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Предисловие

Книга является расширенным и переработанным изложением
курсов лекций, читавшихся авторами для студентов факультета вы-
числительной математики и кибернетики Казанского федерального
университета, и может рассматриваться как введение в современную
теорию метода конечных элементов.

При отборе материала авторы стремились дать представление о
наиболее устоявшихся и употребительных способах построения и ис-
следования схем метода конечных элементов для типичных задач ма-
тематической физики.

Вкратце содержание книги таково.
Первая глава носит подготовительный характер. Она может слу-

жить как быстрое элементарное введение в предмет. В ней на при-
мерах простейших краевых задач демонстрируется основная идея по-
строения приближенных решений по методу конечных элементов, да-
ется его сопоставление с разностным методом.

Современная теория метода конечных элементов широко исполь-
зует концепцию обобщенных решений краевых задач, причем многие
из наиболее употребительных схем метода конечных элементов могут
рассматриваться как варианты метода Галеркина (или метода Ритца)
при специальном выборе подпространств, в которых разыскивается
приближение к обобщенному решению.

В связи с этим во второй главе книги излагаются необходимые
сведения из теории линейных уравнений в пространстве Гильберта,
элементы теории пространств Соболева, а также основные способы
исследования обобщенной разрешимости краевых задач для эллипти-
ческих уравнений. Рассматриваются методы Ритца и Галеркина для
приближенного решения этих задач.

Третья глава посвящена построению специальных конечномер-
ных пространств, используемых в дальнейшем для определения
приближенных решений. Рассмотрены пространства, основанные на
лагранжевых и эрмитовых элементах, для многоугольных и криво-
линейных областей. В последнем случае изучаются криволинейные
элементы с точной аппроксимацией границы и изопараметрические
элементы, приводящие к полиномиальной аппроксимации границы
области. Получены оценки точности аппроксимации функций из со-
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болевских пространств элементами сконструированных конечноэле-
ментных подпространств.

В четвертой главе построены и исследованы схемы метода конеч-
ных элементов для основных граничных задач для линейных эллип-
тических уравнений второго и четвертого порядков.

Формирование матрицы системы линейных алгебраических урав-
нений метода конечных элементов сводится к вычислению интегра-
лов от выражений, содержащих коэффициенты дифференциального
уравнения и базисные функции элементов. Даже для уравнений с по-
стоянными коэффициентами далеко не всегда эти интегралы можно
вычислить точно. Как правило, приходится прибегать к приближен-
ным, квадратурным, формулам.

Выбор подходящей квадратурной формулы, сохраняющей свой-
ства разрешимости и оценку точности исходной схемы конечных эле-
ментов — довольно сложная задача. Ее исследованию на примере за-
дачи Дирихле для эллиптического уравнения второго порядка по-
священа значительная часть четвертой главы. Рассмотрены схемы с
лагранжевыми треугольными и прямоугольными элементами в обла-
стях с полигональными границами. Для областей с криволинейными
границами изучены схемы с численным интегрированием, построен-
ные на основе изопараметрических треугольных и четырехугольных
элементов.

Книга заканчивается приложением, в котором кратко излагаются
алгоритмические вопросы, возникающие при формировании системы
линейных алгебраических уравнений метода конечных элементов.

Таким образом, в книге с достаточной степенью подробности рас-
смотрены лишь так называемые конформные варианты метода ко-
нечных элементов для линейных эллиптических уравнений второго и
четвертого порядков. Более сложные методы, основанные на исполь-
зовании несовместных элементов, а также смешанные методы конеч-
ных элементов не рассматриваются.

Книга рассчитана на студентов старших курсов физико-матема-
тических специальностей. Предполагается, что читатель знаком с эле-
ментами функционального анализа, теории уравнений с частными
производными и численных методов.

Список литературы, приведенный в конце книги, ни в коей мере
не претендует на полноту. Он содержит лишь использованные на-
ми учебные пособия и монографии по методу конечных элементов и
близким разделам численного анализа и теории уравнений с частны-
ми производными.

Многие вопросы, затронутые в книге, активно обсуждались с со-
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трудниками кафедры вычислительной математики Казанского госу-
дарственного университета. Авторы приносят им свою искреннюю
благодарность.

Рукопись книги была внимательно прочитана М.Р. Тимербаевым.
Авторы с благодарностью учли его замечания.

Структура книги обсуждалась с А.В. Лапиным, который иници-
ировал написание книги и взял на себя труд по ее редактированию.
Авторы выражают ему свою искреннюю признательность.



Глава 1
Элементарное введение в метод конечных

элементов

Продемонстрируем основные идеи метода конечных элементов на
примерах простейших краевых задач.

Рассмотрим обыкновенное дифференциальное уравнение второго
порядка с граничными условиями первого рода:

Lu ≡ − d

dx

(
p
du

dx

)
+ qu = f, 0 < x < 1, (1.1)

u(0) = u(1) = 0. (1.2)
Обозначим через Ck[0, 1] множество функций, непрерывных и k

раз непрерывно дифференцируемых на отрезке [0, 1]. Через Ck
0 [0, 1]

обозначим множество функций из Ck[0, 1], равных нулю на концах
отрезка. Будем предполагать, что p ∈ C1[0, 1], q, f ∈ C[0, 1], причем

p(x) > c0 > 0, q(x) > 0 ∀x ∈ [0, 1], c0 = const. (1.3)

Умножим уравнение (1.1) на произвольную функцию v ∈ C1
0 [0, 1],

проинтегрируем полученное равенство по отрезку [0, 1] и используем
формулу интегрирования по частям для преобразования интеграла,
содержащего производные функции u. В результате получим:

1∫
0

(pu′v′ + quv)dx =

1∫
0

fvdx ∀v ∈ C1
0 [0, 1]. (1.4)

Соотношение (1.4) принято называть интегральным тождеством,
соответствующим краевой задаче (1.1), (1.2). Заметим, что интеграль-
ное тождество (1.4) в некотором смысле эквивалентно задаче (1.1),
(1.2). Действительно, если u — решение задачи (1.1), (1.2), то u удо-
влетворяет тождеству (1.4). Обратно, если u ∈ C2

0 [0, 1] и удовлетворя-
ет тождеству (1.4), то, применяя формулу интегрирования по частям,
получим:

1∫
0

(Lu− f)vdx = 0 ∀v ∈ C1
0 [0, 1],
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откуда в силу произвольности функции v вытекает, что Lu = f на
отрезке [0, 1], т. е. u — решение задачи (1.1), (1.2).

Нетрудно видеть, что тождество (1.4) сохраняет смысл при го-
раздо более слабых предположениях относительно входящих в него
функций, чем те, которые были сформулированы выше. Это исполь-
зуется при введении понятия обобщенного решения для задачи (1.1),
(1.2). Аналогично вводится понятие обобщенного решения и для урав-
нений с частными производными (см. §3 гл. 2).

Тождество (1.4) часто используют и при построении методов при-
ближенного решения задач вида (1.1), (1.2).

Опишем, например, метод Галеркина. Введем в рассмотрение
так называемые базисные или координатные функции φ1, φ2,. . .,
φn ∈ C1

0 [0, 1]. Приближенное решение задачи (1.1), (1.2) будем разыс-
кивать в виде

un(x) =
n∑

j=1

cjφj(x), (1.5)

определяя коэффициенты c1, c2, . . . , cn из системы линейных алгебра-
ических уравнений

1∫
0

(pu′nφ
′
i + qunφi)dx =

1∫
0

fφidx, i = 1, 2, . . . , n. (1.6)

Учитывая (1.5), запишем эту систему более подробно:
n∑

j=1

aijcj = bi, i = 1, 2, . . . , n,

или Ac = b, где A = (aij)
n
i,j=1, b = (b1, . . . , bn)

T ,

aij =

1∫
0

(pφ′
jφ

′
i + qφjφi)dx, bi =

1∫
0

fφidx.

Для вычисления участвующих здесь интегралов, обычно, применяют
квадратурные формулы.

Свойства системы (1.6) и построенного с ее помощью приближен-
ного решения определяются координатной системой φ1, φ2, . . . , φn.
Если координатная система выбрана удачно, то с увеличением n точ-
ность приближенного метода улучшается. Можно показать, что если
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координатная система линейно независима, то матрицаA системы ли-
нейных уравнений (1.6) положительно определена. Отсюда, в частно-
сти, вытекает однозначная разрешимость системы метода Галеркина.

Приведем примеры координатных систем метода Галеркина:
a) полиномиальная система:

φ1(x) = x(1− x), φ2(x) = x(1− x)x, . . . , φn(x) = x(1− x)xn−1;

b) тригонометрическая система:

φk(x) = sin kπx, k = 1, 2, . . . , n.

При использовании указанных, или аналогичных, координатных си-
стем матрица метода Галеркина оказывается заполненной, т. е. все ее
элементы отличны от нуля. Это принципиально отличает метод Га-
леркина от разностного метода, при использовании которого матрица
системы линейных уравнений — разреженная матрица.

В 1943 году Р. Курантом было замечено, что при специальном
выборе базисных функций метод Галеркина приводит к системам ли-
нейных уравнений, по свойствам весьма близким к разностным урав-
нениям. В простейших случаях метод совпадает с разностным. Впо-
следствии (в пятидесятых годах) метод, предложенный Курантом,
был переоткрыт инженерами, существенно развит и обобщен. В на-
стоящее время этот метод, называемый методом конечных элементов
(МКЭ), принадлежит к числу наиболее распространенных способов
приближенного решения дифференциальных уравнений.

Опишем простейший вариант метода конечных элементов на при-
мере задачи (1.1), (1.2).

Построим на отрезке [0, 1] сетку

ω = {0 = x0 < x1 < x2 < · · · < xN = 1}

(вообще говоря, неравномерную). Ячейки сетки ei = [xi−1, xi], i =
1, 2, . . . , N , назовем конечными элементами. Положим hi = xi −
xi−1, h = max

16i6N
hi. Обозначим приближенное решение задачи (1.1),

(1.2) через uh и будем разыскивать его как функцию, непрерывную
на отрезке [0, 1], равную нулю при x = 0, x = 1 и линейную на
каждом элементе ei, i = 1, 2, . . . , N (см. рис. 1). Ясно, что

uh(x) =
N−1∑
i=1

uh(xi)φi(x), x ∈ [0, 1],
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где φi — линейные на каждом элементе, непрерывные на отрезке [0, 1]
функции, удовлетворяющие условиям (см. рис. 1):

φi(xj) =

{
1, i = j,

0, i ̸= j, i = 0, 1, . . . , N.

0 1

1

x

u h

0 1

1

x
i−1

 x
i
  x

i+1
  

Рис. 1. Кусочно линейная функция (слева). Базисная функция φi (справа).

Функции φi(x) принято называть базисными функциями с ло-
кальным носителем, поскольку множество точек, где φi(x) ̸= 0 (но-
ситель функции φi(x)) — малый отрезок (именно, объединение эле-
ментов ei и ei+1). Элементы aj,i матрицы системы (1.6) в этом случае,
очевидно, отличны от нуля, лишь при условии, что носители функ-
ций φi(x), φj(x) пересекаются, т. е., когда |i− j| 6 1. Как следствие,
матрица системы (1.6) трехдиагональна.

Рассмотрим теперь самый простой случай. Пусть p(x) ≡ 1,
q(x) ≡ 0, сетка равномерна, т. е. xi − xi−1 = h, i = 1, 2, . . . , N . Тогда,
как нетрудно подсчитать,

ai,i−1 = −1/h, ai,i+1 = −1/h, ai,i = 2/h, bi =

xi+1∫
xi−1

fφi(x)dx,

i = 1, 2, . . . , N − 1. Вычислим последний интеграл приближенно, по-
лагая f(x) ≈ f(xi), x ∈ [xi−1, xi+1]. Тогда

bi = f(xi)

xi+1∫
xi−1

φi(x)dx = hf(xi),
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и, следовательно, система (1.6) принимает вид

−uh(xi−1)− 2uh(xi) + uh(xi+1)

h2
= f(xi), i = 1, 2, . . . , N − 1.

Добавляя условия равенства нулю функции uh на концах отрезка:

uh(x0) = 0, uh(xN) = 0,

получим простейшую разностную схему для задачи (1.1), (1.2).
Исследуем сходимость метода конечных элементов. Предвари-

тельно получим необходимые вспомогательные результаты.
Лемма 1. Пусть u — непрерывная и кусочно непрерывно диф-

ференцируемая на отрезке [0, 1] функция, u(0) = 0. Тогда

∥u∥2C 6
1∫

0

u′2(x)dx,

где ∥u∥C = max
x∈[0,1]

|u(x)|.

Доказательство. По формуле Ньютона — Лейбница

u(x) =

x∫
0

u′(ξ)dξ ∀x ∈ (0, 1),

откуда, применяя неравенство Коши — Буняковского, получим

u2(x) 6
x∫

0

dξ

x∫
0

u′2(ξ)dξ 6
1∫

0

u′2(ξ)dξ ∀x ∈ [0, 1]. �

Здесь и далее символ ≪�≫ обозначает конец доказательства.
Лемма 2. Пусть u ∈ C2

0 [0, 1],

uI(x) =
N−1∑
i=1

u(xi)φi(x)

есть кусочно линейная функция, совпадающая в узлах сетки с функ-
цией u1). Тогда

∥u− uI∥C 6 h2

8
∥u′′∥C .

1)Функцию uI называют, обычно, интерполянтом функции u.
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Доказательство. Пусть x ∈ (xi−1, xi) для некоторого i ∈ {1,
2, . . . , N}. Используя представление для остаточного члена интерпо-
ляционного полинома в форме Лагранжа, получим

u(x)− uI(x) =
u′′(ξ)

2
(x− xi−1)(x− xi), ξ ∈ (xi−1, xi),

откуда вследствие очевидного неравенства (x − xi−1)(xi − x) 6 h2i/4
непосредственно вытекает утверждение леммы. �

Теорема 1. Пусть u — решение задачи (1.1), (1.2), uh — при-
ближенное решение, построенное по методу конечных элементов.
Тогда

∥u− uh∥C 6 ch2∥u′′∥C ,
где c — положительная постоянная, зависящая только от коэффи-
циентов уравнения (1.1).

Доказательство. Обозначим через Vh линейное множество
всех функций вида

vh(x) =
N−1∑
i=1

viφi(x), x ∈ [0, 1].

Покажем, что если u — решение задачи (1.1), (1.2), то

a(u, vh) ≡
1∫

0

(pu′v′h + quvh)dx =

1∫
0

fvhdx ∀vh ∈ Vh. (1.7)

Действительно, применяя формулу интегрирования по частям и учи-
тывая, что функция vh непрерывна и кусочно непрерывно дифферен-
цируема на отрезке [0, 1], а vh(0) = vh(1) = 0, получим, что

1∫
0

pu′v′hdx = −
1∫

0

(pu′)′vhdx,

откуда следует, что

a(u, vh) =

1∫
0

fvhdx.

Из определения функции uh вытекает тождество

a(uh, vh) =

1∫
0

fvhdx ∀vh ∈ Vh. (1.8)
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Используя тождества (1.7), (1.8), нетрудно получить, что

a(uh − uI , uh − uI) = a(uh, uh − uI)− a(uI , uh − uI) =

=

1∫
0

f(uh − uI)dx− a(uI , uh − uI) = a(u− uI , uh − uI).

Поскольку функция (uh − uI)
′ постоянна на каждом элементе ei, то,

используя формулу интегрирования по частям, можно написать
xi∫

xi−1

p(u− uI)
′(uh − uI)

′dx = −
xi∫

xi−1

p ′(u− uI)(uh − uI)
′dx+

+ p(u− uI)(uh − uI)
′
∣∣∣xi

xi−1

= −
xi∫

xi−1

p ′(u− uI)(uh − uI)
′dx.

Следовательно, применяя лемму 1, получим

a(uh − uI , uh − uI) =

= a(u−uI , uh−uI) =
1∫

0

(−p ′(u−uI)(uh−uI)′+q(u−uI)(uh−uI))dx 6

6 c∥u− uI∥C
( 1∫

0

(u′h − u′I)
2dx
)1/2

. (1.9)

Используя условия (1.3), напишем оценку снизу

a(uh − uI , uh − uI) > c0

1∫
0

(u′h − u′I)
2dx. (1.10)

Из оценок (1.9), (1.10) и леммы 1 вытекает, очевидно, что

∥uh − uI∥C 6 c∥u− uI∥C
и, следовательно,

∥u− uh∥C 6 ∥u− uI∥C + ∥uh − uI∥C 6 c∥u− uI∥C .

Для завершения доказательства теоремы достаточно воспользоваться
леммой 2. �
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Таким образом, мы показали, что при h → 0 приближенное ре-
шение, построенное по методу конечных элементов, равномерно схо-
дится к точному решению задачи (1.1), (1.2), причем со скоростью
O(h2).

Аналогичный подход к построению приближенных решений мож-
но использовать и для уравнений с частными производными. Проде-
монстрируем это на примере задачи Дирихле для уравнения Пуассо-
на:

−∆u = f, x ∈ Ω, (1.11)
u(x) = 0, x ∈ Γ, (1.12)

где

u = u(x) = u(x1, x2), ∆u =
∂2u

∂x21
+
∂2u

∂x22
.

Будем предполагать, что область Ω — единичный квадрат:

Ω = {x = (x1, x2) : x1, x2 ∈ (0, 1)},

Γ — граница Ω.
Метод Галеркина основан на формулировке задачи (1.11), (1.12)

в виде интегрального тождества.
Умножим уравнение (1.11) на произвольную непрерывную, кусоч-

но непрерывно дифференцируемую и равную нулю на Γ функцию v
и проинтегрируем полученное равенство по области Ω. После приме-
нения формулы интегрирования по частям будем иметь∫

Ω

(
∂u

∂x1

∂v

∂x1
+
∂u

∂x2

∂v

∂x2

)
dx =

∫
Ω

fv dx.

Приближенное решение разыскивается в виде

uN =
N∑
k=1

cjφj(x),

где φj(x) = φj(x1, x2) — некоторые заданные (базисные) функции,
удовлетворяющие граничному условию (1.12), а коэффициенты cj
подлежат определению. Их находят, решая систему линейных алгеб-
раических уравнений:∫

Ω

(
∂uN
∂x1

∂φi

∂x1
+
∂uN
∂x2

∂φi

∂x2

)
dx =

∫
Ω

fφidx, i = 1, 2, . . . , N.
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Классические примеры выбора базисных функций:

1) φkl(x1, x2) = x1(1− x1)x2(1− x2)x
k
1x

l
2, k, l = 0, 1, . . . , n− 1

(первые множители здесь обеспечивают выполнение граничных усло-
вий),

2) φkl(x1, x2) = sin kπx1 sin lπx2, k, l = 1, 2, . . . , n.

Отметим, что для удобства принята двойная нумерация, N = n2.
Метод конечных элементов основан на использовании специаль-

ных базисных функций. При этом матрица системы метода Галерки-
на оказывается разреженной, т. е. большинство ее элементов — нули.
Приведем простейший пример таких построений.

Введем на области Ω квадратную сетку с шагом h, h = 1/n:

ω = {xkl = (kh, lh), k, l = 0, 1, . . . n}.

Каждую ячейку сетки разделим на два треугольника диагональю,

x
1
 

x
2
 

1 

0 1 

Рис. 2. Триангуляция прямоугольной области Ω.

параллельной биссектрисе первого координатного угла. Получим раз-
биение области Ω на треугольные элементы ei, i = 1, 2, . . . , 2n2, т. е.
триангуляцию области (см. рис. 2). Приближенное решение задачи
будем искать как функцию uh, непрерывную в области Ω, равную ну-
лю на Γ и линейную на каждом элементе ei. Ясно, что функцию uh

можно однозначно представить в виде

uh(x) =
n−1∑
k,l=1

uhklφkl(x),



16 Глава 1. Введение

3
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2
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Рис. 3. Базисная функция Куранта (слева). Область Ωkl; нумерация элементов (справа).

где uhkl = uh(xkl), φkl(x) — функция, непрерывная на Ω, равная нулю
на Γ, линейная на каждом элементе и удовлетворяющая условиям:

φkl(xij) =

{
0, xij ̸= xkl,

1 xij = xkl, i, j = 0, 1, . . . , n.

Функция φkl (≪шапочка Куранта≫), как нетрудно проверить, тожде-
ственно равна нулю вне области Ωkl, представляющей собой объеди-
нение элементов, имеющих вершиной точку xkl (см. рис. 3).

Построим уравнения для определения значений uhkl. Для этого
подсчитаем коэффициенты и правую часть в системе метода Галер-
кина, а именно,

aklk′l′ =

∫
Ω

(
∂φkl

∂x1

∂φk′l′

∂x1
+
∂φkl

∂x2

∂φk′l′

∂x2

)
dx, bkl =

∫
Ω

fφkl dx.

Понятно, что aklk′l′ может быть не нулем только в том случае, ко-
гда пересечение областей Ωkl, Ωk′l′ не пусто. Для фиксированных k, l
таких областей Ωk′l′ шесть, а именно: Ωk−1,l, Ωk−1,l−1, Ωk,l−1, Ωk+1,l,
Ωk+1,l+1, Ωk,l+1. При вычислении коэффициентов aklk′l′ потребуются
значения производных функции φkl. Пронумеруем элементы, принад-
лежащие Ωkl, как показано на рис. 3. Сведем результаты очевидных
вычислений в таблицу 1.1 (n — номер треугольника). Теперь ясно,
что

ak,l,k−1,l−1 =

∫
e6
∪
e1

(
∂φkl

∂x1

∂φk−1,l−1

∂x1
+
∂φkl

∂x2

∂φk−1,l−1

∂x2

)
dx = 0,

ak,l,k+1,l+1 = 0, ak,l,k,l−1 = −1, ak,l,k−1,l = −1,
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n ∂φkl/∂x1 ∂φkl/∂x2
1 0 1/h
2 −1/h 1/h
3 −1/h 0
4 0 −1/h
5 1/h −1/h
6 1/h 0

Таблица 1.1. Производные функции φkl.

ak,l,k,l+1 = −1, ak,l,k+1,l = −1, ak,l,k,l = 4.

