
Romanian Reports in Physics, Vol. 64, No. 4, P. 1032–1045, 2012 

BIOPHYSISCS 

NON-INVASIVE METHODS APPLIED  
FOR COMPLEX SIGNALS 

R.R. NIGMATULLIN1, C.M. IONESCU2, S.I. OSOKIN1, D. BALEANU3, V.A. TOBOEV4  
1 Kazan Federal University, International Laboratory of Information Systems and Fractal Signal 

Processing, Institute of Physics, Kremlevskaya str. 18, Kazan, (Volga Region) Russian Federation 
E-mail: renigmat@gmail.com 

2 Ghent University, Department of Electrical Energy, Systems and Automation,  
Technologiepark 913, 9052 Gent-Zwijnaarde, Belgium  

3 Cankaya University, Faculty of Art and Sciences, Department of Mathematics and Computer 
Sciences, Balgat 06530, Ankara, Turkey and Institute of Space Sciences,  

Magurele-Bucharest, Romania 
4 Chuvash State University, Department of Mathematics, 428015, Moskovskiy pr., 15,  

Cheboksary, Russia 

Received February 16, 2012 

Abstract. This paper presents the application of a novel algorithm on virtually generated 
data from patients during anesthesia. Realistic artefacts are simulated in order to 
validate the usefulness of the proposed methods in separating the signal components: 
biological trend and artefacts. The results show that the proposed new algorithm can be 
successfully employed on biological signals to dynamically extract information and 
distil useful parameters for clinical evaluation. 
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1. INTRODUCTION 

Biological systems are nonlinear in nature and their corresponding measured 
signals are difficult to process in order to extract information, due to the presence 
of artifacts. Apart from these, biological signals have time-variant dynamics and 
nonlinear trends in their values. In medical applications, the intrinsic complexity of 
these signals pose challenges for filtering techniques and extraction of useful 
information for the clinicians.  

An example of such challenging application is that of controlling the depth of 
anesthesia (DOA). Typically, there are three components defining the depth of 
anesthesia: hypnosis, analgesia and muscle relaxation. For measuring the hypnotic 
component of anaesthesia, various indexes are present, mostly computerized from 
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the spontaneous or evoked electroencephalogram (EEG) [1]. The bispectral index 
(BIS) is a single composite measure derived from the spontaneous EEG and has 
been proven to have a high sensitivity and specificity to measure anaesthetic drug 
effect [2]. BIS is now recognized as one of the reference measures of DOA for 
closed loop control purposes [3, 4]. In contrast to cerebral drug effect produced by 
hypnotics, an accurate measure for analgesia is still lacking. However, when BIS is 
known, a suitable interaction model between hypnotics and analgesics might be 
helpful to simultaneously control both components of DOA. Another important 
measure in systems controlling DOA is the electromiogram (EMG), an index 
which measures the degree of muscle relaxation. This index is important in surgery 
as well and in critically ill patients. However, this index is also corrupted by 
artefacts (eye movement, leg movement, shivering, etc). It is therefore important to 
provide a good separation between the actual EMG information on the patient and 
the artefacts.  

This paper presents the application of a novel signal algorithm on virtually 
generated data from patients during anaesthesia. Realistic artefacts are simulated in 
order to validate the usefulness of the proposed methods in separating the signal 
components: biological trend and artefacts.  

The paper is organized as follows: description of the patient model and 
simulated parameters is given in section two, followed by the description of the 
signal algorithm, filtering and modelling techniques in section three. The results 
are presented in the fourth section and a conclusion section summarizes the main 
outcome of this study.  

2. PATIENT MODELING AND DATA GENERATION 

Propofol is a hypnotic agent, for which the pharmacologic properties have 
been well described and studied in different kind of patients [1, 2, 5, 6]. Given its 
beneficial pharmacological profile, Propofol is used as one of the drugs of choice 
for both induction and maintenance of the hypnotic component of anesthesia and 
intensive care sedation. This drug is the input of the model and the output is the 
Bispectral Index (BIS), a signal derived from the electroencephalogram (EEG). 
Using EEG, several derived, computerized parameters like the BIS have been 
tested and validated as a promising measure of the hypnotic component of 
anesthesia 4]. BIS combines several features extracted from EEG including higher 
order spectra of the signal which can reveal phase coupling of single waveforms. 
Multivariate statistics were used to combine the different features into a single 
indicator value [2]. BIS values lie in the range of 0–100; whereas 90–100 range 
represents fully awake patients; 60–70 range and 40–60 range indicate light and 
moderate hypnotic state, respectively. For the induction phase of DOA, a BIS value 
of 50 is considered suitable.  
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In Fig. 1 the pharmacokinetic (PK) – pharmacodynamic (PD) blocks denote 
compartmental models.  
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Fig. 1 – Compartmental model of the patient, where PK denotes the pharmacokinetic model  

and PD denotes the pharmacodynamic model. 

