
 

Please fill in the name of the event 
you are preparing this manuscript 
for. 

2021 SPE Annual Caspian Technical Conference 

Please fill in your 6-digit SPE 
manuscript number. 

SPE-207004-MS 

Please fill in your manuscript title. 
The Use of Neural Network Technologies in Prediction the Reservoir Properties of 
Unconsolidated Reservoir Rocks of Shallow Bitumen Deposits 

Please fill in your author name(s) and company affiliation. 
Given Name Middle Name Surname Company 

Marat F Validov Kazan Federal University 

Danis K Nurgaliev Kazan Federal University 

Vladislav A Sudakov Kazan Federal University 

Timur A Murtazin Kazan Federal University 

Kseniya A Golod Kazan Federal University 

Albina R Galimova Kazan Federal University 

Ruslan R Shamsiev Kazan Federal University 

Azat A Lutfullin PJSC «Tatneft» 

Marat I Amerhanov PJSC «Tatneft» 

Niyaz A Aslyamov PJSC «Tatneft» 
 

This template is provided to give authors a basic shell for preparing your manuscript for submittal to an SPE meeting or 
event. Styles have been included (Head1, Head2, Para, FigCaption, etc.) to give you an idea of how your finalized paper will 
look before it is published by SPE. All manuscripts submitted to SPE will be extracted from this template and tagged into an 
XML format; SPE’s standardized styles and fonts will be used when laying out the final manuscript. Links will be added to 
your manuscript for references, tables, and equations. Figures and tables should be placed directly after the first paragraph 
they are mentioned in. The technical content of your paper WILL NOT be changed. Please start your manuscript below. 

 
Abstract 
 

In the conditions of the dynamically changing conjuncture of the oil and gas market, there is an urgent 

need to reduce the cost of oil production and increase the efficiency of development, this is especially 

important for the local ultra-viscous oil. In this regard, it is necessary to optimize costs at all stages, starting 

from the geological exploration and even at the stage of completion of the development process. For ultra-

viscous oil deposits, this is especially relevant at the stage of assessing the resource potential of a separate 

uplift of any of the fields, when the only reliable way to perform a high-frequency section at shallow 

depths is to drill appraisal wells with full core sampling. An additional load is exerted by the period 

between core extraction and obtaining information about the flow properties of each of the samples. By 

themselves, standard core studies are complicated by the fact that sand rocks of weakly cemented 

bitumoids can often be destroyed during experiments. 

In this regard, the use of new approaches, including digital ones, which allow us to make quick 

decisions on a part of the geological section in the area of the appraisal well and on the uplift as a whole, 

are highly in demand. 

This article describes the methods that allow the determining of flow properties for uncemented (loose 

sands) rocks in Permian sediments. More than 25,000 core samples were studied from 805 wells at several 

fields of the Republic of Tatarstan. 

The technology used allows us to calculate a continuous curve of volumetric bitumen saturation in the 

conditions of complete or partial absence of core at the well. 

This paper presents the results of creating an algorithm for automatic prediction of weight bitumen 

saturation in a sand pack of the Sheshminsky horizon of the Permian system using neural network 

technologies, as well as using an alternative calculation method. 
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Introduction 
 

In total, more than 30 ultra-viscous oil deposits have been explored in the Republic of Tatarstan, of which 

more than 20 deposits are in active development by the use of steam-assisted gravity drainage method. 

The main object of development in the fields of ultra-viscous oil is the sand pack of the Ufimian tier. As 

a result of geological and field studies of exploration wells, it was made known that oil/bitumen-saturated 

sandstones of the Ufimian tier are characterized by a number of geological and geophysical features 

(Khisamov et al., 2010). 

The paleotectonic factor decisively controlled the differentiated nature of bitumen distribution and the 

scale of bitumen concentration. It also explains the features of their uneven spatial distribution by the 

presence of paleotraps. Most of the explored bitumen resources are concentrated on the eastern side of the 

Melekess depression and the western slope of the South Tatar Arch, but their maximum amount falls on 

specific regions. 

The lithofacies factor has a great influence on the distribution of bitumen. The complex situation of 

sedimentation in the Permian period predetermined significant changes in the volume and composition of 

bitumen-containing complexes, screening thicknesses and reservoir properties of rocks. Delta formations 

of the Ufimian tier and shallow-sea (terrigenous-carbonate and carbonate-terrigenous) sediments of the 

Kazan complex turned out to be favorable for the accumulation of bitumen. Among the rocks of this age, 

narrower lithofacies are distinguished, where a combination of collectors and seals is noted. The main 

zones of increased bitumen concentration in the Ufimian and Kazan deposits (the western slope of the 

South Tatar Arch, the eastern side of the Melekess depression) are associated with them. Lithofacial 

conditions are less clearly expressed in the west of the region in typical marine carbonate sediments, 

especially in the zones covered by pre-Tatar and pre-Neogene erosion, due to the" fallout " of a significant 

part of the reservoir rocks of the Kazan age from the section. 

The underground waters of the Permian sediments were the medium for the formation of HC deposits 

in them, and they have had and continue to have an impact on the degree of their preservation, the 

physicochemical state of hydrocarbons and the modern hydrodynamic regime of HC deposits. 

The increased oil content of the Permian deposits on the territory of Tatarstan is of a secondary nature 

and is due to the vertical migration of hydrocarbons from the lower and middle carboniferous, since the 

deposits of the Permian system have not reached the conditions where the generation of hydrocarbons 

begins. 

