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Abstract. This paper presents the application of a novel algorithm on virtually generated
data from patients during anesthesia. Realistic artefacts are simulated in order to
validate the usefulness of the proposed methods in separating the signal components:
biological trend and artefacts. The results show that the proposed new algorithm can be
successfully employed on biological signals to dynamically extract information and
distil useful parameters for clinical evaluation.
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1. INTRODUCTION

Biological systems are nonlinear in nature and their corresponding measured
signals are difficult to process in order to extract information, due to the presence
of artifacts. Apart from these, biological signals have time-variant dynamics and
nonlinear trends in their values. In medical applications, the intrinsic complexity of
these signals pose challenges for filtering techniques and extraction of useful
information for the clinicians.

An example of such challenging application is that of controlling the depth of
anesthesia (DOA). Typically, there are three components defining the depth of
anesthesia: hypnosis, analgesia and muscle relaxation. For measuring the hypnotic
component of anaesthesia, various indexes are present, mostly computerized from
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the spontaneous or evoked electroencephalogram (EEG) [1]. The bispectral index
(BIS) is a single composite measure derived from the spontaneous EEG and has
been proven to have a high sensitivity and specificity to measure anaesthetic drug
effect [2]. BIS is now recognized as one of the reference measures of DOA for
closed loop control purposes [3, 4]. In contrast to cerebral drug effect produced by
hypnotics, an accurate measure for analgesia is still lacking. However, when BIS is
known, a suitable interaction model between hypnotics and analgesics might be
helpful to simultaneously control both components of DOA. Another important
measure in systems controlling DOA is the electromiogram (EMG), an index
which measures the degree of muscle relaxation. This index is important in surgery
as well and in critically ill patients. However, this index is also corrupted by
artefacts (eye movement, leg movement, shivering, etc). It is therefore important to
provide a good separation between the actual EMG information on the patient and
the artefacts.

This paper presents the application of a novel signal algorithm on virtually
generated data from patients during anaesthesia. Realistic artefacts are simulated in
order to validate the usefulness of the proposed methods in separating the signal
components: biological trend and artefacts.

The paper is organized as follows: description of the patient model and
simulated parameters is given in section two, followed by the description of the
signal algorithm, filtering and modelling techniques in section three. The results
are presented in the fourth section and a conclusion section summarizes the main
outcome of this study.

2. PATIENT MODELING AND DATA GENERATION

Propofol is a hypnotic agent, for which the pharmacologic properties have
been well described and studied in different kind of patients [1, 2, 5, 6]. Given its
beneficial pharmacological profile, Propofol is used as one of the drugs of choice
for both induction and maintenance of the hypnotic component of anesthesia and
intensive care sedation. This drug is the input of the model and the output is the
Bispectral Index (BIS), a signal derived from the electroencephalogram (EEG).
Using EEG, several derived, computerized parameters like the BIS have been
tested and validated as a promising measure of the hypnotic component of
anesthesia 4]. BIS combines several features extracted from EEG including higher
order spectra of the signal which can reveal phase coupling of single waveforms.
Multivariate statistics were used to combine the different features into a single
indicator value [2]. BIS values lie in the range of 0-100; whereas 90-100 range
represents fully awake patients; 60—70 range and 40-60 range indicate light and
moderate hypnotic state, respectively. For the induction phase of DOA, a BIS value
of 50 is considered suitable.
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In Fig. 1 the pharmacokinetic (PK) — pharmacodynamic (PD) blocks denote
compartmental models.
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Fig. 1 — Compartmental model of the patient, where PK denotes the pharmacokinetic model
and PD denotes the pharmacodynamic model.

Compartmental models are used to represent the distribution of drugs in the
body, i.e. mass balance. They rely on a conservation principle applied to the
exchange of chemicals among coupled macroscopic systems called compartments
(central compartment, fast and slow equilibrating peripheral compartments). In
each compartment the drug concentration is assumed to be uniform, as in a perfect
and instantanecous mixing. The transport rate that leaves the compartment is
assumed to be proportional to the drug concentration.

