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Abstract—Dyadic Green’s functions for inhomogeneous parallel-plate
waveguides are considered. The usual residue series form of the Green’s
function is examined in the case of modal degeneracies, where second-
order poles are encountered. The corresponding second-order residue
contributions are properly interpreted as representing “associated
functions” of the structure by constructing a new dyadic root function
representation of the Hertzian potential Green’s dyadic. The dyadic
root functions include both eigenfunctions (corresponding to first-order
residues) and associated functions, analogous to the idea of Jordan
chains in finite-dimensional spaces. Numerical results are presented
for the case of a two-layer parallel-plate waveguide.
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1. INTRODUCTION

In waveguiding structures the field due to an impressed source is
often represented in terms of a Green’s function. In general three-
dimensional parallel-plate waveguides the Green’s function can be ob-
tained in a number of ways. One method (method i) is to expand
the Green’s function in the vertical-coordinate (perpendicular to the
guiding plates) eigenfunctions, obtaining a discrete series of one-di-
mensional eigenfunctions multiplied by a closed-form two-dimension-
al Green’s function in the longitudinal infinite coordinates. Another
method (method ii) is to expand the Green’s function as a two-dimen-
sional continuous eigenfunction expansion in the infinite longitudinal
coordinates (i.e., a Fourier transform), obtaining a two-dimensional
integral representation having as kernel a one-dimensional closed-
form Green’s function in the vertical coordinate. In another method
(method iii) the Green’s function is represented as a three-dimensional
expansion in terms of a two-dimensional continuous eigenfunction ex-
pansion in the infinite longitudinal coordinates (Fourier transform) and
a one-dimensional discrete eigenfunction expansion in the vertical co-
ordinate. This results in a purely spectral form that is not convenient
computationally since it involves both integrals and series, but is useful
for theoretical manipulations.

The ability to obtain the Green’s function by usual eigenfunction
methods depends on the eigenfunctions forming a basis in the underly-
ing function space. This question, in turn, depends on self-adjointness
of the governing differential operator. In general, the eigenfunctions
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associated with a self-adjoint boundary value problem form a basis in
the underlying Hilbert space [1]. If the boundary value problem is not
self-adjoint then the eigenfunctions may not form a basis, although the
root functions, which include the eigenfunctions as well as functions
associated to them (associated functions), will often form the desired
basis [2].

If the medium filling the waveguide is lossless and a radiation
condition is imposed in the longitudinal infinite coordinates, then
the governing three-dimensional differential operator is formally self-
adjoint, but not self-adjoint. If the medium filling the waveguide is
allowed to admit dielectric loss, however small (which will be assumed
in the following), and is homogeneous, then the problem is self-adjoint
in the usual L2 space; the resulting eigenfunctions form a basis,
and ordinary eigenfunction expansions are sufficient to represent the
Green’s function. Any of the methods (i), (ii), or (iii) are valid.

For parallel-plate waveguides filled with inhomogeneous lossy
media the situation becomes more complex, as one obtains a self-
adjoint operator in the longitudinal (infinite) coordinates, but not
generally in the vertical coordinate. For certain combinations of
structural and electrical parameters resulting in nontrivial modal de-
generacies, the vertical-coordinate eigenfunctions fail to form a basis
in the underlying Hilbert space. In this case the discrete series of
eigenfunctions will not represent the Green’s function, and methods
(i) and (iii) will fail at these points. In most cases of physical interest,
however, the root functions will form a basis in the desired space.
In this case root function expansion solutions can be used, providing a
correct representation using methods (i) or (iii), although the resulting
expansions are somewhat complicated. In electromagnetic theory this
problem has been pursued primarily in the Soviet literature [3–8]. A
related discussion concerning associated waves is provided in [9, pp. 50–
59], where the example of a hollow parallel-plate waveguide with an
impedance wall is explicitly considered.

It can be appreciated that, in general, method (ii), which com-
bines Fourier transforms in the infinite longitudinal coordinates,
and the solution (using nonspectral methods) of a one-dimensional
boundary-value problem in the vertical coordinate, is the “safest”
method to obtain the Green’s function. It is easily shown that the
integrand of the resulting inverse Fourier transform representation
of the Green’s function is meromorphic in the transform plane, and
complex-plane analysis can be used to obtain a discrete residue series
form for the Green’s function. The resulting series is obviously related
to an eigenfunction expansion; poles of unity order correspond to
eigenfunctions, whereas higher-order poles correspond to associated
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functions. The benefits of this procedure, compared to starting directly
with a root function expansion, are that the root functions are auto-
matically obtained (both eigenfunctions and associated functions) and
normalized. Thus, knowledge of the dispersion behavior of the modes
(necessary to find the poles and ascertain their multiplicity) leads to
a simple, rigorous method of obtaining a discrete series form for the
Green’s function, without the need to explicitly study root functions
and their complicated orthogonality relationships.

In this paper we present dyadic Green’s functions for inhomoge-
neous parallel plate waveguides, developed using method (ii), and ob-
tain a discrete dyadic residue series form using complex-plane analysis.
The purpose of the paper is fourfold. First, we discuss the possibility
of nontrivial modal degeneracies which render eigenfunction expansion
methods (the usual method) invalid at certain points, necessitating
the consideration of root functions. Second, in order to interpret the
dyadic residue series form of the Green’s dyadic, we introduce the idea
of dyadic root functions (dyadic eigenfunctions and dyadic associated
functions), rather than the usual vector or scalar eigenfunctions. These
dyadic functions capture the physics of the problem in a compact form.
Third, for first-order poles we show that the resulting dyadic residues
are dyadic eigenfunctions of the governing differential operator, and
that for higher-order poles the dyadic residues are related to dyadic
associated functions. Although it is not our intent to develop the
dyadic root function expansion approach thoroughly, for completeness
we discuss dyadic root function expansions and properties of the dyadic
root functions. Finally, we examine numerical consequences of nontriv-
ial modal degeneracies and the failure of the eigenfunctions to form a
basis in such cases.

2. FORMULATION

2.1. Nontrivial Modal Degeneracies

For any waveguiding structure source-free Maxwell’s equations, field
continuity conditions, and boundary conditions can be converted into
a functional equation for the discrete modes of the structure,

A(kρ, ω, ς)X = 0. (1)

In (1) kρ is the longitudinal spatial Fourier-transform variable re-
presenting the modal propagation constant, ω is the temporal Fourier-
transform variable representing angular frequency, ς is a vector of n
electrical (e.g., permittivity, permeability) and structural (e.g., dielec-
tric thickness, waveguide dimensions) parameters, and X represents a
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modal field distribution. We consider each of the variables (kρ, ω) in
the complex plane C, and assume that ς ∈ Cn is specified. Nontrivial
solutions of (1) are obtained from the implicit dispersion equation

H(kρ, ω, ς) = det
(
A(kρ, ω, ς)

)
= 0 (2)

leading to modal propagation constants kρ = kρn(ω, ς). If

∂

∂kρ
H(kρ, ω, ς) = 0 (3)

in addition to (2), then k = kρn is a double root of H = 0 signifying
a modal degeneracy (i.e., a point at which two modes have equal
propagation constants). If the corresponding modal field patterns are
different, in particular, orthogonal in some sense, then the degeneracy
is trivial, otherwise the degeneracy is called nontrivial [8]. Obviously,
higher-order roots can be obtained in an analogous manner.

