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Abstract
Let M be a von Neumann algebra of operators on a Hilbert space H and τ be a
faithful normal semifinite trace onM, S(M, τ ) be the ∗-algebra of all τ -measurable
operators. Assume that an operator T ∈ S(M, τ ) is paranormal or ∗-paranormal. If
T n is τ -compact for some n ∈ N then T is τ -compact; if T n = 0 for some n ∈ N

then T = 0; if T 3 = T then T = T ∗; if T 2 ∈ L1(M, τ ) then T ∈ L2(M, τ ) and
‖T ‖22 = ‖T 2‖1. If an operator T ∈ S(M, τ ) is hyponormal and T ∗pT q is τ -compact
for some p, q ∈ N∪{0}, p+q ≥ 1 then T is normal. If T ∈ S(M, τ ) is p-hyponormal
for some 0 < p ≤ 1 then the operator (T ∗T )p − (T T ∗)p cannot have the inverse in
M. If an operator T ∈ S(M, τ ) is hyponormal (or cohyponormal) and the operator
T 2 is Hermitian then T is normal.

Keywords Hilbert space · Von Neumann algebra · Normal trace · Measurable
operator · Hyponormal operator · Paranormal operator
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1 Introduction

Let a von Neumann algebraM of operators act on a Hilbert spaceH, let I be the unit
ofM, let τ be a faithful normal semifinite trace onM. Let S(M, τ ) be the ∗-algebra
of all τ -measurable operators, |A| = √

A∗A for A ∈ S(M, τ ). Hyponormal (i.e.
A∗A ≥ AA∗) bounded operators have many good properties and have long attracted
attention of large group of investigators, see, for example, [1, 19, 21–23, 25, 27, 31,
33, 36, 37, 44, 46]. In 2014 the author started the research of unbounded hyponormal
operators from S(M, τ ), see [6]. An operator A ∈ S(M, τ ) is called p-hyponormal
for some number 0 < p ≤ 1, if (A∗A)p ≥ (AA∗)p; quasinormal, if it commutes with

Communicated by Lyudmila Turowska.

B Airat Bikchentaev
Airat.Bikchentaev@kpfu.ru

1 Kazan Federal University, 18 Kremlyovskaya str, P.O. Box 420008, Kazan, Russia

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s43036-024-00388-9&domain=pdf
http://orcid.org/0000-0001-5992-3641


   83 Page 2 of 17 A. Bikchentaev

A∗A. Every quasinormal operator A ∈ S(M, τ ) is hyponormal [7, Theorem 2.9].
Every p-hyponormal operator A ∈ S(M, τ ) is paranormal [11, Theorem 4.4], i.e.,

2|A|2 ≤ λ−1|A2|2 + λI for all λ > 0. (1.1)

If a paranormal operator A ∈ S(M, τ ) has the inverse A−1 ∈ M then A−1 is also
paranormal [8, item (iii) of Theorem 2], see also [9]. If an operator A ∈ S(M, τ ) is
hyponormal and (λI + A)−1 ∈ M for some λ ∈ C then (λI + A)−1 is hyponormal [8,
Proposition 2]. If a hyponormal operator A ∈ S(M, τ )has the inverse A−1 ∈ S(M, τ )

then A−1 is also hyponormal, see Solution 9.16 in [35]. Every hyponormal operator
A ∈ S(M, τ ) is ∗-paranormal [11, item (i) of Theorem 3.6], i.e.

2|A∗|2 ≤ λ−1|A2|2 + λI for all λ > 0. (1.2)

If a hyponormal operator A ∈ S(M, τ ) has a right inverse in S(M, τ ) then A is
invertible in S(M, τ ) [13, Theorem 3]. Every τ -compact p-hyponormal operator is
normal [6, Theorem 2.2]. If an operator A ∈ S(M, τ ) is p-hyponormal and |A∗| ≥
μ(∞; A)I then A is normal [9, Theorem 4.1]. LetM be a factor, i.e.,M∩M′ = CI .
If an operator A ∈ M is hyponormal and compact relative M then A is normal [2,
Theorem]; see also [10, Section 4].

We obtain the following results. Let an operator T ∈ S(M, τ ) be paranormal or
∗-paranormal. If T n is τ -compact for some n ∈ N then T is τ -compact; if T n = 0
for some n ∈ N then T = 0; if T 3 = T then T = T ∗; if T 2 ∈ L1(M, τ ) then
T ∈ L2(M, τ ) and ‖T ‖22 = ‖T 2‖1 (Theorem 3.3). If an operator T ∈ S(M, τ ) is
hyponormal and T ∗pT q is τ -compact for some p, q ∈ N ∪ {0}, p + q ≥ 1 then T
is normal (Theorem 3.7). For M = B(H), τ = tr and p, q ∈ N this assertion was
proved by Istrăţescu [32, Theorem 1.2] in different way. If an operator T ∈ S(M, τ )

is p-hyponormal for some 0 < p ≤ 1 then the operator (T ∗T )p − (T T ∗)p cannot
have the inverse inM (Theorem 3.9). In particular, a positive self-commutator cannot
have the inverse inM. ForM = B(H), τ = tr and p = 1 Theorem 3.9 was proved by
Putnam [38] in different way. For Hermitian operators A, B ∈ S(M, τ ) the following
conditions are equivalent: (i) an operator A + i B is hyponormal; (ii) an operator
aA + ibB is hyponormal for some numbers a, b > 0. If an operator A is invertible
in S(M, τ ) then (i) and (ii) are equivalent to the following condition: (iii) an operator
A−1 − i B is hyponormal (Theorem 3.19). If an operator T ∈ S(M, τ ) is hyponormal
(or cohyponormal) and the operator T 2 is Hermitian then T is normal (Theorem 3.21,
Corollary 3.22). Let Hermitian operators A, B ∈ S(M, τ ) and A2 = I . If an operator
A+i B is hyponormal (or cohyponormal) then it is normal (Theorem 3.23). The results
are mostly new even for the pair M = B(H), τ = tr.