Ancient uplifts played an important role in the process of directed migration. Their combination with 

the surrounding paleodepressions provided an intensive inflow and accumulation of hydrocarbons. 

The object of the study is the deposits of the Sheshminsky horizon of the Ufimian tier of the Permian 

system. The Sheshminsky horizon consists of two parts: the lower one is sandy − clayey and the upper 

one is sandy. The sandstones of the Sheshminsky horizon were mainly distributed on the western slope of 

the South Tatar Arch. 

The porosity of sandstones reaches 30% or more, with varying clay content from 2 to 12%. The 

mineralization of reservoir waters ranges from 2 to 7 g / l. In addition, due to the high viscosity of 

naphthides in the formation conditions and a slight depression on the formations created during drilling, 

a deep zone of drilling fluid penetration is not formed in the intervals of oil-saturated reservoirs, due to 

which the necessary parameters are determined without significant distortions (Khisamov et al., 2007). 

To date, there is no unified method for calculating the flow properties for ultra-viscous oil deposits in 

Tatarstan, and the presence of loose sands cemented with oil causes problems in quantifying the weight 

of bitumen saturation (Khisamov, Bazarevskaya et al., 2017). 

The main purpose of this work is to develop approaches and mathematical algorithms for automating 

the processes of predicting weight bitumen saturation and determining the bitumen saturation thickness. 

To date, most of the methods for determining flow properties are applicable for cemented rocks of 

reservoirs of shallow depth bitumen deposits, and for uncemented (loose sands) this method is not 
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applicable for quantitative assessment of parameters and requires core sampling in the interval of interest. 

The reason for the poor convergence is mainly due to the high content of bound water in loose sands, as 

well as the substitution of water or bitumen with gas. The presence of a large core sample and a 

quantitative forecast of parameters using neural network technologies allows us to reliably describe this 

type of reservoir. 

 

Creating a representative sample of wells 
 

As a result of many years of work on searching for HC oil fields, a unique database of Permian sediment 

core was accumulated. After a detailed analysis and rejection of a small proportion of substandard studies, 

a database of 805 wells was constructed according to the general list of deposits, of which, in the end, 

complete information was provided for 519 that met the sampling criteria and was used in this work. 

As the initial data for the development of the technology, the results of the study of core material and 

GIS at several deposits of ultra-viscous oil of the Republic of Tatarstan were used. 

Since the main goal is to obtain a mathematical model for predicting bitumen saturation, in addition to 

standard core studies, geophysical studies have also been carried out in previously drilled wells, which is 

represented by electrical, and radioactive methods. In addition, acoustic methods are prescribed in 

individual wells to clarify the acoustic characteristics of the section. The following geophysical parameters 

(Table 1) and core data (Table 2) were used to perform this work: 

 
Table 1 – List of geophysical parameters used in the work 

№ OH param Unitless Description 

1 PZ омм Potential Resistivity 

2 SP мВ Spontaneous Potential 

3 BK омм Lateral Log Resistivity 

4 IK омм Conductivity 

5 GK u/h Gamma Ray 

6 NGK u.е. Neutron gamma 

7 RHOB g/cм3 Bulk Density 

8 NNKb u.е. Neutron Far 

9 NNKm u.е. Neutron Near 

10 W % Neutron Porosity 

 

Table 2 – List of core parameters used in the work 

№ Core param Unitless Description 

1 Кvol.bit % The volumetric bitumen saturation coefficient 

2 Kweight.bit % The weight bitumen saturation coefficient 

3 CKH mD Permeability 

4 CPOR % Core porosity 

5 CRHOB g/см3 Bulk density 

6 CSWIRR % Core water Irreducible 

7 CDENS gсм3 Core grain density 

8 P_POR u.е. Formation Resistivity Factor (F) 

9 P_SAT u.е. Resistivity Index (RI) 

 

This complex of geophysical parameters is the necessary minimum and characterizes the capacitance, 

lithological and filtration properties of rocks. 

The method of spontaneous polarization (SP) is used to divide the section into clay and non-clay 

differences, establish the boundaries of the layers and their correlation. 

In the database, the parameters of GK and NGK were replaced with double difference parameters of 

AG, this helped to evaluate clayey and dense components in the section. 

To determine the saturation of the collectors, the data listed above were supplemented by electrometry 

methods: BK, IK, PZ. 

The filtration properties of the rock were calculated according to the data of compensatory neutron 

logging: NNKb and NNKm. The method is based on the joint interpretation of the materials of the CNC, 

GK and DS, since the neutron porosity is significantly affected by the well diameters and lithology. 
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To identify gas-containing formations and gas caps in the dome parts of the uplifts, the data of the 

RHOB were used, which makes it necessary to conduct it at the HO fields. In gas-containing formations, 

it is necessary to apply a set of methods for calculating porosity, including RHOB and NNKb. 

Each geophysical parameter has its own "weight" depending on the problem solved with its use and 

the features of a particular type of section. 

Later, when using equal input parameters, a classification of section types was carried out, which 

considered not only the location of each individual deposit relative to each other, but also the "weight" of 

the geophysical parameters. 

To establish core-to-core relationships, an exact core binding is not required. It is enough to index the 

core data by belonging to stratigraphic layers. However, when establishing "core-OH" type links, the core 

should be linked, since, as a rule, the depths specified during core selection require adjustment and linking 

to the OH depths. 