At a nontrivial modal degeneracy the complex pair (kρn, ωn)
obtained from the solution of (2) and (3) can be classified in several
different ways. If, in addition to (2) and (3),(

∂

∂ω
H(kρ, ω, ς)

) (
∂2

∂k2
ρ

H(kρ, ω, ς)
)
�= 0, (4)

then (kρn, ωn) is called a fold-point, which has been shown to occur
at modal cutoff points as well as at certain modal interaction points
[10–12, 15]. Alternately, if, in addition to (2) and (3),

∂

∂ω
H(kρ, ω, ς) = 0, (5)

then (kρn, ωn) is called a critical-point of the mapping H : Cn+2 → C;
certain critical points have been shown to occur in the vicinity of
traditional mode-coupling regions [10, 13–15]. In the following we will
be interested in fold-type points, which are analogous to those explicitly
considered in [12] for an open grounded dielectric waveguide. It has
been shown [11] that the frequency ωn arising from the solution of
(2) and (3) is a branch point in the complex frequency plane, which
impacts transient modal analysis [16].

As an example, consider the parallel-plate waveguide depicted in
Figure 1. Dispersion curves (β = kρ, k0 = ω

√
µ0ε0) for the first eight

TMρ modes are shown in Figure 2 for d1 = d2 = d, ε3 = ε0, and
ε2 = (2.25−i0)ε0 (lossless case). It is obvious that modes do not couple
or interact. The case of strong dielectric loss, ε2 = (2.25 − i1.0)ε0, is
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Figure 1. Two layer parallel-plate waveguide.

Figure 2. Dispersion curves for the first eight TMρ modes of the two-
layer waveguide shown in Fig. 1, with ε3 = ε0, ε2 = (2.25 − i0.0)ε0,
and d1 = d2 = d (lossless case).

shown in Figure 3 (the first six TMρ modes are shown). The modes
significantly differ from those in the lossless case.

At a critical value of loss, ε2 = (2.25 − i1.735522)ε0, the first
two modes intersect at k0d = 1.303347 forming a nontrivial modal
degeneracy, as shown in Figure 4. Although this critical value of loss
is quite high, it is considered here merely to demonstrate the desired
phenomena; the resulting degeneracy is convenient since it involves the
two lowest-order modes. Exactly the same phenomena occurs for lower
values of loss, with the corresponding modal degeneracies involving
higher-order modes. Furthermore, although such large loss values
are not relevant for most electronics applications, material properties
similar to the considered values may occur in geophysical applications.
Nontrivial modal degeneracies also occur for anisotropic media even in
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Figure 3. Dispersion curves for the first six TMρ modes of the two-
layer waveguide shown in Fig. 1, with ε3 = ε0, ε2 = (2.25 − i1.0)ε0,
and d1 = d2 = d (lossy case).

the lossless case.
For loss below the critical value, i.e., for Im{ε2} > −1.7355219,

these two modes do not intersect (see, e.g., Figure 3), yet for Im{ε2}
near the critical loss value these two modes approach each other near
k0d = 1.3. In this case a fold point that interconnects these two
modes resides in the fourth quadrant of the complex k0d (analogously,
frequency) plane, which is the quadrant in which the fold point resides
in the lossless case. As loss increases this fold point moves towards the
real axis (see, e.g., Figure 6(c) in [12] for the analogous case of an open
dielectric slab), and at the critical loss value the fold point resides on
the real axis at k0d = 1.303347. As loss is further increased beyond
the critical value the fold point moves into the first-quadrant of the
complex plane. For the critical value of loss, and at the corresponding
critical value of k0d (frequency) corresponding to a modal degeneracy,
double poles of the Green’s function exist, which are the subject of this
paper.
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Figure 4. Dispersion curves for the first six TMρ modes of the
two-layer waveguide shown in Fig. 1, with ε3 = ε0, ε2 = (2.25 −
i1.735523)ε0, and d1 = d2 = d (first two modes are degenerate).

2.2. Dyadic Green’s Functions and Dyadic Residues

Consider a planarly inhomogeneous medium inside a parallel-plate
waveguide. Maxwell’s equations are

∇×E(r) = −iωµ(x)H(r)
∇×H(r) = iωε(x)E(r) + J(r),

(6)

where J represents an impressed source. Assume that ε(x) and µ(x)
are piecewise constant, complex-valued functions, forming M material
layers, with the jth layer being

Ωj = {(x, y, z) : x ∈ (aj−1, aj),−∞ < y, z <∞}, (7)

where

ε(x) = εj
µ(x) = µj

}
for x ∈ (aj−1, aj) (8)

with Im{εj} < 0, Im{µj} ≤ 0. As an example, a three-layer parallel-
plate waveguide is shown in Figure 5. For simplicity, assume that the
source current has compact support in one region, Ωi.
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Figure 5. General, three layer parallel-plate waveguide.

In addition to satisfying Maxwell’s equations (6), E and H satisfy
the continuity conditions at each dielectric interface ai, i = 1, . . . ,M −
1,

x̂×
(
E+(r)−E−(r)

)
= 0, r ∈ ai,

x̂×
(
H+(r)−H−(r)

)
= 0, r ∈ ai,

(9)

where +/− indicates a position infinitesimally above/below the inter-
face, the boundary conditions at the surface of the perfect conductors,
interfaces a0 and aM ,

x̂×E(r) = 0, r ∈ a0, aM , (10)

and the condition at infinity

lim
r→∞

|E(r)|, |H(r)| = O(r−1−δ), δ > 0, r ∈ Ωj ,
j = 1, 2, . . . ,M . (11)

The condition at infinity replaces the usual radiation condition for
the case of dissipative media, and leads to a unique solution of the
excitation problem [6]. It also renders the fields Fourier transformable
in the longitudinal coordinates in the classical sense, since they decay
sufficiently fast as |y|, |z| → ∞.