Это означает, что уравнение с номером k, l системы метода Галеркина
принимает вид

−uhk−1,l − uhk+1,l + 4uhk,l − uhk,l−1 − uhk,l+1

h2
= bk,l, (1.13)

где

bk,l =
1

h2

∫
Ωkl

f(x)φkl(x)dx.

Заметим, что при достаточно малом h∫
Ωkl

f(x)φkl(x)dx ≈ f(xkl)

∫
Ωkl

φkl(x)dx = f(xkl)h
2.

Таким образом, уравнение (1.13) приближенно представляется в виде

−uhk−1,l − uhk+1,l + 4uhk,l − uhk,l−1 − uhk,l+1

h2
= f(xkl).

Точно такое же уравнение получается при замене в уравнении (1.11)
производных разделенными разностями:

∂2u

∂x21
≈ u(xk−1,l)− 2u(xk,l) + u(xk+1,l)

h2
,

∂2u

∂x22
≈ u(xk,l−1)− 2u(xk,l) + u(xk,l+1)

h2
.

Записывая уравнения (1.13) во внутренних точках сетки, т. е. при
k, l = 1, 2, . . . , n − 1, и присоединяя к ним граничные условия, соот-
ветствующие (1.12):

uh0,l = 0, uhn,l = 0, l = 0, 1, . . . , n,

uhk,0 = 0, uhk,n = 0, k = 0, 1, . . . , n,
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получим полную систему линейных алгебраических уравнений для
отыскания приближенного решения в точках сетки.

Аналогично строят систему метода конечных уравнений для про-
извольной области: сначала область аппроксимируют многоугольни-
ком, затем производят триангуляцию, т. е. разбиение многоугольни-
ка на достаточно малые треугольники, далее определяют базисные
функции φkl, при этом, конечно, области Ωkl могут быть достаточно
сложными (см. рис. 4).

Рис. 4. Триангуляция сложной области.

Описанные способы построения приближенного решения допуска-
ют очевидные обобщения. Например, в одномерном случае функцию
uh можно искать в классе функций, являющихся полиномами неко-
торой фиксированной степени m > 1 на каждом элементе. Можно
повысить гладкость приближенного решения, считая непрерывными
и его производные вплоть до определенного порядка. Аналогичные
обобщения можно применять и для уравнений с частными производ-
ными. При этом можно разбивать область не только на треугольные
элементы, но и на элементы более сложной формы, например, четы-
рехугольные и даже криволинейные.

Понятно, что указанные построения вызывают целый ряд вопро-
сов. Прежде всего, интересно было бы оценить точность возникаю-
щих приближенных решений в зависимости от размеров и формы
применяемых конечных элементов, от степени гладкости приближен-
ного решения, вида полиномов, применяемых при построении при-
ближенного решения, а также дифференциальных свойств точного
решения исходной задачи. Интегралы, возникающие при формирова-
нии системы метода конечных элементов, вообще говоря, могут быть
вычислены только приближенно при помощи некоторых квадратур-
ных формул. Получающиеся при этом погрешности также должны
быть учтены. Все эти вопросы с той или иной степенью подробности
исследуются в настоящей книге применительно к краевым задачам
для линейных эллиптических уравнений.
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С точки зрения практического использования метода конечных
элементов существенную роль играет выбор эффективного прямого
или итерационного метода решения соответствующей системы линей-
ных алгебраических уравнений, по возможности, достаточно полно
учитывающего ее специфику, например, разреженную структуру мат-
рицы системы. Сколько-нибудь подробное рассмотрение этих вопро-
сов, составляющих важный раздел современных численных методов
линейной алгебры (см., например, [17], [4], [16]), заняло бы слишком
много места, и мы не сочли возможным включать их в настоящую
книгу.



Глава 2
ВСПОМОГАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

§ 1. Уравнения в пространстве Гильберта

1. Уравнение с ограниченным положительно определен-
ным оператором. Пусть H — вещественное пространство Гиль-
берта со скалярным произведением (·, ·) и нормой ∥ · ∥ = (·, ·)1/2.
Обозначим через a(·, ·): H ×H → R непрерывную билинейную фор-
му, т. е. форму, линейную по каждому аргументу и удовлетворяющую
условию

|a(u, v)| 6M∥u∥∥v∥ ∀u, v ∈ H, (2.1)
где M = const > 0. Через f : H → R обозначим непрерывную линей-
ную форму (линейный ограниченный функционал). Вследствие тео-
ремы Рисса об общем виде линейного ограниченного функционала
форма a(·, ·) порождает линейный ограниченный оператор A, опре-
деляемый соотношением

(Au, v) = a(u, v) ∀u, v ∈ H.

Функционалу f будем сопоставлять элемент f ∈ H, определяемый по
теореме Рисса (единственным образом) тождеством

f(v) = (f, v) ∀ v ∈ H.

В дальнейшем будем рассматривать уравнение

Au = f, (2.2)

где f ∈H — заданный элемент. Эквивалентная формулировка: найти
такой элемент u ∈ H, что

a(u, v) = f (v) ∀ v ∈ H.

Форма a(·, ·) называется положительно определенной (эллипти-
ческой, коэрцитивной), если существует такая положительная посто-
янная m, что

a(u, u) > m∥u∥2 ∀u ∈ H. (2.3)
Соответствующий оператор A также будем называть положительно
определенным.
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Лемма 3 (Лакса — Мильграма). Пусть оператор A ограни-
чен и положительно определен. Тогда задача (2.2) при любом f ∈ H
имеет единственное решение.

Доказательство. При любом τ ̸= 0 задача (2.2) эквивалентна
уравнению

u = u− τ(Au− f).

Покажем, что при достаточно малом положительном τ оператор
Su = u − τ(Au − f) — оператор сжатия. Тогда утверждение теоре-
мы будет вытекать из теоремы Банаха о сжимающих отображениях.
Пусть u, v — произвольные элементы пространства H. Имеем:

∥Su− Sv∥2 = ∥u− v − τ(Au− Av)∥2 =
= ∥u− v∥2 − 2τ (Au− Av, u− v) + τ 2∥Au− Av∥2,

откуда в силу условий (2.1), (2.3) получаем, что

∥Su− Sv∥2 6 ρ(τ)∥u− v∥2,

где ρ(τ) = 1 − 2τm + τ 2M 2. Ясно, что ρ(τ) < 1 при τ ∈ (0, 2m/M 2),
и, следовательно, S — оператор сжатия. �

Замечание 1. Из доказательства леммы Лакса — Мильграма вытекает, что ре-
шение задачи (2.2) может быть построено при помощи итерационного метода

uk+1 = uk − τ(Auk − f), k = 0, 1, 2, . . . ,

сходящегося, если τ ∈ (0, 2m/M2), при любом начальном приближении u0 ∈ H.

2. Уравнение с самосопряженным положительно опреде-
ленным оператором.

Определение 1. Ограниченная билинейная форма называется
симметричной, если

a(u, v) = a(v, u) ∀u, v ∈ H.

Линейный ограниченный оператор A, порожденный симметричной
формой, называется самосопряженным.

Ясно, что в этом случае

(Au, v) = (Av, u) ∀u, v ∈ H.

С уравнением (2.2) свяжем задачу минимизации квадратичного
функционала: найти такой элемент u ∈ H, что

F (u) = min
v∈H

F (v), F (v) =
1

2
a(v, v)− f(v). (2.4)
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Теорема 1. Пусть оператор A самосопряжен и положительно
определен. Тогда задачи (2.2), (2.4) эквивалентны.

Доказательство. В силу самосопряженности и положитель-
ной определенности оператора A на пространстве H можно вве-
сти новое скалярное произведение (·, ·)a при помощи соотношения:
(u, v)a = a(u, v). Скалярное произведение (·, ·)a называют энергети-
ческим скалярным произведением, соответствующим оператору A.
Вследствие условий (2.1), (2.3) норма, порождаемая энергетическим
скалярным произведением (энергетическая норма ∥ · ∥a), эквивалент-
на1) исходной норме пространстваH. Пусть u — решение задачи (2.2).
Тогда функционал F можно представить в виде

F (v) =
1

2
(v, v)a − (u, v)a.

После элементарных преобразований получим

F (v) = F0(v)−
1

2
∥u∥2a,

где F0(v) =
1

2
∥u − v∥2a. Таким образом, задача (2.4) эквивалентна

задаче
F0(u) = min

v∈H
F0(v) (2.5)

и, очевидно, имеет единственное решение, совпадающее с решением
задачи (2.2). �

3. Метод Ритца. ПустьHn — замкнутое подпространство про-
странства H.

Определение 2. Элемент un ∈ Hn называется приближенным
решением задачи (2.2) по методу Ритца, если

F (un) = min
v∈Hn

F (v).

Теорема 2. Пусть выполнены условия (2.1), (2.3). Тогда при-
ближенное решение по методу Ритца существует и определяется
единственным образом.

Доказательство. В силу эквивалентности задач (2.4), (2.5)
приближенное решение по методу Ритца можно интерпретировать
как элемент un ∈ Hn такой, что

∥u− un∥a = inf
vn∈Hn

∥u− vn∥a.

1)Нормы ∥·∥1 и ∥·∥2 называются эквивалентными на линейном нормированном пространстве
X, если существуют постоянные c0, c1 > 0 такие, что c0∥u∥1 6 ∥u∥2 6 c1∥u∥1 ∀u ∈ X.



§ 1. Уравнения в пространстве Гильберта 23

Иными словами, un — элемент наилучшего приближения к u (в смыс-
ле энергетической нормы) и потому, как известно, он существует и
определяется единственным образом. �

Замечание 2. Если un — приближенное решение по методу Ритца, то, очевидно,

∥u− un∥a 6 ∥u− vn∥a ∀vn ∈ Hn,

∥u− un∥ 6
√

M/m∥u− vn∥ ∀vn ∈ Hn. (2.6)

Эти неравенства часто используются при получении оценок погрешности метода Ритца.

Следствие 1. Пусть семейство подпространств Hn, n = 1,
2, . . . предельно полно, т. е.

δn(v) = inf
vn∈Hn

∥v − vn∥ → 0 при n→ ∞ ∀ v ∈ H.

Тогда последовательность un приближений по методу Ритца схо-
дится к u.

Доказательство сразу вытекает из неравенства

∥u− un∥ 6
√
M

m
δn(u),

являющегося очевидным следствием (2.6). �
Следствие 2. Пусть un — приближение по методу Ритца.

Тогда
a(un, vn) = f(vn) ∀ vn ∈ Hn. (2.7)

Доказательство. Поскольку un — приближение по методу
Ритца, то F (un + tvn) > F (un) для любого vn ∈ Hn и любого ве-
щественного числа t. Нетрудно подсчитать, что

F (un + tvn) = F (un) + t(a(un, vn)− (f, vn)) +
t2

2
a(v, v),

следовательно, квадратный трехчлен t(a(un, vn) − (f, vn)) +
t2

2
a(v, v)

неотрицателен при любом t, что, очевидно, возможно лишь при
a(un, vn)− (f, vn) = 0. �

Следствие 3. Пусть un — приближенное решение по методу
Ритца, u — решение задачи (2.2). Тогда

(u− un, vn)a = 0 ∀vn ∈ Hn. (2.8)

Справедливость (2.8) немедленно следует из (2.7) и очевидного
тождества: a(u, vn) = (f, vn) ∀ vn ∈ Hn.
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В приложениях чаще всего пространство Hn конечномерно. В
этом случае построение приближенного решения по методу Ритца
сводится к решению системы линейных алгебраических уравнений.
Действительно, пусть φ1, φ2, . . . , φn — какой-либо базис подпро-

странства Hn. Представим un в виде un =
n∑

j=1

cjφj, где c1, c2, . . . , cn —

коэффициенты, подлежащие определению. Вследствие (2.7)

a(un, φi) = (f, φi), i = 1, . . . , n,

или

Anc = fn, (2.9)

где

An =
{
aij = a(φj, φi)

}n
i,j=1

, c = {ck}nk=1, fn =
{
(f, φk)

}n
k=1

.

МатрицаAn называется матрицей Грама системы элементов φ1, . . . , φn.
Матрица Грама симметрична и положительно определена. Более

того, справедлива
Лемма 4. Для того, чтобы система элементов φ1, φ2, . . . , φn

была линейно независимой, необходимо и достаточно, чтобы мат-
рица Грама была положительно определена.

Доказательство. Для любых c1, c2, . . . , cn имеем1)

Anc · c =
n∑

i,j=1

aijcjci = a
( n∑

j=1

cjφj,
n∑

i=1

ciφi

)
=
∥∥∥ n∑

i=1

ciφi

∥∥∥2
a
.

Если φ1, φ2, . . . , φn линейно независимы, то Anc · c > 0 и обращается
в нуль лишь при c1 = c2 = . . . = cn = 0. Очевидно, справедливо и
обратное. �

Замечание 3. Выбор базиса в подпространстве Hn существенно сказывается на
обусловленности матрицы An системы (2.9). Идеальным является случай, когда функ-
ции φk, k = 1, 2, . . . , n, ортонормированы в смысле энергетического скалярного произ-
ведения. Тогда An — единичная матрица. Вообще же говоря, число обусловленности
матрицы An может сильно возрастать с ростом n. Один из возможных способов избе-
жать этого состоит в том, что в качестве базисных функций в методе Ритца выбирают
ортонормированные собственные функции некоторого простого самосопряженного по-
ложительно определенного оператора Bn, энергетически эквивалентного оператору An,
т. е. такого самосопряженного оператора Bn, что нормы ∥ · ∥an , ∥ · ∥bn эквивалентны с
постоянными эквивалентности, не зависящими от n (подробнее см. в [12]).

1)x · y = x1y1 + · · ·+ xnyn — скалярное произведение векторов в Rn.
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4. Метод Галеркина. Пусть теперь выполнены условия огра-
ниченности и положительной определенности оператора A. Условия
самосопряженности могут не выполняться. Определение приближе-
ния по методу Ритца для уравнения (2.2) при помощи тождества (2.7)
позволяет сформулировать понятие приближенного решения и в этой,
более общей, ситуации.

Определение 3. Будем говорить, что un ∈ Hn — приближенное
решение уравнения (2.2) по методу Галеркина, если для любого vn ∈
Hn выполнено равенство

a(un, vn) = f(vn). (2.10)

Таким образом, метод Галеркина можно рассматривать как непо-
средственное обобщение метода Ритца. Понятно, что формально при-
ближенное решение по методу Галеркина можно определить для лю-
бого уравнения в гильбертовом пространстве, не обязательно — ли-
нейного.

Теорема 3. Пусть выполнены условия (2.1), (2.3). Тогда при-
ближенное решение по методу Галеркина существует и определя-
ется единственным образом.

Доказательство. Используя теорему Рисса о представлении
линейного ограниченного функционала, получим, что задача (2.10)
эквивалентна уравнению

Anun = fn, (2.11)

где An : Hn → Hn и fn ∈ Hn определяются соотношениями

(Anun, vn) = a(un, vn) ∀un, vn ∈ Hn, (fn, vn) = f(vn) ∀ vn ∈ Hn.

Оператор An : Hn → Hn ограничен и положительно определен, поэто-
му существование и единственность решения уравнения (2.11) следу-
ют из леммы Лакса — Мильграма. �

Точность метода Галеркина характеризует
Лемма 5 (лемма Сеа). Пусть u — решение уравнения (2.2),

un — приближенное решение по методу Галеркина, выполнены усло-
вия (2.1), (2.3). Тогда

∥u− un∥ 6 M

m
∥u− vn∥ ∀vn ∈ Hn. (2.12)

Доказательство. Для любого vn ∈ Hn имеем

a(u− un, vn) = (f, vn)− (f, vn) = 0,
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поэтому

a(u− un, u− un) = a(u− un, u− vn) + a(u− un, vn − un) =

= a(u− un, u− vn).

Следовательно,

m∥u− un∥2 6M∥u− un∥∥u− vn∥,

откуда

∥u− un∥ 6 M

m
∥u− vn∥. �

Замечание 4. Поскольку M/m > 1, то оценка погрешности (2.6) метода Рит-
ца, учитывающая самосопряженность оператора A, лучше оценки погрешности (2.12),
полученной для метода Галеркина.

Следствие 4. Если семейство подпространств Hn предельно
полно, то последовательность приближений по методу Галеркина
сходится к решению задачи (2.2).

Доказательство дословно совпадает с доказательством след-
ствия 1.

Ясно, что если подпространство Hn конечномерно, то коэффици-
енты разложения приближенного решения

un =
n∑

k=1

ckφk

по базису φ1, φ2, . . . , φn ∈ Hn можно найти, решая систему линейных
алгебраических уравнений вида (2.9). Матрица этой системы, как и в
случае метода Ритца, положительно определена, но не симметрична,
если оператор A исходной задачи не самосопряжен.

5. Возмущенный метод Галеркина При практическом ис-
пользовании метода Галеркина форму a(·, ·) и функционал f часто
приходится заменять их приближенными аналогами, что, например,
может быть вызвано приближенным вычислением элементов матри-
цы и правой части системы (2.9). Мы изучим возникающую при этом
ситуацию в достаточно общей трактовке.

Итак, пусть наряду с задачей (2.2) рассматривается задача, отыс-
кания элемента un ∈ Hn такого, что

an(un, vn) = fn(vn) ∀vn ∈ Hn, (2.13)
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где an(·, ·) : Hn×Hn → R — билинейная форма, fn — линейная фор-
ма, определенная на Hn. На всем пространстве H эти формы могут
быть и не определены. Метод (2.13) называют возмущенным мето-
дом Галеркина. Понятно, что погрешность приближенного решения
теперь зависит не только от ≪близости≫ пространств Hn и H, но и
от степени аппроксимации формами an(·, ·), fn(·) форм a(·, ·), f(·)
соответственно. Предположим выполненными следующие условия:

|an(un, vn)| 6Mn∥un∥∥vn∥ ∀un, vn ∈ Hn, (2.14)

|fn(vn)| 6 cn∥vn∥ ∀vn ∈ Hn, (2.15)
an(un, un) > m̃∥un∥2 ∀un ∈ Hn. (2.16)

Постоянная m̃ считается не зависящей от n, в то время как Mn, cn,
вообще говоря, могут зависеть от n. Условие (2.16) называют, обычно,
условием равномерной положительной определенности форм an(·, ·).

Однозначная разрешимость задачи (2.13) при выполнении усло-
вий (2.14)–(2.16) есть очевидное следствие леммы Лакса — Мильгра-
ма.

Получим оценку погрешности возмущенного метода Галеркина.
Лемма 6 (лемма Стренга). Пусть выполнены условия (2.1),

(2.14), (2.16). Тогда существует такая не зависящая от n постоян-
ная C, что

∥u− un∥ 6 C

{
inf

vn∈Hn

(
∥u− vn∥+ sup

wn∈Hn

|a(vn, wn)− an(vn, wn)|
∥wn∥

)
+

+ sup
wn∈Hn

|f(wn)− fn(wn)|
∥wn∥

}
. (2.17)

Доказательство. Заметим, что для любого элемента vn ∈ Hn

справедливо тождество

an(un − vn, un − vn) = a(u− vn, un − vn)+

+ {a(vn, un − vn)− an(vn, un − vn)}+ {fn(un − vn)− f(un − vn)},

из которого, используя условия (2.16), (2.1), получим

m̃∥un − vn∥2 6
{
M∥u− vn∥+

|a(vn, un − vn)− an(vn, un − vn)|
∥un − vn∥

+

+
|fn(un − vn)− f(un − vn)|

∥un − vn∥

}
∥un − vn∥,
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или

m̃∥un − vn∥ 6M∥u− vn∥+ sup
wn∈Hn

|a(vn, wn)− an(vn, wn)|
∥wn∥

+

+ sup
wn∈Hn

|fn(wn)− f(wn)|
∥wn∥

.

Комбинируя это неравенство с неравенством

∥u− un∥ 6 ∥u− vn∥+ ∥un − vn∥,

непосредственно вытекающим из неравенства треугольника, и вычис-
ляя затем нижнюю грань по vn ∈ Hn, получим (2.17). �

§ 2. Элементы теории пространств Соболева

1. Полилинейные формы. Пусть Rn — n-мерное евклидово
пространство, x = (x1, ... , xn)

T — элементы пространства Rn, e1 =
(1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T , . . . , en = (0, 0, . . . , 1)T — канониче-
ский базис Rn, x · y = x1y1 + · · · + xnyn — скалярное произведение
векторов, |x| = (x · x)1/2 — длина (норма) вектора1).

Прямое произведение k экземпляров евклидова пространства Rn,
т. е. Rn ×Rn × · · · ×Rn будем обозначать через [Rn]k.

Отображение A : [Rn]k → R называется полилинейной формой
(k-линейной формой), если оно линейно по каждому аргументу:

A(ξ1, . . . , ξi + ηi, . . . , ξk) = A(ξ1, . . . , ξi, . . . , ξk) + A(ξ1, . . . , ηi, . . . , ξk),

A(ξ1, . . . , λξi, . . . , ξk) = λA(ξ1, . . . , ξi, . . . , ξk) ∀λ ∈ R.

Полилинейная форма A(ξ1, . . . , ξk) называется симметричной, ес-
ли ее значение не меняется при любой перестановке аргументов.

При совпадении аргументов ξ1 = · · · = ξk = ξ будем использовать
обозначение:

Aξk = A(ξ, . . . , ξ).

Полагая ξi =
n∑

j=1

ξijej, получим

A(ξ1, . . . , ξk) =
n∑

j1,j2,...,jk=1

aj1,j2,...,jkξ1j1ξ
2
j2
· · · ξkjk, (2.18)

1)x = (x1, . . . , xn) — вектор-строка, x = (x1, . . . , xn)
T ∈ Rn — вектор-столбец, так что

x · y = xT y.
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где
aj1,j2,...,jk = A(ej1, ej2, . . . , ejk).

