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This paper continues the author’s study initiated in

papers [1–3]; we use the notation and terminology of

these papers. In Section 2, we establish new properties

of the space L1(}, τ) of integrable (with respect to the

trace τ) operators affiliated with the semifinite von

Neumann algebra }. We show that if A and B are a

hyponormal and a cohyponormal τ-measurable oper-

ator, respectively, and AB ∈ L1(}, τ), then BA ∈

L1(}, τ) and ||BA||1 ≤ ||AB||1; moreover, τ(AB) = τ(BA),

and for self-adjoint A and B, we have τ(AB) = τ(BA) ∈ R.

We prove that if A ∈ L1(}, τ), then τ(A*) = . We

obtain a trace inequality for a pair of projections in },

which characterizes trace in the class of all positive

normal functionals on }.

In Section 3, we establish new properties of a τ-

measurable idempotent (A = A2). We obtain a useful

factorization of such an operator; using it, we prove

that τ(A) ∈ R+ for an idempotent A ∈ L1(}, τ). There-

fore, if A, A2 ∈ L1(}, τ) and A = A3, then τ(A) ∈ R. We

show that if the difference of two τ-measurable idem-

potents is a positive operator, then this difference is a

projection. We prove that a semihyponormal τ-mea-

surable idempotent is a projection. We also show that a

hyponormal τ-measurable tripotent (A = A3) is the dif-

ference of two orthogonal projections.

τ A( )

1. NOTATION AND DEFINITIONS

Suppose that } is a von Neumann algebra of oper-

ators on a Hilbert space *, }pr is the lattice of projec-

tions on }, I is the identity of }, P⊥ = I – P for

P ∈ }pr, and }+ is the cone of positive elements

in }. If P, Q ∈ }pr, then the projection P ∧ Q is

defined by (P ∧ Q)* = P* ∩ Q* and P ∨ Q = (P ⊥ ∧

Q ⊥)⊥ is the projection onto .

A mapping ϕ: }+ → [0, +∞] is called a trace if
ϕ(X + Y) = ϕ(X) + ϕ(Y), ϕ(λX) = λϕ(X) for all X, Y ∈
}+, λ ≥ 0 (it is assumed that 0 · (+∞) ≡ 0), and ϕ(Z*Z) =

ϕ(ZZ*) for all Z ∈ }. A trace ϕ is said to be faithful if

ϕ(X) > 0 for all X ∈ }+, X ≠ 0; it is semifinite if ϕ(X) =

sup{ϕ(Y): Y ∈ }+, Y ≤ X, ϕ(Y) < +∞} for each X ∈ }+;

and it is normal if Xi  X (Xi, X ∈ }+) ⇒ ϕ(X) =

supϕ(Xi). For a trace ϕ, we set  = {X ∈ }+: ϕ(X) <

+∞} and Mϕ = linC . The restriction ϕ |

admits a well-defined extension by linearity to a func-
tional on Mϕ, which we denote by the same letter ϕ.

An operator on * (not necessarily bounded or
densely defined) is said to be affiliated with a von Neu-
mann algebra } if it commutes with any unitary oper-
ator in the commutator subalgebra }' of }. A self-
adjoint operator is affiliated with } if and only if all
projections in its spectral decomposition of unity
belong to }.

In what follows, τ is a faithful normal semifinite
trace on }. A closed operator X affiliated with }

whose domain $(X) is dense in * is said to be τ-mea-

surable if, for any ε > 0, there exists a P ∈ }pr such that

Lin P* Q*∪( )
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