2 Notation, definitions and preliminaries

Let M be a von Neumann algebra of operators on the Hilbert space H, Mpr be the
lattice of projections (P = P2 = P∗) in M, I be the unit of M, P⊥ = I − P for
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P ∈ Mpr. An operatorU ∈ M is called an isometry, ifU∗U = I . LetMsym = {S ∈
M : S2 = I }.

An operator on H (not necessarily bounded or densely defined) is said to be affil-
iated to the von Neumann algebra M if it commutes with any unitary operator from
the commutantM′ of the algebraM. Let τ be a faithful normal semifinite trace onM
[24, Chap. 1, §1.15]. A closed operator X , affiliated to M and possessing a domain
D(X) everywhere dense inH is said to be τ -measurable if, for any ε > 0, there exists
a projection P ∈ Mpr such that PH ⊂ D(X) and τ(P⊥) < ε. The set S(M, τ ) of
all τ -measurable operators is a ∗-algebra under passage to the adjoint operator, mul-
tiplication by a scalar, and operations of strong addition and multiplication resulting
from the closure of the ordinary operations [24, Chap. 2, §2.3].

Let L+, Lh and Lid denote the positive part, the Hermitian part and the idempotent
part (A2 = A) of a familyL ⊂ S(M, τ ), respectively.Wedenote by≤ the partial order
in S(M, τ )h generated by its proper cone S(M, τ )+. If X ∈ S(M, τ ) and X = U |X |
is the polar decomposition of X , then U ∈ M and |X | = √

X∗X ∈ S(M, τ )+.
Let [A, B] = AB − BA be the commutator of operators A, B ∈ S(M, τ ), σ(A)

and [A∗, A] be the spectrum and the self-commutator of an operator A, respectively.
An operator A ∈ S(M, τ ) is called p-hyponormal for some number 0 < p ≤ 1, if
(A∗A)p ≥ (AA∗)p; p-cohyponormal, if A∗ is p-hyponormal. The sets

U (ε, δ) = {X ∈ S(M, τ ) : ‖X P‖ ≤ ε and τ(P⊥) ≤ δ for some P ∈ Mpr},
where ε > 0, δ > 0, form a base at 0 for a metrizable vector topology tτ on S(M, τ ),
called themeasure topology [24, Chap. 2, §2.5]. Equippedwith this topology, S(M, τ )

is a complete topological ∗-algebra in which M is dense. We will write Xn
τ−→ X

if a sequence of τ -measurable operators {Xn}∞n=1 converges to X ∈ S(M, τ ) in the
measure topology on S(M, τ ). The generalized singular value functionμ(·; X) : t →
μ(t; X) of the τ -measurable operator X is defined by setting

μ(t; X) = inf{‖X P‖ : P ∈ Mpr and τ(P⊥) ≤ t}, t > 0.

It is a non-increasing right-continuous function.

Lemma 2.1 [26] Let X ,Y ∈ S(M, τ ). Then,

(i) μ(t; X) = μ(t; |X |) = μ(t; X∗) for all t > 0;
(ii) μ(t; λX) = |λ|μ(t; X) for all λ ∈ C and t > 0;
(iii) if |X | ≤ |Y |, then μ(t; X) ≤ μ(t; Y ) for all t > 0;
(iv) μ(s + t; X + Y ) ≤ μ(s; X) + μ(t; Y ) for all s, t > 0;
(v) μ(t; |X |p) = μ(t; X)p for all 0 < p < +∞ and t > 0.

Let m be the linear Lebesgue measure on R. Noncommutative Lebesgue L p-space
(0 < p < ∞), associated with (M, τ ), may be defined as

L p(M, τ ) = {X ∈ S(M, τ ) : μ(·; X) ∈ L p(R
+,m)}

with the F-norm (norm for 1 ≤ p < ∞) ‖X‖p = ‖μ(·; X)||p, X ∈ L p(M, τ ). The
extension of τ to the unique linear functional on the whole space L1(M, τ )we denote
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by the same letter τ . The set

S0(M, τ ) = {X ∈ S(M, τ ) : μ(∞; X) := lim
t→+∞ μ(t; X) = 0}

of τ -compact operators is a tτ -closed ideal in S(M, τ ).
If M = B(H), the ∗-algebra of all bounded linear operators on H, and τ = tr,

then S(M, τ ) coincides with B(H), S0(M, τ ) coincides with the ideal S∞(H) of
compact (i.e., completely continuous) operators onH, the topology tτ coincides with
the ‖ · ‖-topology, the space L p(M, τ ) coincides with the Shatten–von Neumann
∗-ideal Sp(H) in B(H) and

μ(t; X) =
∞∑

n=1

sn(X)χ[n−1,n)(t), t > 0,

where {sn(X)}∞n=1 is the sequence of s-numbers of the operator X ; χA is the indicator
function of the set A ⊂ R [28, Chap. II].

3 When a hyponormal �-measurable operator is normal?

Let τ be a faithful normal semifinite trace on a von Neumann algebra M.

Lemma 3.1 (cf. [34, Lemma]) If numbers p, q, r > 0 with 1/p + 1/q = 1/r and
A ∈ L p(M, τ ), B ∈ Lq(M, τ ), X ∈ M then AX B ∈ Lr (M, τ ) and ‖AXB‖r ≤
‖X‖‖A‖p‖B‖q .
Corollary 3.2 If p > 0 and A ∈ L p(M, τ ) then An ∈ L p/n(M, τ ) and ‖An‖p/n ≤
‖A‖np for all n ∈ N.