Отметим, что число слагаемых в правой части (2.18) равно nk.
Ясно, что если форма A симметрична, то ее коэффициенты

aj1,j2,...,jk также симметричны (не меняются при любой перестановке
индексов). Очевидно, справедливо и обратное: симметрия коэффици-
ентов aj1,j2,...,jk обеспечивает симметрию полилинейной формы (2.18).
Форму A можно отождествить с k-мерной таблицей ее коэффициен-
тов.

Заметим, что для симметричной k-линейной формы выраже-
ние Aξk, где ξ = (ξ1, ξ2, . . . , ξn)

T , можно представить в виде

Aξk =
∑
|α|=k

aαξ
α, ξα = ξα1

1 ξ
α2

2 · · · ξαn
n .

Здесь α = (α1, α2, . . . , αn) — вектор с целочисленными неотрицатель-
ными компонентами (мультииндекс), |α| = α1+α2+ · · ·+αn — длина
мультииндекса.

Множество всех k-линейных форм A : [Rn]k → R образует конеч-
номерное линейное пространство, если ввести естественным образом
операции сложения двух форм и умножения формы на вещественное
число. Обозначим его через Lk(R

n, R). Норма на этом пространстве,
обычно, вводится при помощи соотношения:

∥A∥ = max
|ξ1|=...=|ξk|=1

|A(ξ1, . . . , ξk)|.

Непосредственно из определения следует оценка:

|A(ξ1, . . . , ξk)| 6 ∥A∥ |ξ1| . . . |ξk| ∀ ξ1, ξ2, . . . , ξk ∈ Rn,

которой мы неоднократно будем пользоваться. В некоторых случаях
удобнее пользоваться нормой

∥A∥∞ = max
j1,...,jk

|aj1,j2...,jk|.

Важно помнить, что вследствие конечномерности пространс-
тва Lk(R

n, R) все нормы на нем эквивалентны.
Далее будем использовать обозначение:

[A] = max
i=1,...,n

|A(ei)k| = max
i=1,...,n

|ai,...,i|.

Отметим, что операция [·] определяет только полунорму на множе-
стве Lk(R

n, R) при k > 2.
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Множество симметричных k-линейных форм также образует ко-
нечномерное линейное пространство. Норма на этом пространстве мо-
жет быть определена равенством:

∥A∥ = max
|ξ|=1

|Aξk|. (2.19)

Отметим, что соотношение (2.19) не определяет нормы на про-
странстве всех k-линейных форм. Действительно, например, для лю-
бой кососимметричной формы, т. е. формы, меняющей знак при пе-
рестановке какой-либо пары аргументов, Aξk = 0 ∀ ξ ∈ Rn.

В дальнейшем будут рассматриваться также полилинейные (ли-
нейные по каждому аргументу) отображения пространства [Rn]k вRn.
Множество всех таких отображений обозначим через Lk(R

n, Rn). По-
нятно, что задание A ∈ Lk(R

n, Rn) эквивалентно заданию упорядо-
ченного набора n штук k-линейных форм A1, A2, . . . , An ∈ Lk(R

n, R):

A(ξ1, . . . , ξk) =
(
A1(ξ

1, . . . , ξk), . . . , An(ξ
1, . . . , ξk)

)T
, ξi ∈ Rn.

Норму на этом пространстве можно ввести при помощи соотношения:

∥A∥ = max
|ξ1|=...=|ξk|=1

|A(ξ1, . . . , ξk)|. (2.20)

В некоторых случаях удобнее пользоваться нормой:

∥A∥∞ = max
i=1,...,n

∥Ai∥∞.

Далее будем использовать обозначение:

[A] = max
i=1,...,n

|A(ei)k|, Aξk = A(ξ, . . . , ξ).

Симметрия отображения A, очевидно, эквивалентна симметрии
каждой из форм A1, A2, . . . , An.

2. Некоторые определения и обозначения из теории диф-
ференцируемых функций. Открытое связное множество точек
пространства Rn называется областью. Пусть u = u(x) — веществен-
ная функция, определенная на некоторой области Ω ⊂ Rn. Будем
говорить, что эта функция l раз непрерывно дифференцируема на
области Ω, если у нее существуют и непрерывны на Ω все частные
производные вплоть до порядка l включительно. Как известно, в этом
случае ее любая смешанная производная

∂ku

∂xi1∂xi2 . . . ∂xik
, i1, i2, . . . , ik ∈ {1, 2, . . . , n},
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порядка k 6 l не меняется при любой перестановке индексов
i1, i2, ... , ik. В связи с этим естественно пользоваться следующим
обозначением. Пусть α = (α1, α2, . . . , αn) — мультииндекс. Тогда

Dαu =
∂|α|u

∂xα1

1 ∂x
α2

2 . . . ∂xαn
n

обозначает производную порядка |α|.
Множество всех производных функции u фиксированного поряд-

ка k, вычисленных в точке x ∈ Ω, порождает симметричную k-линей-
ную форму Dku(x) ∈ Lk(R

n, R), определенную равенством:

Dku(x)(h1, h2, . . . , hk) =
n∑

i1, i2,..., ik=1

∂ku(x)

∂xi1∂xi2 . . . ∂xik
h1i1h

2
i2
. . . hkik.

Нетрудно видеть, что
∂ku(x)

∂xi1∂xi2 . . . ∂xik
= Dku(x)(ei1, ei2, . . . , eik).

Подчеркнем, что, несмотря на сходство обозначений, Dku(x), где k
есть целое положительное число, и Dαu(x), где α — мультииндекс
длины n это — совершенно разные объекты: Dku(x) — полилинейная
форма, определяемая множеством всех частных производных поряд-
ка k, а Dαu(x) — число, равное значению частной производной по-
рядка |α| функции u в точке x.

В дальнейшем также используется обозначение
Dku(x)hk = Dku(x)(h, h, . . . , h),

Dku(x)hk обычно называют дифференциалом порядка k функции u
в точке x. Отметим следующие частные случаи: при k = 1

Du(x)h ≡ D1u(x)h = (∇u(x))T h ∀h ∈ Rn,

вектор

∇u(x) =
(
∂u(x)

∂x1
,
∂u(x)

∂x2
, . . . ,

∂u(x)

∂xn

)T

называют градиентом функции u в точке x; если k = 2, то
D2u(x)(h1, h2) = H(x)h1 · h2 ∀h1, h2 ∈ Rn.

Симметричная матрица

H(x) =

{
∂2u(x)

∂xi∂xj

}n

i,j=1

называется гессианом функции u в точке x.
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3. Дифференцируемые отображения. Отображение

u = (u1, u2, . . . , un)
T : Rn → Rn

будем называть k раз дифференцируемым в точке x ∈ Rn, если
каждая его компонента ui дифференцируема k раз в точке x. При
этом по определению Dku(x) = (Dku1(x), D

ku2(x), . . . , D
kun(x))

T ∈
Lk(R

n, Rn), Dkui(x) ∈ Lk(R
n, R). В частности, Du(x)=D1u(x) — ли-

нейное отображение, порождаемое матрицей Якоби
(∂ui(x)

∂xj

)n
i,j=1

си-

стемы функций u1, u2, . . . , un. В дальнейшем через det
(
Du(x)

)
обо-

значается определитель этой матрицы, называемый якобианом отоб-
ражения u.

4. Формула Тейлора. Пусть функция u определена и m + 1
раз непрерывно дифференцируема в области Ω ⊂ Rn, x, x + h ∈ Ω,
причем вектор h настолько мал, что x + th ∈ Ω ∀t ∈ [0, 1]. Тогда
функция φ(t) = u(x+th) дифференцируемаm+1 раз на отрезке [0, 1].
По формуле Тейлора с остаточным членом в интегральной форме

φ(1) = φ(0)+φ′(0)+
1

2!
φ′′(0)+· · ·+ 1

m!
φ(m)(0)+

1

m!

1∫
0

φ(m+1)(t)(1−t)mdt.

Нетрудно проверить, что

φ(k)(t) =
dk

dtk
u(x+ th) = Dku(x+ th)hk,

следовательно,

u(x+ h) =
m∑
k=0

1

k!
Dku(x)hk +Rm, (2.21)

где

Rm =
1

m!

1∫
0

(1− t)mDm+1u(x+ th)hm+1dt.

Формула (2.21) — формула Тейлора для функций многих переменных
с остаточным членом в интегральной форме.

Покажем, что если функция u непрерывно дифференцируема m
раз, то

u(x+ h) =
m∑
k=0

1

k!
Dku(x)hk + o(|h|m). (2.22)
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Действительно, используя вторую теорему о среднем и равенство
(2.21), получим

u(x+ h) =
m−1∑
k=0

1

k!
Dku(x)hk +Rm−1,

где
Rm−1 =

1

m!
Dmu(x+ ξh)hm, ξ ∈ (0, 1),

есть остаточный член, записанный в форме Лагранжа. Далее,

|Dmu(x+ξh)hm−Dmu(x)hm| 6 ∥Dmu(x+ξh)−Dmu(x)∥|h|m = o(|h|m)

в силу непрерывности Dmu в точке x.
Формулу (2.22) называют формулой Тейлора с остаточным чле-

ном в форме Пеано.
Таким образом, используя формулу Тейлора, мы приближаем

функцию u в окрестности точки x0 полиномом

Pm(x) =
m∑
k=0

1

k!
Dku(x0)(x− x0)

k

степени m.
Заметим, что формулу Тейлора иногда удобно использовать для

вычисления производных. А именно, если каким-либо образом полу-
чено представление

u(x+ h) =
m∑
k=0

Akh
k + o(|h|m),

где Ak ∈ Lk(R
n, R) — симметричные k-линейные формы, то

Dku(x)hk = k!Akh
k, и, следовательно, производные функции u по-

рядка k в точке x легко выражаются через коэффициенты формы Ak.
Пример такого применения формулы Тейлора см. далее в п. 10 насто-
ящего параграфа.

Упражнение 1. Доказать, что формула Tейлора (2.22) справедлива и для век-
тор-функций u : Rn → Rn.

5. Основные функциональные пространства. Простей-
шие неравенства. Всюду в дальнейшем Ω — ограниченная область
евклидова пространства Rn, Γ — граница Ω. Иногда будем обозначать
ее через ∂Ω. Через Lp(Ω), как обычно, будем обозначать линейное ве-
щественное пространство функций, измеримых на Ω и суммируемых



34 Глава 2. Вспомогательные результаты

со степенью p > 1 в смысле Лебега. Норма на пространстве Lp(Ω)
задается равенством:

∥u∥p,Ω =
(∫

Ω

|u|pdx
)1/p

.

Пространство L∞(Ω) — линейное пространство функций с конечной
нормой

∥u∥∞,Ω = ess sup
x∈Ω

|u(x)|,

где ess sup
x∈Ω

|u(x)| — существенная верхняя грань функции u на Ω, т. е.

нижняя грань всех чисел N таких, что |u(x)| 6 N почти всюду на Ω.
Отметим, что ∥u∥∞,Ω = lim

p→∞
∥u∥p,Ω.

Через C(Ω) будем обозначать пространство непрерывных на Ω
вещественных функций с нормой

∥u∥C(Ω) = max
x∈Ω

|u(x)|.

Пусть u ∈ Lp1(Ω), v ∈ Lp2(Ω), 1/p1 + 1/p2 = 1. Тогда uv ∈ L1(Ω)
и выполнено неравенство Гельдера:∣∣∣ ∫

Ω

u(x)v(x)dx
∣∣∣ 6 (∫

Ω

|u(x)|p1dx
)1/p1(∫

Ω

|v(x)|p2dx
)1/p2

. (2.23)

Справедливо и более общее неравенство:∣∣∣ ∫
Ω

u1(x)u2(x) · · ·um(x)dx
∣∣∣ 6 (2.24)

6
(∫

Ω

|u1(x)|p1dx
)1/p1(∫

Ω

|u2(x)|p2dx
)1/p2

· · ·
(∫

Ω

|um(x)|pmdx
)1/pm

,

если ui ∈ Lpi(Ω), i = 1, 2, . . . ,m, 1/p1 + 1/p2 + . . . 1/pm = 1.
Неравенство (2.23) при p1 = p2 = 2 называют неравенством Ко-

ши — Буняковского.
Мы будем также часто использовать аналогичные неравенства

для сумм: неравенство Коши:∣∣∣ m∑
i=1

aibi

∣∣∣ 6 ( m∑
i=1

|ai|2
)1/2( m∑

i=1

|bi|2
)1/2

,
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неравенство Гельдера:∣∣∣ m∑
i=1

aibi

∣∣∣ 6 ( m∑
i=1

|ai|p1
)1/p1( m∑

i=1

|bi|p2
)1/p2

, 1/p1 + 1/p2 = 1,

а также неравенство для сумм, соответствующее обобщенному нера-
венству Гельдера (2.24).

Часто оказывается полезной следующая формула для вычисления
нормы в пространстве Lp:

∥u∥Lp
= sup

v∈Lq

(∫
Ω

uvdx
/
∥v∥Lq

)
, 1/p+ 1/q = 1. (2.25)

Для ее доказательства достаточно заметить, что вследствие неравен-
ства Гельдера ∫

Ω

uvdx/∥v∥Lq
6 ∥u∥Lp

∀v ∈ Lq,

полагая же v(x) = |u(x)|p−1signu(x), получим

v ∈ Lq, ∥v∥Lq
= ∥u∥p−1

Lp
,

∫
Ω

uvdx = ∥u∥pLp
,

т. е. ∫
Ω

uvdx/∥v∥Lq
= ∥u∥Lp

.

6. Обобщенные производные. Функция u называется фи-
нитной на Ω, если существует компакт K ⊂ Ω такой, что u(x) = 0
при x ̸∈ K. Через C∞

0 (Ω) будем обозначать множество бесконечно
дифференцируемых финитных на Ω функций.

Определение 1. Функция u(x) ∈ Lp(Ω) имеет обобщенную про-
изводную ∂u/∂xi ∈ Lp(Ω) по переменной xi, если существует функция
u∗(x) ∈ Lp(Ω) такая, что∫

Ω

u(x)
∂v

∂xi
dx = −

∫
Ω

u∗(x)v dx ∀v ∈ C∞
0 (Ω).

По определению полагают ∂u(x)/∂xi = u∗(x).
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Нетрудно видеть, что обобщенная производная, если она су-
ществует, определяется единственным образом. Действительно, ес-
ли ũ∗ — также обобщенная производная функции u по переменной xi,
то ∫

Ω

(ũ∗ − u∗)v dx = 0 ∀v ∈ C∞
0 (Ω),

откуда в силу плотности C∞
0 (Ω) в Lp(Ω) следует, что ũ∗ = u∗. Если

функция u дифференцируема в области Ω в обычном смысле, и ее
производная ∂u/∂xi ∈ Lp(Ω), то она совпадает с обобщенной произ-
водной.

Обобщенные производные высших порядков определяются анало-
гично:

Dαu =
∂|α|u

∂xα1

1 ∂x
α2

2 . . . ∂xαn
n

∈ Lp(Ω), |α| = α1 + α2 + . . . + αn,∫
Ω

u(x)Dαv(x) dx = (−1)|α|
∫
Ω

Dαu(x)v(x) dx ∀v ∈ C∞
0 (Ω).

Будем считать, что D0u = u.
Приведем примеры, иллюстрирующие различия между понятия-

ми классической и обобщенной производной.
Пример 1. Пусть функция u определена на интервале (−1, 1)

соотношением:

u(x) =

{
−x, x 6 0,

1 + x, x > 0.

Ясно, что u ∈ Lp (−1, 1) при любом p > 1. Функция u дифференци-
руема на интервале (−1, 1) всюду, кроме точки x = 0. Ее производная

u′(x) =

{
−1, x < 0,

1, x > 0.

принадлежит Lp (−1, 1), но не является обобщенной производной
функции u. Действительно, в противном случае должно было бы вы-
полняться тождество:

1∫
−1

uv′dx = −
1∫

−1

u′vdx ∀v ∈ C∞
0 (−1, 1). (2.26)
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Используя формулу интегрирования по частям, получим:
1∫

−1

uv′dx =

0∫
−1

uv′dx+

1∫
0

uv′dx = −
1∫

−1

u′vdx− v(0),

и поскольку, вообще говоря, v(0) ̸= 0, тождество (2.26) не выполня-
ется, т. е. функция u′ не является обобщенной производной функции
u.

Этот пример наводит на мысль, что функция, имеющая обобщен-
ную производную, должна быть непрерывной. В одномерном случае
это действительно так. Более того, всякая функция, имеющая обоб-
щенную производную из Lp(0, 1), p > 1, абсолютно непрерывна на
отрезке [0, 1]. Можно показать, что и в случае произвольного числа
измерений функция, непрерывная и кусочно непрерывно дифферен-
цируемая на некоторой области, имеет все обобщенные производные
первого порядка (подробнее см. ниже, с. 44).

Однако, как показывает следующий пример, при n > 2 функция,
имеющая обобщенные производные, не обязательно является ограни-
ченной.

Пример 2. Пусть Ω = {x ∈ R2 : x21+x
2
2 6 R < 1}, u(x) = ln ln

1

r
,

где r = (x21 + x22)
1/2. Функция u и ее первые производные

∂u

∂xi
= − xi

r2 ln r
,

неограниченно возрастают при r → 0. Легко проверить, что
u, ∂u/∂xi ∈ L2(Ω). Покажем, что ∂u/∂xi, i = 1, 2, — обобщенные
производные функции u. Для любой функции v ∈ C∞

0 (Ω) можно на-
писать ∫

Ω

∂v

∂xi
ln ln

1

r
dx = lim

ε→0

∫
Ωε

∂v

∂xi
ln ln

1

r
dx,

где Ωε = {x ∈ Ω : r > ε}. Используя формулу интегрирования по
частям, получим:∫

Ωε

∂v

∂xi
ln ln

1

r
dx = −

∫
Ωε

v
∂u

∂xi
dx+

∫
|r|=ε

v ln ln
1

r
cos(ν, xi) dx,

где ν — нормаль, внешняя к Ωε. Нетрудно убедиться, что

lim
ε→0

∫
|r|=ε

v ln ln
1

r
cos(ν, xi) dx = 0,
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и, следовательно,∫
Ω

u
∂v

∂xi
dx = −

∫
Ω

v
∂u

∂xi
dx ∀v ∈ C∞

0 (Ω),

т. е. ∂u/∂xi — обобщенная производная функции u.

7. Пространства Соболева. Множество функций из Lp(Ω),
имеющих обобщенные производные Dαu ∈ Lp(Ω) для всех α, |α| 6 s
(s > 1) образует линейное пространство. Вводя на этом пространстве
норму

∥u∥s,p,Ω =
(∫
Ω

∑
|α|6s

|Dαu|p dx
)1/p

(2.27)

при конечных p > 1, и

∥u∥s,∞,Ω = max
|α|6s

ess sup
x∈Ω

∣∣Dαu(x)
∣∣ (2.28)

при p = ∞, получим линейное нормированное пространство (про-
странство Соболева), обозначаемое через W s

p (Ω). Известно, что
W s

p (Ω) — полное пространство.
Далее будут использоваться следующие обозначения для полу-

норм:

|u|s,p,Ω =
(∫
Ω

∑
|α|=s

|Dαu|pdx
)1/p

, [u]s,p,Ω =
(∫
Ω

n∑
i=1

∣∣∣∂su
∂xsi

∣∣∣p)1/p,
|u|s,∞,Ω = max

|α|=s
ess sup

x∈Ω
|Dαu(x)|, [u]s,∞,Ω = max

i=1,...,n
ess sup

x∈Ω

∣∣∣∣∂su∂xsi (x)
∣∣∣∣.

Описание свойств пространств Соболева связано с сужением клас-
са рассматриваемых областей. Приведем соответствующие определе-
ния.

Определение 2. Заданная на некотором множествеD простран-
ства Rn вещественная функция u удовлетворяет условию Липшица с
показателем λ, если существуют постоянные c > 0 и λ ∈ (0, 1] такие,
что

|u(x)− u(x′)| 6 c|x− x′|λ ∀x, x′ ∈ D.

Определение 3. Ограниченная область Ω евклидова простран-
ства Rn и ее граница Γ принадлежат классу Ck,λ, если для любой
точки x ∈ Γ найдется ее окрестность ∆(x) ⊂ Rn и декартова система
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координат (ξ1, ξ2, ξ3, . . . , ξn), такие, что в ∆(x) уравнение Γ может
быть записано в виде ξn = φ(ξ1, ξ2, ξ3, . . . , ξn−1) с функцией φ класса
Ck,λ, т. е. функцией k раз дифференцируемой, все k-е производные
которой удовлетворяют условию Липшица с показателем λ.

δ

ξ2 ≡ φ(ξ1)

ξ1

ξ2

Ω

x

Ω

Рис. 1. Пример областей с липшицевой (слева) и не липшицевой границей (справа). В
точке x имеется ≪нулевой≫ угол.

Будем предполагать, что все встречающиеся в дальнейшем обла-
сти как минимум принадлежат классу C0,1, иначе говоря, являются
липшицевыми.

Для таких областей можно дать другое, эквивалентное, опреде-
ление пространства W s

p (Ω).
Пусть C∞ (Ω) — линейное пространство, получаемое сужением на

Ω = Ω
∪

Γ множества бесконечно дифференцируемых на Rn функ-
ций. Пространство W s

p (Ω) определяется как замыкание C∞ (Ω) по
норме (2.27).

Чаще всего в книге используется пространство Соболева W s
2 (Ω).

Это пространство становится пространством Гильберта, если ввести
на нем скалярное произведение

(u, v)s,Ω =

∫
Ω

∑
|α|6s

Dαu Dαv dx.

