbers* $a, b > 0$ *. If an operator A is invertible in S*(*M*,τ) *then (i) and (ii) are equivalent to the condition:*
- (iii) *an operator* $A^{-1} iB$ *is hyponormal.*

Proof An operator $A + iB$ is hyponormal if and only if

$$
i(AB - BA) \ge 0,\tag{3.11}
$$

i. e., *i*[*A*, *B*] ≥ 0. Hence (i) \Leftrightarrow (ii). Let us show that (i) \Rightarrow (iii). Multiply both sides of inequality [\(3.11\)](#page-12-1) from the left and the right by the operator $A^{-1} \in S(M, \tau)$ ^h and obtain

$$
i(BA^{-1} - A^{-1}B) \ge 0.
$$

This condition is necessary and sufficient for hyponormality of the operator $A^{-1} - iB$, see [\(3.11\)](#page-12-1). The rest is clear.

Clearly, an operator $(A + iB)^2$ is hyponormal if and only if

$$
i[A^2 - B^2, AB + BA] \ge 0.
$$

Recall that there exists a hyponormal operator, whose square is not hyponormal [\[29,](#page-15-20) Problem 209]. On invertibility in $S(\mathcal{M}, \tau)$ see [\[12,](#page-15-24) [17,](#page-15-25) [41\]](#page-16-14).

Corollary 3.20 *Let operators* $A, B \in S(\mathcal{M}, \tau)$ ^h *be invertible in* $S(\mathcal{M}, \tau)$ *. Then the following conditions are equivalent:*

(i) *an operator* $A + iB$ *is hyponormal*;

(ii) *an operator* $A^{-1} + iB^{-1}$ *is hyponormal.*

Theorem 3.21 *If an operator* $T \in S(\mathcal{M}, \tau)$ *is hyponormal and* $T^2 \in S(\mathcal{M}, \tau)$ ^h *then T is normal.*

Proof Let $T = A + iB$ be the Cartesian representation of the operator $T \in S(\mathcal{M}, \tau)$ with $A, B \in S(\mathcal{M}, \tau)$ ^h. If $T^2 \in S(\mathcal{M}, \tau)$ ^h then the operators \overrightarrow{A} and \overrightarrow{B} anticommute, i. e., $AB = -BA$. Since *T* is hyponormal, from [\(3.11\)](#page-12-1) we obtain *iAB* \geq 0. Therefore, $-i \, BA = (i \, AB)^* > 0$ and

$$
(\mathbb{R}^+ \supset) \sigma(iAB) \cup \{0\} = \sigma(-iBA) \cup \{0\} = -i\sigma(BA) \cup \{0\} = -i\sigma(AB) \cup \{0\}
$$

by the equality σ (*XY*) ∪ {0} = σ (*Y X*) ∪ {0} for all *X*, *Y* ∈ *S*(*M*,τ) [\[40](#page-16-15), Chap. I, Proposition 2.1]. Hence

$$
i\sigma(AB) \cup \{0\} = -i\sigma(AB) \cup \{0\} \subset \mathbb{R}^+
$$

and $\sigma(AB) = \{0\} = \sigma(iAB)$. Consider the Abelian von Neumann subalgebra A in *M*, generated by *I* and by all spectral projections of the positive operator *iAB*. With regard to a ^{*}-isomorphism $A \simeq L_{\infty}(\Omega, \mathfrak{A}, \nu)$ for some localizable measure space $(\Omega, \mathfrak{A}, \nu)$ and by nonnegativity of the function $iAB \in L_0(\Omega, \mathfrak{A}, \nu)$, we obtain $iAB =$ $0 = AB$, since the spectrum of a multiplicator $M_f: L_2(\Omega, \mathfrak{A}, v) \to L_2(\Omega, \mathfrak{A}, v)$ by a measurable function $f \in L_0(\Omega, \mathfrak{A}, \nu)$ coincides with its set of essential values

$$
\mathcal{E}_f = \{ \lambda \in \mathbb{C} : \forall \varepsilon > 0 \; (\nu \{ \omega \in \Omega : |f(\omega) - \lambda| < \varepsilon \} \neq 0) \},
$$

see [\[43](#page-16-16), Theorem I.7.11]. Therefore, $0 = AB = (AB)^* = BA$ and the operator *T* is normal. normal.