In particular, if A = An ∈ L p(M, τ ) then A ∈ L p/n(M, τ ); for B = An−1 we
have B2 = An An−2 = AAn−2 = B for n ≥ 3. If A = A2 ∈ S(M, τ ) then μ(t; A) ∈
{0} ∪ [1,+∞) for all t > 0 [16, Theorem 3]. Therefore, if A = A2 ∈ L p(M, τ ) and
0 < q < p then A ∈ Lq(M, τ ) and ‖A‖qq ≤ ‖A‖p

p.

Theorem 3.3 Let an operator T ∈ S(M, τ ) be paranormal or ∗-paranormal.
(i) If T n ∈ S0(M, τ ) for some n ∈ N then T ∈ S0(M, τ );
(ii) if T n = 0 for some n ∈ N then T = 0;
(iii) if T 3 = T then T = T ∗;
(iv) if T 2 ∈ L1(M, τ ) then T ∈ L2(M, τ ) and ‖T ‖22 = ‖T 2‖1.
Proof (i). Let T ∈ S(M, τ ) be paranormal and T n ∈ S0(M, τ ), a number ε > 0 be
arbitrary. Step 1. If n = 2 then from (1.1) by items (i), (ii), (iv) and (v) of Lemma 2.1
we have

2μ(2t; T )2 = 2μ(2t; T ∗T ) ≤ λ−1μ(t; T 2∗T 2) + λμ(t; I ) = λ−1μ(2t; T 2)2 + λ

< ε−1ε2 + ε = 2ε
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for all t > t0 and numbers λ = ε and t0 > 0 such that μ(t; T 2) < ε for t > t0.
Therefore, T ∈ S0(M, τ ).

Step 2. For n ≥ 3 we show that T n−1 ∈ S0(M, τ ). If T n−2 ∈ S0(M, τ )

then T n−1 = T · T n−2 ∈ S0(M, τ ). Assume that T n−2 /∈ S0(M, τ ). Then
a := μ(∞; T n−2) > 0. Multiply both sides of inequality (1.1) from the left by
the operator (T ∗)n−2 and from the right by the operator T n−2 and obtain

2|T n−1|2 ≤ λ−1T ∗nT n + λ (T ∗)n−2T n−2 for all λ > 0. (3.1)

Let a number t1 > 0 with μ(t; T n)2 < ε2

8a2
for t > t1. Put λ := ε

4a2
and choose a

number t2 > 0 such that μ(t; T n−2) < 2a for t > t2. Then from (3.1) and items (i),
(ii), (iv) and (v) of Lemma 2.1 we have for all t > max{t1, t2} the estimate

2μ(2t; T n−1)2 = 2μ(2t; (T ∗)n−1T n−1) ≤ λ−1μ(t; T n)2 + λμ(t; T n−2)2

<
4a2

ε
· ε2

8a2
+ ε

4a2
· 4a2 = 3

2
ε.

Thus, T ∈ S0(M, τ ). Repeating Step 2 n − 3 times, we obtain T 2 ∈ S0(M, τ ) and
apply Step 1.

Let now an operator T ∈ S(M, τ ) be ∗-paranormal and T n ∈ S0(M, τ ).
Step 1a. If n = 2 then from (1.2) by items (i), (ii), (iv) and (v) of Lemma 2.1 we

have

2μ(2t; T )2 = 2μ(2t; T T ∗) ≤ λ−1μ(t; T 2∗T 2) + λμ(t; I ) = λ−1μ(2t; T 2)2 + λ

< ε−1ε2 + ε = 2ε

for all t > t0 and numbers λ = ε and t0 > 0 such that μ(t; T 2) < ε for t > t0.
Therefore, T ∈ S0(M, τ ).

Step 2a. For n ≥ 3 we show that T n−2 ∈ S0(M, τ ). Multiply both sides of
inequality (1.2) from the left by the operator (T ∗)n−2 and from the right by the operator
T n−2, and achieve

2(T ∗)n−2T · T ∗T n−2 ≤ λ−1T n∗T n + λ (T ∗)n−2T n−2 for all λ > 0.

Assume that T n−2 /∈ S0(M, τ ). Then a := μ(∞; T n−2) > 0. Almost verbatim
repetition of reasoning of Step 2 yields that

2μ(2t; T ∗T n−2)2 ≤ 3

2
ε for all t > max{t1, t2},

the numbers t1, t2 were defined in Step 2. Therefore, T ∗T n−2 ∈ S0(M, τ ). If n = 3
then T ∗T n−2 = T ∗T ∈ S0(M, τ ) and T ∈ S0(M, τ ) by definition of the ideal
S0(M, τ ) and items (i) and (v) of Lemma 2.1. If n > 3 then

|T n−2|2 = (T ∗)n−3 · T ∗T n−2 ∈ S0(M, τ )
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and again T n−2 ∈ S0(M, τ ). By repeating above mentioned reasoning for τ -compact
operator T n−2, for even number n = 2k through k−1 steps we obtain T 2 ∈ S0(M, τ )

and apply Step 1a. If n = 2k+1 is odd then through k steps we obtain T ∈ S0(M, τ ).
(ii). Let an operator T ∈ S(M, τ ) be paranormal and T n = 0. If n = 2 then from
(1.1) we obtain

0 ≤ 2T ∗T ≤ λI for all λ > 0. (3.2)

Let λ → 0+ and pass to limits in the topology tτ in inequalities (3.2), we have
T ∗T = 0 and T = 0. If n ≥ 3 then multiply both sides of inequality (1.1) from the
left by the operator (T ∗)n−2 and from the right by the operator T n−2, and achieve

0 ≤ 2(T ∗)n−1T n−1 ≤ λ (T ∗)n−2T n−2 for all λ > 0.