Пространство W s
2 (Ω) будем обозначать, обычно, через Hs(Ω), а

норму функции u ∈ Hs(Ω) через ∥u∥s,Ω.
Функции, принадлежащие W s

p (Ω), при достаточно больших s и p
обладают определенной гладкостью. Дадим в связи с этим

Определение 4. Пусть X и Y линейные нормированные про-
странства с нормами ∥·∥X , ∥·∥Y . Говорят, что X непрерывно вклады-
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вается в Y , если каждый элемент u, принадлежащийX, принадлежит
Y , и существует постоянная c такая, что

∥u∥Y 6 c ∥u∥X ∀u ∈ X.

Иными словами, оператор, сопоставляющий каждому элементу
пространства X тот же элемент как элемент пространства Y (опера-
тор вложения) — линейный ограниченный оператор.

Определение 5. Линейное нормированное пространство X
вполне непрерывно вкладывается в линейное нормированное про-
странство Y , если оператор вложения X в Y вполне непрерывен1).

Теорема 1. Пусть sp < n. Тогда пространство W s
p (Ω) непре-

рывно вкладывается в Lq(Ω) при любом q 6 np/(n − sp). Вложе-
ние W s

p (Ω) в Lq вполне непрерывно при q < np/(n − sp). Если
sp = n, то W s

p (Ω) вполне непрерывно вкладывается в Lq(Ω) при
любом q ∈ [1,∞).

Теорема 2. Вложение W s+1
p (Ω) в W s

p (Ω) вполне непрерывно при
любых s > 0, p ∈ [1,∞].

Замечание 1. Теорема 1, в частности, показывает, что функции из W 1
2 (Ω) при

n = 2 суммируемы по Ω с любой степенью q < ∞.

Теорема 3. Пусть (s − r)p > n. Тогда пространство W s
p (Ω)

вполне непрерывно вкладывается в пространство Cr(Ω).
Замечание 2. Нужно иметь в виду, что по определению функция u из W s

p (Ω) —
элемент Lp(Ω), т. е. под u фактически понимается класс эквивалентности. Иными слова-
ми, функции, совпадающие почти всюду на Ω, неразличимы. Таким образом, например,
принадлежность функции u из W s

p (Ω) пространству C(Ω) означает, что соответствую-
щий класс эквивалентности содержит функцию, непрерывную на Ω.

Для областей класса Cs,λ функции из W s
p (Ω) допускают продол-

жение на более широкую область с сохранением нормы. Точнее, спра-
ведлива

Теорема 4. Пусть u ∈ W s
p (Ω), Ω′ — область, содержащая Ω.

Тогда существует функция ũ ∈
◦
W s

p(Ω
′) такая, что ũ(x) = u(x) при

x ∈ Ω и
∥ũ∥s,p,Ω′ 6 c ∥u∥s,p,Ω,

где c — постоянная, зависящая от областей Ω и Ω′, но не зависящая
от u.
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x

y

1

0

Ω

y = |x|γ

Рис. 2. Область из контрпримера.

Приведем пример, показывающий, что утверждение теоремы 3
может не выполняться, если область Ω не принадлежит классу C0,1.

Пусть Ω — двумерная область, ограниченная кривой y = |x|γ
(γ < 1) и прямой y = 1 (рис. 2). В начале координат граница области
имеет нулевой угол и потому, как нетрудно проверить, не принадле-
жит классу C0,1. Рассмотрим функцию u(x, y) = yβ. Эта функция
неограниченно возрастает, когда y → 0 при любом β < 0. Однако она
имеет обобщенные производные первого порядка в области Ω:

∂u

∂x
= 0,

∂u

∂y
= βyβ−1,

причем

∫
Ω

∣∣∂u
∂y

∣∣2+ε
dΩ = β2+ε

1∫
0

y1/γ∫
−y1/γ

y(β−1)(2+ε)dxdy = 2β2+ε

1∫
0

y(β−1)(2+ε)+1/γdy.

Ясно, что существуют такие ε > 0, β < 0, что (β−1)(2+ε)+1/γ > −1
при любом γ < 1. Это означает, что u ∈ W 1

2+ε(Ω), и, следовательно,
теорема 3 для рассматриваемой области неверна.

Ввиду особой важности для теории МКЭ теоремы 3 дадим эле-
ментарное доказательство непрерывности вложения W s

p (Ω) в C(Ω),
опирающееся, правда, на теорему 4 о продолжении. При этом будем
считать, что Ω — область класса Cs,λ.

Обозначим через Ω′ область, содержащую Ω. Рассмотрим сначала
некоторую функцию u(x) ∈ C∞

0 (Ω′) и продолжим ее нулем на все
1)т. е. всякое множество, ограниченное в X, компактно в пространстве Y , или, что эквива-

лентно, из последовательности, ограниченной в X, можно выделить подпоследовательность,
сходящуюся в Y .
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пространство Rn. Пусть S (x0, R) — шар радиуса R с центром в точке
x0, S (x0, R) ⊇ Ω′. Введем сферическую систему координат с началом
в точке x0. Имеем

u (x0) = −
R∫

0

u′r (r) dr,

где r — радиальная координата. Интегрируя по частям s − 1 раз,
получим

u (x0) = b

R∫
0

rs−1∂
su

∂rs
dr,

где b — постоянная, зависящая лишь от s. Проинтегрируем это ра-
венство по угловым переменным. Будем иметь:

u (x0) = b1

∫
S(x0,R)

rs−n∂
su

∂rs
dv,

где dv = rn−1drdσ — элемент объема в сферических координатах,
b1 — постоянная, зависящая лишь от n и s. Используя неравенство
Гёльдера, получим:

|u(x0)| 6 b1

( ∫
S(x0,r)

rp
′(s−n)dv

)1/p′( ∫
S(x0,r)

∣∣∣∂su
∂rs

∣∣∣pdv)1/p,
где 1/p + 1/p′ = 1. Очевидно, первый интеграл справа конечен и за-
висит лишь от n, s, p и R при p′(s−n)+n−1 > −1 , т. е. при ps > n.
Возвращаясь к декартовым координатам, получим, что второй ин-
теграл не превосходит ∥u∥s,p,Ω′. Вследствие произвольности x0 ∈ Ω
отсюда вытекает, что

∥u∥C(Ω) 6 c∥u∥s,p,Ω′ (2.29)

с постоянной c, не зависящей от u.
Пусть теперь u ∈ W s

p (Ω) — произвольная функция, ũ — про-
должение u, такое, что ∥ũ∥s,p,Ω′ 6 c ∥u∥s,p,Ω. Рассмотрим последо-
вательность функций um ∈ C∞

0 (Ω′) таких, что ∥um − ũ∥s,p,Ω′ → 0
при m → ∞. Последовательность um фундаментальна в W s

p (Ω
′) и

в силу неравенства (2.29), справедливого для функций из C∞
0 (Ω′),

фундаментальна и в C(Ω), поэтому последовательность um сходит-
ся в смысле пространства C(Ω), а ее предел u(x) — непрерывная в
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Ω функция. Для каждого члена последовательности um выполнено
неравенство ∥um∥C(Ω) 6 c ∥um∥s,p,Ω′. Это значит, что оно справедливо
и для предельной функции ũ. Для завершения доказательства теоре-
мы достаточно заметить, что ∥ũ∥s,p,Ω′ 6 c ∥u∥s,p,Ω. �

8. Следы функций из соболевских пространств. Как уже
говорилось (см. замечание 2), функции из W s

p (Ω), совпадающие по-
чти всюду на Ω, неразличимы. Вследствие этого непосредственно го-
ворить о значениях (следах) функций из W s

p (Ω) на многообразиях
размерности, меньшей чем n, и, в частности, на границе области,
не имеет смысла. Тем не менее, при определенных условиях на p и
s можно дать корректное определение понятия следа, обобщающее
обычное понятие сужения непрерывной на Ω функции на некоторую
часть Ω. Приведем в общих чертах соответствующие рассуждения.
Справедлива

Теорема 5. Пусть u ∈ C∞(Ω). Обозначим через Γm сечение
области Ω гиперплоскостью размерности m < n. Пусть m > n −
sp > 0, q = mp/(n− sp). Тогда

∥u∥Lq(Γm) 6 c ∥u∥s,p,Ω, (2.30)
где c — постоянная, не зависящая от выбора u.

Пусть теперь u — произвольная функция из W s
p , uk — последо-

вательность функций из C∞(Ω), сходящаяся к u. Тогда на основании
неравенства (2.30) получаем, что последовательность uk фундамен-
тальна в Lq(Γm). Предельная функция u ∈ Lq(Γm) этой последова-
тельности называется следом функции u ∈ W s

p (Ω) на Γm.
Можно показать, что такое определение следа корректно в том

смысле, что:
1) след функции u ∈ W s

p (Ω) не зависит от выбора последователь-
ности uk, сходящейся к u;

2) след непрерывно меняется (в смысле нормы Lq(Γm)) при непре-
рывном движении сечения области Ω;

3) для непрерывной функции из W s
p (Ω) след совпадает с ее суже-

нием на Γm.
Понятно, что для следа функции u справедлива оценка (2.30).

Более того, имеет место
Теорема 6. Пусть Γm — сечение области Ω гиперплоскостью

размерности m < n, m > n− sp > 0. Тогда:
1) если n > sp, то пространство W s

p (Ω) непрерывно вкладывает-
ся в пространство Lq(Γm), где q = mp/(n−sp); пространство W s

p (Ω)
компактно вкладывается в пространство Lq∗(Γm) ∀ q∗ < q;
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2) если n = sp, то пространство W s
p (Ω) компактно вкладыва-

ется в Lq(Γm) ∀ q <∞.
Утверждение теоремы справедливо и в том случае, когда Γm — ку-

сок достаточно гладкой поверхности 1) размерности m, например, Γm

может быть частью границы области Ω.
Пусть g ∈ Lq(Γ). Будем говорить, что u(x) = g(x) на Γ, если

след функции u на Γ совпадает с g. В частности, если g = 0, будем
говорить, что функция u обращается в нуль на Γ.

Замечание 3. Не следует думать, что множество следов на Γ функций из W s
p (Ω)

заполняет все пространство Lq(Γ). Более того, не всякая непрерывная на Γ функция,
даже при сколь угодно гладкой Γ, может быть продолжена в Ω так, чтобы она принад-
лежала W s

p (Ω).

Теорема 7. Если Γ — липшицева кусочно непрерывно диффе-
ренцируемая поверхность, то для любой функции u ∈ W s

p (Ω) на Γ
определены следы всех производных Dαu при |α| < s.

Доказательство. Ясно, что если |α| < s, то Dαu ∈ W 1
p (Ω),

а при m = n − 1, s = 1 условие m > n − sp выполнено при любом
p > 1. �

Отметим, что для функции u ∈W s
p (Ω) справедлива формула ин-

тегрирования по частям:∫
Ω

u
∂v

∂xi
dx = −

∫
Ω

∂u

∂xi
vdx+

∫
Γ

uv cos(ν̂, xi)dx ∀v ∈ C1(Ω). (2.31)

Упражнение 2. Показать, что формула (2.31) справедлива для любых функций
u, v ∈ W 1

2 (Ω).

Используя понятие следа, дадим часто используемый в теории
МКЭ критерий принадлежности функции пространству W s

p .

Теорема 8. Пусть Ω = Ω1 ∪ . . . ∪ Ωm, где Ωi — подобласть
Ω, i = 1, 2, . . . ,m, Ωi ∩ Ωj = ∅ при i ̸= j; каждая из областей Ωi

имеет кусочно гладкую границу. Пусть далее ui — сужение на Ωi

функции u, определенной на области Ω, ui ∈ W s
p (Ωi). Предположим,

что для любых двух областей Ωi, Ωj, имеющих общий кусок Γij

границы ненулевой (n−1)-меры, следы на Γij функций ui, uj и всех их
производных вплоть до порядка s− 1 совпадают. Тогда u ∈ W s

p (Ω).
Доказательство. Ограничимся простейшим случаем, когда

s = 1, m = 2, предлагая читателю рассмотрение общей ситуации в
качестве упражнения. Ясно, что ∂u/∂xk ∈ Lp(Ω), k = 1, 2, . . . , n. По-
кажем, что эти функции — обобщенные производные функции u. Для

1)Достаточно предположить, что Γm ∈ Cs
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произвольной функции v ∈ C∞
0 , используя формулу интегрирования

по частям (2.31), получим:∫
Ω

∂u

∂xi
vdx =

∫
Ω1

∂u1
∂xi

vdx+

∫
Ω2

∂u2
∂xi

vdx = −
∫
Ω

∂v

∂xi
udx+

+

∫
Γ12

u1v cos(ν̂1xi)dx+

∫
Γ12

u2v cos(ν̂2xi)dx. (2.32)

Вследствие непрерывности функции v и равенства следов u1, u2 на
Γ12 интегралы по Γ12 равны по модулю и противоположны по знаку.
Следовательно, равенство (2.32) совпадает с равенством, определяю-
щим обобщенную производную функции u. �

Замыкание по норме (2.27) линейного множества функций C∞
0 (Ω)

образует замкнутое подпространство пространства W s
p (Ω), обознача-

емое через
◦
W s

p(Ω). При p = 2 будем также использовать обозначе-
ние Hs

0(Ω).
Из определения следа и теоремы 7 вытекает, что если Γ — липши-

цева кусочно непрерывно дифференцируемая поверхность, то любая
функция u ∈

◦
W s

p(Ω) обращается в нуль на Γ вместе со всеми своими
производными до порядка s− 1 включительно.

9. Эквивалентные нормировки соболевских пространств.
На пространстве W s

p (Ω) часто бывает удобно вводить норму не при
помощи соотношения (2.27) (или (2.28)), а некоторыми другими, эк-
вивалентными, способами1). Прежде всего заметим, что поскольку(∑

|α|=m

|Dαu(x)|p
)1/p

, p > 1,

есть норма симметричной полилинейной формы Dmu(x), то норму на
пространстве W s

p (Ω) можно определять эквивалентным образом при
помощи равенства

∥u∥ps,p,Ω =

∫
Ω

s∑
k=0

∥Dku(x)∥pdx,

где ∥ · ∥ — любая норма полилинейной формы Dku(x), k = 1, 2, . . . s.
Значительно менее очевиден следующий результат о том, что в

выражении для нормы пространства W s
p можно не использовать сме-

шанные производные функции u.
1)См. сноску на с. 22.
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Теорема 9. Норма ∥u∥′s,p,Ω = ∥u∥0,p,Ω + [u]s,p,Ω эквивалентна на
W s

p (Ω) норме, определенной равенством (2.27) (или (2.28)).
Весьма общий прием построения норм, эквивалентных исходной

норме, дает следующая теорема С.Л. Соболева.
Теорема 10. Пусть f0, f1, . . . , fk — линейные непрерывные

функционалы на пространстве W s
p (Ω), s > 1, p ∈ [1,∞], обладающие

тем свойством, что из равенств

|u|r,p,Ω = 0, r = l, l + 1, . . . , s, f0(u) = f1(u) = . . . = fk(u) = 0

вытекает, что u = 0. Тогда выражение

∥u∥′s,p,Ω = |u|l,p,Ω + |u|l+1,p,Ω + . . . + |u|s,p,Ω + |f0(u)|+ . . . + |fk(u)|

определяет норму на пространстве W s
p (Ω), эквивалентную исход-

ной.
Доказательство. Нетрудно проверить, выражение ∥u∥′s,p дей-

ствительно определяет норму на пространстве W s
p (Ω). Неравенство

∥u∥′s,p 6 c1 ∥u∥s,p ∀u ∈ W s
p (Ω), c1 = const,— следствие непрерыв-

ности функционалов fi, i = 0, 1, . . . , k. Остается доказать спра-
ведливость обратного неравенства ∥u∥s,p 6 c2 ∥u∥′s,p ∀u ∈ W s

p (Ω),
c2 = const. Предположим противное. Тогда найдется такая последо-
вательность {um}, что

∥um∥s,p = 1, m > 1, (2.33)

и в то же время
∥um∥′s,p → 0. (2.34)

По теореме 2 пространство W s
p компактно вкладывается в простран-

ство W s−1
p при любых 1 6 p 6 ∞, s > 1. Поэтому из последователь-

ности {um} можно извлечь подпоследовательность {umk
}, фундамен-

тальную в пространстве W s−1
p , т. е. такую, что

∥umk
− um′

k
∥s−1,p → 0 при mk, m

′
k → ∞. (2.35)

Кроме того, из (2.34) следует, что |umk
|s,p → 0, поэтому |umk

−um′
k
|s,p→

0 при mk, m
′
k → ∞. Вместе с (2.35) это означает, что последова-

тельность {umk
} фундаментальна в W s

p (Ω) и потому имеет предел:
umk

→ u в W s
p (Ω). На основании (2.34), используя непрерывность

функционалов fi и полунорм | · |j,p, получим:

|u|j,p = 0, j = l, l + 1, . . . , s, fj(u) = 0, j = 0, 1, . . . , k,
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и, значит, u = 0. С другой стороны, из (2.33) вытекает, что

lim
mk→∞

∥umk
∥s,p = ∥u∥s,p = 1.

Полученное противоречие и доказывает теорему. �
Аналогично теореме 10 с использованием теоремы 9 доказывается
Теорема 11. Пусть f0, f1, . . . , fk — линейные непрерывные

функционалы на W s
p (Ω), обладающие тем свойством, что из ра-

венств

[u]r,p,Ω = 0, r = l, l + 1, . . . , s, f0(u) = f1(u) = . . . = fk(u) = 0

вытекает, что u = 0. Тогда выражение

∥u∥′s,p,Ω = [u]l,p,Ω + [u]l+1,p,Ω + . . . + [u]s,p,Ω + |f0(u)|+ . . . + |fk(u)|

определяет норму на пространстве W s
p (Ω), эквивалентную исход-

ной.
Приведем примеры, иллюстрирующие применение теорем об эк-

вивалентных нормировках.
1) Неравенство Фридрихса. Используя теорему 6 при p = 2,

s = 1, получим, что для u ∈ W 1
2 (Ω) определен след на границе об-

ласти Ω, принадлежащий L2(Γ), причем ∥u∥L2(Γ) 6 c ∥u∥1, поэтому
можно определить линейный ограниченный на пространстве W 1

2 (Ω)
функционал

f0(u) =

∫
Γ

u dx.

Ясно, что если для u ∈ W 1
2 (Ω) выполнены равенства

|u|21 =
∫
Ω

|∇u|2 dx = 0, (2.36)

f0(u) = 0, (2.37)

то u(x) ≡ const вследствие (2.36), а в силу (2.37) имеем u(x) ≡ 0.
Поэтому на основании теоремы 10 норма

∥u∥′1 = |u|1 +
∣∣∣∫
Γ

u dx
∣∣∣

эквивалентна исходной норме

∥u∥1 =
(
|u|21 + |u|20

)1/2
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на пространстве W 1
2 (Ω). Отсюда вытекает, что

∥u∥2L2(Ω)
6 ∥u∥21 6 c

(∫
Ω

|∇u|2dx+
∣∣∣∫
Γ

udx
∣∣∣2).

В частности, для u ∈
◦
W1

2(Ω) имеем:

∥u∥2L2(Ω)
6 c

∫
Ω

|∇u|2dx. (2.38)

Неравенство (2.38) называется неравенством Фридрихса. Из него вы-
текает, что полунорма | · |1 — норма на пространстве

◦
W1

2(Ω), эквива-
лентная ∥·∥1. Действительно, как следствие (2.38) немедленно полу-
чаем:

∥u∥21 =
∫
Ω

(
|∇u|2 + u2

)
dx 6 c

∫
Ω

|∇u|2 dx = c|u|21.

Оценка |u|1 6 ∥u∥1 очевидна.
Замечание 4. Неравенство Фридрихса (2.38) доказано нами как следствие тео-

ремы об эквивалентных нормировках и общей теоремы вложения 10. При этом ис-
пользовано предположение о том, что граница области Ω липшицева. На самом деле
неравенство Фридрихса справедливо для произвольной ограниченной области. Дока-
жем это при n = 2. Случай пространства произвольной размерности рассматривается
аналогично. Пусть область Ω ⊂ R2 и ограничена. Можно считать, что Ω ⊂ Ω′, где
Ω′ — квадрат со стороной a: Ω′ =

{
x ∈ R2 : 0 6 x1, x2 6 a

}
. Для функции u ∈ C∞

0 (Ω)
определим функцию ũ ∈ C∞

0 (Ω′) соотношением

ũ(x) =

{
u(x), x ∈ Ω,

0, x ̸∈ Ω.

Пусть x ∈ Ω′. Используя формулу Ньютона — Лейбница, можно написать:

ũ (x1, x2) =

x1∫
0

∂ũ (ξ1, x2)

∂ξ1
dξ1,

откуда в силу неравенства Коши — Буняковского

ũ2 (x1, x2) 6 a

a∫
0

(
∂ũ (ξ1, x2)

∂ξ1

)2

dξ1.

Интегрируя последнее неравенство по Ω′, получим:∫
Ω′

ũ2dx 6 a2
∫
Ω′

(
∂ũ

∂x1

)2

dx 6 a2
∫
Ω′

|∇ũ|2 dx,
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или, так как ũ(x) ≡ 0 вне Ω,∫
Ω

u2dx 6 a2
∫
Ω

|∇u|2dx ∀u ∈ C∞
0 . (2.39)

Пусть теперь u ∈
◦
W 1

2(Ω). По определению пространства
◦
W 1

2(Ω) существует последова-
тельность um ∈ C∞

0 (Ω) такая, что ∥u− um∥1 → 0 при m → ∞. Ясно, что при этом∫
Ω

u2mdx →
∫
Ω

u2dx,

∫
Ω

|∇um|2 dx →
∫
Ω

|∇u|2 dx.

Записывая неравенство (2.39) для функций um и переходя к пределу при m → ∞,
получим, что (2.39) выполнено для любой функции u ∈

◦
W1

2(Ω).