To link the "core-OH", OH curves were previously interpreted to obtain a continuous porosity curve. 

At the first stage, the general shift (linear shift) is searched for by linking, then elastic linking occurs, 

which implies a more change in the distances between the core points for better convergence with OH 

data, such discrepancies can be explained by different factors ranging from the curvature of wells and 

ending with the tightening speed when recording the linking GK on the core in the core storage. 

 

Analysis of petrophysical connections for the calculation of flow properties 

 
To identify petrophysical links for calculating flow properties, a correlation analysis was performed to 

identify the relationship between the data series of the input set. This algorithm is used to estimate the 

expected dependence of factors.  

To do this, an array of core and OH data sets are used by the input in order to identify the correlation 

relationship for each method separately. The correlation relationship between the OH curves is revealed 

to determine the relationship between the geophysical parameters, as a result, a matrix is constructed 

(Table 3). A similar procedure is carried out for core values (Table 4). 

 
Table 3 - Correlation analysis using GIS on one of the deposits 

OH BK GK IK NGK NNKb NNKm PZ RHOB PS W 

BK 1.00 -0.40 0.24 0.25 0.29 0.36 0.45 0.24 0.04 -0.21 

GK -0.40 1.00 -0.19 -0.32 -0.40 -0.46 -0.26 -0.30 0.05 0.27 

IK 0.24 -0.19 1.00 -0.08 -0.03 0.03 0.61 -0.06 -0.13 0.06 

NGK 0.25 -0.32 -0.08 1.00 0.94 0.89 -0.05 0.63 -0.13 -0.91 

NNKb 0.29 -0.40 -0.03 0.94 1.00 0.94 0.00 0.71 -0.06 -0.92 

NNKm 0.36 -0.46 0.03 0.89 0.94 1.00 0.06 0.70 -0.10 -0.88 

PZ 0.45 -0.26 0.61 -0.05 0.00 0.06 1.00 0.05 -0.01 0.07 

RHOB 0.24 -0.30 -0.06 0.63 0.71 0.70 0.05 1.00 0.10 -0.67 

PS 0.04 0.05 -0.13 -0.13 -0.06 -0.10 -0.01 0.10 1.00 0.07 

W -0.21 0.27 0.06 -0.91 -0.92 -0.88 0.07 -0.67 0.07 1.00 

 
Table 4 - Correlation analysis using core data on one of the deposits 

Core Кvol.bit Kweight.bit CKH CPOR CRHOB CSWIRR CDENS P_POR P_SAT 

Кvol.bit 1.00 0.86 0.39 0.52 -0.29 -0.70 -0.52 -0.45 0.26 

Kweight.bit 0.86 1.00 0.54 0.72 -0.32 -0.71 -0.70 -0.47 0.28 

CKH 0.39 0.54 1.00 0.64 -0.26 -0.47 -0.63 -0.38 0.25 

CPOR 0.52 0.72 0.64 1.00 -0.35 -0.75 -0.97 -0.63 0.32 

CRHOB -0.29 -0.32 -0.26 -0.35 1.00 0.22 0.46 0.23 0.01 

CSWIRR -0.70 -0.71 -0.47 -0.75 0.22 1.00 0.72 0.64 -0.38 

CDENS -0.52 -0.70 -0.63 -0.97 0.46 0.72 1.00 0.59 -0.34 

P_POR -0.45 -0.47 -0.38 -0.63 0.23 0.64 0.59 1.00 -0.27 

P_SAT 0.26 0.28 0.25 0.32 0.01 -0.38 -0.34 -0.27 1.00 

The analysis of the information obtained allows us to assess the significance of the difference between 

certain parameters according to OH and core values. This will make it possible to use closely correlated 
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methods in the future in tasks for calculating flow properties and isolating lithology. Also, the information 

received was used to configure features that were missing or were recorded incorrectly. 

To calculate continuous porosity and oil saturation curves in the conditions of complete or partial 

absence of core at the well, it is necessary to determine the correlation between OH curves and core data. 

Table 5 below shows an example of correlations between OH curves and the most "weighted" core 

values separately. 

 
Table 5 - Correlation analysis using core data on one of the deposits 

Core/OH BK GK IK NGK NNKb NNKm PZ RHOB PS W 

Кvol.bit -0.01 0.08 0.29 -0.52 -0.51 -0.48 0.33 -0.35 -0.04 0.57 

Kweight.bit 0.00 0.07 0.21 -0.59 -0.60 -0.58 0.22 -0.46 -0.01 0.67 

CKH -0.03 0.09 0.05 -0.42 -0.44 -0.42 0.06 -0.44 -0.05 0.50 

CPOR -0.21 0.23 0.04 -0.63 -0.67 -0.67 0.00 -0.63 0.01 0.70 

CRHOB -0.11 0.09 -0.01 0.08 0.14 0.10 0.07 0.19 0.12 -0.13 

CSWIRR 0.08 -0.15 -0.14 0.49 0.51 0.50 -0.15 0.43 0.04 -0.54 

CDENS 0.18 -0.21 -0.02 0.62 0.67 0.66 0.04 0.62 -0.03 -0.69 

P_POR 0.17 -0.18 0.03 0.43 0.46 0.44 -0.02 0.36 0.03 -0.47 

P_SAT -0.01 0.11 0.10 -0.17 -0.19 -0.19 0.07 -0.18 -0.09 0.22 

 

Data preprocessing 
 

Due to the fact that the OH methods were recorded by different equipment, a preliminary data 

preprocessing – normalization was applied to bring the measurements to a single scale. 