Again let λ → 0+ and pass to limits in the topology tτ in these inequalities, we have
T n−1 = 0. By repeating above mentioned procedure several times, we obtain T 2 = 0.

The case of a ∗-paranormal operator T ∈ S(M, τ ) with T n = 0 is dealt with in a
similar way.

(iii). Let T ∈ S(M, τ ) and T 3 = T . Then T = P−Q for some P, Q ∈ S(M, τ )id

with PQ = QP = 0 [18, Proposition 1]. Note that T 2 = P + Q ∈ S(M, τ )id.
For a paranormal operator T from (1.1) with λ = 1 we obtain

2(P − Q)∗(P − Q) ≤ (P + Q)∗(P + Q) + I . (3.3)

Multiply both sides of inequality (3.3) from the left by the operator (P − Q)∗ and
from the right by the operator P − Q, and achieve

(P + Q)∗(P + Q) ≤ (P − Q)∗(P − Q).

Hence P∗Q + Q∗P ≤ 0. Now from (3.3) follows the inequality

0 ≤ P∗P + Q∗Q ≤ 3(P∗Q + Q∗P) + I ≤ I ,

in particular, we have P∗P ≤ I and Q∗Q ≤ I . Therefore, ‖P∗P‖ = ‖P‖2 ≤ 1 and
P ∈ Mpr; analogously we have Q ∈ Mpr. Thus, T = P − Q ∈ S(M, τ )h.

For a ∗-paranormal operator T from (1.2) for λ = 1 we obtain

2T T ∗ ≤ T ∗2T 2 + I . (3.4)

Note that T ∗ is also a tripotent, i. e., T ∗3 = T ∗. Multiply both sides of inequality (3.4)
from the left by the operator T ∗ and from the right by the operator T and obtain

(T ∗T )2 ≤ T ∗T .
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Hence by functional calculus of self-adjoint operatorswe have T ∗T ≤ I and ‖T ∗T ‖ =
‖T ‖2 ≤ 1. Thus,

‖P − Q‖ = ‖T ‖ ≤ 1, ‖P + Q‖ = ‖T 2‖ ≤ ‖T ‖ ‖T ‖ ≤ 1

by submultiplicativity of the C∗-norm ‖ · ‖ onM. Now by the triangle inequality for
the norm ‖ · ‖ we obtain

2‖P‖ = ‖2P‖ = ‖(P − Q) + (P + Q)‖ ≤ ‖P − Q‖ + ‖P + Q‖ ≤ 2

and P ∈ Mpr; analogously we have Q ∈ Mpr. Thus, T = P − Q ∈ S(M, τ )h.
(iv). If A ∈ L2(M, τ ) then A2 ∈ L1(M, τ ) and ‖A2‖1 ≤ ‖A‖22 by Corollary 3.2.

We have

μ(t; T )2 ≤ μ(t; T 2) for all t > 0

by [9, Proposition 3.5] and [11, Proposition 3.9]. Therefore,

‖T ‖22 =
∫ +∞

0
μ(t; T )2 dt ≤

∫ +∞

0
μ(t; T 2) dt = ‖T 2‖1 ≤ ‖T ‖22 < +∞

and ‖T ‖22 = ‖T 2‖1. Theorem is proved. ��
Corollary 3.4 (cf. [11, Corollary 3.10(iii)]) Let an operator T ∈ S(M, τ ) be paranor-
mal or ∗-paranormal. Then we have the equivalence T ∈ S0(M, τ ) ⇔ T n ∈
S0(M, τ ) for some (and, hence, for all) n ∈ N.

Corollary 3.5 Let an operator T ∈ S(M, τ ) be p-hyponormal for some 0 < p ≤ 1.

(i) If T n ∈ S0(M, τ ) for some n ∈ N then T ∈ S0(M, τ );
(ii) if T n = 0 for some n ∈ N then T = 0;
(iii) if T 3 = T then T = T ∗;
(iv) if T 2 ∈ L1(M, τ ) then T ∈ L2(M, τ ) and ‖T ‖22 = ‖T 2‖1.
Proof Every p-hyponormal operator T ∈ S(M, τ ) is paranormal [11, Theorem 4.4].

��
Lemma 3.6 If an operator T ∈ S(M, τ ) is hyponormal and T ∗pT q ∈ S0(M, τ ) for
some p, q ∈ N ∪ {0}, p + q ≥ 1 then T ∈ S0(M, τ ).

Proof Without loss of generality assume that p = q (if p < q then (T ∗)q−p ·T ∗pT q ∈
S0(M, τ ); if q < p then T ∗pT q · T p−q = T ∗pT p ∈ S0(M, τ )). We apply mathe-
matical induction on p ∈ N. If p = 1 then by items (i) and (iii) of Lemma 2.1 we
have

|T |2 = T ∗T ∈ S0(M, τ ) ⇔ |T | ∈ S0(M, τ ) ⇔ T ∈ S0(M, τ ).
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Suppose that the assertion holds for all p = 1, 2, . . . , n. Then for the operator

(T ∗)n+1T n+1 = T ∗n · T ∗T · T n ∈ S0(M, τ )

we have

0 ≤ T ∗n · T T ∗ · T n ≤ T ∗n · T ∗T · T n ∈ S0(M, τ ),

hence T ∗n · T T ∗ · T n = |T ∗T n|2 ∈ S0(M, τ ) by item (ii) of Lemma 2.1 and

|T ∗T n|2 ∈ S0(M, τ ) ⇔ |T ∗T n| ∈ S0(M, τ ) ⇔ T ∗T n ∈ S0(M, τ )

by items (i) and (v) of Lemma 2.1. Now T ∗nT n = (T ∗)n−1 · T ∗T n ∈ S0(M, τ ) and
T ∈ S0(M, τ ) by the induction hypothesis. ��
Theorem 3.7 If an operator T ∈ S(M, τ ) is hyponormal and T ∗pT q ∈ S0(M, τ )

for some p, q ∈ N ∪ {0}, p + q ≥ 1 then T is normal.