The electric field in the jth layer is

E(j)(r) = (k2
j + ∇∇·)π(j)(r),

H(j)(r) = iωεj∇× π(j)(r)
(12)

where kj = ω
√
µjεj , and where the potential π(j) is obtained by solving
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the set of M Helmholtz equations (one for each region)

(∇2 + k2
i )π

(i)(r) = −J(r)
iωεi

, r ∈ Ωi,

(∇2 + k2
j )π

(j)(r) = 0,
r ∈ Ωj ,

j = 1, 2, . . . ,M,
j �= i,

(13)

subject to the condition at infinity

lim
r→∞

∣∣π(j)(r)
∣∣ = O(r−1−δ), δ > 0, r ∈ Ωj ,

j = 1, 2, . . . ,M,
(14)

and appropriate boundary and continuity conditions on π at the
interfaces ai, i = 0, 1, . . . ,M , arising from (9)–(10). Specifically, at
each dielectric interface ai, i = 1, . . . ,M −1, the potential must satisfy
[17]

π+
β = N2

∓π
−
β , β = x, y, z,

∂π+
α

∂x
= N2

∓
∂π−α
∂x

, α = y, z,(
∂π+

x

∂x
− ∂π−x

∂x

)
= −(N2

∓ − 1)

(
∂π−y
∂y

+
∂π−z
∂z

)
,

(15)

where N2
∓ = ε−/ε+, and at each surface of the perfect conductors,

interfaces a0 and aM ,

πα = 0, α = y, z,

∂πx
∂x

= 0.
(16)

To facilitate spectral analysis one can consider the M Helmholtz
equations (13) as one equation,

−
(
∇2 + k2(x)

)
π(r) =

J(r)
iωε(x)

, r ∈
M⋃
j=1

Ωj , (17)

where k(x) = ω
√

µ(x)ε(x) subject to the above described continuity
and boundary conditions imposed at the various interfaces, and the
condition at infinity.

The equation for the potential (17) can be solved subject to the
continuity and boundary conditions (15)–(16) to yield [17]

π(j)(r) =
∫

Ω
G(j,i)(r, r′) · J(r′)

iωεi
dΩ′, (18)
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where G(j,i)(r, r′) provides the field at r in region j due to an elemental
current source at r′ in region i, and is not, in general, a diagonal dyadic.
The Green’s dyadic is a solution of

(∇2 + k2
i )G

(i,i)(r, r′) = −Iδ(r− r′), r, r′ ∈ Ωi, (19)

(∇2 + k2
j )G

(j,i)(r, r′) = 0, r ∈ Ωj , r′ ∈ Ωi,
j = 1, 2, . . . ,M, j �= i,

(20)

which can be combined into the single equation

−
(
∇2 + k2(x)

)
G(j,i)(r, r′) = Iδ(r− r′) (21)

where r′ ∈ Ωi. The Green’s dyadic is subject to the condition at infin-
ity

lim
r→∞

∣∣G(j,i)
∣∣ = O(r−1−δ), δ > 0, r ∈ Ωj ,

j = 1, 2, . . . ,M (22)

and to the boundary and continuity conditions imposed on πα elevated
to dyadic level; at each dielectric interface ai, i = 1, . . . ,M − 1,

G+
xβ = N2

∓G
−
xβ, G+

αα = N2
∓G
−
αα, (23)(

∂G+
xx

∂x
− ∂G−xx

∂x

)
= 0,

∂G+
αα

∂x
= N2

∓
∂G−αα
∂x

, (24)(
∂G+

xα

∂x
− ∂G−xα

∂x

)
= −(N2

∓ − 1)
∂G−αα
∂α

, (25)

β = x, y, z, α = y, z, (26)

and at the perfectly conducting walls (a0 and aM ) boundary conditions
are

Gαα = 0, α = y, z (27)
∂Gxβ

∂x
= 0, β = x, y, z. (28)

Due to the longitudinal invariance in the y and z coordinates
and the condition at infinity, one can write (21) in the spatial Fourier
transform domain as

−
(

d2

dx2
− p2(x)

)
G(j,i)(x, x′, ky, kz) = Iδ(x− x′) (29)
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where p(x) =
√

k2
y + k2

z − k2(x), leading to

G(j,i)(r, r′) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

G(j,i)(x, x′, ky, kz)eiky(y−y
′)eikz(z−z

′)dkydkz

(30)

=
1
4π

∫ ∞
−∞

G(j,i)(x, x′, kρ)H
(2)
0 (kρρ)kρdkρ (31)

where k2
ρ = k2

y + k2
z and ρ =

√
(y − y′)2 + (z − z′)2. The first form

(30) comes from a double Fourier transform on the infinite coordinates
y and z, and the second form (31) can be obtained from the first form.
Therefore, both forms are “safe” in that they don’t rely on spectral
properties of the x-coordinate part of the operator −∇2. Instead,
they make use of completeness of the y- and z-coordinate continuous
eigenfunctions in L2(−∞,∞)×L2(−∞,∞) (i.e., the Fourier transform
technique). It can be shown that the form

G(j,i)(x, x′, kρ) = x̂x̂r(j,i)
n (x, x′, kρ) + (ŷŷ + ẑẑ)r(j,i)

t (x, x′, kρ)

+
(
x̂ŷ

∂

∂y
+ x̂ẑ

∂

∂z

)
r(j,i)
c (x, x′, kρ)

(32)

holds in general for any planarly-layered medium (i.e., for any number
of layers). The coefficients r(j,i)

ν are determined by the specific structure
of the waveguide and have the general form

r(j,i)
n (x, x′, kρ) =

nn(x, x′, kρ)
ztm(kρ)

=
nn1 (x<, kρ)nn2 (x>, kρ)

ztm(kρ)
, (33)

r
(j,i)
t (x, x′, kρ) =

nt(x, x′, kρ)
zte(kρ)

=
nt1(x<, kρ)n

t
2(x>, kρ)

zte(kρ)
, (34)

r(j,i)
c (x, x′, kρ) =

nc(x, x′, kρ)
ztm(kρ)zte(kρ)

= Kc(kρ)
nn2 (x, kρ)nt2(x

′, kρ)
zte(kρ)ztm(kρ)

, (35)

where x< (x>) indicates the lesser (greater) of the pair x and x′,
ztm(te)(kρ) = 0 are the dispersion equations for TM (TE) surface-
wave modes of the inhomogeneous parallel-plate waveguide, and nν ,
ν = n, t, c, are coefficients that depend on (i, j) and on the structure
of the waveguide (see, e.g., (118)–(124)).

Due to the presence of the top and bottom perfectly conducting
plates, the dyadic G(j,i)(x, x′, kρ) is meromorphic in the lower-half
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complex kρ-plane, leading to

G(j,i)(r, r′) =

− i

2

∞∑
ne=1

(
x̂x̂R(j,i)

n (r, r′, kρne) +
(
x̂ŷ

∂

∂y
+ x̂ẑ

∂

∂z

)
R(j,i)
c (r, r′, kρne)

)

− i

2

∞∑
nh=1

(
(ŷŷ+ẑẑ)R(j,i)

t (r, r′, kρnh)+
(̂
xŷ

∂

∂y
+x̂ẑ

∂

∂z

)
R(j,i)
c (r, r′, kρnh)

)
(36)

where R
(j,i)
n,t,c are residues of the product

(
r
(j,i)
n,t,c(x, x

′, kρ)H
(2)
0 (kρρ)kρ

)
,

respectively, with the index ne used for TM (E) modes and nh for TE
(H) modes.