Compartmental models are used to represent the distribution of drugs in the 
body, i.e. mass balance. They rely on a conservation principle applied to the 
exchange of chemicals among coupled macroscopic systems called compartments 
(central compartment, fast and slow equilibrating peripheral compartments). In 
each compartment the drug concentration is assumed to be uniform, as in a perfect 
and instantaneous mixing. The transport rate that leaves the compartment is 
assumed to be proportional to the drug concentration.  

The PK-PD models are represented by the following equations (5–9): 
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where 1x  [mg] denotes the amount of drug in the central compartment. The blood 
concentration is expressed by 1 1/x V . The peripheral compartments 2 and 3 model 
the drug exchange of the blood with well and poorly diffused body tissues. The 
masses of drug in fast and slow equilibrating peripheral compartments are denoted 
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by 2x  and 3x , respectively. The parameters jik , for i j≠ , denote the drug transfer 

frequency from the thj  to the thi  compartment and u(t) [mg/s] is the infusion rate 
of the anesthetic drug into the central compartment. The parameters ijk of the PK 
models depend on age, weight, height and gender and can be calculated for 
Propofol: 
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where 1lC  is the rate at which the drug is cleared from the body, and 2lC and 3lC  
are the rates at which the drug is removed from the central compartment to the 
other two compartments by distribution.  The lean body mass (lbm) for men and 

women have the following expressions: 
2

2lbm 1.1 128 weightweight
height

= ⋅ − ⋅  and 

2

2lbm 1.07 148 weightweight
height

= ⋅ − ⋅ , respectively.  

An additional hypothetical effect compartment was proposed to represent the 
lag between drug plasma concentration and drug response. The concentration of 
drug in this compartment is represented by ex . The effect compartment receives 
drug from the central compartment by a first-order process and it is regarded as a 
virtual additional compartment. Therefore, the drug transfer frequency from the 
central compartment to the effect site-compartment is equal to the frequency of 
drug removal from the effect-site compartment: 1

0 1 0.456 mine ek k −= = . Knowing 

0ek , the apparent concentration in the effect compartment can be calculated since 

0ek  will precisely characterize the temporal effects of equilibration between the 
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plasma concentration and the corresponding drug effect. Consequently, the 
equation is often used as: 

 0( ) ( ( ) ( )),e e e pC t k C t C t
⋅

= ⋅ −   (2) 

with Ce called the effect-site compartment concentration. The BIS variable can be 
related to the drug effect concentration Ce by the empirical static but time varying 
nonlinear relationship, called also the Hill curve: 
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where 0E  denotes the baseline (awake state – without drug) value, which, by 
convention, is typically assigned a value of 100, maxE  denotes the maximum effect 
achieved by the drug infusion, 50C  is the drug concentration at half maximal effect 
and represents the patient sensitivity to the drug, and γ determines the steepness of 
the curve.  

The data for this study has been derived from a set of 3 virtually generated 
realistic patients, with the biometric values given in Table 1. 