Corollary 3.22 *If an operator* $T \in S(\mathcal{M}, \tau)$ *is cohyponormal and the operator* T^2 *is Hermitian then T is normal.*

Theorem 3.23 *Let operators* $A, B \in S(\mathcal{M}, \tau)^h$ *and* $\{A, B\} \cap \mathcal{M}^{sym} \neq \emptyset$ *. If the operator* $T := A + iB$ *is hyponormal (or cohyponormal), then* T *is normal.*

Proof Let, for definiteness, $A^2 = I$. An operator *T* is hyponormal if and only if [\(3.11\)](#page-12-1) holds. Multiply both sides of inequality (3.11) from the left and right by the Hermitian symmetry *A*, and achieve $i(BA - AB) \ge 0$. From this relation and [\(3.11\)](#page-12-1) we have $AB = BA$, i.e., the operator *T* is normal.

Corollary 3.24 *Let operators* $A, B \in S(\mathcal{M}, \tau)$ ^h *and* $\{A, B\} \cap \mathcal{M}^{pr} \neq \emptyset$ *. If the operator* $T := A + iB$ *is hyponormal (or cohyponormal), then* T *is normal.*

Proof Let, for definiteness, $A \in \mathcal{M}^{pr}$ and [\(3.11\)](#page-12-1) holds. For the Hermitian symmetry $S := 2A - I$ we have

$$
i(SB - BS) = \frac{i}{2}(AB - BA) \ge 0.
$$

B Birkhäuser

Hence the operator $S + iB$ is hyponormal via [\(3.11\)](#page-12-1). By Theorem [3.23](#page-13-2) the operator $S + iB$ is normal, i.e., $SB = BS$. Therefore, $AB = BA$ and the operator *T* is normal. \Box

Corollary 3.25 ([\[5,](#page-15-26) Proposition 4.2]) *Let operators* $A \in \mathcal{B}(\mathcal{H})^h$ *and* $P \in \mathcal{B}(\mathcal{H})^{pr}$ *. If* $i[A, P] > 0$ *then* $AP = PA$.

Proposition 3.26 *Let* $A, B \in S(\mathcal{M}, \tau)^h$, $C \in S(\mathcal{M}, \tau)$ *and the operator* $A + iB$ *be hyponormal.*

- (i) If $AC = CA$ then the operator $A + iCBC^*$ is hyponormal.
- (ii) *If* $BC = CB$ then the operator $CAC^* + iB$ is hyponormal. If C is invertible in *S*(*M*,τ) *then the inverse assertions hold.*

Proof (i). Note that the operator *CBC*[∗] is Hermitian. Multiply both sides of inequality (3.11) from the left by the operator *C* and from the right by the operator C^* , then by taking into account the equalities $AC = CA$ and $AC^* = C^*A$ we obtain

$$
0 \leq i(CABC^* - CBAC^*) = i(A \cdot CBC^* - CBC^* \cdot A) = i[A, CBC^*].
$$

Via the Cartesian criterion of hyponormality (3.11) the operator $A + iCBC^*$ is hyponormal.

(ii). Multiply both sides of inequality (3.11) from the left by the operator C and from the right by the operator C^* , take into account the equalities $BC = CB$ and $BC^* = C^*B$ and obtain $i[CAC^*, B] > 0$. The rest is clear. $BC^* = C^*B$ and obtain *i*[*CAC*^{*}, *B*] ≥ 0. The rest is clear.

If $A, B \in S(\mathcal{M}, \tau)$ with $AB = BA$ and the operator *B* is normal then by Fuglede– Putnam Theorem for τ -measurable operators [\[3](#page-15-27), Theorem 6] we have $AB^* = B^*A$, hence $A^*B = (B^*A)^* = (AB^*)^* = BA^*$.

Proposition 3.27 Let operators $A, B \in S(\mathcal{M}, \tau)$ with $A^*B = BA^*$. Then the *following conditions are equivalent:*

- (i) *A and B are hyponormal (respectively, cohyponormal; normal);*
- (ii) $aA + bB$ is hyponormal (respectively, cohyponormal; normal) for all $a, b \in \mathbb{C}$.