2) Неравенство Пуанкаре. Пусть, как и в предыдущем приме-
ре, p = 2, s = 1, а функционал f0(u) определен на W 1

2 (Ω) соотноше-
нием

f0(u) =

∫
Ω

u dx.

Вследствие неравенства Коши — Буняковского

|f0(u)| 6 c
(∫
Ω

u2dx
)1/2

6 c ∥u∥1,

т. е. f0(u) — линейный ограниченный функционал. Ясно, что, если
f0(u) = 0, |u|1 = 0,

то u(x) ≡ 0, и по теореме 10 норма

∥u∥′1 = |u|1 +
∣∣∣∫
Ω

u dx
∣∣∣

эквивалента норме пространства W 1
2 (Ω). Отсюда вытекает, что∫

Ω

u2dx 6 c
{∫
Ω

|∇u|2 dx+
∣∣∣∫
Ω

u dx
∣∣∣2}.

Это неравенство называют неравенством Пуанкаре.
3) Эквивалентные нормировки пространства H2

0(Ω). Если
Ω — ограниченная область с липшицевой границей, то нормы

∥u∥(1)2,Ω =
(∫
Ω

∑
|α|=2

(Dαu)2dx
)1/2

, ∥u∥(2)2,Ω =
(∫
Ω

n∑
i=1

(∂2u
∂x2i

)2)1/2
dx,

∥u∥(3)2,Ω =
(∫
Ω

(∆u)2
)1/2

dx,
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определенные на H2
0(Ω), эквивалентны норме пространства H2(Ω).

Напомним, что H2
0(Ω) — подпространство пространства H2(Ω),

получающееся замыканием множества C∞
0 (Ω) по норме H2(Ω). По-

нятно поэтому, что соответствующие неравенства эквивалентности
достаточно установить для функций из C∞

0 (Ω). Сделаем это сначала
для нормы ∥ · ∥(1)2,Ω. Неравенство ∥u∥(1)2,Ω 6 ∥u∥2,Ω очевидно. Используя
неравенство Фридрихса, получим∫

Ω

u2dx 6 c

∫
Ω

|∇u|2dx,

∫
Ω

(
∂u

∂xi

)2

dx 6 c

∫
Ω

n∑
j=1

(
∂2u

∂xi∂xj

)2

dx, i = 1, . . . , n,

следовательно, обратное неравенство ∥u∥2,Ω 6 c∥u∥(1)2,Ω также доказа-
но.

Сравним нормы ∥u∥(1)2,Ω и ∥u∥(2)2,Ω. Ясно, что ∥u∥(2)2,Ω 6 ∥u∥(1)2,Ω Для
того, чтобы оценить ∥u∥(1)2,Ω сверху, рассмотрим выражение∫

Ω

∂2u

∂xi∂xj

∂2u

∂xi∂xj
dx

при i ̸= j и преобразуем его при помощи формулы интегрирования
по частям, перебрасывая производную по xj на второй множитель, а
затем производную по xi — на первый. В результате получим:∫
Ω

∂2u

∂xi∂xj

∂2u

∂xi∂xj
dx =

∫
Ω

∂2u

∂x2i

∂2u

∂x2j
dx 6 1

2

∫
Ω

((∂2u
∂x2i

)2
+
(∂2u
∂x2j

)2)
dx.

Эквивалентность норм ∥u∥(1)2,Ω, ∥u∥(2)2,Ω доказана. Доказательство эк-
вивалентности норм ∥u∥(1)2,Ω, ∥u∥(3)2,Ω оставляем читателю в качестве
упражнения.

4) Леммы типа Брамбла — Гильберта. В этом примере с
помощью теорем 10, 11 мы докажем следующие часто используемые
в теории МКЭ результаты.

Лемма 1. Пусть f — линейный ограниченный функционал
на пространстве W s

p (Ω), обращающийся в нуль на любом полино-
ме степени l 6 s− 1 по совокупности переменных, т. е. f(Pl) = 0,
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если Pl(x) =
∑
|α|6l

cαx
α, где cα — постоянные, xα = xα1

1 · · ·xαn
n . Тогда

существует такая постоянная c, зависящая только от области Ω
и функционала f , что

|f(u)| 6 c
(
|u|l+1,p + |u|l+2,p + . . . + |u|s,p

)
∀u ∈ W s

p (Ω).

Доказательство. Введем в рассмотрение норму

∥u∥∗s = |u|l+1,p + |u|l+2,p + . . . + |u|s,p +
∑
|α|6l

∣∣∣∫
Ω

Dαu dx
∣∣∣

на пространстве W s
p (Ω). Покажем, что она эквивалентна исходной

норме. Для этого достаточно проверить, что линейные ограниченные
функционалы

fα(u) =

∫
Ω

Dαu dx

удовлетворяют условиям теоремы 10. Пусть

|u|l+1,p = |u|l+2,p = . . . = |u|s,p = 0, (2.40)∫
Ω

Dαu dx = 0, |α| 6 l. (2.41)

Из равенств (2.40) вытекает, что Dαu = 0 для всех α таких, что
|α| = l + 1. Это означает, что u(x) — полином степени l по со-
вокупности переменных: u(x) =

∑
|α|6l

cαx
α. Равенства (2.41) пред-

ставляют собой систему линейных алгебраических уравнений отно-
сительно коэффициентов этого полинома. Покажем, что она имеет
только тривиальное решение. Действительно, рассмотрим мультиин-
декс α = (α1, α2, . . . , αn) такой, что |α| = l. Очевидно, Dαu =
cαα1!α2! · · ·αn!, и условие ∫

Ω

Dαu dx = 0

дает, что cα = 0. Таким образом, все старшие коэффициенты полино-
ма u(x), т. е. коэффициенты cα при |α| = l, равны нулю. Рассуждая
аналогично, установим, что все коэффициенты полинома u(x) равны
нулю, а это означает, что условия теоремы 10 выполнены, т. е. нор-
ма ∥·∥∗s эквивалентна норме пространства W s

p (Ω). Ясно теперь, что
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для любой функции u ∈ W s
p (Ω) и любого полинома Pl(x) степени l

по совокупности переменных

|f(u)| = |f(u+ Pl)| 6 ∥f∥ ∥u+ Pl∥s,p 6 c ∥f∥ ∥u+ Pl∥∗s,p .

Полином Pl можно выбрать так, что∫
Ω

Dα (u+ Pl) dx = 0, |α| 6 l.

Действительно, для этого достаточно решить систему линейных ал-
гебраических уравнений∫

Ω

DαPl dx = −
∫
Ω

Dαu dx, |α| 6 l (2.42)

относительно коэффициентов полинома Pl. Система (2.42) имеет ре-
шение, и притом единственное, поскольку соответствующая ей одно-
родная система, как показано выше, имеет только тривиальное ре-
шение. При указанном выборе полинома Pl вследствие определения
нормы ∥·∥∗s имеем:

|f(u)| 6 c ∥f∥ ∥u+ Pl∥∗s,p 6 c
(
|u|l+1,p + |u|l+2,p + . . . + |u|s,p

)
. �

Аналогично лемме 1 с использованием теоремы 11 об эквивалент-
ных нормировках доказывается

Лемма 2. Пусть f — линейный ограниченный функционал
на пространстве W s

p (Ω), обращающийся в нуль на любом полино-
ме степени l 6 s− 1 по каждой переменной, т. е.

f(Pl) = 0, если Pl(x) =
l∑

α1,...,αn=0

cαx
α, cα — постоянные.

Тогда существует такая постоянная c, зависящая только от обла-
сти Ω и функционала f , что

|f(u)| 6 c
(
[u]l+1,p + [u]l+2,p + . . . + [u]s,p

)
∀u ∈ W s

p (Ω).

10. Замена переменных. При исследовании метода конеч-
ных элементов важную роль играют формулы замены независимых
переменных при вычислении производных и оценки, связанные с за-
меной независимых переменных в выражениях для норм на соболев-
ских пространствах.
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Пусть e, ê — ограниченные области пространства Rn с липшице-
выми границами. Отображение xe : ê → e будем называть C l-диф-
феоморфизмом, если xe — непрерывное взаимно однозначное отоб-
ражение ¯̂e на ē, непрерывно дифференцируемое l раз на ê, обратное
отображение x−1

e непрерывно дифференцируемо l раз на ē 1).
Пусть l, m — целые неотрицательные числа. Положим

I(l,m) = {i = (i1, . . . , im) : i1 + . . .+ im = l, i1 + 2i2 . . .+mim = m},

где i1, . . . , im — целые неотрицательные числа. В силу симметрии по-
лилинейной формы, порожденной всеми производными функции u
некоторого фиксированного порядка (см. с. 31), при i1+i2+. . .+im = l
естественно использовать обозначение

Dlu(x)
(
hi11 , . . . , h

im
m

)
= Dlu(x)

(
h1, . . . , h1, . . . , hm, . . . , hm

)
;

в правой части равенства hk повторяется ik раз, или отсутствует, если
ik = 0, k = 1, . . . ,m.

Лемма 3. Пусть x = xe(x̂) есть Cm-диффеоморфизм области
ê ⊂ Rn на область e ⊂ Rn, m > 1, u ∈ Cm(ē), û(x̂) = u(xe(x̂)).
Тогда2)

Dmû(x̂)ξ̂m = m!
m∑
l=0

∑
i∈I(l,m)

1

i1! . . . im!

1

(1!)i1 . . . (m!)im
×

×Dlu(x)
((
Dxe(x̂)ξ̂

)i1, . . . , (Dmxe(x̂)ξ̂
m
)im), (2.43)

∥Dmû(x̂)∥ 6 c
m∑
l=0

∥Dlu(x)∥
∑

i∈I(l,m)

∥Dxe(x̂)∥i1 . . . ∥Dmxe(x̂)∥im,

(2.44)

[Dmû(x̂)] 6 c
m∑
l=0

∥Dlu(x)∥
∑

i∈I(l,m)

[Dxe(x̂)]
i1 . . . [Dmxe(x̂)]

im, (2.45)

если u ∈ Cm(ē). Здесь постоянная c зависит лишь от m.

Доказательство. Пусть для достаточно малого ξ̂ отрезок
[x̂, x̂ + ξ̂] принадлежит ê и x = xe(x̂). Воспользуемся формулой Тей-

1)Если значение l явно не указано, отображение будем называть диффеоморфизмом.
2)Сумма

∑
i∈I(l,m)

считается нулевой, если множество I(l,m) является пустым.
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лора (2.22), с. 32:

û(x̂+ ξ̂) = u(xe(x̂+ ξ̂)) =
m∑
l=0

1

l!
Dlu(x)(xe(x̂+ ξ̂)− x)l + o(|ξ̂|m) =

=
m∑
l=0

1

l!
Dlu(x)(∆xe)

l + o(|ξ̂|m). (2.46)

Здесь ∆xe = xe(x̂+ ξ̂)− x = xe(x̂+ ξ̂)− xe(x̂). При выводе (2.46) мы
учли, что |xe(x̂+ ξ̂)− x| = o(|ξ̂|). В свою очередь,

∆xe =
m∑
k=1

1

k!
Dkxe(x̂)ξ̂

k + o(|ξ̂|m).

Таким образом,

û(x̂+ ξ̂) =
m∑
l=0

1

l!
Dlu(x)

( m∑
k=1

1

k!
Dkxe(x̂)ξ̂

k + o(|ξ̂|m),

. . . ,
m∑
k=1

1

k!
Dkxe(x̂)ξ̂

k + o(|ξ̂|m)
)
+ o(|ξ̂|m).

Раскроем скобки, используя полилинейность формы Dlu(x). Полезно
обратить внимание, что соответствующие преобразования формально
следуют биномиальной формуле

(a1 + a2 + . . .+ am)
l =

∑
i1+i2+...+im=l

l!

i1!i2! . . . im!
ai11 a

i2
2 · · · aimm .

В итоге получим

û(x̂+ ξ̂) =
m∑
l=0

∑
i1+i2+...+im=l

1

i1!i2! . . . im!
×

×Dlu(x)
(( 1

1!
Dxe(x̂)ξ̂

)i1, . . . , ( 1

m!
Dmxe(x̂)ξ̂

m
)im)+ o(|ξ̂|m). (2.47)

С другой стороны

û(x̂+ ξ̂) =
m∑
p=0

1

p!
Dpû(x̂)ξ̂p + o(|ξ̂|m).
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Сравнивая эту формулу с (2.47), получим искомое представление
(2.43).Из этого представления, очевидно, вытекает неравенство

|Dmû(x̂)ξ̂m| 6 c
m∑
l=0

∑
i∈I(l,m)

∥Dlu(x)∥ |Dxe(x̂)ξ̂|i1 . . . |Dmxe(x̂)ξ̂
m|im 6

6 c|ξ|m
m∑
l=0

∥Dlu(x)∥
∑

i∈I(l,m)

∥Dxe(x̂)∥i1 . . . ∥Dmxe(x̂)∥im (2.48)

с постоянной c, зависящей только от m. Отсюда следует (2.44). Те-
перь, выбирая в первом неравенстве (2.48) ξ̂ = ej, будем иметь

∥Dmû(x̂)emj ∥ 6 c
m∑
l=0

∥Dlu(x)∥
∑

i∈I(l,m)

|Dxe(x̂)ej|i1 . . . |Dmxe(x̂)e
m
j |im,

откуда после перехода к максимуму по всем j получим (2.45). �
Следствие 1. Лемма 3 справедлива и для вектор-функций

u(x) =
(
u1(x), . . . , un(x)

)T таких, что ui ∈ Cm(ē), i = 1, . . . , n.
Для того, чтобы убедиться в этом, достаточно записать равен-

ства (2.43) для каждой компоненты u и воспользоваться определени-
ем m-линейной формы Dmû ∈ Lm(R

n, Rn).
Лемма 4. Пусть x = xe(x̂) есть Cm-диффеоморфизм обла-

сти ê ⊂ Rn на область e ⊂ Rn, û(x̂) = u(xe(x̂)), m > 0. Тогда

|û|pm,p,ê 6 c1max
x∈e

| det(Dx−1
e (x))|

m∑
l=0

|u|pl,p,e×

×
∑

i∈I(l,m)

max
x̂∈ê

(
∥Dxe(x̂)∥pi1 . . . ∥Dmxe(x̂)∥pim

)
(2.49)

для всех u ∈ Wm
p (e), p ∈ [1,∞). Если u ∈ Wm

∞(e), то

|û|m,∞,ê 6 c2

m∑
l=0

|u|l,∞,e

∑
i∈I(l,m)

max
x̂∈ê

(
∥Dxe(x̂)∥i1 . . . ∥Dmxe(x̂)∥im

)
.

(2.50)
Здесь c1 = c1(m,n, p), c2 = c2(m,n).

Доказательство. В силу плотности вложения C∞(e) ⊂ Wm
p (e)

достаточно считать, что u ∈ C∞(e). Применяя неравенство Гельдера
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для оценки правой части (2.44), будем иметь, что

∥Dmû(x̂)∥p 6 c
m∑
l=0

∥Dlu(x)∥p
∑

i∈I(l,m)

∥Dxe(x̂)∥pi1 . . . ∥Dmxe(x̂)∥pim

с постоянной c = c(m, p). После интегрирования этого неравенства по
переменной x̂ ∈ ê получим∫

ê

∥Dmû(x̂)∥p dx̂ 6 c
m∑
l=0

∫
ê

∥Dlu(x)∥p dx̂ ×

×
∑

i∈I(l,m)

max
x̂∈ê

(
∥Dxe(x̂)∥pi1 . . . ∥Dmxe(x̂)∥pim

)
.

Отсюда следует оценка (2.49), поскольку dx̂ = | det(Dx−1
e (x))| dx, а

полунормы |u|m,p,e и (∫
e

∥Dmu(x)∥pdx
)1/p

эквивалентны (см. с. 45). Оценка (2.50) следует из (2.45). �
Следствие 2. Поскольку отображения xe и x−1

e равноправно
фигурируют в формулировке леммы 4, то

|u|pm,p,e 6 c max
x̂∈ê

| det(Dxe(x̂))|
m∑
l=0

|û|pl,p,ê ×

×
∑

i∈I(l,m)

max
x∈e

(
∥Dx−1

e (x)∥pi1 . . . ∥Dmx−1
e (x)∥pim

)
, (2.51)

|u|m,∞,e 6 c
m∑
l=0

|û|l,∞,ê

∑
i∈I(l,m)

max
x∈e

(
∥Dx−1

e (x)∥i1 . . . ∥Dmx−1
e (x)∥im

)
.

Следствие 3. Если в условиях леммы 3 преобразование xe —
аффинное, т. е. xe(x̂) = Bex̂+ be, где Be — заданная матрица, be —
заданный вектор, то при m > 0, p ∈ [1,∞]

Dmû(x̂)(ξ̂, . . . , ξ̂) = Dmu(x)(Beξ̂, . . . , Beξ̂),

|û|m,p,ê ≤ c | detBe|−1/p ||Be||m|u|m,p,e,

|u|m,p,e ≤ c | detBe|1/p ||B−1
e ||m|û|m,p,ê.
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Доказательство. В формулах (2.43), (2.49), (2.51) остается
лишь одно слагаемое с l = i1 = m, поскольку для аффинных отобра-
жений

Dxe(x̂) ≡ Be, Dkxe(x̂) ≡ 0, Dkx−1
e (x̂) ≡ 0 ∀k > 2. �

Лемма 5. Пусть x = xe(x̂) есть Cm-диффеоморфизм области
ê на область e ∈ Rn, u ∈ Wm

p (e), m > 0, 1 6 p 6 ∞, û(x̂) = u(xe(x̂)).
Тогда

[û]pm,p,ê 6 c1max
x∈e

| det(Dx−1
e (x))|

m∑
l=0

|u|pl,p,e ×

×
∑

i∈I(l,m)

max
x̂∈ê

(
[Dxe(x̂)]

pi1 · · · [Dmxe(x̂)]
pim
)
,

[û]m,∞,ê 6 c2

m∑
l=0

|u|l,∞,e

∑
i∈I(l,m)

max
x̂∈ê

(
[Dxe(x̂)]

i1 . . . [Dmxe(x̂)]
im
)
.

Здесь c1 = c1(n,m, p), c2 = c2(n,m).
Доказательство. Рассуждения полностью аналогичны дока-

зательству леммы 4. При этом надо учесть, что

[û]pm,p,ê =

∫
ê

n∑
i=1

∣∣Dmû(x̂)emi
∣∣pdx̂ 6 n

∫
ê

[
Dmû(x̂)

]p
dx̂,

[û]m,∞,ê = ess sup
x̂∈ê

[
Dmû(x̂)

]
. �

Лемма 6. Пусть x = xe(x̂) есть Cm-диффеоморфизм области ê
на область e ∈ Rn. Тогда

Dx−1
e (x) =

(
Dxe(x̂)

)−1
,

и при m > 2

Dmx−1
e (x)ηm = −m!

m−1∑
l=1

∑
i∈I(l,m)

1

i1! . . . im!

1

(1!)i1 . . . (m!)im
×

×Dlx−1
e (x)

(
ηi1,
(
D2xe(x̂)

(
Dx−1

e (x)η
)2 )i2, . . . , (Dmxe(x̂)

(
Dx−1

e (x)η
)m )im),
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max
x∈e

∥Dmx−1
e (x)∥ 6 c

m−1∑
l=1

max
x̂∈ê

∥Dlx−1
e (x̂)∥

∑
i∈I(l,m)

max
x∈e

∥Dx−1
e (x)∥m−i1×

×max
x̂∈ê

(
∥D2xe(x̂)∥i2 . . . ∥Dmxe(x̂)∥im

)
,

где постоянная c зависит только от m.
Доказательство. Воспользуемся следствием 1 и выберем в

формуле (2.43) u(x) = x−1
e (x). Очевидно, что û(x̂) = x̂, а I(0,m) = ∅,

I(m,m) = (m, 0, . . . , 0) при m > 1. При m = 1 получим

Dû(x̂) = Dx̂ = E, ξ = Du(x)Dxe(x̂)ξ ∀ξ ∈ Rn

(E — единичная матрица). Отсюда следует первое утверждение лем-
мы. При m > 2 имеем

0 = m!
m∑
l=1

∑
i∈I(l,m)

1

i1! . . . im!

1

(1!)i1 . . . (m!)im
×

×Dlx−1
e (x)

((
Dxe(x̂)ξ̂

)i1, . . . , (Dmxe(x̂)ξ̂
m
)im).

Из этого равенства вытекает второе утверждение леммы, если по-
ложить, что η=Dxe(x̂)ξ̂. Заключительное утверждение леммы есть
следствие второго. �

Задачи.

1. Пусть x = xe(x̂) есть отображение области ê ⊂ Rn на область e ⊂ Rn и û(x̂) =
u(xe(x̂)). Доказать, что

D2û(x̂)ξ2 = D2u(x)
(
Dxe(x̂)ξ

)2
+Du(x)

(
D2xe(x̂)ξ

2
)
,

D3û(x̂)ξ3 = D3u(x)
(
Dxe(x̂)ξ

)3
+

+ 3D2u(x)
(
D2xe(x̂)ξ

2, Dxe(x̂)ξ
)
+Du(x)

(
D3xe(x̂)ξ

3
)
.

2. Доказать, что

D2x−1
e (x)η2 = −Dx−1

e (x)
(
D2xe(x̂)

(
Dx−1

e (x)η
)2)

,

max
x∈e

∥D2x−1
e (x)∥ 6 max

x̂∈ê
∥D2xe(x̂)∥max

x∈e
∥Dx−1

e (x)∥3.
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§ 3. Обобщенные решения краевых задач

1. Введение. Понятие обобщенного решения естественным об-
разом возникает при изучении вариационных постановок задач ма-
тематической физики. Рассмотрим в качестве примера задачу о рав-
новесии мембраны, жестко закрепленной по контуру и находящейся
под действием внешней силы f . Эта задача может быть сформули-
рована как задача об отыскании функции u = u(x), доставляющей
минимальное значение интегралу (потенциальной энергии системы
мембрана — внешние силы)

F (u) =
1

2

∫
Ω

T |∇u|2dx−
∫
Ω

fu dx (2.52)

на множестве функций, равных нулю на границе Γ области Ω ⊂ R2.
Здесь T = T (x) — заданная непрерывно дифференцируемая функ-
ция — натяжение мембраны.