Proof Follows from Lemma 3.6 and Theorem 2.2 of [6]. ��
Corollary 3.8 [32, Theorem 1.2] If an operator T ∈ B(H) is hyponormal and T ∗pT q

is completely continuous for some p, q ∈ N then T is normal.

Above we also showed that this Istrăţescu Theorem may be deduced from Ando–
Berberian–Stampfli Theorem, see [1, 4, 39] and [29, Problem 206].

Theorem 3.9 If an operator T ∈ S(M, τ ) is p-hyponormal for some 0 < p ≤ 1 then
the operator (T ∗T )p − (T T ∗)p cannot have the inverse inM.

Proof Let, on the contrary, the operator (T ∗T )p − (T T ∗)p possess the inverse inM,
i.e. (T ∗T )p − (T T ∗)p ≥ ε I for some number ε > 0. Then (T ∗T )p ≥ (T T ∗)p + ε I
and for arbitrary 0 < t < τ(I ) we have

μ(t; T ∗T )p = μ(t; (T ∗T )p) ≥ μ(t; (T T ∗)p + ε I ) = ε + μ(t; (T T ∗)p)
= ε + μ(t; T T ∗)p (3.5)

by items (iii) and (v) of Lemma 2.1 and by the well-known representation

μ(t; X) = inf{s ≥ 0 : dX (s) ≤ t}, t > 0, (3.6)

see [26, Proposition 2.2]. Here dX (s) = τ(E |X |(s,+∞)), s > 0, is the distribution
function of an operator X ∈ S(M, τ ) and E |X |(s,+∞) is the spectral projection of
the operator |X |, corresponding to the interval (s,+∞).

On the other hand, by items (i) and (v) of Lemma 2.1 we have

μ(t; T ∗T ) = μ(t; |T |)2 = μ(t; T ∗)2 = μ(t; |T ∗|)2 = μ(t; T T ∗)

for all 0 < t < τ(I ). We obtain a contradiction with (3.5). Theorem is proved. ��
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In particular, a positive self-commutator cannot have the inverse inM. Recall that
Theorem 3.9 for p = 1 was established by the author via different method in [14,
Theorem 3] (see also [15, Theorem 2]). For M = B(H), τ = tr and p = 1 Theorem
3.9 was proved by Putnam [38]; see also [29, Problem 236].

Lemma 3.10 [20, Theorem 17]We have τ(ST ) = τ(T S) for all S, T ∈ S(M, τ )with
ST , T S ∈ L1(M, τ ).

Theorem 3.11 If A, B ∈ L2(M, τ ), the operator A is hyponormal and B is
cohyponormal then ‖AX − XB‖2 ≥ ‖A∗X − XB∗‖2 for all X ∈ M.

Proof ByLemma3.1 the operators A∗XB, B∗X∗A lie in L1(M, τ ), hence by linearity
of the extension of the trace τ to L1(M, τ ) and by Lemma 3.10 we obtain

‖AX − XB‖22 = τ((AX − XB)∗(AX − XB))

= τ(X∗A∗AX) + τ(B∗X∗ · XB)−
− τ(X∗ · A∗XB) − τ(B∗X∗ · AX)

= τ(X∗A∗AX + XBB∗X∗) − τ(A∗XBX∗ + AXB∗X∗).

The operator A∗XBX∗ + AXB∗X∗ does not change when we replace A and B with
A∗ and B∗, respectively. If A is hyponormal and B is cohyponormal then X∗A∗AX +
XBB∗X∗ ≥ X∗AA∗X + XB∗BX∗ and we apply monotonicity of the trace τ on the
positive cone L1(M, τ )+. ��
Corollary 3.12 If operators A, B ∈ L2(M, τ ) are normal then ‖AX − XB‖2 =
‖A∗X − XB∗‖2 for all X ∈ M.

Theorem 3.13 Let an operator A ∈ S(M, τ ) be hyponormal and X ∈ S(M, τ ) with
AX ∈ L p(M, τ ) for some < p < +∞. Then A∗X ∈ L p(M, τ ) with ‖A∗X‖p ≤
‖AX‖p. For 0 < p ≤ 2 the following conditions are equivalent:

(i) ‖AX‖p = ‖A∗X‖p;
(ii) A∗AX = AA∗X;
(iii) |AX | = |A∗X |.
Proof We have

|A∗X |2 = X∗AA∗X ≤ X∗A∗AX = |AX |2, (3.7)

and μ(t; A∗X) = μ(t; |A∗X |2)1/2 ≤ μ(t; |AX |2)1/2 = μ(t; |AX |) for all t > 0 by
items (i), (iii) and (v) of Lemma 2.1. Thus, A∗X ∈ L p(M, τ ) and ‖A∗X‖p ≤ ‖AX‖p

for every 0 < p < +∞.
(i)⇒(ii). If 0 < p ≤ 2 then by (3.7) and by the operator monotonicity of the

function f (t) = t p/2 on the semiaxis [0,+∞) we have |AX |p − |A∗X |p ≥ 0. By
linearity of the extension of the trace τ to L1(M, τ ) we obtain

0 = ‖AX‖p
p − ‖A∗X‖p

p = τ(|AX |p) − τ(|A∗X |p) = τ(|AX |p − |A∗X |p).
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Hence |AX |p−|A∗X |p = 0 by the faithfulness of the trace τ on the cone L1(M, τ )+,
i.e., |AX |p = |A∗X |p. Thus,

|AX |2 = (|AX |p)2/p = (|A∗X |p)2/p = |A∗X |2

and 0 = X∗A∗AX − X∗AA∗X = X∗(A∗A − AA∗)X = |√A∗A − AA∗X |2, i.e.,√
A∗A − AA∗X = 0 and A∗AX − AA∗X = √

A∗A − AA∗√A∗A − AA∗X = 0.
(ii)⇒(iii). If A∗AX = AA∗X then

|AX |2 = X∗ · A∗AX = X∗ · AA∗X = |A∗X |2.