Table 1 

Biometric values of the patients selected for this study 
 

Patient Age [years] Length [cm] Weight [kg] Gender Γ C50 

1 53 186 114 M 1.99 6.7 
7 71 172 83 M 2.76 4.6 
17 72 162 87 M 2.30 3.9 

3. DESCRIPTION OF THE TREATMENT PROCEDURE 

Initial data are treated by the following way. Firstly, we apply the procedure 
of the optimal linear smoothing (POLS). The POLS is described in papers [10–14]. 
This procedure helps to find the optimal and smoothed trend (the so-called pseudo-
fitting function) and separate it from the relative fluctuations. Minimizing the value 
of the relative error on the plot "relative error with respect to the value of the 
smoothing window" in the vicinity of the first local minima, one can obtain the 
pseudo-fitting function without information related to the mathematical model 
used. Besides this important peculiarity the new method enables “to read” the 
remaining detrended noise and express the desired distribution in terms of the 
fitting parameters corresponding to the envelope of the sequence of the ranged 
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amplitudes (SRA). Let us suppose that the random sequence considered contains 
large-scale fluctuations (trend) and high-frequency fluctuations, which are usually 
determined as a "noise". In order to separate those from each other we apply the 
procedure of the optimal linear smoothing (POLS) based on the Gaussian kernel. 
This procedure is defined as 
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Here the function K(t) defines the Gaussian kernel, the value w defines the current 
width of the smoothing window. The set yj (j = 1, 2, …, N) defines the initial noisy 
sequence. In spite of the fact that there are many smoothing functions imbedded in 
many mathematical programs this chosen function has two important features: (a) 
the transformed smoothed function in (4) is obtained in the result of linear 
transformation and does not have uncontrollable error; (b) the value of the 
smoothing window (w) is adjustable (fitting) parameter and accept any positive 
value. This function in a certain sense can be considered as a pseudo-fitting 
function, which is not associated directly with a specific model describing the 
desired process. The value of the optimal window wopt is chosen from the 
conditions: 
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This procedure automatically decreases the value of the initial fluctuations by 
means of iteration procedure and helps to find the optimal smoothing window 
value wopt minimizing the value of the relative error, defined as RelErr(w), in the 
vicinity of the first local minimum. Here it is necessary to stress the following fact. 
The behavior of the function RelErr(w) realized for many original and mimic 
random sequences with hidden (uncertain) trend has some specific features. This 
function has at least three minimal points or even more. "Zero" minimal point 
coincides with the global minimum when the value of w is very close to the given 
discrete step (h = ∆x). The last minimal point coincides with the large values of w, 
corresponding to mean value of the random sequence analyzed. The first local 
minimum can appear after the global (zero) minimum. In many model calculations 
realized with random sequences having clearly expressed or hidden trends this 
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optimal value wopt does exist that helps to find the optimal smoothed curve (trend) 
describing the large-scale fluctuations. The desired trend minimizing the value of 
the relative error is described by expression 

 ( ), , , opty Gsm x y w w w= ≡ . (6) 

After calculation of the optimal trend it becomes possible to separate initial 
random sequence on two parts: (a) the optimal trend expressed by relationship (6) 
and (b) detrended sequence representing the values of the relative fluctuations, 
which is expressed as  

 srf y y= − . (7) 

Here srf defines the de-trended sequence of the relative fluctuations. This method 
helps to divide initial noise on two parts: trend (defined here as the pseudo-fitting 
function) and relative fluctuations. 

In addition to the previous procedure, we apply the POLS to all data which 
were obtained in the result of the numerical integration of the previous data. 
Mathematically it can be expressed by means of the following iteration algorithm 
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This integral transformation (calculated by the trapezoid method) helps to see 
clearly the trend (which can be hidden in initial data) and facilitate the application 
of the POLS to the corresponding integral curves. It means that in expression (4) 
we should replace j jy Jy→ . Then one can find the smoothed trends applying the 

differentiation operation to the trends found for integral curves 
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This idea was applied in paper [15] when initial data were strongly deviated 
and trend was hidden inside initial data.  

4. RESULTS 

Figures 2a and b clearly show the idea of POLS.  
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Fig. 2a – The integrated curves obtained for EMG data (patients 1–upper curve and patient 7 – lower 

curve). The optimal trends are shown by solid lines. The data for the third patient is not shown in 
order to provide a clear view. 
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Fig. 2b – The initial EMG data (patient 1) shown by black solid lines.  

The optimal trend is shown by bold white line. 

Figure 2a demonstrates the integral curve found for EMG data (muscular 
activity – patient 1 and 7). The smoothed curves are shown by solid line. After 
differentiation of the smoothed integral curve (calculated with the help of 
expression (9)) we obtain the desired smoothed curve for initial data where the 
calculation of the optimal trends by conventional methods is hopeless situation. For 
patient 1 it is shown on Fig. 2b. Figure 3a demonstrates all initial trends found for 
EMG data (recorded for three patients).  
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Fig. 3a – The optimal trends calculated for EMG data. These trends have a strong oscillatory 

character and are difficult for analysis. It is much easier to analyze their integral curves.  
These are shown below in Fig. 3b. 