Уравнение равновесия мембраны получается как необходимое
условие минимума (уравнение Эйлера) функционала (2.52) и имеет
вид

− div (T∇u) = f, x ∈ Ω. (2.53)
Присоединяя к уравнению (2.53) условия жесткого закрепления

u(x) = 0, x ∈ Γ, (2.54)

получим граничную задачу Дирихле для отыскания функции u.
Под классическим решением этой задачи понимают функцию u,

непрерывную в области Ω, дважды непрерывно дифференцируемую
в открытой области Ω и удовлетворяющую уравнению (2.53) и гра-
ничному условию (2.54).

Заметим, что функционал (2.52) определен на гораздо более ши-
роком множестве функций. Именно, он, очевидно, имеет смысл для
любой функции u ∈ H1(Ω). Учтем граничные условия (2.54), пола-
гая, что u ∈ H1

0(Ω). Таким образом, возникает задача об отыскании
минимума функционала F на пространстве H1

0(Ω):

F (u) = min
v∈H1

0

F (v). (2.55)

Решение этой задачи естественно назвать обобщенным решением за-
дачи Дирихле (2.53), (2.54).

В дальнейшем будет показано, что задача (2.55) имеет единствен-
ное решение при любой функции f ∈ L2(Ω).
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Обобщенной постановке задачи (2.53), (2.54) можно придать и
другую, эквивалентную, зачастую более удобную, форму. Заметим,
если u — обобщенное решение задачи (2.53), (2.54), то для любой
функции η ∈ H1

0 и любого вещественного t имеем

F (u+ tη) > F (u).

Иными словами, функция вещественного переменного

φ (t) = F (u+ tη)

достигает минимального значения при t = 0. Нетрудно видеть,
что φ — дифференцируемая функция, следовательно, φ′ (0) = 0. Лег-
ко подсчитать, что

φ′ (0) =

∫
Ω

T∇u · ∇η dx−
∫
Ω

fη dx,

поэтому, если u — решение задачи (2.55), то∫
Ω

T∇u · ∇η dx =

∫
Ω

fη dx ∀η ∈ H1
0 . (2.56)

Теперь можно сформулировать определение, эквивалентное вве-
денному ранее определению обобщенного решения задачи (2.53),
(2.54). Именно, будем говорить, что функция u ∈ H1

0(Ω) — обобщен-
ное решение задачи (2.53), (2.54), если выполнено тождество (2.56).

Заметим, что к тождеству (2.56) можно придти и другим путем,
удобным с точки зрения распространения понятия обобщенного ре-
шения на более сложные задачи. А именно, считая, что u — клас-
сическое решение задачи (2.53), (2.54), умножим уравнение (2.53) на
некоторую непрерывно дифференцируемую на Ω и равную нулю на
Γ функцию η и проинтегрируем полученное равенство по области Ω:

−
∫
Ω

η div (T∇u) dx =

∫
Ω

fη dx. (2.57)

Преобразуем интеграл в левой части равенства (2.57) при помощи
формулы интегрирования по частям, учитывая при этом граничное
условие для функции η. В результате придем к тождеству вида (2.56).

Таким образом, если u — классическое решение задачи (2.53),
(2.54), для которого существует интеграл∫

Ω

T |∇u|2 dx
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(называемый интегралом Дирихле), то оно удовлетворяет интеграль-
ному тождеству (2.56). В этом смысле классическое решение задачи
(2.53), (2.54) является и обобщенным решением.

Пусть теперь функция u, обобщенное решение задачи (2.53),
(2.54), дважды непрерывно дифференцируема в Ω. Покажем, что то-
гда u есть классическое решение задачи (2.53), (2.54). Действительно,
выбирая в качестве функции η в (2.56) непрерывную и непрерывно
дифференцируемую функцию, равную нулю на Γ, при помощи фор-
мулы интегрирования по частям получим∫

Ω

(− div (T∇u)− f) η dx = 0. (2.58)

Отсюда следует, что u — решение уравнения (2.53). Если предполо-
жить противное, то найдется точка x ∈ Ω, такая, что

(div (T∇u) + f) (x) ̸= 0.

Не ограничивая общности, можно считать, что

( div (T∇u) + f) (x) > 0.

В силу непрерывности функции div (T∇u)+f это неравенство сохра-
няется и для некоторой окрестности точки x, лежащей внутри Ω. Вы-
берем теперь функцию η так, чтобы она была положительной внутри
указанной окрестности и тождественно равной нулю вне этой окрест-
ности. Тогда интеграл в левой части равенства (2.58) будет положи-
тельным, что по доказанному невозможно ни при какой функции η,
следовательно, div (T∇u) + f = 0 всюду в области Ω, т. е. u — клас-
сическое решение задачи (2.53), (2.54).

Приведенные рассуждения показывают, что данное здесь опреде-
ление обобщенного решения естественно обобщает понятие классиче-
ского решения.

2. Обобщенные решения краевых задач для эллиптиче-
ских уравнений второго порядка. Пусть Ω ⊂ Rn — ограничен-
ная область с липшицевой границей Γ. Будем искать функцию

u ∈ C2(Ω) ∩ C
(
Ω
)
, (2.59)

удовлетворяющую уравнению

−
n∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+

n∑
i=1

ai
∂u

∂xi
+ a0u = f, x ∈ Ω, (2.60)
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и граничному условию

u(x) = 0, x ∈ Γ. (2.61)

Задача (2.60), (2.61) называется первой краевой задачей, или задачей
Дирихле.

Относительно коэффициентов и правой части уравнения (2.60)
будем предполагать выполненными следующие условия:

aij ∈ C1(Ω), i, j = 1, . . . , n, ai ∈ C(Ω), i = 0, . . . , n, f ∈ C(Ω).
(2.62)

Вводя в рассмотрение матрицу A(x) = {aij}ni,j=1 и вектор-строку
a= (a1, . . . , an), уравнению (2.60) можно придать более компактный
вид

− div (A∇u) + a∇u+ a0u = f, x ∈ Ω.

В дальнейшем предполагается выполненным условие эллиптичности.
Это означает, что матрица A равномерно по x ∈ Ω положительно
определена:

A(x)ξ · ξ > c0 |ξ|2 ∀ξ ∈ Rn, ∀x ∈ Ω, c0 = const > 0. (2.63)

При ограниченности всех коэффициентов aij в Ω̄ справедливо, оче-
видно, и обратное неравенство

A(x)ξ · ξ 6 c1 |ξ|2 ∀ξ ∈ Rn, ∀x ∈ Ω.

Сформулируем определение обобщенного решения задачи (2.60),
(2.61). Рассуждая по аналогии с пунктом 1, умножим уравнение на
функцию η, удовлетворяющую условию (2.61) и условиям гладко-
сти (2.59), и преобразуем интеграл, содержащий старшие производ-
ные, при помощи формулы интегрирования по частям. Получим∫

Ω

(A∇u · ∇η + a∇u η + a0uη) dx =

=

∫
Ω

fη dx+

∫
Γ

(A∇u · ν) η dx, (2.64)

где ν — единичный вектор внешней нормали к Γ. Второе слагаемое
справа, очевидно, обращается в нуль за счет граничного условия для
функции η. Таким образом, если функция u — решение задачи (2.60),
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(2.61), то для любой функции η, удовлетворяющей условиям гладко-
сти (2.59) и граничному условию (2.61),∫

Ω

(A∇u · ∇η + a∇u η + a0uη) dx =

∫
Ω

fη dx. (2.65)

Равенство (2.65) называется интегральным тождеством, соответ-
ствующим задаче (2.60), (2.61). Его естественно положить в основу
определения обобщенного решения. Понятно, что (2.65) сохраняет
смысл для любых функций u, η ∈ H1(Ω). Условия на коэффициен-
ты и правую часть уравнения также могут быть ослаблены. Именно,
достаточно считать, что

aij, ai ∈ L∞(Ω), f ∈ L2(Ω). (2.66)

Определение 1. Функция u ∈ H1
0 называется обобщенным ре-

шением задачи (2.60), (2.61), если для любой функции η ∈ H1
0 выпол-

нено интегральное тождество (2.65).
Точно так же, как в пункте 1, показывается, что, если обобщенное

решение существует и выполнены условия гладкости (2.59)–(2.62), то
оно будет классическим решением задачи (2.60), (2.61).

Исследуем существование и единственность обобщенного решения
задачи (2.60), (2.61). Определим линейную форму f : H1

0(Ω) → R и
билинейную форму a(·, ·) :H1

0(Ω) × H1
0(Ω) → R при помощи соотно-

шений
f(v) =

∫
Ω

fvdx ∀ v ∈ H1
0(Ω),

a(u, η) =

∫
Ω

(A∇u · ∇η + a∇u η + a0uη) dx ∀u, v ∈ H1
0(Ω). (2.67)

Лемма 1. Пусть выполнены условия (2.66). Тогда форма a(·, ·)
непрерывна.

Доказательство. Для любых u, v ∈ H1
0(Ω) имеем

|a(u, v)| 6
∫
Ω

(c1|∇u| |∇v|+ c2|∇u||v|+ c3|u||v|) dx.

Используем неравенство Коши — Буняковского, а затем — Фридрих-
са. Получим

|a(u, v)| 6 c1 |u|1 |v|1 + c2 |u|1 |v|0 + c3 |u|0 |v|0 6 c |u|1 |v|1 ,
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где c = c1 + c2c
1/2
Ω + c3cΩ. Здесь cΩ — постоянная из неравенства

Фридрихса,

c2 = ess sup
x∈Ω

|a(x)|, c3 = ess sup
x∈Ω

|a0(x)|. �

Аналогично при помощи неравенств Коши — Буняковского и
Фридрихса доказывается, что для любой функции f ∈ L2(Ω) линей-
ная форма f непрерывна.

Для формулировки условий положительной определенности фор-
мы a(·, ·) представим функцию a0 в виде a0(x) = a+0 (x) + a−0 (x),
где a+0 (x) = (a0(x) + |a0(x)|) /2 > 0 — положительная часть a0,
a−0 (x) = (a0(x)− |a0(x)|) /2 6 0 — отрицательная часть a0.

Лемма 2. Пусть выполнено условие (2.63),∣∣a−0 ∣∣ 6 c4, c0 − c2c
1/2
Ω − c4cΩ > 0. (2.68)

Тогда форма a(·, ·) положительно определена.
Доказательство. Полагая в равенстве (2.67) η = u, получим

a(u, u) >
∫
Ω

(
c0 |∇u|2 − c2|∇u| |u| − c4 |u|2

)
dx >

>
(
c0 − c2c

1/2
Ω − c4cΩ

)
|u|21. �

Из лемм 1, 2 и леммы Лакса — Мильграма непосредственно вы-
текает

Теорема 1. Пусть выполнены условия (2.63), (2.66), (2.68). То-
гда задача (2.60), (2.61) имеет единственное обобщенное решение
при любой правой части.

Замечание 1. Мы доказали однозначную обобщенную разрешимость задачи
(2.60), (2.61) при условии, что младшие члены уравнения достаточно малы. Привле-
кая теорию Фредгольма разрешимости уравнений с вполне непрерывными оператора-
ми, можно указать значительно более общие критерии существования решения этой
задачи.

Особо остановимся на важном для приложений случае, когда фор-
ма a(·, ·), соответствующая задаче (2.60), (2.61), симметрична. Как
показывает соотношение (2.67), для этого достаточно потребовать вы-
полнения условий

A = AT , a = 0.

Если при этом
c0 − c4cΩ > 0,
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то форма a(·, ·) положительно определена, и, как показано в п. 2, за-
дача отыскания обобщенного решения задачи (2.60), (2.61) эквива-
лентна задаче минимизации

F (u) = min
u∈H1

0 (Ω)
F (v),

где

F (u) =
1

2

∫
Ω

(
A∇u · ∇u+ a0u

2
)
dx−

∫
Ω

fu dx. (2.69)

Функционал (2.69) принято называть энергетическим функционалом.
Аналогично задаче (2.60)–(2.61) формулируется и исследуется

неоднородная задача Дирихле. Пусть функция g определена на Γ и
допускает продолжение в H1(Ω) в том смысле, что существует функ-
ция v ∈ H1(Ω) такая, что след ее на Γ совпадает с g.

Определение 2. Функция u ∈ H1(Ω) — обобщенное решение
неоднородной задачи Дирихле, если u(x) = g(x), x ∈ Γ, и∫

Ω

(A∇u · ∇η + a∇u η + a0uη) dx =

∫
Ω

fη dx ∀η ∈ H1
0(Ω).

Возможна постановка и других краевых условий для уравне-
ния (2.60).

Будем считать, что область Ω принадлежит классу C1 и рассмот-
рим так называемую третью краевую задачу. Под классическим ре-
шением этой задачи понимается функция u ∈ C1

(
Ω
)
∩ C2(Ω), удо-

влетворяющая уравнению (2.60) и граничному условию

A∇u · ν + σu = g, x ∈ Γ. (2.70)

Здесь σ = σ(x), g = g(x) — заданные функции, ν, как и выше, —
единичный вектор внешней нормали к Γ. Предполагаются выполнен-
ными условия гладкости (2.62), функции σ, g считаются непрерыв-
ными.

Замечание 2. Выражение A∇u · ν называется конормальной производной функ-
ции u. В простейшем случае, когда A = E — единичная матрица, т. е. старшие произ-
водные уравнения (2.60) образуют оператор Лапласа

∆u =
∂2u

∂x1
+

∂2u

∂x2
+ · · ·+ ∂2u

∂xn
,

это выражение совпадает с нормальной производной функции u.
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Введем понятие обобщенного решения задачи (2.60), (2.70). С этой
целью рассмотрим соотношение (2.64), которому удовлетворяет ре-
шение уравнения (2.60) при любой функции η, и учтем граничное
условие (2.70). Соотношение (2.64) примет вид

∫
Ω

(A∇u · ∇η + a∇u η + a0uη)dx+

∫
Γ

σuη dx =

=

∫
Ω

fη dx+

∫
Γ

gη dx. (2.71)

Ясно, что оно имеет смысл при любых u, η ∈ H1(Ω), поскольку из
теоремы 6 при p = 2, s = 1 следует, что H1(Ω) непрерывно вклады-
вается в L2(Γ). Условия на исходные данные также можно ослабить.
Именно, будем считать, что выполнены условия (2.66), и, кроме то-
го, σ ∈ L∞(Γ), g ∈ L2(Γ).

Определение 3. Обобщенным решением задачи (2.60), (2.70)
назовем функцию u ∈ H1(Ω), удовлетворяющую интегральному тож-
деству (2.71) при любой функции η ∈ H1(Ω).

Аналогично случаю первой краевой задачи можно показать, что
при выполнении соответствующих условий гладкости обобщенное ре-
шение задачи удовлетворяет уравнению (2.60) и граничному усло-
вию (2.70) в классическом смысле.

Замечание 3. Следует обратить внимание на принципиальную разницу между
граничными условиями первого и третьего рода. Граничные условия третьего рода вы-
текают как следствие из интегрального тождества (2.71), в то время как граничные
условия Дирихле накладываются на искомое решение априори. В связи с этим приня-
та такая терминология: граничные условия Дирихле называют главными граничными
условиями, граничные условия третьего рода — естественными.

При исследовании обобщенной разрешимости задачи (2.60), (2.70)
будем предполагать выполненными условия (2.63), (2.68). Кроме того
предположим, что a0(x) > m0 = const > 0, σ(x) > m1 = const > 0,
причем m0 +m1 > 0.

Теорема 2. При сформулированных выше условиях задача
(2.60), (2.70) имеет единственное обобщенное решение, если посто-
янная c2 достаточно мала.

Доказательство. Заметим прежде всего, что вследствие тео-
ремы 6 ∣∣∣∫

Γ

σuη dx
∣∣∣ 6 c1Ω∥u∥1∥η∥1,
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где c1Ω — постоянная, зависящая от области Ω и от σ. Отсюда выте-
кает, что билинейная форма a(·, ·) : H1(Ω)×H1(Ω) → R,

a(u, v) =

∫
Ω

(A∇u · ∇η + a∇u η + a0uη) dx+

∫
Γ

σuη dx,

непрерывна. Функционал

f(η) =

∫
Ω

fη dx+

∫
Γ

gη dx

есть линейный ограниченный функционал на H1(Ω). Таким образом,
задача отыскания обобщенного решения задачи (2.60), (2.70) эквива-
лентна задаче отыскания функции u ∈ H1(Ω) такой, что

a(u, η) = f(η) ∀η ∈ H1(Ω),

и для доказательства ее однозначной разрешимости осталось прове-
рить, что форма a(·, ·) положительно определена. Будем считать, что
m1 > 0. Случай, когда функция a0 строго положительна, рассматри-
вается вполне аналогично. Рассуждая, как в случае первой краевой
задачи, получим

a(u, η) > c0|u|21,Ω − c2|u|1,Ω|u|0,Ω +m1|u|20,Γ. (2.72)

Нетрудно проверить, что норма

∥u∥∗1 =
(
|u|21,Ω +

∫
Γ

u2dx
)1/2

эквивалентна исходной норме на пространстве H1(Ω), следовательно,
|u|0,Ω 6 cΩ∥u∥∗1 с постоянной cΩ, зависящей лишь от области Ω. Поэто-
му, усиливая неравенство (2.72), получим a(u, u) > (c− c2cΩ) ∥u∥∗21 ,
где c = max(c0,m1) > 0, причем c − c2cΩ > 0, если постоянная c2
достаточно мала. �

3. Краевые задачи для систем уравнений теории упру-
гости. В качестве важного для приложений примера систем линей-
ных уравнений с частными производными, исследование разрешимо-
сти которых проходит во многом по той же схеме, что и для одного
эллиптического уравнения, приведем классическую систему уравне-
ний линейной теории упругости.
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Пусть Ω ⊂ R3 — область, занимаемая упругим телом, отнесен-
ная к декартовой системе координат x1, x2, x3. Разыскивается вектор-
функция u = (u1, u2, u3)

T — вектор смещений — как решение системы
уравнений равновесия упругого тела

3∑
j=1

∂σij
∂xj

+ fi = 0, i = 1, 2, 3, x ∈ Ω. (2.73)

Здесь σij = σji, i, j = 1, 2, 3, — компоненты тензора напряжений,
f = (f1, f2, f3)

T — вектор внешних объемных сил, действующих
на упругое тело. Компоненты тензора напряжений связаны законом
Гука с компонентами тензора деформаций

σij = σij(u) =
3∑

k,l=1

aijklεkl, (2.74)

где aijkl = aijkl(x) — заданные функции, определяющие упругие свой-
ства тела, εkl — компоненты тензора деформаций — вычисляются че-
рез компоненты вектора смещений по формулам

εij = εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2, 3. (2.75)

Таким образом, система (2.73)–(2.75) есть система трех линейных
уравнений с частными производными относительно компонент векто-
ра смещений u.

К системе (2.73)–(2.75) нужно добавить граничные условия. Мы
рассмотрим условия двух типов.

1) Граничные условия Дирихле (граничные условия первого ро-
да):

u(x) = 0, x ∈ Γ. (2.76)
Эти условия означают, что граница тела жестко закреплена, т. е. ее
точки при деформации тела не смещаются.

2) Граничные условия второго рода:

3∑
j=1

σij cos (ν, xj) = gi, x ∈ Γ, (2.77)

где gi(x), x ∈ Γ — заданные функции. Условие (2.77) означает, что
на Γ заданы поверхностные силы с плотностью g = (g1, g2, g3)

T (век-
тор напряжений).
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В дальнейшем будет рассматриваться тот случай, когда грани-
ца области разбита на две части: Γ = Γu

∪
Γσ, на Γu задано усло-

вие (2.76), а на Γσ — условие (2.77). Возникающая при этом зада-
ча называется смешанной граничной задачей для системы уравнений
теории упругости.

Относительно исходных данных задачи предположим, что

f ∈ [C(Ω)]3 , g ∈ [C(Γ)]3 , aijkl ∈ C1(Ω),

коэффициенты aijkl удовлетворяют условиям симметрии

aijkl = ajikl = aklij, i, j, k, l = 1, 2, 3,

порождаемая ими квадратичная форма равномерно положительно
определена:

3∑
i,j,k,l=1

aijklξijξkl > c0

3∑
i,j=1

ξ2ij, c0 = const > 0, (2.78)

при любых вещественных ξij таких, что ξij = ξji, i, j = 1, 2, 3, x ∈ Ω̄.
Замечание 4. В простейшем случае, когда упругое тело однородно и изотропно,

все коэффициенты в законе Гука определяются лишь двумя постоянными, и соотноше-
ния (2.74) принимают вид

σij = λ

(
3∑

i=1

εii

)
δij + 2µεij , δij =

{
1, i = j,

0, i ̸= j,

где λ, µ — положительные числа (постоянные Ламе). Соответствующая квадратичная
форма

3∑
i,j=1

σij εij = λ

(
3∑

i=1

εii

)2

+ 2µ
3∑

i,j=1

ε2ij ,

очевидно, положительно определена, c0 = 2µ.