Proof (i)⇒(ii). It is clear that $B^*A = (A^*B)^* = (BA^*)^* = AB^*$. If *A* and *B* are hyponormal then for all $a, b \in \mathbb{C}$ we have

$$
(aA + bB)^*(aA + bB) = |a|^2 A^* A + \overline{a}bA^* B + a\overline{b}B^* A + |b|^2 B^* B
$$

\n
$$
\ge |a|^2 A A^* + \overline{a}bBA^* + a\overline{b}AB^* + |b|^2 BB^*
$$

\n
$$
= (aA + bB)(aA + bB)^*.
$$

(ii)⇒(i). For $a = 1$, $b = 0$ (respectively, for $a = 0$, $b = 1$) the operator *A* is ponormal (respectively, *B* is hyponormal). The rest is clear. hyponormal (respectively, *B* is hyponormal). The rest is clear.

Acknowledgements The work is performed under the development program of Volga Region Mathematical Center (agreement no. 075-02-2024-1438).

References

- 1. Andô, T.: On hyponormal operators. Proc. Am. Math. Soc. **14**(2), 290–291 (1963)
- 2. Ben-Jacob, M.G.: Hyponormal operators compact relative to a *W*∗-algebra. Bull. Lond. Math. Soc. **13**(3), 229–230 (1981)
- 3. Ber, A., Chilin, V., Sukochev, F., Zanin, D.: Fuglede-Putnam theorem for locally measurable operators. Proc. Am. Math. Soc. **146**(4), 1681–1692 (2018)
- 4. Berberian, S.K.: A note on hyponormal operators. Pac. J. Math. **12**(4), 1171–1175 (1962)
- 5. Bikchentaev, A.M.: On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections. III. Commutators in*C*∗-algebras. Sb. Math. **199**(3–4), 477–493 (2008)
- 6. Bikchentaev, A.M.: On normal τ -measurable operators affiliated with semifinite von Neumann algebras. Math. Notes **96**(3–4), 332–341 (2014)
- 7. Bikchentaev, A.M.: On idempotent τ -measurable operators affiliated to a von Neumann algebra. Math. Notes **100**(3–4), 515–525 (2016)
- 8. Bikchentaev, A.M.: Two classes of τ-measurable operators affiliated with a von Neumann algebra. Russ. Math. (Iz. VUZ) **61**(1), 76–80 (2017)
- 9. Bikchentaev, A.M.: Paranormal measurable operators affiliated with a semifinite von Neumann algebra. Lobachevskii J. Math. **39**(6), 731–741 (2018)
- 10. Bikchentaev, A.M.: Rearrangements of tripotents and differences of isometries in semifinite von Neumann algebras. Lobachevskii J. Math. **40**(10), 1450–1454 (2019)
- 11. Bikchentaev, A.: Paranormal measurable operators affiliated with a semifinite von Neumann algebra. II. Positivity **24**(5), 1487–1501 (2020)
- 12. Bikchentaev, A.M.: On τ -essentially invertibility of τ -measurable operators. Int. J. Theor. Phys. **60**(2), 567–575 (2021)
- 13. Bikchentaev, A.M.: Essentially invertible measurable operators affiliated to a semifinite von Neumann algebra and commutators. Sib. Math. J. **63**(2), 224–232 (2022)
- 14. Bikchentaev, A.M.: Concerning the theory of τ -measurable operators affiliated to a semifinite von Neumann algebra. II. Math. Theor. Comput. Sci. **1**(2), 3–11 (2023). <www.mathtcs.ru> [in Russian]
- 15. Bikchentaev, A.M.: Concerning the theory of τ -measurable operators affiliated to a semifinite von Neumann algebra. II. Lobachevskii J. Math. **44**(10), 4507–4511 (2023)
- 16. Bikchentaev, A.M.: The algebra of thin measurable operators is directly finite. Constr. Math. Anal. **6**(1), 1–5 (2023)
- 17. Bikchentaev, A.M.: A block projection operator in the algebra of measurable operators. Russ. Math. (Iz. VUZ) **67**(10), 70–74 (2023)
- 18. Bikchentaev, A.M., Yakushev, R.S.: Representation of tripotents and representations via tripotents. Linear Algebra Appl. **435**(9), 2156–2165 (2011)
- 19. Bogdanović, K.: A class of norm inequalities for operator monotone functions and hyponormal operators. Complex Anal. Oper. Theory **18**(2), 32–12 (2024)