The PK-PD models are represented by the following equations (5-9):

X, (Z):_[km + ki, +k13]'x1(t)+k21 X, () + ke - x, () +u(),
X, (1) =kyy - x,(2) = kyy -, (2),

Xy () =kyy - x, (1) — ks, - x5 (2), (1
. . .xl(t)
x,(0)=—k, -x, (1) +k, 7

1

where x, [mg] denotes the amount of drug in the central compartment. The blood
concentration is expressed by x, /V,. The peripheral compartments 2 and 3 model

the drug exchange of the blood with well and poorly diffused body tissues. The
masses of drug in fast and slow equilibrating peripheral compartments are denoted
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by X, and x;, respectively. The parameters &, for i # j , denote the drug transfer

th

frequency from the j" to the i compartment and u(f) [mg/s] is the infusion rate
of the anesthetic drug into the central compartment. The parameters k; of the PK

models depend on age, weight, height and gender and can be calculated for
Propofol:

v .=427 [I]
V, =18.9-0.391-(age—53) [/]
v, =238 [/]

C); =1.89+0.0456(weight — 77) — 0.0681(Ibm — 59) +
+0.0264(height —177) [1/min]

C,, =1.29-0.024(age — 53) [l/min]

C; =0.836 [1/min]

_G - —1 _ Gy =1 _Cs
klO —71 |:mll'1 :|, klZ —71 |:1'n11'1 :|, k13 —7]|:mln :|,

_ G Ll G
ks, _f [mm ], ks, —73[m1n :l,
where C,, is the rate at which the drug is cleared from the body, and C,, and C,,

are the rates at which the drug is removed from the central compartment to the
other two compartments by distribution. The lean body mass (Ibm) for men and

weight’ and

women have the following expressions: lbm=1.1-weight —128- >
height

weight’ .
-, respectively.

Ibm =1.07 - weight —148 -
height

An additional hypothetical effect compartment was proposed to represent the
lag between drug plasma concentration and drug response. The concentration of
drug in this compartment is represented by x,. The effect compartment receives

drug from the central compartment by a first-order process and it is regarded as a
virtual additional compartment. Therefore, the drug transfer frequency from the
central compartment to the effect site-compartment is equal to the frequency of

drug removal from the effect-site compartment: k,, = k,, =0.456min™'. Knowing
k,,, the apparent concentration in the effect compartment can be calculated since
k,, will precisely characterize the temporal effects of equilibration between the
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plasma concentration and the corresponding drug effect. Consequently, the
equation is often used as:

Cet) =k, -(C,(1) = C, (¢), @

with C, called the effect-site compartment concentration. The BIS variable can be
related to the drug effect concentration C, by the empirical static but time varying
nonlinear relationship, called also the Hill curve:

C.()y

BIS({)=E, -E,, ~——"—t—0, 3
(=Eo = E C.(1y +Cl, G)

where E, denotes the baseline (awake state — without drug) value, which, by
convention, is typically assigned a value of 100, E£_, denotes the maximum effect

achieved by the drug infusion, Cj, is the drug concentration at half maximal effect

and represents the patient sensitivity to the drug, and y determines the steepness of
the curve.

The data for this study has been derived from a set of 3 virtually generated
realistic patients, with the biometric values given in Table 1.

Table 1

Biometric values of the patients selected for this study

Patient Age [years] Length [cm] Weight [kg] Gender r C50
1 53 186 114 M 1.99 6.7

71 172 83 M 2.76 4.6
17 72 162 87 M 2.30 3.9

3. DESCRIPTION OF THE TREATMENT PROCEDURE

Initial data are treated by the following way. Firstly, we apply the procedure
of the optimal linear smoothing (POLS). The POLS is described in papers [10-14].
This procedure helps to find the optimal and smoothed trend (the so-called pseudo-
fitting function) and separate it from the relative fluctuations. Minimizing the value
of the relative error on the plot "relative error with respect to the value of the
smoothing window" in the vicinity of the first local minima, one can obtain the
pseudo-fitting function without information related to the mathematical model
used. Besides this important peculiarity the new method enables “to read” the
remaining detrended noise and express the desired distribution in terms of the
fitting parameters corresponding to the envelope of the sequence of the ranged
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amplitudes (SRA). Let us suppose that the random sequence considered contains
large-scale fluctuations (trend) and high-frequency fluctuations, which are usually
determined as a "noise". In order to separate those from each other we apply the
procedure of the optimal linear smoothing (POLS) based on the Gaussian kernel.
This procedure is defined as