Для построения интегрального тождества, соответствующего сме-
шанной граничной задаче, умножим i-тое уравнение системы (2.73)
на функцию ηi, равную нулю на Γu, просуммируем полученные равен-
ства, проинтегрируем по области Ω и преобразуем интегралы, содер-
жащие производные от σij, при помощи формул интегрирования по
частям с учетом граничных условий на Γu и Γσ и симметрии тензора
напряжений. Получим∫

Ω

3∑
i,j=1

σij(u)εij (η) dx =

∫
Ω

f · η dx+
∫
Γσ

g · η dx. (2.79)
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Будем рассматривать пространство

V =
{
u = (u1, u2, u3)

T ∈
[
H1(Ω)

]3
: след ui на Γu равен нулю,

i = 1, 2, 3}

как гильбертово пространство с нормой |u|1 =
(
|u1|21+ |u2|21+ |u3|21

)1/2
.

Определение 4. Функция u ∈ V — обобщенное решение задачи
смешанной граничной задачи линейной теории упругости, если она
удовлетворяет тождеству (2.79) при любой функции η ∈ V .

Теорема 3. Обобщенное решение смешанной граничной задачи
линейной теории упругости при mes Γu > 0 существует и един-
ственно.

Доказательство. Определим билинейную форму a :V×V →R:

a(u, η) =

∫
Ω

3∑
i,j=1

σij(u)εij (η) dx

и линейный функционал f : V → R:

f(η) =

∫
Ω

f · η dx+
∫
Γσ

g · η dx.

Ясно, что форма a(·, ·) симметрична и ограничена, функционал f
непрерывен. Форма a(·, ·) положительно определена. Мы установим
этот факт в частном случае, когда Γu = Γ, т. е., когда для систе-
мы уравнений (2.73)–(2.75) рассматривается задача Дирихле. В си-
лу (2.78) имеем

a(u, u) > c0

∫
Ω

3∑
i,j=1

ε2ij dx.

Покажем, что ∫
Ω

3∑
i,j=1

ε2ij dx > c|u|21. (2.80)

Тогда форма a(·, ·) положительно определена. Неравенство (2.80) на-
зывается неравенством Корна. Понятно, что его достаточно прове-
рить лишь для функций u ∈ [C∞

0 (Ω)]3. Для функций из V оно за-
тем может быть установлено предельным переходом. Для любого
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δ ∈ (0, 1) имеем

I ≡
∫
Ω

3∑
i,j=1

ε2ij dx >
3∑

i=1

∫
Ω

(
∂ui
∂xi

)2

dx+

+
δ

2

∫
Ω

((∂u1
∂x2

+
∂u2
∂x1

)2
+
(∂u1
∂x3

+
∂u3
∂x1

)2
+
(∂u2
∂x3

+
∂u3
∂x2

)2)
dx =

=

∫
Ω

( 3∑
i=1

(∂ui
∂xi

)2
+
δ

2

3∑
i,j=1,i̸=j

(∂ui
∂xj

)2
+ δ

3∑
i,j=1,i̸=j

∂ui
∂xj

∂uj
∂xi

)
dx.

Используя дважды формулу интегрирования по частям, получим∫
Ω

∂ui
∂xj

∂uj
∂xi

dx =

∫
Ω

∂ui
∂xi

∂uj
∂xj

dx > −1

2

∫
Ω

((
∂ui
∂xi

)2

+
(∂uj
∂xj

)2)
dx, i ̸= j,

следовательно,

I > min (δ/2, 1− δ)
3∑

i=1

|ui|21 ,

т. е. неравенство (2.80) доказано. �
Если Γu ̸= Γ, mesΓu > 0, неравенство (2.80) также справедливо,

но доказательство его далеко не элементарно (см., например, [22]).
Замечание 5. Смешанная граничная задача линейной теории упругости эквива-

лентна задаче минимизации
F (u) = min

v∈V
F (v),

где

F (v) =
1

2

∫
Ω

3∑
i,j,k,l=1

aijklεij (v) εkl(v)dx−
∫
Ω

f · v dx−
∫
Γσ

g · v dx.

Функционал F интерпретируется в механике как потенциальная
энергия системы упругое тело — внешние силы.

4. Двумерные задачи теории упругости. При некоторых
условиях деформацию упругого тела можно характеризовать дву-
мерным вектором смещений u = (u1, u2), где u1, u2 — функции двух
декартовых координат, ui(x) = ui(x1, x2), i = 1, 2. Уравнения равно-
весия при этом записываются в виде

2∑
j=1

∂σij
∂xj

+ fi = 0, i, j = 1, 2, x ∈ Ω, (2.81)
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где

σij = σij(u) =
2∑

k,l=1

aijklεkl, (2.82)

εij = εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2, (2.83)

а Ω — ограниченная двумерная область с границей Γ. К уравне-
ниям (2.81)–(2.83) присоединяют граничные условия, аналогичные
(2.76)–(2.77). Пусть Γ = Γu ∪ Γσ. Положим

u(x) = 0, x ∈ Γu, (2.84)

2∑
j=1

σij cos (ν, xj) = gi, i = 1, 2, x ∈ Γσ. (2.85)

Задача (2.81)–(2.85) называется смешанной граничной задачей плос-
кой теории упругости.

Исследование обобщенной разрешимости этой задачи при усло-
вии, что коэффициенты aijkl удовлетворяют условиям симметрии и
положительной определенности, проводится точно так же, как и для
задачи (2.73)–(2.77).

5. Регулярность решений эллиптических уравнений. В
предыдущих пунктах мы исследовали разрешимость краевых задач
для эллиптических уравнений при минимальных требованиях к глад-
кости исходных данных. Если гладкость исходных данных увеличи-
вается, то и свойства решений краевых задач соответственно улучша-
ются. В дальнейшем будет использован такой результат.

Теорема 4. Пусть u есть обобщенное решение задачи Дирих-
ле (2.60)–(2.61). Предположим, что для целого k > 0 и для допус-
тимых i, j = 0, 1, . . . , n выполнены условия:

aij ∈ W k+1
∞ (Ω), ai ∈ W k

∞(Ω), f ∈ W k
p (Ω), Γ ∈ W k+2

∞ .

Тогда u ∈ W k+2
p (Ω), причем

∥u∥k+2,p,Ω 6 c ∥f∥k,p,Ω,

где постоянная c зависит лишь от коэффициентов уравнения и об-
ласти Ω.
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6. Уравнения четвертого порядка. Пусть Ω — ограничен-
ная двумерная область с границей Γ класса C1. Требуется найти
функцию u ∈ C4(Ω) ∩ C1

(
Ω
)
, удовлетворяющую уравнению

2∑
i,j,k,l=1

∂2

∂xi∂xj

(
aijkl

∂2u

∂xk∂xl

)
−

2∑
i,j=1

∂

∂xi
aij

∂u

∂xj
+

+
2∑

i=1

ai
∂u

∂xi
+ a0u = 0, x ∈ Ω, (2.86)

и граничным условиям

u(x) = 0,
∂u

∂ν
= 0, x ∈ Γ. (2.87)

Прежде, чем сформулировать понятие обобщенного решения за-
дачи (2.86), (2.87), заметим, что, если функция u ∈ C1

(
Ω
)

и удовле-
творяет условиям (2.87), то

∂u

∂x1
=

∂u

∂x2
= 0, x ∈ Γ.

Действительно, при выполнении первого условия (2.87) имеем ∂u
∂τ = 0,

где τ — единичный вектор касательной к Γ, а

∂u

∂xi
=
∂u

∂ν
cos (ν, xi) +

∂u

∂τ
cos (ν, xi) , i = 1, 2. (2.88)

Умножим теперь уравнение (2.86) на функцию η ∈ C4(Ω) ∩
C1
(
Ω
)
, удовлетворяющую граничным условиям (2.87). После инте-

грирования по частям (дважды — в слагаемых, содержащих четвер-
тые производные, и один раз в слагаемых, содержащих вторые произ-
водные) с учетом граничных условий (2.87) для функции η получим∫

Ω

( 2∑
i,j,k,l=1

aijkl
∂2u

∂xk∂xl

∂2η

∂xi∂xj
+

2∑
i,j=1

aij
∂u

∂xj

∂η

∂xi
+

+
2∑

i=1

ai
∂u

∂xi
η + a0uη

)
dx =

∫
Ω

fη dx. (2.89)

Теперь естественно дать
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Определение 5. Функция u ∈ H2
0(Ω) называется обобщенным

решением задачи (2.86)–(2.87), если для любой функции η ∈ H2
0(Ω)

она удовлетворяет интегральному тождеству (2.89).
Если предположить выполненными условия: f ∈ L2(Ω),

2∑
i,j,k,l=1

aijklξijξkl > c0

2∑
i,j=1

ξ2ij, c0 > 0, (2.90)

2∑
i,j=1

aijξiξj > 0, (2.91)

а коэффициенты ai, i = 1, 2, . . . , n, и a−0 считать достаточно малы-
ми, то с использованием результатов об эквивалентных нормировках
пространства H2

0(Ω) (см. с. 49) существование и единственность обоб-
щенного решения устанавливается точно так же, как для уравнений
второго порядка.

Простейшим примером эллиптического уравнения четвертого по-
рядка является бигармоническое уравнение

∆2u ≡ ∂2u

∂x21
+ 2

∂2u

∂x1∂x2
+
∂2u

∂x22
= f,

описывающее, например, малые прогибы тонкой упругой пластинки,
находящейся под действием поперечной силы f . Для бигармониче-
ского уравнения условия (2.90), (2.91), очевидно, выполнены.



Глава 3
Пространства конечных элементов

Пусть Ω — область в Rn с липшицевой границей Γ, V =W k
p (Ω),

k > 1, p > 1, — пространство Соболева. Рассмотрим вопрос о постро-
ении конечномерных аппроксимаций V пространствами Vh — про-
странствами конечных элементов. Неотрицательная величина h ∈ R
в обозначении Vh служит характеристикой точности аппроксимации
и является малым параметром, причем Nh=dimVh→ ∞ при h→ 0.

Отличительной особенностью пространств конечных элементов
является наличие в них естественно конструируемого базиса из функ-
ций с малыми носителями1), точнее такого базиса {φi}Nh

i=1 в Vh, что

mes(supp φi) = O(hn), i = 1, 2, . . . , Nh.

Построение различных пространств Vh в методе конечных элемен-
тов осуществляется по единой схеме и включает следующие шаги.

1) Выбирается семейство Th замкнутых областей e, обычно одной
и той же формы, называемых конечными элементами (в двумерном
случае это треугольники или четырехугольники, возможно с криво-
линейными сторонами, в трехмерном — тетраэдры, параллелепипеды
или призмы). Семейство Th выбирается так, что любые два различ-
ных элемента e1, e2 ∈ Th не имеют общих внутренних точек, и область

Ωh =
∪
e∈Th

e

аппроксимирует Ω. Иногда может выполняться равенство Ωh = Ω.
Независимо от того, выполняется равенство Ωh = Ω, или нет, и

независимо от формы элементов e говорят, что проведена триангуля-
ция Th области Ω. Величина h обычно определяется как максималь-
ный из диаметров элементов, принадлежащих Th. Пример триангу-
ляции области приведен на рисунке 1.

2) С каждым элементом e ∈ Th связывается тройка (e, Pe,Σe), так-
же называемая конечным элементом. Здесь Pe ⊂ Ck(e) — некоторое
конечномерное пространство функций, определенных на элементе e, с

1)supp φ = {x ∈ Rn : φ(x) ̸= 0} — носитель функции φ.
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Рис. 1. Пример триангуляции L-образной области Ω, Ωh = Ω.

базисом {φe
1, . . . , φ

e
me
}, Σe = {ϕe1, . . . , ϕeme

} — такое множество линей-
ных функционалов над Pe, что произвольный элемент p ∈ Pe может
быть однозначно представлен в виде

p(x) =

me∑
i=1

ϕei (p)φ
e
i (x). (3.1)

Выражение в правой части равенства (3.1) по форме напоминает ин-
терполяционный полином и часто в конкретных ситуациях таковым и
является. Множество Eh = {(e, Pe,Σe), e ∈ Th} называют семейством
конечных элементов на области Ω.

3) Наконец, конструируется конечномерное пространство Vh
функций, определенных на Ωh, таких, что Vh ⊂ Ck−1(Ωh), и сужение
на каждый элемент e ∈ Th любой функции из Vh принадлежит Pe.

Здесь важно подчеркнуть, что в силу теоремы 8, с. 44,

Vh ⊂ W k
p (Ωh). (3.2)

Это позволяет трактовать в дальнейшем метод конечных элементов
как специальный вариант метода Галеркина.

Важно также отметить, что надлежащий выбор семейства конеч-
ных элементов Eh не только автоматически обеспечивает нетриви-
альность пространства Vh, но позволяет также легко указать в нем
базисные функции с малыми носителями. А именно, они конструи-
руются так, что сужение каждой базисной функции φi(x) из Vh на
элемент e ∈ Th либо оказывается тождественно равным нулю, либо
совпадает с одной из функций φe

k(x).
В описанной схеме построения пространств конечных элементов

основным является понятие конечного элемента (e, Pe,Σe). Можно
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сказать, что конечный элемент порождает пространство конечных
элементов при помощи формальных процедур, единых для всех ти-
пов элементов.

Сказанное выше определяет структуру настоящей главы.
Поскольку в основе понятия ≪конечный элемент≫ лежит понятие

интерполяции, то сначала, в §1, мы кратко рассмотрим вопросы, свя-
занные с интерполяцией в пространстве Rn.

Затем, в §2, дадим определение базисного конечного элемента,
ключевого понятия для всего дальнейшего изложения, и приведем
различные примеры базисных элементов. Характерной особенностью
базисного элемента является его простая форма и фиксированные
размеры.

Важность понятия базисного элемента определяется тем, что:
1) пользуясь им можно достаточно просто строить другие конеч-

ные элементы, более сложной конфигурации (так называемые ассо-
циируемые элементы); эти вопросы рассматриваются в §3–§6;

2) оно удобно при теоретическом исследовании погрешности ап-
проксимации пространства V пространствами Vh; фактически, иссле-
дование погрешности достаточно провести на базисном элементе (см.
ниже §10);

3) введение базисного элемента позволяет автоматизировать про-
цедуру построения системы алгебраических уравнений метода конеч-
ных элементов.

Замечание 6. Как уже было сказано, в настоящей главе мы рассматриваем толь-
ко такие конечномерные подпространства, для которых выполнено условие (3.2). Мето-
ды конечных элементов, основанные на использовании таких подпространств, называ-
ются конформными. Применяются также неконформные методы конечных элементов,
для которых условие (3.2) нарушается.

§ 1. Интерполяция в Rn

1. Постановка задачи. Пусть ∆ — некоторое множество в
пространстве Rn, P — конечномерное пространство вещественных
функций переменной x ∈ ∆, Σ = {ϕi}Ni=1 — заданное множество ли-
нейных функционалов на пространстве P .

Рассмотрим задачу интерполяции в пространстве Rn, т. е. задачу
построения функции p ∈ P , удовлетворяющей условиям

ϕi(p) = pi, i = 1, 2, . . . , N, (3.3)

где p1, p2, . . ., pN — заданные числа.
Важнейшим примером такой задачи является задача полиноми-

альной лагранжевой интерполяции. Дадим ее постановку. Пусть A
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есть некоторое множество мультииндексов, т. е. векторов α = (α1,
α2, . . . , αn), компоненты которых — целые неотрицательные числа.
Множество PA полиномов вида

P (x) =
∑
α∈A

cαx
α, xα = xα1

1 . . . xαn
n ,

с действительными коэффициентами cα образует линейное простран-
ство. Мономы xα, α ∈ A, — базис пространства PA, dim PA = cardA1).
Приведем используемые на протяжении всей книги примеры таких
пространств:

1) пространство

Pm = Pm(x) =
{
p : p =

∑
|α|6m

cαx
α
}
, |α| = α1 + α2 + . . .+ αn,

полиномов степени не вышеm по совокупности переменных x1, . . . , xn;
2) пространство

Qm = Qm(x) =
{
p : p =

m∑
α1,...,αn=0

cαx
α
}

полиномов степени не выше m по каждой переменной.
Индукцией по размерности пространства Rn нетрудно показать,

что
dim Pm =

(m+ n)!

m!n!
, dim Qm = (m+ 1)n.

Пусть далее ω = {ai}Ni=1 — заданное множество попарно различ-
ных точек из ∆. Задача полиномиальной лагранжевой интерполяции
заключается в нахождении такого полинома p ∈ PA, который прини-
мает заданные значения p1, p2, . . ., pN в точках a1, a2, . . ., aN , т. е.
удовлетворяет условиям

p(ai) = pi, i = 1, . . . , N.

Таким образом, задача полиномиальной лагранжевой интерполя-
ции является частным случаем задачи (3.3) при

P = PA, ϕi(p) = p(ai), i = 1, 2, . . . , N.

Другим важным примером задачи (3.3) является задача эрми-
товой интерполяции, отличающаяся от лагранжевой интерполяции

1)cardA — мощность множества A. Если множество A конечно, cardA — число элементов A.
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лишь набором функционалов {ϕi(p)}. Кроме функционалов, соответ-
ствующих значениям функции в некоторых точках, в этот набор при
эрмитовой интерполяции входят также функционалы, соответствую-
щие значениям производных функции по фиксированным направле-
ниям в определенных точках. Примерами линейных функционалов ϕi
при эрмитовой интерполяции могут служить функционалы вида

ϕi : p→ p(ai), p→ Dp(ai)νk, p→ D2p(ai)(νk, µl), . . . ,

где ai — некоторая точка из ∆, νk, µl, . . . — заданные векторы в Rn.
Замечание 1. Примерами применяемых при построении и исследовании методов

конечных элементов линейных функционалов, отличных от приведенных выше, явля-
ются функционалы

ϕi : p → 1

|∆i|

∫
∆i

p(x) dx, p →
∑
|α|6k

cαD
αp(ai),

где ∆i — некоторые подмножества множества ∆, cα ∈ R, ai ∈ ∆.

2. Разрешимость задачи интерполяции. Как известно, в
многомерном случае задача полиномиальной интерполяции не все-
гда имеет решение, даже если число условий интерполяции совпада-
ет с числом неизвестных коэффициентов полинома. В связи с этим
возникает общий вопрос о таком выборе множества линейных функ-
ционалов Σ для заданного пространства функций P , чтобы задача
интерполяции имела решение и притом единственное.

Теорема 1. Пусть dimP = card Σ. Тогда следующие утвер-
ждения, касающиеся задачи (3.3), эквивалентны:
1) для любых p1, . . . , pN задача имеет по крайней мере одно решение;
2) для любых p1, . . . , pN задача имеет единственное решение;
3) для p1 = p2 = . . . = pN = 0 задача имеет лишь тривиальное
решение.

Доказательство. Пусть φi, i = 1, 2, . . . , N — базис в прост-

ранстве P , p =
N∑
j=1

cjφj. Задача (3.3) эквивалентна системе линейных

алгебраических уравнений
N∑
j=1

ϕi(φj)cj = pi, i = 1, . . . , N,

для которой утверждения 1)–3) равносильны. �
Определение 1. Будем говорить, что пространство P и множе-

ство Σ унисольвентны, если задача интерполяции (3.3) имеет един-
ственное решение для любого набора действительных чисел {pi}Ni=1.
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В этом случае иногда также будем говорить, что Σ есть P -уни-
сольвентное множество, или (Σ, P ) — унисольвентная пара.

Примеры.
1) В одномерном случае (n = 1) пространство Pm полиномов сте-

пени не выше m и множество функционалов

ϕi : p→ p(ai), i = 0, 1, . . . ,m,

соответствующих любым m+1 различным точкам ai унисольвентны.
2) При n = 1 пространство полиномов P2m−1 и множество функ-

ционалов
p(ai), p

′(ai) i = 0, 1, . . . ,m− 1,

соответствующих любым m различным точкам ai унисольвентны.
3) При n = 2 пространство полиномов P1 = {c0 + c1x1 + c2x2}

первой степени и множество функционалов

ϕi : p→ p(ai), ai ∈ R2, i = 0, 1, 2,

унисольвентны тогда и только тогда, когда точки a0, a1, a2 различны
и не лежат на одной прямой.

4) Пусть n = 2, a0, a1, a2, a3 — любые точки, лежащие на гипер-
боле x1x2 = 1. Тогда пространство билинейных функций

Q1 = {c0 + c1x1 + c2x2 + c12x1x2}

и множество функционалов

ϕi : p→ p(ai), i = 0, 1, 2, 3

не унисольвентны.
Следующее утверждение очевидным образом вытекает из теоре-

мы 1.
Теорема 2. Для того, чтобы пара (Σ, P ) была унисольвентной,

необходимо и достаточно выполнения следующих условий:
1) dim P = cardΣ = N ;
2) единственная функция из P , удовлетворяющая условиям

ϕi(p) = 0, i = 1, . . . , N,

есть тождественный нуль.
Проверка унисольвентности при помощи этой теоремы, как пра-

вило, не является конструктивной. Достаточно общий метод постро-
ения унисольвентных пар (Σ, P ) основан на использовании бази-
са Лагранжа.
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Определение 2. Множество элементов {φi}Ni=1 ⊂ P называется
базисом Лагранжа, соответствующим множеству функционалов Σ,
если

ϕj(φi) = δij, i, j = 1, 2, . . . , N,

где δij — символ Кронекера, т. е.

δij =

{
0, i ̸= j

1, i = j.

Теорема 3. Для того, чтобы пара (Σ, P ) была унисольвентной,
необходимо и достаточно выполнения следующих условий:

1) dim P = cardΣ = N ;
2) существует базис Лагранжа {φi}Ni=1, соответствующий

множеству Σ.