(iii)⇒(i). We have |AX |p = |A∗X |p and

‖AX‖p
p = τ(|AX |p) = τ(|A∗X |p) = ‖A∗X‖p

p.

Theorem is proved. ��
Theorem 3.14 Let an operator T ∈ S(M, τ ) be p-hyponormal for some 0 < p ≤ 1.
Then Ker(T ∗) ⊆Ker(T ) and if T = U |T | is the polar decomposition of T then for
every 0 < q ≤ min{2p, 1} we have U∗|T |qU ≥ |T |q ≥ U |T |qU∗.

Proof If A ∈ S(M, τ )+ then Ker(A) =Ker(Ar ) for all r > 0. It follows from the
following arguments: if 0 < α < β, ξ ∈ H and Aαξ = 0 then Aβξ = Aβ−α Aαξ = 0;
if Aξ = 0 then

0 = 〈Aξ, ξ 〉 = 〈A1/2ξ, A1/2ξ 〉 = ‖A1/2ξ‖2

and A1/2ξ = 0.
Since |T |2p ≥ |T ∗|2p we have |T ∗|p = V |T |p for some V ∈ M with ‖V ‖ ≤ 1

[45, p. 261]. Hence Ker(|T |p) ⊆Ker(|T ∗|p) and

Ker(T ) = Ker(|T |) = Ker(|T |P ) ⊆ Ker(|T ∗|p) = Ker(|T ∗|) = Ker(T ∗).

Since |T |2p ≥ |T ∗|2p, by the operator monotonicity of the function f (t) = t
q
2p on

the semiaxis [0,+∞) we obtain

|T |q ≥ |T ∗|q . (3.8)

Therefore, U∗|T |qU ≥ U∗|T ∗|qU . By Hansen inequality [30] for the operator
monotone function g(t) = tq (t ≥ 0) and via the equalities U∗U |T | = |T |,
|T ∗| = U |T |U∗ we obtain

U∗|T |qU ≥ |T |q ≥ U∗|T ∗|U = U∗(U |T |U∗)qU ≥ U∗U |T |qU∗U = |T |q .

On the other hand, by Hansen inequality [30] for the operator monotone function g
and inequality (3.8) we have U |T |qU∗ ≤ (U |T |U∗)q = |T ∗|q ≤ |T |q . ��



Hyponormal measurable operators... Page 11 of 17    83 

Corollary 3.15 In conditions of Theorem 3.14 we have

μ(t;U∗|T |qU ) = μ(t;U |T |qU∗) = μ(t; |T |q) = μ(t; T )q for all t > 0.

Proof By items (i) and (v) of Lemma 2.1 we have

μ(t; A∗A) = μ(t; AA∗) for all A ∈ S(M, τ ) and t > 0. (3.9)

By item (iii) of Lemma 2.1 we have

μ(t;U∗|T |qU ) ≥ μ(t; |T |q) ≥ μ(t;U |T |qU∗) for all t > 0.

Since UU∗ ≤ I , by (3.9) with A = |T |q/2U and items (i), (iii) and (v) of Lemma 2.1
we obtain

μ(t;U∗|T |qU ) = μ(t; |T |q/2UU∗|T |q/2) ≤ μ(t; |T |q) = μ(t; T )q for all t > 0.

Analogously, with A = |T |q/2U∗ we haveμ(t;U |T |qU∗) = μ(t; |T |q) for all t > 0.
By items (i) and (v) of Lemma 2.1 we obtain μ(t; |T |q) = μ(t; |T |)q = μ(t; T )q for
all t > 0. ��
Corollary 3.16 In conditions of Theorem 3.14, if the operator Y := |T |q − U |T |qU∗
lies in L1(M, τ ) then X := U∗|T |qU − |T |q ∈ L1(M, τ ) and τ(X) = τ(Y P) ≤
τ(Y ) for the projection P = UU∗.

Proof Since Y ∈ L1(M, τ ), we have X = U∗YU ∈ L1(M, τ ). Also U = UU∗U
and P := UU∗, Q := U∗U ∈ Mpr [29, Problem 127]. Then |T |p = Q|T |p and

X = U∗|T |qU − Q|T |q = U∗ [|T |p,U ] ∈ L1(M, τ ).

Since the operator [|T |p,U ]U∗ = |T |p P−U |T |qU∗ = |T |p P−U |T |qU∗P = Y P
also lies in L1(M, τ ), by Lemma 3.10 and the inequality P⊥Y P⊥ ≥ 0 we obtain

τ(X) = τ(Y P) = τ(Y − Y P⊥) = τ(Y ) − τ(Y P⊥) = τ(Y ) − τ(P⊥Y P⊥) ≤ τ(Y ).

The assertion is proved. ��
Theorem 3.17 Let an operator U ∈ M be a isometry and let a number 0 < p ≤ 1.