Using the formula for the residue of a function f at an mth-order
pole kρ = kρn,

Resn(f) =
1

(m− 1)!
dm−1

dkm−1
ρ

(kρ − kρn)mf(kρ)
∣∣∣∣
kρ=kρn

, (37)

we have for first-order poles (the usual case)

R(i,j)
ν (r, r′, kρn) =

nν(x, x′, kρn)H
(2)
0 (kρnρ)kρn

z′(kρn)
. (38)

It will be shown that nν are proportional to the product of eigen-
functions un(x) and conjugate adjoint eigenfunctions v̄n(x′) (see (82)–
(85)). Therefore, the first-order residues have the form of the product
of eigenfunctions and conjugate adjoint eigenfunctions, multiplied by
the radial Green’s functions H

(2)
0 (kρnρ),

H
(2)
0 (kρnρ) ∼

√
2

πkρnρ
e−i(kρnρ−π/4) ∼ e−ikρnρ√

ρ
(39)

for |kρnρ| � 1, which provides the usual cylindrical wave propagation
behavior.
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For second-order poles,

R(i,j)
ν (r, r′, kρn) =

d

dkρ

[
(kρ − kρn)2

nν(x, x′, kρ)H
(2)
0 (kρρ)kρ

z(kρ)

] ∣∣∣∣∣
kρ=kρn

(40)

=
2

z′′(kρn)

(
d

dkρ

[
nν(x, x′, kρ)H

(2)
0 (kρρ)kρ

]∣∣∣∣
kρ=kρn

−
[
nν(x, x′, kρn)H

(2)
0 (kρnρ)kρn

]
z′′′(kρn)

3z′′(kρn)

)
. (41)

It is clear from (41) that the second-order residues can be written as

R(i,j)
ν (r, r′, kρn) = c0nν(x, x′, kρn)H

(2)
0 (kρnρ)+c1n

′
ν(x, x

′, kρn)H
(2)
0 (kρnρ)

+ c2nν(x, x′, kρn)ρH
(2)
1 (kρnρ) (42)

where c0,1,2 are constants and n′ν = dnν/dkρ. The term

nν(x, x′, kρn)H
(2)
0 (kρnρ) (43)

is the same as that encountered in the case of first-order residues (38),
and has the usual propagation behavior of eigenfunctions propagating
as cylindrical waves. Since derivatives of eigenfunctions lead to
associated functions as shown later (see, e.g., (97)), then the term

n′ν(x, x
′, kρn)H

(2)
0 (kρnρ) (44)

is related to associated functions propagating as cylindrical waves. The
last term in (42),

nν(x, x′, kρn)ρH
(2)
1 (kρnρ) (45)

involves the eigenfunctions via nν . However, the propagation factor is
ρH

(2)
1 , which has the asymptotic form

ρH
(2)
1 (kρnρ) ∼ ρ

(√
2

πkρnρ
e−i(kρnρ−3π/4)

)
∼ √ρe−ikρnρ (46)

for |kρnρ| � 1. Therefore, this term has unusual propagation
characteristics, and would grow according to the factor

√
ρ if not for

the exponential decay provided by the complex-valued poles (due to
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the assumed dielectric loss, which itself is often the reason for the
occurrence of nontrivial modal degeneracies). Thus, the second-order
poles lead to residue contributions which are very different than for
the first-order poles.

In the case of lossless media the conditions at infinity (11),
(14), and (22) are no longer valid. In this case waveguide radiation
conditions must be used, and the corresponding problem is non self-
adjoint even for the case of homogeneous media. As a result, complex
modes may still occur in the lossless case, although they carry zero
total power flux. A principle of radiation that leads to a radiation
condition is formulated in [18, 19].

2.3. Dyadic Eigenfunctions

To interpret the dyadic residue series (36) we introduce dyadic
eigenfunctions satisfying (analogous to (29))

−
(

d2

dx2
− p2(x)

)
un(x) = λnun(x), (47)

where un has scalar components un,i,j , i, j = x, y, z, and where
p2(x) = k2

ρ − k2(x). We rewrite (47) as

−
(

d2

dx2
+ k2(x)

)
un(x) = γnun(x), x ∈ (a0, aM ), (48)

where γn = λn− k2
ρ, subject to the continuity conditions at the dielec-

tric interfaces ai, i = 1, . . . ,M − 1,

u+
n,xβ = N2

∓u
−
n,xβ, u+

n,αα = N2
∓u
−
n,αα, (49)

∂u+
n,xx

∂x
=

∂u−n,xx
∂x

,
∂u+

n,αα

∂x
= N2

∓
∂u−n,αα
∂x

, (50)(
∂u+

n,xα

∂x
−

∂u−n,xα
∂x

)
= −(N2

∓ − 1)(ikα)u−n,αα, (51)

β = x, y, z, α = y, z, (52)

and boundary conditions at the perfect conducting walls (a0 and aM )

un,αα = 0, α = y, z, (53)
∂un,xβ
∂x

= 0, β = x, y, z. (54)

Note that un,βα(x) = un,βα(x, γn).
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From the conditions (49)–(54) it is clear that only dyadic compo-
nents un,xβ, β = x, y, z, and un,αα, α = y, z, are nonzero, and, moreov-
er, that the equations for un,xx and for the pairs

(
un,αα(x), un,xα(x)

)
,

α = y, z, all decouple from each other. Also, it can be shown that
the continuity and boundary conditions for un,αα, α = y, z, result in
TE modes, those for un,xx lead to TM modes, and those for un,xα,
α = y, z, can result in either type of mode (depending on the presence
or absence of u−n,αα on the right-side of (51)). Therefore we have five
decoupled (independent) dyadic problems,

−
(

d2

dx2
+ k2(x)

)
uxxne (x) = γneu

xx
ne (x), (55)

−
(

d2

dx2
+ k2(x)

)
uααne (x) = γneu

αα
ne (x), α = y, z, (56)

−
(

d2

dx2
+ k2(x)

)
uααnh (x) = γnhu

αα
nh

(x), α = y, z, (57)

with ne indicating TM (E) modes and nh indicating TE (H) modes,
where

uxxne (x) =

[
une,xx(x) 0 0

0 0 0
0 0 0

]
, uyyne(x) =

[0 une,xy(x) 0
0 0 0
0 0 0

]
,

uyynh(x) =

[0 unh,xy(x) 0
0 unh,yy(x) 0
0 0 0

]
, uzzne(x) =

[0 0 une,xz(x)
0 0 0
0 0 0

]
,

uzznh(x) =

[0 0 unh,xz(x)
0 0 0
0 0 unh,zz(x)

]
. (58)

Note that uααn only needs to be obtained for one α, either α = y or
α = z; up to an arbitrary constant the corresponding non-zero entries
have the same form.