Among the available parameters, those that can have a greater impact on the predicted value are 

selected. As a numerical characteristic of the probabilistic relationship, the r-Pearson correlation 

coefficients are used, the values of which vary in the range from -1 to +1. 

Table 5 shows that for this field, the curves for OH - IK, BK, PZ, NNKb, NNKm, RHOB and W have 

a very good correlation with the core. 

Since the main desired value was the weight bituminous saturation of the core, the OH methods with 

an average and high degree of influence are distinguished: W, RHOB, NNKb and NNKm. 

Figure 1 shows box-plots that display the spread of Pearson correlation coefficients by OH methods 

for each field. From this figure, it can be seen that the medians of a number of correlation coefficients and 

their maximum (or minimum) values are mostly outside the |0.5| level for the already selected methods. 

This can be traced in 9 out of 11 deposits, which confirms the choice of criteria that are highlighted by the 

analysis of the average values of correlations. 

Such methods as BK and IK have the same behavior on the box-plots. Although the average values of 

correlations indicate a weak relationship between the values under consideration and the weight of 

bitumen saturation, it can be noted that in 6 fields out of 11 at certain wells, the maximum value of 

coefficients of these methods exceeds the level of 0.75, which may indicate a high degree of connection 

between these criteria and bitumen saturation. 

Therefore, in the future, we will use parameters that have shown good convergence with the weight 

bitumen saturation - W, RHOB, NNKb and BK. As a confirmation of the selected OH methods for each 

of the criteria, data for all wells were combined into one array, on the basis of which quantile-quantile 

graphs were constructed (Figure 2). 

Some parameters have a strongly asymmetric distribution, close to the log. Since large values, available 

even in a small amount, strongly affect the results of the neural network, a logarithmic transformation was 

applied to such parameters. The logarithmic transformation is applied to the data of the BK and NNKb 

parameters: 𝑥̃ = ln⁡(𝑥), where ln is the natural logarithm (Figure 3). 
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Figure 1-Box-plots of the Pearson correlation coefficients spread by OH methods for each field 

  

Field 1 Field 2 

Field 3 Field 4 Field 5 

Field 6 Field 7 Field 8 

Field 9 Field 10 Field 11 
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Figure 2 - Quantile-quantile graphs for OH with a high and medium degree of influence 

 

 
Figure 3-Quantile-quantile graphs for BK and NNKb after logarithmic transformation 

 

Next, for a single parameter, the search for "reference" and "outgoing" wells is performed: 

1. For each well, the average value is calculated 𝑥̅ =
∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 

2. If x > Q (50%) +0.8*(Q (75%)-Q (50%)) or x < Q (50%)-0.8*(Q (25%)-Q (50%)), then the well 

with such an average is considered to be out of the general series. Q (50%), Q (75%), Q (25%) - 

quartiles of a series of averages; 

3. 3. The" reference " well is chosen based on the average value of which is located closest to the 

median of the series of averages (without considering the outlier values) (Figure 4). For the 

criterion for the reference well, the average and standard deviation are  

considered: 
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𝑠 = √
∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

𝑛 − 1
 

 

4. Then the values of the "departing" wells are corrected according to the formula (Figure 5):  

 
𝑥𝑖𝑗−𝑚𝑖

𝑠𝑖
∙ 𝑠ст +𝑚𝑐т , where 

 

𝑚𝑖, 𝑠𝑖 , mean and standard deviation of the i-th well criterion, 

𝑚𝑐т, 𝑠ст, - the mean and standard deviation of the reference well 

 𝑥𝑖𝑗– the j-th value of the criterion in the i-th well 

 

5. Next, the data is normalized. The average and standard deviation of each parameter is calculated 

for the entire field at once. Recalculation of the values of the curves in each well according to the 

formula: 

 
𝑥𝑖𝑗 −𝑚𝑖

𝑠𝑖
𝑚𝑐т, where 

 
𝑚𝑖, 𝑠𝑖– mean and standard deviation of the lifting criterion, 

𝑥𝑖𝑗 ⁡– the j-th value of the criterion in the i-th well 

 

After normalization, the graphs show (Figure 4) that the data is concentrated relatively close to the 

average of the "reference well". 

 

    

W RHOB BK NNKb 

 
Figure 4-Graphs of the average GIS values for wells on the example of one of the fields 
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Before correction After normalization 
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RHOB 

  

BK 

  

NNKb 

  
 

Figure 5 - Graphs of density functions for wells for various GIS methods on the example of one of the fields before and after 
normalization 
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Core data rejection 
 

Since a significant amount of core is represented from the interval of interest, the weight bitumen 

saturation for the core is determined as the most reliable and representative indicator. As a forecast of the 

weight bituminous saturation according to OH, the K.bit.weight according to the core will be used, 

therefore, before developing the mathematical apparatus, it is necessary to prepare data on the core – 

rejection of "outgoing values" according to the K.bit.weight. core, so as not to distort the training sample. 

The criteria by which the points on the core were excluded were reduced to the fact that at the initial 

stage, obvious departures along the W and Kp along the core were visually evaluated. Wells where there 

were no Kp values for the core were also evaluated, and values were also rejected in these places (Figure 

6). For a more reliable assessment, "synthetic" curves of weight bitumen saturation were constructed using 

multivariate regression for each well and an assessment was made at a qualitative level of how the points 

behave on the Kweight.bit.core. relative to the synthetic curve. This rejection made it possible to more 

accurately adjust and calibrate the mathematical model, which ultimately greatly affects the forecast of 

weight bitumen saturation. 