- 20. Brown, L.G., Kosaki, H.: Jensen's inequality in semifinite von Neumann algebras. J. Oper. Theory **23**(1), 3–19 (1990)
- 21. Chõ, M., Itoh, M.: Putnam's inequality for *p*-hyponormal operators. Proc. Am. Math. Soc. **123**(8), 2435–2440 (1995)
- 22. Curto, R.E., Hwang, I.S., Lee, W.Y.: Hyponormality and subnormality of block Toeplitz operators. Adv. Math. **230**, 2094–2151 (2012)
- 23. Dehimi, S., Mortad, M.H.: Unbounded operators having self-adjoint, subnormal, or hyponormal powers. Math. Nachr. **296**(9), 3915–3928 (2023)
- 24. Dodds, P.G., de Pagter, B., Sukochev, F.A.: Noncommutative Integration and Operator Theory, Progress in Mathematics, vol. 349. Birkhaäuser, Cham (2023)
- 25. Duggal, B.P.: On *p*-hyponormal contractions. Proc. Am. Math. Soc. **123**(1), 81–86 (1995)
- 26. Fack, T., Kosaki, H.: Generalized *s*-numbers of τ -measurable operators. Pac. J. Math. **123**(2), 269–300 (1986)
- 27. Feldman, N.S., McGuire, P.: Subnormal and hyponormal generators of *C*∗-algebras. J. Funct. Anal. **231**(2), 458–499 (2006)
- 28. Gokhberg, I.T., Krein, M.G.: An Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space. Amer. Math. Soc, Providence (1969)
- 29. Halmos, P.R.: A Hilbert Space Problem Book, Graduate Texts in Math., vol. 19. Springer, New York (1982)
- 30. Hansen, F.: An operator inequality. Math. Ann. **246**(3), 249–250 (1980)
- 31. Huruya, T.: A note on *p*-hyponormal operators. Proc. Am. Math. Soc. **125**(12), 3617–3624 (1997)
- 32. Istrătescu, V.: On some hyponormal operators. Pac. J. Math. **22**(3), 413–417 (1967)
- 33. Kim, S., Lee, J.: Hyponormal Toeplitz operators with non-harmonic symbols on the weighted Bergman spaces. Ann. Funct. Anal. **14**(1), 14–14 (2023)
- 34. Kosaki, H.: On the continuity of the map $\varphi \mapsto |\varphi|$ from the predual of a *W*^{*}-algebra. J. Funct. Anal. **59**(1), 123–131 (1984)
- 35. Kubrusly, C.S.: Hilbert Space Operators. A Problem Solving Approach. Birkhäuser Boston Inc, Boston (2003)
- 36. Martin, M., Putinar, M.: Lectures on Hyponormal Operators. Oper. Theory Adv. Appl., vol. 39. Birkhäuser, Basel (1989)
- 37. Mecheri, S.: Positive answer to the invariant and hyperinvariant subspaces problems for hyponormal operators. Georgian Math. J. **29**(2), 233–244 (2022)
- 38. Putnam, C.R.: On commutators of bounded matrices. Am. J. Math. **73**(1), 127–131 (1951)
- 39. Stampfli, J.G.: Hyponormal operators. Pac. J. Math. **12**(4), 1453–1458 (1962)
- 40. Takesaki, M.: Theory of operator algebras. I. Encyclopaedia of Mathematical Sciences. Operator Algebras and Non-commutative Geometry, vol. 124, p. 5. Springer, Berlin (2002)
- 41. Tembo, I.D.: Invertibility in the algebra of τ -measurable operators. Operator algebras, operator theory and applications, Oper. Theory Adv. Appl., vol. 195, pp. 245–256. Birkhäuser, Basel (2010)
- 42. Tikhonov, O.E.: Continuity of operator functions in topologies connected with a trace on a von Neumann algebra. Sov. Math. (Iz. VUZ) **31**(1), 110–114 (1987)
- 43. Trunov, N.V.: The Spectral Theorem. Kazan University, Kazan (1989) **(ISBN 5-7464-0304-0 [in Russian])**
- 44. Wu, Z., Zeng, Q., Zhang, Y.: Weyl type theorems in Banach algebras and hyponormal elements in *C*∗ algebras. Banach J. Math. Anal. **18**(2), 28 (2024)
- 45. Yeadon, F.J.: Convergence of measurable operators. Proc. Camb. Philos. Soc. **74**(2), 257–268 (1973)
- 46. Zamani, A.: *C*∗-module operators which satisfy the generalized Cauchy-Schwarz type inequality. Linear Multilinear Algebra **72**(4), 644–654 (2024)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.