Since the operator is nonself-adjoint we must consider dyadic
eigenfunctions adjoint to the ones considered above. Let Γ = (a0, aM )
and consider the inner-product

〈u,v〉 =
∫

Γ
u(x) : v(x)dx (59)

=
∫

Γ

3∑
i,j=1

uij(x)v̄ij(x)dx (60)
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utilizing the double-dot product notation [20], where the overbar
indicates complex conjugation. The dyadic functions of interest belong
to the Hilbert space H = L2(Γ) consisting of dyadics such that

‖u‖2 = 〈u,u〉 =
∫

Γ
u(x) : u(x)dx (61)

=
∫

Γ

3∑
i,j=1

|uij(x)|2dx <∞. (62)

Defining the operator A : H → H as

A = −
(

d2

dx2
+ k2(x)

)
,

DA = {u : ‖u‖ <∞}
(63)

where DA is the domain of A, then from

〈Au,v〉 = 〈u, A∗v〉 (64)

the operator adjoint to (63) is

A∗ = −
(

d2

dx2
+ k̄2(x)

)
,

DA∗ = {v : ‖v‖ <∞} = DA

(65)

leading to the adjoint eigenvalue problems

−
(

d2

dx2
+ k̄2(x)

)
vxxne (x) = γ∗nev

xx
ne (x), (66)

−
(

d2

dx2
+ k̄2(x)

)
vααne (x) = γ∗nev

αα
ne (x), α = y, z, (67)

−
(

d2

dx2
+ k̄2(x)

)
vααnh (x) = γ∗nhv

αα
nh

(x), α = y, z, (68)

where γ∗n = γn. Adjoint continuity conditions are found to be quite
different than (49)–(52), and are obtained as

v−n,xβ = v+
n,xβ, v−n,αα = N

2
∓v

+
n,αα, (69)

∂v−n,xβ
∂x

= N
2
∓
∂v+

n,xβ

∂x
, (70)

∂v−n,αα
∂x

−N
2
∓
∂v+

n,αα

∂x
= −(N2

∓ − 1)(ikα)v+
n,xα, (71)

β = x, y, z, α = y, z, (72)
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at the dielectric interfaces ai, i = 1, . . . ,M − 1. Adjoint boundary
conditions at the perfectly conducting walls (x = a0, aM ) are the same
as (53)–(54),

vn,αα = 0, α = y, z, (73)
∂vn,xβ
∂x

= 0, β = x, y, z. (74)

From the boundary and continuity conditions it is found that the
adjoint eigenfunctions have the form

vxxne (x) =

[
vne,xx(x) 0 0

0 0 0
0 0 0

]
, vyyne(x) =

[0 vne,xy(x) 0
0 vne,yy(x) 0
0 0 0

]
,

vyynh(x) =

[0 0 0
0 vnh,yy(x) 0
0 0 0

]
, vzzne(x) =

[0 0 vne,xz(x)
0 0 0
0 0 vne,zz(x)

]
,

vzznh(x) =

[0 0 0
0 0 0
0 0 vnh,zz(x)

]
. (75)

It is a simple matter to obtain the orthogonality relationship

(γn − γm)〈uββn ,vββm 〉 = 0, β = x, y, z. (76)

Furthermore, by properties of the dyadic double-dot product,

〈uααn ,vββm 〉 = 0, α, β = x, y, z, α �= β (77)

If the dyadic eigenfunctions form an orthonormal basis of H then
making the expansion

G(x, x′, kρ) =
∑
ne

(
aneu

xx
ne (x) + bneu

yy
ne + cneu

zz
ne

)
+

∑
nh

(
dnhu

yy
nh

(x) + enhu
zz
nh

(x)
) (78)

and exploiting orthonormality leads to

G(x, x′, kρ)

=
∑
ne

(
uxxne (x)v̄ne,xx(x′)

k2
ρ + γne

+
uyyne(x)v̄ne,yy(x′)

k2
ρ + γne

+
uzzne(x)v̄ne,zz(x′)

k2
ρ + γne

)

+
∑
nh

(
uyynh(x)v̄nh,yy(x

′)
k2
ρ + γnh

+
uzznh(x)v̄nh,zz(x

′)
k2
ρ + γnh

)
(79)
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such that

G(r, r′) =
1
4π

∫ ∞
−∞

dkρkρH
(2)
0 (kρρ)

{∑
ne

(
uxxne (x)v̄ne,xx(x′)

k2
ρ + γne

+
uyyne(x)v̄ne,yy(x′)

k2
ρ + γne

+
uzzne(x)v̄ne,zz(x′)

k2
ρ + γne

)
+

∑
nh

(
uyynh(x)v̄nh,yy(x

′)
k2
ρ + γnh

+
uzznh(x)v̄nh,zz(x

′)
k2
ρ + γnh

)}
.

(80)

Due to the factor (ikα) in the continuity conditions (51) and (71), the
xα entries of the dyadics uααn have a multiplicative factor (ikα) such
that complex-plane analysis leads to the Green’s dyadic as a partial
(in the x-coordinate) eigenfunction expansion, (kρn = i

√
γn)

G(r, r′) =
1
4i

∑
ne

(
uxxne (x)v̄ne,xx(x

′) + uyyne(x)v̄ne,yy(x
′)

+ uzzne(x)v̄ne,zz(x
′)
)
H

(2)
0 (kρneρ)

+
1
4i

∑
nh

(
uyynh(x)v̄nh,yy(x

′) + uzznh(x)v̄nh,zz(x
′)
)
H

(2)
0 (kρnhρ)

(81)

where the xα entries of the dyadics uααn have a multiplicative factor
∂/∂α.

Comparing (36) and (38) for first-order poles with (81) we see that

2nn(x, x′, kρne)kρne(
ztm(kρne)

)′ = une,xx(x)v̄ne,xx(x
′), (82)

2nt(x, x′, kρnh)kρnh(
zte(kρnh)

)′ = unh,αα(x)v̄nh,αα(x′), (83)

2nc(x, x′, kρnh)kρnh
ztm(kρnh)

(
zte(kρnh)

)′ = unh,xα(x)v̄nh,αα(x′), (84)

2nc(x, x′, kρne)kρne(
ztm(kρne)

)′
zte(kρne)

= une,xα(x)v̄ne,αα(x′) (85)

which provides an interpretation of the first-order dyadic residues in
(36) in terms of dyadic eigenfunctions associated with eigenvalues of
unit multiplicity.
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2.4. Dyadic Root Functions

Since the operator is not self-adjoint the Green’s dyadic (32) may
have poles of order greater than one. In this case, in addition to
eigenfunctions it is necessary to consider root functions [21–23], similar
to the idea of a Jordan chain in matrix theory.