 

 
 

Figure 6 - Example of rejection of weight bitumen saturation by core 
 

   
 

Figure 7 - Cross-plots of comparison before and after rejection of weight bitumen saturation by core 
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Development of a mathematical algorithm 
 

After preprocessing the data, 4 curves were selected that showed good convergence with the weight 

bitumen saturation - W, RHOB, NNKb and BK. In the future, work on the forecast of weight bitumen 

saturation (Kweight.bit.) will be carried out using these OH methods. However, in addition to the K.bit. 

forecast, there are also tasks for the allocation of stratigraphic chops and for the classification of lithology, 

where we used the entire set of OH after pre-processing. 

 

Allocation of stratigraphic 

 

The primary task was to automatically determine the zone of interest – stratigraphic chops using a 

logistic regression algorithm trained on the results of manual correlation of layers. The developed 

algorithm allows you to automatically allocate stratigraphic chops for the roof and sole of the sand pack 

of the Sheshminsky horizon. 

Stratigraphic chops are distinguished by the curves of the GK, NNKb, BK, for this purpose, training is 

conducted on a representative set of wells (Validov, 2017). 

According to preliminary estimates, the automation of the process of selecting stratigraphic chops is 

90%. On a set of 600 wells, the processing time spent by the machine is about 2 minutes. As a rule, about 

10% of wells, even after quality control, have some deviations, as a result of which such wells must be 

processed manually. 

 

 
 

Figure 8 - Diagram of the automatic operation of the module on stratigraphic chops 
 

 

Selection of lithology 

 

Lithological splitting of the section is one of the conditions for the prediction of weight bitumen 

saturation. For high-quality automatic selection of rock lithology, it is necessary to prepare a 

representative set of lithological types in advance and select the optimal neural network algorithm. For 

this purpose, the lithology was pre-selected manually and the optimal algorithm for selecting the lithology 

was selected. 

To solve the problem of rock classification (lithology selection), the library's machine learning tools 

were used Keras.py. Keras allows you to build a neural network of direct propagation by adding layers 

one after another. The neural network architecture is a multilayer perceptron (Figure 9). The first layer 

accepts input data (Input Layer) in the form of a vector of values of six curves at a specific depth. Next 
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comes 2 Dense layers (Hidden Layer) with 256 neurons in each, the activation function is ReLU. The 

Dense layer type means that it is a fully connected layer, where each neuron of the previous layer is 

connected to each neuron of the next layer. The last layer (Output Layer) is also fully connected with the 

softmax activation function to display with accuracy that the data belongs to a certain class. 

Relu is an activation function that skips values greater than zero, equates negative values to zero. This 

is done so that the function becomes nonlinear and is able to describe complex patterns. Dropout is turning 

off part of the neurons in the layer to avoid overtraining, and regularization. Categorical_crossentropy is 

used as an error function, where categorical means a set of classes in the output, and crossentropy is used 

to count errors during softmax activation. 

 

 
 

Figure 9 - Basic algorithm for the selection of lithology 
 

For a qualitative assessment of the lithology, the following lithological types of rocks were identified: 

1. Clay-code 1; 

2. Sandstone-code 2; 

3. Carbonated sandstone-code 3; 

4. Carbonate rock-code 4; 

5. Gas-saturated sandstone-code 5. 

 

The following are used as training data: 

1. Normalized data – GK, NNKb, W, RHOB; 

2. A discrete lithology curve selected manually. 

 

Figure 10 and Table 6 show the results of the neural network algorithm and a point-by-point 

comparison of the selected lithotypes when starting at 450 wells. The table shows that the selection of 

intervals represented by sandstone shows high convergence (the neural network algorithm identifies the 

lithological type - "sandstone" correctly in 95% of cases). 

 

When identifying lithology interlayers with low reservoir properties, there is an increase in uncertainty 

(Korolev et al., 2018). This effect is manifested, among other things, when interpreted manually and is 

associated with the fact that the rocks of the "carbonated sandstone/limestone" series have relatively 

similar readings on the OH curves of the standard logging complex. Considering the fact that the method 

of extraction of HC is not carried out from sandstone layers less than 6 meters, this effect is not critical 

when isolating lithology. 
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Figure 10-Plates for wells where training and testing of algorithms for the allocation of lithology were carried out (FACIES – 
lithology was selected manually, ANN – lithology was selected using a neural network algorithm). 

 
Table 6-Classification table for differentiation into 4 classes, R=0.88 

  
   Neuron network algorithm 

E
x
p
e
rt

 

in
te

rp
re

ta
ti
o

n
 Lithology Clay Sandstone Carbonated sandstone Limestone 

 Clay 90.93 3.06 0.92 5.1 

 Sandstone 2.59 95.03 2.12 0.27 

 Carbonated sandstone 1.78 26.41 69.14 2.67 

 Limestone 15.65 8.4 0.38 75.57 

 

However, it is quite difficult to describe a large number of wells by using this algorithm alone. This 

algorithm is sensitive to large shifts in absolute values. To improve the quality of the output data, 

additional procedures (work around) were used: 

1. Noise processing 

The neural network makes forecasts at each mark (depth), and since the curves sometimes behave 

erratically, such values appear among the forecasts in the form of” noise “that an expert in this field would 

immediately exclude (layers less than 0.6 m). If the model predicted the same class for a long time, and 

then predicted a new class once (twice, three times, but no more than 0.6 m), then it will be written as the 

previous class. 