Similarly, one can find the desired trends for BIS (brain activity) data. The 
optimal trends for the integrated curves are shown on Fig. 3b. 
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Fig. 3b – The optimal trends obtained for integral curves presenting the EMG data. As one can notice 

from comparison with Fig. 3a, the integration suppresses the high frequency fluctuations  
and facilitates the analysis of initial data. 
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Consequently, Fig. 4a depicts the trends for initial BIS data and the 
corresponding integrated trends are collected on Fig. 4b.  
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Fig. 4a – The optimal trends for BIS data found at the same conditions  

(the optimal value of the smoothing window w ≈ 0.03). 
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Fig. 4b – The integration procedure suppresses the high-frequency oscillations for BIS data  

and in many cases facilitates the analysis of complex data. The black color is associated  
with patient 1, the blue one to p. 7 and green color to p. 17, correspondingly. 
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Again we notice that the high-frequency fluctuations are suppressed leaving 
the low-frequency modes for further analysis.  

The remnant functions contain also some information expressed in terms of 
the fitting parameters of the corresponding distribution. The remnant function in 
general case is determined as  

 ( ) ( ) ( )R t Nin t Trend t= − , (10) 

where Nin(t) determines the initial random sequence and Trend(t) determines the 
trend found with the help of the POLS. After calculation of R(t) it is necessary to 
form the sequence of the ranged amplitudes (SRA). This sequence Sr(t) satisfies 
the condition: Sr0 > Sr1 >…>SrN . As it has been shown earlier [14b] the found 
SRA being integrated in the same temporal interval forms the bell-like curve and in 
many cases can be fitted to the beta-distribution function. So, one can write 
approximately  

 ( ) ( )
0

0( ) ( )d
t

N
t

J t Sr t t A t t t t Bα β= − − +∫ . (11) 

So, for many cases any strongly-correlated noise can be read in terms of the fitting 
parameters (A, B, α, β) corresponding to the desired beta-distribution. For EMG 
data the basic steps of this transformation are shown on Figs. 4a,b. The fit of the 
bell-like curves for patient 1 is shown on Fig. 5.  
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Fig. 5 – Remnant noise obtained for EMG data (patient 1). The SRA is shown by blue line. 

The fit of the remnant noise to the beta-distribution function is presented in Fig. 6. 
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Fig. 6 – The ECs method allows to fit simultaneously the integral taken from this distribution.  
This fit is shown on the small figure above. Other similar fits corresponding to other remnant  

noises look similar and are not shown. We do not show the fitting parameters because the  
systematic analysis of these quantitative values in this paper is absent. 

All fitting parameters corresponding to Eqn. (2) are collected in Table 1.  
From Fig. 2b it is possible to observe that the trend of the EMG is very well 

separated and ready for clinical use. In DOA, this information is very useful in a 
feedback closed loop control context, providing information upon the state of the 
muscle relaxation in the patient. If this trend is above a certain imposed threshold, 
the anesthesiologist can decide to increase the target infusion for the corresponding 
drug. Similarly, Fig. 3b shows the impact of the integration, allowing a clear 
separation between the three simulated patient data. Typically, the inter-patient 
variability is very difficult to classify by evaluating the result from Fig. 3a only. As 
such, the EMG trends overlap and the sensitivity of the patient to the drug is not 
estimated correctly. The solution to this problem is then clearly shown in Fig. 3b.  

Similarly, the BIS signal from Fig. 4a overlap for the three types of patient 
sensitivity to the propofol drug (given mainly by the change in the γ parameter 
from Table 1). It is observed that patient 17 has high oscillations in the BIS value, 
indicating strong artifact presence and a poor sedation level. Again, the effect of 
integration is more pronounced, as depicted in Fig. 4b, showing the clear separation 
of the three cases. This information is then more useful to the automatic control of 
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DOA, since it provides the slope of changes in BIS signal affected by the artifact 
presence. In this context, the controller will react much faster and much more 
accurate based on the information from Fig. 4b than the information from Fig. 4a, 
by setting the suitable drug infusion rate into the patient.  

5. CONCLUSIONS 

So, in this paper we demonstrated preliminary possibilities of new methods 
that can be defined as non-invasive methods of the reduced analysis of data 
(NIMRAD). In the next publications related to analysis of biological signals we 
show how to apply the NAFASS approach [16] for finding the informative-
frequency band of frequencies (amplitude frequency response) and separate the 
non-stationary parts of the complex signal from quasi-stationary parts. This 
separation is based on the statistics of the fractional moments [11,16,17] that helps 
to find more accurately the range of correlations on the whole range of moments 
(in practice the total range of moments is located between the values [e-15, e15] 
where e is the Euler number.  
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