Consider A as defined by (63). An element 0 �= un,m−1 ∈ H is a
root function of rank m of the operator A : H → H corresponding to
an eigenvalue γn if

(A− γnI)mun,m−1 = 0,

(A− γnI)m−1un,m−1 �= 0,
(86)

where m is a positive integer. Every eigenfunction of A is a root
function of rank 1 (un,0 ≡ un), and the root functions having rank
m > 1 are called associated functions (functions associated with the
eigenfunction). The root system of A is defined as the union of the
eigenfunctions and the associated functions.

In practice, to determine the associated functions, one starts with
an eigenfunction un ≡ un,0 satisfying (A−γnI)un = 0. If the equation

(A− γnI)un,1 = un (87)

has a solution un,1, then un,1 is a root function of rank 2; more
specifically, an associated function associated with the eigenvalue γn
and eigenfunction un. Continuing, if

(A− γnI)un,2 = un,1 (88)

is solvable, then un,2 is another root function (rank 3), associated with
the eigenvalue γn and eigenfunction un. In general, we consider

(A− γnI)un,k = un,k−1 (89)

such that the chain {un,un,1,un,2, . . . ,un,j} consisting of the eigen-
functions and associated functions is called a Jordan or Keldysh chain
of length j + 1 corresponding to the eigenvalue γn. The same ideas
apply to the adjoint eigenfunctions.

It is straightforward to obtain the orthogonality relationships

(γn − γm)〈uββn,p,vββm,q〉+ 〈uββn,p−1,v
ββ
m,q〉 − 〈uββn,p,vββm,q−1〉 = 0, (90)

β = x, y, z, and p, q = 0, 1, 2, . . . , where for notational convenience we
define uββn,p ≡ 0 for p < 0, and that

〈uααn,p,vββm,q〉 = 0, α, β = x, y, z, α �= β, p, q = 0, 1, 2, . . . (91)
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Note that if γn �= γm, then recursively we see that

〈uββn,p,vββm,q〉 = 0, p, q = 0, 1, 2, . . . (92)

In particular, if only the kth eigenvalue has multiplicity two (all
others having unit multiplicity) we consider the set {uββk ,uββk,1,v

ββ
k ,

vββk,1} corresponding to the double eigenvalue γk, and {uββn ,vββn } cor-
responding to the other eigenvalues n �= k. Then

〈uββn ,vββm 〉 = 0, n �= m, n,m �= k, (93)

〈uββn ,vββk 〉 = 〈uββn ,vββk,1〉 = 0, n �= k, (94)

〈uββk ,vββk 〉 = 0, (95)

〈uββk ,vββk,1〉 = 〈uββk,1,v
ββ
k 〉. (96)

The third condition, 〈uββk ,vββk 〉 = 0, is quite different than in the
case of rank 1 root functions (eigenfunctions, in which case the usual
normalization is 〈uββk ,vββk 〉 = 1, and, regardless of normalization,
〈uββk ,vββk 〉 �= 0).

By taking derivatives of (89) it can be seen that

uββn,p(x, γn) =
(

1
p!

∂p

∂γpn
− c

)
uββn (x, γn) (97)

where c is an arbitrary constant. Therefore, associated functions are
related to derivatives of eigenfunctions, as discussed after (46).

For nonself-adjoint operators the eigenfunctions do not generally
constitute a basis in the desired function space. However, the root
system often does, and in this case the Green’s dyadic may be expanded
in the root functions. For simplicity we will assume all eigenvalues have
multiplicity one except the kth TM eigenvalue, which has multiplicity
two, and we concentrate on the xx-component of the Green’s dyadic
(the other components follow similarly). Then

Gxx(x, x′, kρ) =
∑
ne �=k

aneune,xx(x) + bkuk,xx(x) + ckuk,1,xx(x). (98)

Exploiting orthogonality (93)–(96) assuming the root functions have
been normalized as

〈uββn ,vββn 〉 = 1, n �= k, (99)

〈uββk ,vββk,1〉 = 〈uββk,1,v
ββ
k 〉 = 1, (100)
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we obtain

ane =
v̄ne,xx(x′)
γne + k2

ρ

, ck =
v̄k,xx(x′)
γk + k2

ρ

, (101)

bk =
v̄k,1,xx(x′)
γk + k2

ρ

− v̄k,xx(x′)q
γk + k2

ρ

−
k2
ρkv̄k,xx(x

′)
(γk + k2

ρ)2
(102)

where q = 〈uk,1,xx, uk,1,xx〉. Therefore

Gxx(r, r′) =
1
4π

∫ ∞
−∞

dkρkρH
(2)
0 (kρρ)

{ ∑
ne �=k

une,xx(x)v̄ne,xx(x′)
γne + k2

ρ

+ uk,xx(x)

(
v̄k,1,xx(x′)
γk + k2

ρ

− v̄k,xx(x′)q
γk + k2

ρ

−
k2
ρkv̄k,xx(x

′)
(γk + k2

ρ)2

)

+
uk,1,xx(x)v̄k,xx(x′)

γk + k2
ρ

}
(103)

leading to

Gxx(r, r′) =
1
4i

( ∑
ne �=k

une,xx(x)v̄ne,xx(x
′)H(2)

0 (kρneρ)

+
(
uk,xx(x)v̄k,1,xx(x′) + uk,1,xx(x)v̄k,xx(x′)

− uk,xx(x)v̄k,xx(x′)q
)
H

(2)
0 (kρkρ)

− ∂

∂kρ

(
uk,xx(x)v̄k,xx(x′)k3

ρH
(2)
0 (kρρ)

(kρ + i
√
γk)2

)∣∣∣∣∣
kρ=kρk

) (104)

The summation corresponds to rank one root functions (eigenfunc-
tions), and represents the residues due to first-order poles (38) in (36).
The other terms in (104), arising from the kth (multiplicity two) eigen-
value (bkuk,xx(x) + ckuk,1,xx(x) in (98)), provide the contribution

e0uk,xx(x)v̄k,xx(x′)H
(2)
0 (kρnρ)

+ e1

(
uk,xx(x)v̄k,xx(x′)

)′
H

(2)
0 (kρnρ)

+ e2uk,xx(x)v̄k,xx(x′)ρH
(2)
1 (kρnρ) (105)

to the Green’s function, where e0,1,2 are constants. Comparing (105)
and (42) we see that the contribution to the Green’s function from the
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root functions associated with multiplicity two eigenvalues correspond-
ing to nontrivial degeneracies, (105), has the same form as the Green’s
function contribution due to second-order residues, (42).