J

LS
~ j=1 w
y=Gsm (x, ¥, w) =

ket

Jj=

Here the function K(¢) defines the Gaussian kernel, the value w defines the current
width of the smoothing window. The set y; (j = 1, 2, ..., N) defines the initial noisy
sequence. In spite of the fact that there are many smoothing functions imbedded in
many mathematical programs this chosen function has two important features: (a)
the transformed smoothed function in (4) is obtained in the result of linear
transformation and does not have uncontrollable error; (b) the value of the
smoothing window (w) is adjustable (fitting) parameter and accept any positive
value. This function in a certain sense can be considered as a pseudo-fitting
function, which is not associated directly with a specific model describing the
desired process. The value of the optimal window w,, is chosen from the
conditions:

An; =y, —Gsm(x, ¥, w),

»y, =Gsm (x, Vs w’), w <w, 5)
StD. =
min(RelErr)z ev(|yw yw) -100 %.
Mean (yw )

This procedure automatically decreases the value of the initial fluctuations by
means of iteration procedure and helps to find the optimal smoothing window
value w,,; minimizing the value of the relative error, defined as RelErr(w), in the
vicinity of the first local minimum. Here it is necessary to stress the following fact.
The behavior of the function RelErr(w) realized for many original and mimic
random sequences with hidden (uncertain) trend has some specific features. This
function has at least three minimal points or even more. "Zero" minimal point
coincides with the global minimum when the value of w is very close to the given
discrete step (4 = Ax). The last minimal point coincides with the large values of w,
corresponding to mean value of the random sequence analyzed. The first local
minimum can appear after the global (zero) minimum. In many model calculations
realized with random sequences having clearly expressed or hidden trends this
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optimal value w,,, does exist that helps to find the optimal smoothed curve (trend)
describing the large-scale fluctuations. The desired trend minimizing the value of
the relative error is described by expression

)7=Gsm(x, v, vT/), vT/Ewopt. (6)

After calculation of the optimal trend it becomes possible to separate initial
random sequence on two parts: (a) the optimal trend expressed by relationship (6)
and (b) detrended sequence representing the values of the relative fluctuations,
which is expressed as

sif =y—y. (7

Here srf defines the de-trended sequence of the relative fluctuations. This method
helps to divide initial noise on two parts: trend (defined here as the pseudo-fitting
function) and relative fluctuations.

In addition to the previous procedure, we apply the POLS to all data which
were obtained in the result of the numerical integration of the previous data.
Mathematically it can be expressed by means of the following iteration algorithm

Jy, =y, +%(xj —xj_l)(ij +ij_l), S, =0, j=12,.,N

1 N (8)
Ay; =, _ﬁzlyf'
=

This integral transformation (calculated by the trapezoid method) helps to see
clearly the trend (which can be hidden in initial data) and facilitate the application
of the POLS to the corresponding integral curves. It means that in expression (4)
we should replace y, —Jy;. Then one can find the smoothed trends applying the

differentiation operation to the trends found for integral curves
—Jy
D (Jj’ j ) -

N R )
Yy =X

This idea was applied in paper [15] when initial data were strongly deviated

and trend was hidden inside initial data.

4. RESULTS

Figures 2a and b clearly show the idea of POLS.



8 Non-invasive methods applied for complex signals 1039

¢ JEmgp1
Jsmp1
¢ JEmgp7

0,8

0,0

-0,8

Integral curves and their smoothed copies

2,44

T T T T T
1 2

time

Fig. 2a — The integrated curves obtained for EMG data (patients 1—upper curve and patient 7 — lower
curve). The optimal trends are shown by solid lines. The data for the third patient is not shown in
order to provide a clear view.
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Fig. 2b — The initial EMG data (patient 1) shown by black solid lines.
The optimal trend is shown by bold white line.

Figure 2a demonstrates the integral curve found for EMG data (muscular
activity — patient 1 and 7). The smoothed curves are shown by solid line. After
differentiation of the smoothed integral curve (calculated with the help of
expression (9)) we obtain the desired smoothed curve for initial data where the
calculation of the optimal trends by conventional methods is hopeless situation. For
patient 1 it is shown on Fig. 2b. Figure 3a demonstrates all initial trends found for
EMG data (recorded for three patients).
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Fig. 3a — The optimal trends calculated for EMG data. These trends have a strong oscillatory
character and are difficult for analysis. It is much easier to analyze their integral curves.

These are shown below in Fig. 3b.

