ISSN 1064-5624, Doklady Mathematics, 2016, Vol. 93, No. 1, pp. 16–19. © Pleiades Publishing, Ltd., 2016. Original Russian Text © A.M. Bikchentaev, 2016, published in Doklady Akademii Nauk, 2016, Vol. 466, No. 2, pp. 137–140.

= MATHEMATICS ===

Trace and Integrable Operators Affiliated with a Semifinite von Neumann Algebra

A. M. Bikchentaev

Presented by Academician I.A. Ibragimov July 1, 2015

Received July 24, 2015

Abstract—New properties of the space of integrable (with respect to the faithful normal semifinite trace) operators affiliated with a semifinite von Neumann algebra are found. A trace inequality for a pair of projections in the von Neumann algebra is obtained, which characterizes trace in the class of all positive normal functionals on this algebra. A new property of a measurable idempotent are determined. A useful factorization of such an operator is obtained; it is used to prove the nonnegativity of the trace of an integrable idempotent. It is shown that if the difference of two measurable idempotents is a positive operator, then this difference is a projection. It is proved that a semihyponormal measurable idempotent is a projection. It is also shown that a hyponormal measurable tripotent is the difference of two orthogonal projections.

DOI: 10.1134/S1064562416010075

This paper continues the author's study initiated in papers [1-3]; we use the notation and terminology of these papers. In Section 2, we establish new properties of the space $L_1(\mathcal{M}, \tau)$ of integrable (with respect to the trace τ) operators affiliated with the semifinite von Neumann algebra \mathcal{M} . We show that if A and B are a hyponormal and a cohyponormal τ -measurable operator, respectively, and $AB \in L_1(\mathcal{M}, \tau)$, then $BA \in$ $L_1(\mathcal{M}, \tau)$ and $||BA||_1 \le ||AB||_1$; moreover, $\tau(AB) = \tau(BA)$, and for self-adjoint *A* and *B*, we have $\tau(AB) = \tau(BA) \in \mathbb{R}$. We prove that if $A \in L_1(\mathcal{M}, \tau)$, then $\tau(A^*) = \overline{\tau(A)}$. We obtain a trace inequality for a pair of projections in \mathcal{M} , which characterizes trace in the class of all positive normal functionals on \mathcal{M} .

In Section 3, we establish new properties of a τ measurable idempotent ($A = A^2$). We obtain a useful factorization of such an operator; using it, we prove that $\tau(A) \in \mathbb{R}^+$ for an idempotent $A \in L_1(\mathcal{M}, \tau)$. Therefore, if $A, A^2 \in L_1(\mathcal{M}, \tau)$ and $A = A^3$, then $\tau(A) \in \mathbb{R}$. We show that if the difference of two τ -measurable idempotents is a positive operator, then this difference is a projection. We prove that a semihyponormal τ -measurable idempotent is a projection. We also show that a hyponormal τ -measurable tripotent ($A = A^3$) is the difference of two orthogonal projections.

1. NOTATION AND DEFINITIONS

Suppose that \mathcal{M} is a von Neumann algebra of operators on a Hilbert space $\mathcal{H}, \mathcal{M}^{pr}$ is the lattice of projections on \mathcal{M} , I is the identity of \mathcal{M} , $P^{\perp} = I - P$ for $P \in \mathcal{M}^{\mathrm{pr}}$, and \mathcal{M}^+ is the cone of positive elements in \mathcal{M} . If $P, Q \in \mathcal{M}^{\text{pr}}$, then the projection $P \wedge Q$ is defined by $(P \land Q)\mathcal{H} = P\mathcal{H} \cap Q\mathcal{H}$ and $P \lor Q = (P^{\perp} \land$ $Q^{\perp})^{\perp}$ is the projection onto $\overline{\text{Lin}(P\mathcal{H} \cup Q\mathcal{H})}$.

A mapping $\varphi: \mathcal{M}^+ \to [0, +\infty]$ is called a trace if $\varphi(X + Y) = \varphi(X) + \varphi(Y), \ \varphi(\lambda X) = \lambda \varphi(X) \text{ for all } X, Y \in$ $\mathcal{M}^+, \lambda \ge 0$ (it is assumed that $0 \cdot (+\infty) \equiv 0$), and $\varphi(Z^*Z) =$ $\varphi(ZZ^*)$ for all $Z \in \mathcal{M}$. A trace φ is said to be faithful if $\varphi(X) > 0$ for all $X \in \mathcal{M}^+$, $X \neq 0$; it is semifinite if $\varphi(X) =$ $\sup\{\varphi(Y): Y \in \mathcal{M}^+, Y \leq X, \varphi(Y) < +\infty\}$ for each $X \in \mathcal{M}^+$; and it is normal if $X_i \nearrow X(X_i, X \in \mathcal{M}^+) \Rightarrow \varphi(X) =$ $\sup \varphi(X_i)$. For a trace φ , we set $\mathfrak{M}^+_{\varphi} = \{X \in \mathcal{M}^+ : \varphi(X) < \varphi(X) < \varphi(X) \}$ $+\infty$ } and $\mathfrak{M}_{\phi} = lin_{\mathbb{C}}\mathfrak{M}_{\phi}^{+}$. The restriction $\phi \mid \mathfrak{M}_{\phi}^{+}$ admits a well-defined extension by linearity to a functional on \mathfrak{M}_{ω} , which we denote by the same letter φ .

An operator on $\mathcal H$ (not necessarily bounded or densely defined) is said to be affiliated with a von Neumann algebra \mathcal{M} if it commutes with any unitary operator in the commutator subalgebra \mathcal{M}' of \mathcal{M} . A selfadjoint operator is affiliated with \mathcal{M} if and only if all projections in its spectral decomposition of unity belong to \mathcal{M} .

In what follows, τ is a faithful normal semifinite trace on \mathcal{M} . A closed operator X affiliated with \mathcal{M} whose domain $\mathfrak{D}(X)$ is dense in \mathcal{H} is said to be τ -measurable if, for any $\varepsilon > 0$, there exists a $P \in \mathcal{M}^{\text{pr}}$ such that

Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kremlevskaya ul. 18, Kazan, 420008 Tatarstan, Russia e-mail: airat.bikchentaev@kpfu.ru