2.4.1. Example 1 — Homogeneously Filled Parallel Plates

Consider a parallel-plate structure, homogeneously filled with a medi-
um characterized by ε and µ0, with plate separation d. This can be
obtained from the structure depicted in Figure 1 if ε3 = ε, d2 = d, and
d1 = 0. It can be shown that the Green’s dyadic (32) has the form

G(x, x′, kρ) = x̂x̂rn(x, x′, kρ) + (ŷŷ + ẑẑ)rt(x, x′, kρ). (106)

where

rt(x, x′, kρ) =
cosh[p(x− x′ ∓ d)]− cosh[p(x + x′ − d)]

2p sinh pd
(107)

= sinh px<
sinh[p(d− x>)]

p sinh pd
(108)

rn(x, x′, kρ) =
cosh[p(x− x′ ∓ d)] + cosh[p(x + x′ − d)]

2p sinh pd
(109)

= cosh px<
cosh[p(d− x>)]

p sinh pd
(110)

for x ≷ x′, with p =
√

k2
ρ − k2, k2 = ω2µ0ε, and k2

ρ = k2
y+k2

z . It is clear
from the form of (106) that vertical currents excite vertical potentials,
whereas horizontal currents excite parallel, horizontal potentials (i.e.,
the dyadic is diagonal in this simple case; in (32) rc = 0).

The integrands are meromorphic in the lower-half complex kρ-
plane, with simple pole singularities at

sinh pnd = 0. (111)

Therefore, poles occur at pn = ±inπ/d, n = 0, 2, 3, . . . , such that

kρn =

√
k2 −

(nπ

d

)2
. (112)

Closing the integration contour in (31) with a semicircle of infinite
radius in the lower-half kρ-plane and invoking Cauchy’s theorem we
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obtain the Green’s components as a sum of residues,

G(r, r′) =
1
4i

∞∑
n=0

{
x̂x̂

εn
d

cos
(nπ

d
x
)

cos
(nπ

d
x′

)
+ (ŷŷ + ẑẑ)

2
d

sin
(nπ

d
x
)

sin
(nπ

d
x′

)}
H

(2)
0 (kρnρ)

(113)

where ε0 = 1, εn = 2 for n > 0. This discrete summation form
represents an expansion over the eigenfunctions in the vertical coordi-
nate, multiplied by a Green’s function for the radial direction.

The dyadic eigenfunctions are obtained in the form (58) and (75)
with ne = nh = n,

un,xx(x) = vn,xx(x) =
√

εn
d

cos
nπ

d
x, (114)

un,αα(x) = vn,αα(x) =

√
2
d

sin
nπ

d
x, (115)

un,xα(x) = vn,xα(x) = 0, α = y, z, (116)

γn =
(nπ

d

)2
− k2, n = 0, 1, 2, . . . . (117)

In this case the operator A = −(d2/dx2 + k2) is nonself-adjoint since
k is complex-valued. However, since k is constant with respect to x
the natural operator to consider for the homogeneous parallel-plate
waveguide is A = −d2/dx2, leading to a self-adjoint problem. By self-
adjointness, poles of multiplicity greater than one cannot occur. Thus,
the homogeneously-filled parallel-plate waveguide is manifestly self-
adjoint, and only residues corresponding to first-order poles (related
to eigenfunctions) are implicated in the Green’s function.

2.4.2. Example 2 — Two-Layer Medium

Consider the two-layer parallel-plate waveguide depicted in Figure 1.
The Hertzian potential is given as (18) where G(j,i)

π (r, r′) has the form
(30) or (31) with G(j,i)(x, x′, kρ) given by (32). The coefficients in (32)
are given by (33)-(35), where for (j, i) = (3, 3) the coefficients are

nt1(x, kρ) = (sinh p2d1 cosh p3x + (p2/p3) cosh p2d1 sinh p3x), (118)

nt2(x, kρ) = sinh p3(d2 − x)
= (sinh p3d2 cosh p3x− cosh p3d2 sinh p3x), (119)
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nn1 (x, kρ) = (N2
23 cosh p2d1 cosh p3x + (p2/p3) sinh p2d1 sinh p3x),

(120)
nn2 (x, kρ) = cosh p3(d2 − x)

= (cosh p3d2 cosh p3x− sinh p3d2 sinh p3x), (121)

Kc(kρ) = (N2
23 − 1) sinh p2d1 cosh p2d1 (122)

zte(kρ) = p3 sinh p2d1 cosh p3d2 + p2 cosh p2d1 sinh p3d2, (123)

ztm(kρ) = p3N
2
23 cosh p2d1 sinh p3d2 + p2 sinh p2d1 cosh p3d2, (124)

where pj =
√

k2
ρ − k2

j .
The dyadic integrand (32) is meromorphic in the complex kρ-

plane, leading to (36) in terms of residues R
(j,3)
n,t,c.

For eigenvalues having unit multiplicity the eigenfunctions in
region 3 have the form (58) and are, from (55)–(57) and (66)–(68),

u(3)
ne,xx(x) = Cne,xx

1
sinh ξ2d1

nn1 (x, κne) (125)

= Cne,xx
−ξ2

ξ3 sinh ξ3d2
nn2 (x, κne), (126)

v(3)
ne,xx(x) = C∗ne,xx

1
cosh ξ3d2

n̄n2 (x, κne) (127)

= C∗ne,xx
1

N
2 cosh ξ2d1

n̄n1 (x, κne), (128)

u(3)
nh,αα

(x) = Cnh,αα
Gα

ξ3 cosh ξ3d2
nt2(x, κnh) (129)

= Cnh,αα
−Gα

ξ2 cosh ξ2d1
nt1(x, κnh), (130)

v(3)
n,αα(x) = C∗n,αα

−1
cosh ξ3d2

n̄t2(x, κn) (131)

= C∗n,αα
ξ3

ξ2 cosh ξ2d1

n̄t1(x, κn), (132)

u(3)
n,xα(x) = Cn,αα

−1
sinh ξ3d2

nn2 (x, κn), (133)

v(3)
n,xα(x) = C∗n,xα

−1
sinh ξ3d2

n̄n2 (x, κn), (134)
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where ne indicates TM modes, nh indicates TE modes, and n can
represent either mode type. In the above, ξ2

j = κn − k2
j where

κnh = −γnh satisfies

zte(κnh) = 0, (135)

κne = −γne satisfies

ztm(κne) = 0, (136)

Gα =
ξ2z

tm

(N2 − 1)(ikα) sinh ξ2d1 sinh ξ3d2
, (137)

Cne,xx, C∗ne,xx, Cnh,αα, and C∗n,xα are independent constants, and C∗n,αα
is

C∗n,αα =
C∗n,xα(ikα)(N2 − 1)ξ3 cosh ξ2d1 cosh ξ3d2

ξ2z̄
te

. (138)

Comparing (118)–(121) and (125)–(134), it is clear that the
numerators of the Greens function coefficients (33)–(35) are related
to the eigenfunctions (corresponding to unit multiplicity eigenvalues).