(i) If T ∈ S(M, τ ) is paranormal then UTU∗ is paranormal;
(ii) if A ∈ S0(M, τ )+ and Ap ≥ (U AU∗)p then AU = U A;
(iii) if T ∈ S(M, τ ) is p-hyponormal then UTU∗ p-hyponormal.

Proof (i). We have P := UU∗ ∈ Mpr, hence 0 ≤ P ≤ I . Multiply both sides of
inequality (1.1) from the left by the operatorU and from the right by the operatorU∗,
for all λ > 0 we obtain

2(UTU∗)∗UTU∗ = 2UT ∗U∗ ·UTU∗ ≤ λ−1UT ∗U∗ ·UTU∗ ·UTU∗ ·UTU∗+λP

≤ λ−1(UTU∗)∗2 · (UTU∗)2 + λI .
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Thus, the operator UTU∗ satisfies inequality (1.1). (ii). We have A1/2 ∈ S0(M, τ )+
by item (v) of Lemma 2.1 and by the definition of the ideal S0(M, τ ). Hence the
operator B := U A1/2 lies in S0(M, τ ) and

(B∗B)p ≥ (BB∗)p,

i.e. the operator B is p-hyponormal. By Theorem 2.2 of [6] the operator B is normal
and

A = U AU∗.

Multiply both sides of the last equality from the right by the operator U and obtain
AU = U A.
(iii). We have (UT ∗U∗ ·UTU∗)n = U (T ∗T )nU∗ for all n ∈ N.

Step 1. Let T ∈ M. For every number ε > 0 by Weierstrass Theorem on uniform
approximation of continuous functions on (closed) interval we choose a polynomial

P(t) = a0 + a1t + · · · + akt
k, a0, a1, . . . , ak ∈ R,

such that |P(t)− t p| < ε for all 0 ≤ t ≤ ‖T ‖2. Then by Functional Calculus we have

‖P(T ∗T ) − (T ∗T )p‖ < ε, ‖P(UT ∗TU∗) − (UT ∗TU∗)p‖ < ε

and ‖UP(T ∗T )U∗−U (T ∗T )pU∗‖ ≤ ‖U‖·‖U∗‖·‖P(T ∗T )−(T ∗T )p‖ < ε. Since

P(UT ∗TU∗) = UP(T ∗T )U∗,

by the triangle inequality for the C∗-norm ‖ · ‖ we achieve the estimate

‖U (T ∗T )pU∗ − (UT ∗TU∗)p‖ = ‖(U (T ∗T )pU∗ −UP(T ∗T )U∗)
+ (P(UT ∗TU∗) − (UT ∗TU∗)p)‖ < 2ε.

By arbitrariness of ε > 0 we obtain

U (T ∗T )pU∗ = (UT ∗TU∗)p. (3.10)

Step 2. Let T ∈ S(M, τ ) and Pn ∈ Mpr be the spectral projection of the operator
T ∗T , corresponding to the interval [0, n], n ∈ N. Then Pn

τ−→ I as n → +∞ and

n p Pn ≥ Pn(T
∗T )p Pn = (PnT

∗T Pn)
p, n ∈ N.

By Step 1 (see (3.10)) we have U (PnT ∗T Pn)pU∗ = (U PnT ∗T PnU∗)p, n ∈ N.
Passing in these equalities to limits in the topology tτ as n → +∞, taking into
account joint tτ -continuity of multiplication in S(M, τ ) and tτ -continuity of operator
functions [42, Theorem 2.6], we obtain (3.10).
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Step 3. Analogously (see Steps 1, 2) we have U (T T ∗)pU∗ = (UTT ∗U∗)p.
Therefore,

(UT ∗U∗ ·UTU∗)p = U (T ∗T )pU∗ ≥ U (T T ∗)pU∗ = (UTU∗ ·UT ∗U∗)p

and Theorem is proved. ��
Note that for every number 0 < p ≤ 1 the set of all p-hyponormal operators

T ∈ S(M, τ ) is tτ -closed in S(M, τ ) (it follows from tτ -continuity of the involution
and the multiplication in S(M, τ ) and [42, Theorem 2.6]).

Corollary 3.18 Let A ∈ S0(M, τ )+ and an operator U ∈ M be an isometry. If Ap ≤
(U AU∗)p for some 0 < p ≤ 1 then AU = U A. If T ∈ S(M, τ ) is p-cohyponormal
then UTU∗ is p-cohyponormal.

Proof An operator B := U A1/2 ∈ S0(M, τ ) is p-cohyponormal. By Corollary 2.3 of
[6] the operator B is normal. ��
Theorem 3.19 For A, B ∈ S(M, τ )h the following conditions are equivalent:

(i) an operator A + i B is hyponormal;
(ii) an operator aA + ibB is hyponormal for some numbers a, b > 0. If an operator

A is invertible in S(M, τ ) then (i) and (ii) are equivalent to the condition:
(iii) an operator A−1 − i B is hyponormal.

Proof An operator A + i B is hyponormal if and only if

i(AB − BA) ≥ 0, (3.11)

i. e., i[A, B] ≥ 0. Hence (i)⇔(ii). Let us show that (i)⇒(iii). Multiply both sides of
inequality (3.11) from the left and the right by the operator A−1 ∈ S(M, τ )h and
obtain

i(BA−1 − A−1B) ≥ 0.

This condition is necessary and sufficient for hyponormality of the operator A−1− i B,
see (3.11). The rest is clear. ��

Clearly, an operator (A + i B)2 is hyponormal if and only if

i[A2 − B2, AB + BA] ≥ 0.

Recall that there exists a hyponormal operator, whose square is not hyponormal [29,
Problem 209]. On invertibility in S(M, τ ) see [12, 17, 41].