Similarly, one can find the desired trends for BIS (brain activity) data. The
optimal trends for the integrated curves are shown on Fig. 3b.
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Fig. 3b — The optimal trends obtained for integral curves presenting the EMG data. As one can notice
from comparison with Fig. 3a, the integration suppresses the high frequency fluctuations

and facilitates the analysis of initial data.
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Consequently, Fig. 4a depicts the trends for initial BIS data and the
corresponding integrated trends are collected on Fig. 4b.
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Fig. 4a — The optimal trends for BIS data found at the same conditions
(the optimal value of the smoothing window w = 0.03).
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Fig. 4b — The integration procedure suppresses the high-frequency oscillations for BIS data
and in many cases facilitates the analysis of complex data. The black color is associated
with patient 1, the blue one to p. 7 and green color to p. 17, correspondingly.
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Again we notice that the high-frequency fluctuations are suppressed leaving
the low-frequency modes for further analysis.

The remnant functions contain also some information expressed in terms of
the fitting parameters of the corresponding distribution. The remnant function in
general case is determined as

R(t) = Nin(t) — Trend (t), (10)

where Nin(f) determines the initial random sequence and 7rend(t) determines the
trend found with the help of the POLS. After calculation of R(¢) it is necessary to
form the sequence of the ranged amplitudes (SRA). This sequence Sr(f) satisfies
the condition: Srq > Sr; >...>Sry . As it has been shown earlier [14b] the found
SRA being integrated in the same temporal interval forms the bell-like curve and in
many cases can be fitted to the beta-distribution function. So, one can write
approximately

t
J(O)=[Srtyde = A(t—1,)" (t, 1) +B. (11)

[
So, for many cases any strongly-correlated noise can be read in terms of the fitting
parameters (4, B, a, ) corresponding to the desired beta-distribution. For EMG

data the basic steps of this transformation are shown on Figs. 4a,b. The fit of the
bell-like curves for patient 1 is shown on Fig. 5.
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Fig. 5 — Remnant noise obtained for EMG data (patient 1). The SRA is shown by blue line.

The fit of the remnant noise to the beta-distribution function is presented in Fig. 6.
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Fig. 6 — The ECs method allows to fit simultaneously the integral taken from this distribution.
This fit is shown on the small figure above. Other similar fits corresponding to other remnant
noises look similar and are not shown. We do not show the fitting parameters because the
systematic analysis of these quantitative values in this paper is absent.

All fitting parameters corresponding to Eqn. (2) are collected in Table 1.

From Fig. 2b it is possible to observe that the trend of the EMG is very well
separated and ready for clinical use. In DOA, this information is very useful in a
feedback closed loop control context, providing information upon the state of the
muscle relaxation in the patient. If this trend is above a certain imposed threshold,
the anesthesiologist can decide to increase the target infusion for the corresponding
drug. Similarly, Fig. 3b shows the impact of the integration, allowing a clear
separation between the three simulated patient data. Typically, the inter-patient
variability is very difficult to classify by evaluating the result from Fig. 3a only. As
such, the EMG trends overlap and the sensitivity of the patient to the drug is not
estimated correctly. The solution to this problem is then clearly shown in Fig. 3b.

Similarly, the BIS signal from Fig. 4a overlap for the three types of patient
sensitivity to the propofol drug (given mainly by the change in the y parameter
from Table 1). It is observed that patient 17 has high oscillations in the BIS value,
indicating strong artifact presence and a poor sedation level. Again, the effect of
integration is more pronounced, as depicted in Fig. 4b, showing the clear separation
of the three cases. This information is then more useful to the automatic control of
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DOA, since it provides the slope of changes in BIS signal affected by the artifact
presence. In this context, the controller will react much faster and much more
accurate based on the information from Fig. 4b than the information from Fig. 4a,
by setting the suitable drug infusion rate into the patient.

5. CONCLUSIONS

So, in this paper we demonstrated preliminary possibilities of new methods
that can be defined as non-invasive methods of the reduced analysis of data
(NIMRAD). In the next publications related to analysis of biological signals we
show how to apply the NAFASS approach [16] for finding the informative-
frequency band of frequencies (amplitude frequency response) and separate the
non-stationary parts of the complex signal from quasi-stationary parts. This
separation is based on the statistics of the fractional moments [11,16,17] that helps
to find more accurately the range of correlations on the whole range of moments
(in practice the total range of moments is located between the values [e ", "
where e is the Euler number.
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