As shown in the numerical results, multiplicity two eigenvalues
exist for certain combinations of electrical and structural parameters.
Associated functions corresponding to rank two root functions can be
obtained from (125)–(134) via (97),

uββn,1(x, γn) =
(

∂

∂γn
− c

)
uββn (x, γn), (139)

and normalized as (100). In this case the operator A = −
(
d2/dx2 +

k(x)
)

is manifestly nonself-adjoint, having multiplicity two eigenvalues
when

z(kρ)
∣∣
kρn

=
d

dkρ
z(kρ)

∣∣∣∣
kρn

= 0

with z being either zte or ztm in (123) or (124), respectively.

3. NUMERICAL RESULTS

The following numerical results are for the two-layer parallel-plate
waveguide shown in Figure 1, where d1 = d2 = d, ε3 = ε0, and
ε2 = (2.25 − iεi)ε0. For simplicity the component Gxx is examined;
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Table 1. Im(ε2) = 0.0, k0d = 1.303347.

ρ/d Gint.
xx Gresidue

xx

∣∣∣Gint.
xx −Gresidue

xx

Gint.
xx

∣∣∣× 100%

0.5 (0.101453,−0.213712) (0.102225,−0.213712) 0.326%

1.0 (1.297863,−0.173037) (1.298841,−0.173036) 0.075%

5.0 (−0.082335, 0.026255) (−0.082334, 0.026256) 0.002%

10.0 (0.049561, 0.001304) (0.049561, 0.001303) 0.002%

Table 2. Im(ε2) = −1.0, k0d = 1.303347.

ρ/d Gint.
xx Gresidue

xx

∣∣∣Gint.
xx −Gresidue

xx

Gint.
xx

∣∣∣× 100%

0.5 (0.063880,−0.176013) (0.064240,−0.176105) 0.198%

1.0 (−0.018109,−0.126584) (−0.018105,−0.126584) 0.003%

5.0 (0.002171,−0.001183) (0.002171,−0.001183) 0.000%

10.0 (−0.001426, 0.000508) (−0.001426, 0.000508) 0.000%

other components are similarly obtained. In all of the results the source
is a vertical electric dipole located at (x′, y′, z′) with x′/d = 0.25, y′/d =
z′/d = 0.0, and the observation point is (x, y, z) with x/d = 0.75 cm
and ρ =

√
y2 + z2 varying.

The dyadic Green’s function as a sum-of-residues, (36), has been
computed for the case of both single and multiple poles corresponding
to the plots shown in Figures 2–4. In Tables 1–3 the real-line inte-
gration form of the Greens function, (31), is compared to the sum-of-
residues form, (36).

The lossless case is considered in Table 1 and the case of Im(ε2) =
−1.0 is shown in Table 2. In both cases only first-order poles are
encountered, and the first five modes are used in the residue series.
Residues are evaluated via (38), with numerical derivatives computed
using Ridders’ method of polynomial extrapolation [24, p. 182]. The
modal degeneracy case, Im(ε2) = −1.735522, is shown in Table 3,
where the first two modes form the modal degeneracy (see Figure 4)
and the next three modes yield first-order residues. The second-order
residue is computed from (40) using numerical derivatives. In the
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Table 3. Im(ε2) = −1.7355219, k0d = 1.303347.

ρ/d Gint.
xx Gresidue

xx

∣∣∣Gint.
xx −Gresidue

xx

Gint.
xx

∣∣∣× 100%

0.5 (0.046295,−0.174910) (0.046885,−0.175013) 0.331%

1.0 (−0.033862,−0.120206) (−0.033995,−0.120254) 0.113%

5.0 (0.009484,−0.008429) (0.009491,−0.008445) 0.138%

10.0 (0.000393,−0.000841) (0.000393,−0.000842) 0.108%

Table 4. Im(ε2) = −1.735522, k0d = 1.303347.

ρ/d
∑

(Gresidue
xx )1st−order (Gresidue

xx )2nd−order

0.5 (−0.032638, 0.004325) (0.079523,−0.179338)

1.0 (−0.005760, 0.001105) (−0.028234,−0.121359)

5.0 (0.0, 0.0) (0.009491,−0.008445)

10.0 (0.0, 0.0) (0.000393,−0.000842)

event of a modal degeneracy the second-order residues provide the
main contribution to the Green’s function, as discussed later.

In all three tables the agreement between the Green’s functions is
quite good. In general, one observes that as ρ increases the agreement
between the two methods improves. Note that any disagreement
between the two methods is due either to numerical errors in evaluating
the integral form (31), or to errors evaluating the Hankel function
having complex argument in (36). In principle, the two Green’s
functions should agree exactly. No particular emphasis was placed
on refining the numerical methods utilized, the point of the paper
being analysis and interpretation of the residues in the case of modal
degeneracies.

For the case of a modal degeneracy the contributions to the
Green’s function component Gxx of the first order residues, correspond-
ing to eigenfunctions, and the second order residue, corresponding
to an associated function, is shown in Table 4. It is clear that the
second-order residue provides the dominant contribution to the Green’s
function.

Finally, in Figure 6 we show |Gxx| versus ρ/d for Im(ε2) = εi = 0.0,
εi = −1.0, and for the critical value εi = εic = −1.735522. It is
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Figure 6. |Gxx| versus distance ρ/d for the two-layer waveguide shown
in Fig. 1, ε3 = ε0, ε2 = (2.25 − iεi)ε0, and d1 = d2 = d, with εi = 0.0
(lossless case), εi = −1.0 (lossy case), and εi = −1.735523 (critical
value of loss resulting in modal degeneracy and associated double pole).
Results from the real-line integration (31) and the sum of residues (36)
(using the first five modes) are shown.

interesting to note that the mode attenuation for εi = εic is less than
for εi = −1.0, even though the dielectric loss is greater. This is due to
the fact that as loss increases the dominant mode is “pushed” into the
air-region (upper region) of the waveguide.

4. CONCLUSIONS

The dyadic Green’s function for inhomogeneous parallel-plate wave-
guides has been developed as a residue series in the presence of
nontrivial modal degeneracies. It was shown that first-order dyadic
residues correspond to eigenfunctions of the structure, whereas second-
order dyadic residues lead to both eigenfunctions and associated
functions that occur in the case of modal degeneracies. A new dyadic
root function representation of the Hertzian potential Green’s dyadic
was developed as an aid to interpreting the dyadic residue series in
the case of modal degeneracies, and numerical results for a two-layer
parallel-plate waveguide were presented.
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