2. Claying in the area of obvious values 

It is known that in the zone of “lingul clays “other types of rocks cannot occur except clay. So even if 

the neural network predicts sandstone or carbonated sandstone, for example, in most cases the value will 

be overwritten on top of the forecasts for the “clay «class. 

3. Agglomeration of rocks 

This approach is often used where the curves have fairly frequent and large amplitude fluctuations 

relative to the boundary values of sands and clays. 
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Calculation of a continuous curve of weight bitumen saturation using 
neural network technologies 
 

To solve the problem of predicting Kweight.bit., numerous iterations were carried out to select ready-

made optimal neural network algorithms. Intermediate results for each of the tested algorithms were not 

given in this article due to the lack of acceptable results. 

At the moment, the most suitable neural network technology is presented, which describes the behavior 

of Kweight.bit. with a correlation of 0.78 and the smallest error of the COEX. 

 

The regression function is used to predict the weight bitumen saturation, that is, the prediction of a 

single value (continuous). Using the Keras library, a multi-layer perceiver is built, which receives inputs 

as a vector of curve values at a specific depth. The input layer is followed by a fully connected layer with 

128 neurons, the weights of which are initialized by a normal distribution. The relu activation function, 

overwrites negative values by zero. We get a nonlinear function. This is followed by a second hidden fully 

connected layer with 256 neurons, identical to the previous one. The output layer is a single neuron 

connected to all the neurons of the previous layer. The activation function at this stage is linear, which 

means that there is no activation function. Since this is a regression task, activation is not needed in the 

output layer (f (x) = x). As an error function, we use the average absolute error (modulo). The Adam 

optimizer is used as a replacement for stochastic gradient descent. Adam combines the best properties of 

the AdaGrad and RMSProp algorithms, which can handle sparse gradients on noise problems. The metric 

is the average absolute error. 

3 such neural networks have been created. Each of them processes separate curves, that is, the original 

data set was divided according to certain features empirically so that each neural network receives its data 

with small intersections. During the prediction, each network processes its own data section and makes a 

forecast, which is summed over all three neural networks and averaged. This approach allows you to 

identify the most important features in the general pool and give a more accurate forecast. 

The following are used as training data: 

1. Normalized data – BK, NNKb, W, RHOB; 

2. Point-to-point data on Kweight.bit.core  

After conducting test calculations of the Kweight.bit. coefficient for a representative sample of wells, 

the results were evaluated and cross-validated. 

Figures 11 and 12 show the results of the Kweight.bit. calculation algorithm of the training and test 

sample. The cross-plots show that the correlation on the training sample was R = 0.9, on the test sample 

– R = 0.7, which indicates good convergence and a forecast error of less than 20%. 
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Training with the neural network 

   

Figure 11-The result of calculating the weight bitumen saturation for the training sample (quantitative assessment) 

 

As a result, the thicknesses of oil-saturated intervals are determined by means of clusters on the section 

(the boundary is Kweight.bit.> 4.5%). The accuracy of the selection of oil-saturated thicknesses based on 

the selected method is 89% (Table 7). The working method for calculating flow properties using neural 

networks gives acceptable results, as work on improvements continues. But we can already say that for 

the forecast of oil-saturated thicknesses, the neural network gives satisfactory results (Figures 13 and 14). 

 

Forecast using the neural network 

  
 

Figure 12 – The result of calculating the weight bitumen saturation for the test sample (quantitative assessment) 
 

Table 7 – Table of correspondence of core thicknesses and the calculated curve using neural network technologies 
 

Frequency matching table (%)  
Thickness < 4.5 м Thickness > 4.5 м Total: 

Thickness < 4.5 м 69.85 30.15 100.00  

Thickness > 4.5 м 11.36 88.64 100.00  

 

CORE 
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A
N

N
 



16   

 
 

Figure 13-Comparison of the layer-by-layer values of the weight bitumen saturation according to the core and the calculated curve 

using neural network technologies (quantitative assessment) 

 

  

Well No. 1 Field 1 Well No. 2 Field 1 

Figure 14 – Comparison table of the weight bitumen saturation by core and the calculated curve using neural network technologies 
(qualitative and quantitative assessment of parameters)  
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Methodical approach to the calculation of weight bitumen saturation 
 

Let’s consider the methodological approach of calculating Kweight.bit. using core data and OH methods. 

Since the calculation method should be universal and useable, including on wells for which core sampling 

was not carried out, a common database of OH parameters was created for all wells, and for each uplift 

separately. 

The method of processing and interpreting OH materials is quite time-consuming and includes a 

number of tasks and stages: 

1. Determination of porosity; 

2. Determination of volumetric bitumen saturation; 

3. Conversion from bulk to weight bitumen saturation; 

4. Evaluation of the quality of the calculation of Kweight.bit. 

Determination of parameters for porosity calculation 

 One of the main parameters – the porosity coefficient is calculated from the data of gamma-ray logging 

(GK) and compensatory neutron gamma-ray logging. The procedure for determining porosity is reduced 

to the sequential introduction of corrections to the readings of the compensatory neutron gamma-ray 

logging for the influence of the well diameter and clay content. The first amendment (W’) is determined 

according to the data of well diameter logging, but since this method is not used since 2018, in the future 

calculations will be made without taking this amendment into account. As a parameter that characterizes 

the clay content, the double difference parameter AGK is taken: 

 

АG𝐾 =
𝐼GK − 𝐼GK

min

𝐼GK
max − 𝐼GK

min
 

where 𝐼GK, 𝐼GK
max, 𝐼GK

min are the GK readings, respectively, at the current point, in “lingul clays” and in 

compacted sandstone with the lowest content of radioactive elements. Judging by the indications of the 

AGK, the clay content in the sandy productive pack is small, which is confirmed by granulometry data – 

on average no more than 5 %.  