Corollary 3.20 Let operators A, B ∈ S(M, τ )h be invertible in S(M, τ ). Then the
following conditions are equivalent:

(i) an operator A + i B is hyponormal;
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(ii) an operator A−1 + i B−1 is hyponormal.

Theorem 3.21 If an operator T ∈ S(M, τ ) is hyponormal and T 2 ∈ S(M, τ )h then
T is normal.

Proof Let T = A + i B be the Cartesian representation of the operator T ∈ S(M, τ )

with A, B ∈ S(M, τ )h. If T 2 ∈ S(M, τ )h then the operators A and B anticommute,
i. e., AB = −BA. Since T is hyponormal, from (3.11) we obtain i AB ≥ 0. Therefore,
−i B A = (i AB)∗ ≥ 0 and

(R+ ⊃)σ (i AB) ∪ {0} = σ(−i B A) ∪ {0} = −iσ(BA) ∪ {0} = −iσ(AB) ∪ {0}

by the equality σ(XY ) ∪ {0} = σ(Y X) ∪ {0} for all X ,Y ∈ S(M, τ ) [40, Chap. I,
Proposition 2.1]. Hence

iσ(AB) ∪ {0} = −iσ(AB) ∪ {0} ⊂ R
+

and σ(AB) = {0} = σ(i AB). Consider the Abelian von Neumann subalgebra A
in M, generated by I and by all spectral projections of the positive operator i AB.
With regard to a ∗-isomorphismA � L∞(�,A, ν) for some localizablemeasure space
(�,A, ν) and by nonnegativity of the function i AB ∈ L0(�,A, ν), we obtain i AB =
0 = AB, since the spectrum of a multiplicator M f : L2(�,A, ν) → L2(�,A, ν) by
a measurable function f ∈ L0(�,A, ν) coincides with its set of essential values

E f = {λ ∈ C : ∀ε > 0 (ν{ω ∈ � : | f (ω) − λ| < ε} �= 0)},

see [43, Theorem I.7.11]. Therefore, 0 = AB = (AB)∗ = BA and the operator T is
normal. ��
Corollary 3.22 If an operator T ∈ S(M, τ ) is cohyponormal and the operator T 2 is
Hermitian then T is normal.

Theorem 3.23 Let operators A, B ∈ S(M, τ )h and {A, B} ∩ Msym �= ∅. If the
operator T := A + i B is hyponormal (or cohyponormal), then T is normal.

Proof Let, for definiteness, A2 = I . An operator T is hyponormal if and only if (3.11)
holds. Multiply both sides of inequality (3.11) from the left and right by the Hermitian
symmetry A, and achieve i(BA − AB) ≥ 0. From this relation and (3.11) we have
AB = BA, i.e., the operator T is normal. ��
Corollary 3.24 Let operators A, B ∈ S(M, τ )h and {A, B}∩Mpr �= ∅. If the operator
T := A + i B is hyponormal (or cohyponormal), then T is normal.

Proof Let, for definiteness, A ∈ Mpr and (3.11) holds. For the Hermitian symmetry
S := 2A − I we have

i(SB − BS) = i

2
(AB − BA) ≥ 0.
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Hence the operator S + i B is hyponormal via (3.11). By Theorem 3.23 the operator
S+ i B is normal, i.e., SB = BS. Therefore, AB = BA and the operator T is normal.

��
Corollary 3.25 ( [5, Proposition 4.2]) Let operators A ∈ B(H)h and P ∈ B(H)pr. If
i[A, P] ≥ 0 then AP = PA.

Proposition 3.26 Let A, B ∈ S(M, τ )h, C ∈ S(M, τ ) and the operator A + i B be
hyponormal.

(i) If AC = CA then the operator A + iCBC∗ is hyponormal.
(ii) If BC = CB then the operator C AC∗ + i B is hyponormal. If C is invertible in

S(M, τ ) then the inverse assertions hold.

Proof (i). Note that the operatorCBC∗ is Hermitian. Multiply both sides of inequality
(3.11) from the left by the operator C and from the right by the operator C∗, then by
taking into account the equalities AC = CA and AC∗ = C∗A we obtain

0 ≤ i(CABC∗ − CBAC∗) = i(A · CBC∗ − CBC∗ · A) = i[A,CBC∗].

Via the Cartesian criterion of hyponormality (3.11) the operator A + iCBC∗ is
hyponormal.

(ii). Multiply both sides of inequality (3.11) from the left by the operator C and
from the right by the operator C∗, take into account the equalities BC = CB and
BC∗ = C∗B and obtain i[CAC∗, B] ≥ 0. The rest is clear. ��

If A, B ∈ S(M, τ ) with AB = BA and the operator B is normal then by Fuglede–
Putnam Theorem for τ -measurable operators [3, Theorem 6] we have AB∗ = B∗A,
hence A∗B = (B∗A)∗ = (AB∗)∗ = BA∗.

Proposition 3.27 Let operators A, B ∈ S(M, τ ) with A∗B = BA∗. Then the
following conditions are equivalent:

(i) A and B are hyponormal (respectively, cohyponormal; normal);
(ii) aA + bB is hyponormal (respectively, cohyponormal; normal) for all a, b ∈ C.

Proof (i)⇒(ii). It is clear that B∗A = (A∗B)∗ = (BA∗)∗ = AB∗. If A and B are
hyponormal then for all a, b ∈ C we have

(aA + bB)∗(aA + bB) = |a|2A∗A + abA∗B + abB∗A + |b|2B∗B
≥ |a|2AA∗ + abBA∗ + abAB∗ + |b|2BB∗

= (aA + bB)(aA + bB)∗.

(ii)⇒(i). For a = 1, b = 0 (respectively, for a = 0, b = 1) the operator A is
hyponormal (respectively, B is hyponormal). The rest is clear. ��
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