 

Next, the error on the influence of clay content is determined by the following formula: 

 
∆𝑊sh = 𝐼𝑊

max ∗⁡АGK 

where 𝐼𝑊
max is the hydrogen content of clays that includes the chemically bound water of clay minerals, 

i.e. the maximum indication of the hydrogen content (95 percentile) in “lingula clays”. This indicator is 

determined automatically for each well individually.  

 

The porosity coefficient is calculated as follows: 

 
Кp = 𝑊 −⁡∆𝑊sh 

The sensitivity analysis showed (Figure 15) that the W – hydrogen content has the greatest influence 

(more than 50%) on the porosity calculation and suggests that for correct calculations of the porosity 

coefficient, it is necessary to carry out a qualitative interpretation by OH batches. AGK has a slightly 

smaller influence (about 33%), but since this parameter depends on 𝐼GK
max, 𝐼GK

min and is calculated 

automatically, there is no subjectivity in this parameter. 
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Figure 15 – Sensitivity analysis when calculating the porosity coefficient 
 

During the course of this work, an incorrect recording of the W method and an offset of the curve 

relative to the depth scale were revealed at a number of wells, which affected the forecast calculations. As 

a result, an algorithm was written that corrects incorrect W entries before processing and performs linear 

linking. 

Determination of parameters for calculating the volume bitumen saturation  

Considering the fact that the readings of neutron logging are greatly overestimated in clays due to the 

high content of bound water in them and, as a result, the porosity in clay reservoirs is greater compared to 

core data; apparently, the correction for clay content does not fully compensate for the increase in the 

readings of the method, therefore, in order to take into account the maximum effect of the presence of clay 

components, the improved Simandoux equation for terrigenous reservoirs is used to calculate the volume 

bituminous saturation, which is subsequently converted into weight bituminous saturation. Let’s consider 

the Simandou equation for calculating the volume bitumen saturation at n=2: 

 

Кvol.bit. =

(−
АGK
𝐼𝐼𝐾
max) + √(

АGK
𝐼IK
max)

2

+ 4
Кp

𝑚

𝑎 ∗ (1 − АGK) ∗ 𝑅𝑤 ∗ BK

2Кp
𝑚

𝑎 ∗ (1 − АGK) ∗ 𝑅𝑤

 

 

where 𝐼IK
max is the maximum value of the resistance of dense rocks (in our case, we use the maximum 

value of “medium – spirifer limestone”), 𝑎 is a constant value, which is determined by the cross-plot Rp 

– Kp, m is the cementation coefficient for this uplift, which is determined by the cross-raft Rp-Kp (takes 

values from 1.3 to 2.3 depending on the lithological characteristics of the rocks), Rw is the water resistance 

inside the formation (the average mineralization of reservoir water for the Sheshmin deposits is taken to 

be 3 g/dm3 is the average for HO deposits, which corresponds to Rw = 2.2 Ohms.m). 

 

Sensitivity analysis shows (Figure 16) that BK has the greatest influence (about 40%) on the calculation 

of volumetric bitumen saturation, so in the future our algorithm will evaluate the quality of this method in 

order to obtain correct calculations of Kvol.bit. AGK and the cementation coefficient (m) have a slightly 

less influence on the Kvol.bit. readings (25% and -18%, respectively), but AGK depends on  𝐼G𝐾
max, 𝐼GK

minand 

is calculated automatically, and the cementation coefficient (m) is calculated from the Rp-Kp core. That 

is why it was necessary to find the most reliable values of a and m for each field (Table 8) in order to 

further minimize the calculation error of Kvol.bit. 

  

Sensitivity analysis of Porosity 

AGK 

Iw (max) 

W 
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Figure 16 – Sensitivity analysis when calculating the volume bitumen saturation 
 

Table 8 – Table of parameters for calculating Kbit. Ob 

Field a m Rw  Field a m Rw 

Field-1 1.7 1.6 2.2  Field-6 1.7 1.6 2.2 

Field-2 2.2 1.4 2.2  Field-7 2.2 1.4 2.2 

Field-3 1.2 1.6 2.2  Field-8 1.8 1.45 2.2 

Field-4 3.8 1.24 2.2  Field-9 1.37 1.65 2.2 

Field-5 1.4 1.56 2.2  Field-10 3.2 2.2 2.2 

Determination of weight bitumen saturation 

The coefficient of weight bitumen saturation can be described by the following formula: 

 

Кweight.bit =
Кvol.bit. ∗ Кp ∗ 𝜌oil

Кvol.bit. ∗ Кp ∗ 𝜌oil + (1 − Кp) ∗ RHOB
 

 

where 𝜌oil is the density of oil, kg/m3, which we take as 0.956. 

Figure 17 shows the sensitivity analysis for the Kweight.bit. forecast. From this figure it can be seen 

that the most” significant “parameters are the previous calculations and require special attention -W, Agc, 

m and Rw (Rw studies should be carried out for each field separately, since these parameters have the 

greatest “weight” in the calculations, but for a qualitative assessment, the influence of other parameters 

was not presented in the sensitivity analysis). 

 

 
 

Figure 17 – Sensitivity analysis when calculating the weight bitumen saturation 
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Assessment of the quality of calculation of weight bitumen saturation 

Kweight.bit. data were used to assess the quality of the methodology results calculated using this 

technique and laboratory studies of the core (Figure 18, 19). The cross-plot shows that the correlation 

coefficient is ≈ 0.8 on the example of one of the deposits, which is an acceptable result for the Kweight.bit. 

forecast. The accuracy of the selection of oil-saturated thicknesses based on the selected method is 83% 

(Table 9). 

 

 
 

Figure 18 – Comparison of the layer-by-layer values of the weight bitumen saturation by core and GIS (a technique using the 
eigenvalues a and m for each uplift) 

 
Table 9 – Table of correspondence of core thicknesses and the calculated curve using neural network technologies 

  

Frequency matching table (%)  
Thickness < 4.5 м Thickness > 4.5 м Total: 

Thickness < 4.5 м 84.77 15.23 100.00  

Thickness > 4.5 м 16.97 83.03 100.00  
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Figure 19 – Results of calculation of the porosity coefficient according to OH, weight bitumen saturation and comparison with core 
 

But since the calculation method should be universal for all uplifts where core sampling is not provided, 

it will not be possible to find the coefficients a and m, in this case, you can use the average coefficients 

(Table 10), which were selected using the algorithm. 

 
Table 10 – Table of selected parameters for calculating the volume bitumen saturation 

Field a m Rw 

Central + Southern group 2.2 1.5 2.2 

 

The accuracy of the selection of oil-saturated thicknesses based on the selected method is 79% (Table 

11). 

 
Table 11 – The table of correspondence of core thicknesses and the method using the selected coefficients 

Frequency matching table (%)  
Thickness < 4.5 м Thickness > 4.5 м Total: 

Thickness < 4.5 м 87.95 12.05 100.00  

Thickness > 4.5 м 20.52 79.48 100.00  

 

The cross-plot (Figure 20) shows that the correlation coefficient = 0.79 on the example of one of the 

deposits, which is an acceptable result for the Kweight.bit. forecast. 

The satisfactory convergence of the obtained results demonstrates the regularity of the selected criteria 

and the relevance of the developed approach for use in predicting the quantitative values of filtration-

capacitance properties without core sampling, and in the presence of a large amount of data, they may 

have good application prospects and economic significance. 
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Figure 20 - Comparison of the layer-by-layer values of the weight bitumen saturation by core and GIS (method using the selected 
coefficients) 

 

Conclusions 

To configure the model of the flow properties calculation, information about the correlation relationships 

between the OH curves and the linked core for each field was used, this allowed more precisely 

configuring the mathematical model. 

For wells that participated in the “training” sample when creating an algorithm using neural network 

technologies, the porosity and weight of the bitumen saturation in the core do not go beyond the allowed 

interval (except for intervals where gas-saturated sandstone is present). 

In gas-saturated sandstones, a false underestimation of the hydrogen content (W) occurs, which in turn 

distorts the calculation of the porosity coefficient and the weight bitumen saturation. 

The level of correlation with the core of the volume bitumen saturation coefficient calculated using the 

NS and according to the presented method is 0.8 and 0.83, respectively. 

The accuracy of the thickness prediction for bitumen saturation using neural network technologies is 

80%, which is a satisfactory result. 

In the conditions of “abnormal” behavior of core studies on weight bitumen saturation and to achieve 

a more accurate forecast of Kweight.bit. on OH is currently not possible due to the lack of a sufficient 

number of such cases in the training data. 

Determination of porosity and bulk bitumen saturation on the core is direct information about the 

section. Therefore, petrophysical laboratories should strive to minimize errors in determining parameters 

on the core. 

For an accurate Kweight.bit. forecast. according to OH, it is necessary to use calibrated curves, because 

often the initial data might have incorrect readings of quantitative values. 

During the work on the methodological approach to the calculation of weight bitumen saturation, 

additional procedures were carried out to adjust the OH data, which led to an acceptable result. The 

accuracy of the forecast of the method used is 83%, which is a satisfactory result. 
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Nomenclature 
 

AGK = GR index 

BK = Lateral Log Resistivity 

OH = Open hole 

GK = Gamma Ray 

RHOB = Bulk Density 

DS = Caliper 

IK = Conductivity 

Kweight.bit = The weight bitumen saturation coefficient 

Kweight.bit.core = The weight bitumen saturation coefficient by core 

Kvol.bit = The volumetric bitumen saturation coefficient 

Kvol.bit.core = The volumetric bitumen saturation coefficient by core 

Kp = Porosity 

CPOR = Core porosity 

NGK = Neutron gamma 

NNKb = Neutron Far 

NNKm = Neutron Near 

ANN = Artificial Neural Network 

PZ = Potential Resistivity 

SP = Spontaneous Potential 

RMS = Root-mean-square deviation 

FES = Filtration and capacity properties 

W = Neutron Porosity 

a = Tortuosity factor 

m = Cementation exponent 

n = Saturation exponent 

Rw = Formation water resistivity 

HC = Hydrocarbons 

HO = Heavy Oil 
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