При выполнении условий 1), 2) функция p =
N∑
i=1

ϕi(p)φi является

решением задачи интерполяции.
Доказательство. Необходимость. Пусть (Σ, P ) — унисоль-

вентная пара. Тогда для любого i = 1, 2, . . . , N существует единствен-
ная функция φi ∈ P такая, что

ϕj(φi) = δij, j = 1, 2, . . . , N,

т. е. существует базис Лагранжа {φi}Ni=1. Докажем, что dim P = N .
Для этого достаточно доказать, что множество {φi}Ni=1 образует ба-
зис в P . Прежде всего, нетрудно видеть, что эта система является
линейно независимой. Действительно, если

N∑
i=1

ciφi(x) = 0, x ∈ ∆,

то применяя функционал ϕj ∈ Σ к обеим частям этого равенства,
получим cj = 0 для всех j = 1, 2, . . . , N . Пусть теперь p ∈ P —
произвольная функция, pi = ϕi(p). Так как

ϕj
( N∑
i=1

piφi

)
= pj, j = 1, 2, . . . , N,

то вследствие унисольвентости (Σ, P ) получим, что p =
N∑
i=1

piφi, т. е.,

действительно, система {φi}Ni=1 образует базис в P .
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Достаточность. Пусть выполнены условия 1), 2). Как и выше, лег-
ко проверить, что функции {φi}Ni=1 образуют линейно независимую
систему в пространстве P . Поскольку dim P = N , то они образуют
базис в P . Тогда любая функция p ∈ P однозначно представляется в
виде

p(x) =
N∑
i=1

piφi(x).

Применяя теперь функционалы ϕj ∈ Σ к обеим частям этого равен-
ства, получим, что существует единственная функция p ∈ P такая,
что ϕj(p) = pj, j = 1, 2, . . . , N . �

Какой теоремой, 2, или 3, следует воспользоваться в конкретной
ситуации для проверки унисольвентности заданной пары Σ и P , зави-
сит от того, насколько трудно построить (или описать) базис Лагран-
жа.

Замечание 2. С алгебраической точки зрения для однозначной разрешимости за-
дачи интерполяции (3.3) необходимо и достаточно, чтобы множество Σ = {ϕ1, . . . , ϕN}
было базисом в пространстве линейных функционалов над конечномерным простран-
ством P . Базис Лагранжа φ1, . . . , φN ∈ P есть базис биортогональный Σ.

3. Оператор интерполяции. Знание базиса Лагранжа позво-
ляет просто решить задачу интерполяции произвольной достаточно
гладкой функции u.

Определение 3. Пусть (Σ, P ) — унисольвентная пара, W — та-
кое линейное пространство функций на ∆, что на нем определены
функционалы из Σ. Функция uI ∈ P называется P -интерполянтом
функции u ∈ W , если ϕi(uI) = ϕi(u), i = 1, 2, . . . , N . Линейный
оператор π : W → P , ставящий в соответствие функции ее P -интер-
полянт, называется оператором P -интерполяции (или просто опера-
тором интерполяции).

Очевидно, что имеет место формула

πu =
N∑
i=1

ϕi(u)φi(x),

и в силу единственности P -интерполянта πp = p ∀p ∈ P. Таким об-
разом, π2 = π и, следовательно, π является проектором. Это свойство
оператора интерполяции будет неоднократно использоваться в даль-
нейшем.
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§ 2. Конечный элемент

1. Описание конечного элемента. Учитывая материал преды-
дущего параграфа, дадим следующее

Определение 1. Назовем m-мерным конечным элементом в Rn,
m 6 n, тройку (e, Pe,Σe) такую, что:

1) e ⊂ Rn — диффеоморфный образ замкнутого многогранни-
ка в Rm;

2) Pe ⊂ Ck(e), k > 1, — конечномерное пространство вещественных
функций на e;

3) Σe = {ϕei , i = 1, 2, . . . ,me} — Pe-унисольвентное множество ли-
нейных функционалов.

Если m = n, то тройку (e, Pe,Σe) будем называть конечным эле-
ментом в Rn.

Под k-мерной гранью конечного элемента будем понимать образ
k-мерной грани соответствующего многогранника, под вершиной —
образ вершины многогранника (0-мерной грани). Линейные функци-
оналы ϕei ∈ Σe называются степенями свободы конечного элемента,
а элементы базиса Лагранжа {φe

i (x), i = 1, 2, . . . ,me} — базисны-
ми функциями конечного элемента. Совокупность степеней свободы
конечного элемента удобно представлять в виде вектора-столбца, а
совокупность базисных функций — в виде вектора-строки. Введем
следующие обозначения:

φe(x) = (φe
1(x), . . . , φ

e
me
(x)), ϕe(·) = (ϕe1(·), . . . , ϕeme

(·))T.

Тогда произвольная функция p ∈ Pe однозначно представима в виде
p(x) = φe(x)ϕe(p).

Определение 2. Назовемm-мерный конечный элемент (e, Pe,Σe)
в Rn лагранжевым, если все его степени свободы имеют вид

ϕei : p→ p(aei ), aei ∈ e.

Если степени свободы конечного элемента есть только функционалы
вида

ϕi : p→ p(aei ), p→ Dp(aei )ν
e
k, p→ D2p(aei )(ν

e
k, µ

e
l ), . . . ,

где νek, µ
e
l , . . .— фиксированные векторы в Rn, т. е. в качестве степеней

свободы используются только значения функции и ее производных, то
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конечный элемент называется эрмитовым. Точки aei называют узлами
интерполяции, а степень свободы конечного элемента, связанную с
узлом интерполяции, — узловым параметром. Множество всех узлов
интерполяции элемента e будем обозначать через ωe.

Далее мы ограничимся изучением только лагранжевых и эрмито-
вых конечных элементов.

Данные нами определения, фактически, уточняют задачу интер-
поляции. Главное уточнение связано с геометрической формой ко-
нечного элемента, т. е. с видом множества e1). Как следует из опреде-
ления, одномерный элемент в R1 является конечным отрезком в R1,
одномерный элемент e в Rn — это отрезок кривой в Rn. Концевые точ-
ки отрезка — вершины элемента. Двумерный элемент в R2 (элемент
в R2) имеет форму многоугольника (с прямолинейными или криво-
линейными сторонами). Обычно это треугольник или четырехуголь-
ник. Двумерный элемент e в R3 — часть поверхности многоугольной
формы. Трехмерные элементы (элементы в R3) — это многогранники
в R3 (возможно с криволинейными гранями). Простейшие и наибо-
лее часто используемые формы — это тетраэдр, параллелепипед или
призма.

Замечание 1. Выше мы указали наиболее широко распространенные в практи-
ческих вычислениях формы элементов в Rn, n = 2, 3 (см. также начало данной главы).
Широкое употребление простейших многогранников связано с тем, что произвольную
область в R2 или R3 можно представить (или достаточно точно аппроксимировать)
объединением, без наложения, таких элементов.

Следующее определение выделяет класс конечных элементов, ко-
торый служит основой построения конечноэлементных аппроксима-
ций пространств W k

p , k > 1.
Определение 3. Отнесем m-мерный конечный элемент в Rn к

классу Ck, k = 0, 1, . . ., если Pe ⊂ Ck+1(e) и, кроме того, значения
произвольной функции из Pe и всех ее частных производных до по-
рядка k включительно на любой (m − 1)-мерной грани элемента e
однозначно определяются заданием значений всех узловых парамет-
ров во всех узлах, принадлежащих этой грани.

Из этого определения следует, что с каждой (m− 1)-мерной гра-
нью конечного элемента должно быть связано достаточное количе-
ство линейных функционалов из Σe. В частности, в каждой вер-
шине ai одномерного лагранжева элемента класса C0 должен быть
определен функционал ϕ : p → p(ai), а для эрмитова элемента клас-

1)Множество e часто само называется конечным элементом. Из контекста всегда понятно, о
каком элементе идет речь: о множестве e или тройке (e, Pe,Σe).
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са Ck должен быть определен по крайней мере k+1 функционал вида
ϕ : p→ p(α)(ai), α = 0, 1, . . . , k.

Пусть (e, Pe,Σe) — произвольный m-мерный элемент класса Ck

в Rn, а g — любая из его (m − 1)-мерных граней. Обозначим че-
рез Σe|g множество узловых параметров из Σe, связанных c гранью g,
и пусть Pe|g есть конечномерное пространство, состоящее из сужений
функций из Pe на грань g, т. е. Pe|g = {p |g : g → R, p ∈ Pe}.

Лемма 1. Для того, чтобы m-мерный конечный элемент
(e,Pe,Σe) в Rn принадлежал к классу Ck, k > 0, необходимо и до-
статочно, чтобы для любой (m− 1)-мерной грани g элемента e из
условий

ϕj(p) = 0, ϕj ∈ Σe|g, p ∈ Pe, (3.4)
следовало, что

Dαp ≡ 0 на g, |α| 6 k. (3.5)

Доказательство. На элементе e функция p ∈ Pe имеет вид

p(x) =

me∑
j=1

ϕj(p)φj(x),

т. е.

Dαp(x) =

me∑
j=1

ϕj(p)D
αφj(x), |α| 6 k,

и соответственно

Dαp(x)|g =
me∑
j=1

ϕj(p)D
αφj(x)|g,

∣∣α| 6 k. (3.6)

Из определения элемента класса Ck следует, что в этой сумме должны
остаться только слагаемые, соответствующие функционалам из Σe|g.
Таким образом, должны быть выполнены равенства

Dαp(x)|g =
∑

ϕj∈Σe|g

ϕj(p)D
αφj(x)|g,

∣∣α| 6 k. (3.7)

Отсюда видно, что из условий (3.4) следует справедливость (3.5). Об-
ратно, если из условий (3.4) следует (3.5), то из представления (3.6)
вытекает, что имеет место (3.7), т. е. элемент (e, Pe,Σe) принадлежит
классу Ck. �

Следствие 1. Для того, чтобы m-мерный конечный элемент
в Rn принадлежал к классу Ck, k > 0, необходимо и достаточно,



86 Глава 3. Пространства конечных элементов

чтобы произвольная базисная функция Лагранжа φi(x), соответ-
ствующая узловому параметру, определенному в узле ai, обраща-
лась в нуль вместе со своими производными до порядка k включи-
тельно вдоль всякой (m− 1)-мерной грани, не содержащей узел ai.

Доказательство. Достаточно заметить, что по определению
базисных функций Лагранжа функция p = φi(x) удовлетворяет ус-
ловиям (3.4), если узел ai не принадлежит грани g. �

Рассмотрим подробнее лагранжевы элементы класса C0. В этом
случае

Σe|g = {ϕi : ϕi(p) = p(ai), ai ∈ ωg = ωe ∩ g},
где ωe — множество узлов интерполяции элемента e. Поскольку
p(ai) = p|g(ai), то функционалы из Σe|g можно считать определен-
ными и на элементах из Pe|g. Вследствие формулы (3.7) при α=0
имеем следующее представление произвольного элемента p ∈ Pe|g:

p(x) =
∑
ai∈ωg

p(ai)φi|g(x).

Поскольку φi|g(aj) = δij для любых номеров i, j таких, что ai,
aj ∈ ωg, то функции {φi|g(x), ai ∈ ωg} образуют базис Лагранжа
в Pe|g, а тройка (g, Pe|g,Σe|g) образует конечный элемент. Назовем
этот элемент сужением лагранжева элемента (e, Pe,Σe) на грань g.

Теорема 1. Пусть (e, Pe,Σe) — m-мерный лагранжев конечный
элемент класса C0 в Rn, n > m > 2. Тогда его сужение (g, Pe|g,Σe|g)
на произвольную (m− 1)-мерную грань g элемента e представляет
собой (m− 1)-мерный лагранжев элемент класса C0 в Rn.

Доказательство. Пусть g и τ любые две смежные (m − 1)-
мерные грани e с общей (m−2)-мерной гранью γ. Обозначим через ωγ

множество (возможно пустое) тех узлов из ωe, которые принадлежат
этой грани. Фиксируем произвольно функцию p из Pe так, чтобы она
была равна нулю на γ. Это можно сделать, например, выбрав равны-
ми нулю узловые параметры функции p на грани τ . Пусть q = p |g —
сужение p на грань g. Тогда

q =
∑

ai∈ωg\ωγ

p(ai)φ
g
i (x),

где φg
i = φi|g — базисные функции элемента (g, Pe|g,Σe|g). По постро-

ению имеем для любого x ∈ γ:

q|γ(x) =
∑

ai∈ωg\ωγ

p(ai)φ
g
i |γ(x) = 0. (3.8)
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Поскольку числа p(ai) при ai ∈ ωg \ ωγ могут быть выбраны произ-
вольно, то из (3.8) вытекает, что функции φg

i |γ тождественно равны
нулю на γ, если ai ∈ ωg \ ωγ. Пользуясь следствием 1, отсюда заклю-
чаем, что элемент (g, Pe|g,Σe|g) принадлежит классу C0. �

Следствие 2. В каждой вершине лагранжева элемента класса
C0 должен быть определен узловой параметр.

Доказательство. Применяя теорему 1 рекурсивно, получим,
что каждая одномерная грань лагранжева элемента класса C0 явля-
ется также лагранжевым элементом класса C0, поэтому в его верши-
нах должны быть определены функционалы вида ϕ : p→ p(ai). �

Замечание 2. Из следствия 2 вытекает ограничение на лагранжевы конечные
элементы (e, Pe,Σe), имеющих форму многогранников: dimPe > N , где N — число
вершин e. Аналогичное ограничение можно получить и для эрмитовых элементов.
Например, можно показать, что для элемента в R2 класса Ck треугольной формы в
каждой вершине элемента должны быть определены функционалы p → Dαp(ai) для
всех |α| 6 2k. Отметим, что узловые параметры, соответствующие производным, для
эрмитовых элементов определяются не однозначно даже при фиксированных узлах ин-
терполяции. В связи с этим далее, в п. 3 §4, мы введем понятие равных эрмитовых
элементов.

Для краткости и ясности обозначений условимся в дальнейшем
при определении множества Σe указывать лишь результат действия
функционала на элемент, обозначаемый через p. Так, например, в
случае лагранжева конечного элемента будем писать

Σe={p(aei ), i=1, 2, . . . ,me}.

2. Базисные конечные элементы. Опишем сначала геомет-
рические свойства используемых в дальнейшем базисных элементов.

Определение 4. Если ê = [0, 1], то конечный элемент (ê, Pê,Σê)
назовем одномерным базисным конечным элементом. Если ê — еди-
ничный симплекс в Rn, т. е.

ê = {x̂ ∈ Rn : x̂i > 0, i = 1, 2, . . . , n,
n∑

i=1

x̂i 6 1},

или ê = [0, 1]n — единичный n-мерный куб, то конечный элемент
(ê, Pê,Σê) будем называть соответственно симплициальным (тре-
угольным при n = 2, тетраэдральным при n = 3) или прямоугольным
базисным конечным элементом в Rn.

Базисный конечный элемент1) будем обозначать через (ê, P̂ , Σ̂).
1)Прилагательное ≪базисный≫ означает, что элемент e имеет фиксированный (раз и навсегда

определенный) размер и играет определяющую роль при построении других конечных элемен-
тов.
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Перейдем к рассмотрению примеров базисных элементов. В опи-
саниях элементов следует обратить внимание на показатель m во
включениях типа P̂ ⊇ Pm. Величинаm, как будет показано в дальней-
шем, определяет аппроксимационные свойства конечного элемента.

Для сокращения записей только в этом параграфе будем считать,
что базисный конечный элемент задан в координатах x и обозначать
через ω = {ai}, ϕi, φi(x), π его узлы интерполяции, степени сво-
боды, базисные функции и оператор интерполяции соответственно.
Начиная со следующего параграфа, где мы введем в рассмотрение и
другие конечные элементы, для указанных выше величин будем ис-
пользовать обозначения: x̂, ω̂ = {âi}, ϕ̂i, φ̂i(x̂), π̂. Иными словами,
в этом параграфе будем опускать значок ≪крышка≫ в обозначениях
базисного элемента и относящихся к нему величин.

1. Одномерный лагранжев элемент степени m.

Пусть e = [0, 1] — единичный отрезок на вещественной оси x,
ω = {ai}mi=0 = {0 = a0 < a1 < . . . am = 1} — множество, состоящее
из m + 1 различных точек элемента e, включающее его граничные
точки, Σ = {p(ai)}mi=0, P = Pm — пространство полиномов переменной
x степени не выше m.

Как уже отмечалось, Σ и P — унисольвентная пара. Базис
Лагранжа в пространстве P образуют полиномы

φi(x) =
m∏

j=0,j ̸=i

x− aj
ai − aj

=
ω(x)

(x− ai)ω′(ai)
, i = 0, 1, . . . ,m, (3.9)

где ω(x) = (x− a0)(x− a1) . . . (x− am).
Итак, тройка (e,Σ, P ) образует базисный лагранжев конечный

элемент (me = m+ 1).
Поскольку в вершинах a0=0 и am=1 заданы узловые парамет-

ры, соответствующие значениям функции в этих вершинах, то мы
определили элемент класса C0.

Точки ai, i = 1, 2, . . . ,m − 1, выбираются из каких-либо до-
полнительных соображений. При небольших значениях m (напри-
мер, m < 10) их, обычно, располагают равномерно: ai = i/m.
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2. Лагранжев прямоугольный элемент степени m.

Пусть e = [0, 1]× [0, 1] — единичный квадрат на плоскости x1, x2,
{ai}mi=0 — множествоm+1 различных точек отрезка [0, 1], симметрич-
но расположенных относительно середины отрезка1), включающее его
граничные точки; ω = {aij = (ai, aj)}mi,j=0 (cм. рис. 2, соответствую-
щий случаю m = 4), Σ = {p(aij)}mi,j=0. Множество Σ унисольвентно
с пространством P = Qm полиномов степени не выше m по каждой
переменной. Действительно, dimQm = (m + 1)2 совпадает с числом
функционалов в Σ. Базис Лагранжа, очевидно, образуют полиномы

φij(x) = φi(x1)φj(x2), i, j = 0, 1, . . . ,m,

где функции φk определяются по формуле (3.9). В силу теоремы 3,
с. 81, тройка (e, P,Σ) образует базисный лагранжев конечный элемент
(me = (m+ 1)2). Отметим, что P ⊃ Pm.
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Рис. 2. Лагранжев прямоугольный элемент с 25 степенями свободы, P = Q4.

Замечание 3. Построенный элемент принадлежит классу C0. Чтобы убедиться
в этом, достаточно проверить, что базисная функция φij тождественно равна нулю
на всех сторонах элемента e, кроме той стороны, которой принадлежит точка aij , и
воспользоваться следствием 1, c. 85.

Замечание 4. Мы использовали нумерацию узлов интерполяции и связанных с
ними узловых параметров и базисных функций при помощи двух индексов только для
наглядности описания конечного элемента. Введем во многих случаях более удобную
нумерацию с помощью одного индекса. Пронумеруем все узлы ω произвольным образом
от 1 до me и пусть ai есть i-тый узел в этой нумерации. Положим φi(x) = φkl(x), ес-
ли ai = akl. Тогда каждая функция p ∈ P будет иметь представление

p(x) =

me∑
i=1

p(ai)φi(x) ≡ φe(x)ϕe(p).

1)Такое расположение узлов выбрано из удобства построения в дальнейшем пространства
конечных элементов Vh.
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При m = 1 определенный в этом примере конечный элемент бу-
дем называть билинейным конечным элементом. Укажем формулы
для базисных функций в этом случае, считая, что узлы интерполя-
ции пронумерованы против часовой стрелки, первый узел — начало
координат: φ1(x) = (1− x1)(1− x2), φ2(x) = x1(1− x2), φ3(x) = x1x2,
φ4(x) = (1− x1)x2.

3. Лагранжев треугольный конечный элемент степени m.

Пусть e — единичный симплекс (треугольник) в R2, {ai = i/m}mi=0

есть равномерная сетка на отрезке [0, 1],

ω = {aij = (ai, aj), 0 6 i+ j 6 m}

(cм. рис. 3, соответствующий случаю m = 6),

Σ = {p(aij), 0 6 i+ j 6 m} .

Докажем, что Σ унисольвентно с пространством P = Pm полиномов
степени не вышеm по совокупности переменных x1, x2. Очевидно, что
размерность Pm, равная (m + 1)(m + 2)/2, совпадает с числом эле-
ментов Σ. Построим базис Лагранжа. Пусть akl — некоторая точка ω,
x3 = 1− x1 − x2. Тогда на прямых

x1 = a0, x1 = a1, . . . , x1 = ak−1,

x2 = a0, x2 = a1, . . . , x2 = al−1,

x3 = a0, x3 = a1, . . . , x3 = am−(k+l)−1,

лежат все узлы ω, кроме akl (cм. рис. 3, где эти прямые выделены).
Отсюда следует, что полином

pkl(x) = c(x1 − a0) . . . (x1 − ak−1)(x2 − a0) . . . (x2 − al−1) . . .

. . . (x3 − a0) . . . (x3 − am−(k+l)−1),

принадлежащий Pm, обращается в нуль во всех точках ω, кроме точ-
ки akl. Остается нормировать pkl(x), чтобы получить базисную функ-
цию, соответствующую точке akl. Итак, базис Лагранжа образуют
полиномы

φkl(x) =
pkl(x)

pkl(akl)
, 0 6 k + l 6 m,

а тройка (e,Σ, P ) — базисный лагранжев конечный элемент клас-
са C0. Последнее утверждение обосновывается так же, как и в заме-
чании 3. Замечание 4 также сохраняет силу.
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Рис. 3. Лагранжев элемент с 28 степенями свободы, P = P6. Выделенные линии содер-
жат все узлы кроме одного.

Приm = 1 определенный здесь конечный элемент будем называть
линейным конечным элементом. Формулы для его базисных функций,
если узлы интерполяции пронумерованы против часовой стрелки, на-
чиная с точки x = (0, 0), имеют вид:

φ1(x) = 1− x1 − x2, φ2(x) = x1, φ3(x) = x2.

4. Максимально неполный прямоугольный элемент
степени m.

Пусть e = [0, 1] × [0, 1], {ai}mi=0, m > 2 — множество m + 1
различных точек отрезка [0, 1], симметрично расположенное отно-
сительно середины отрезка и включающее его граничные точки;
ω = {aij = (ai, aj) : aij ∈ ∂e} (cм. рис. 4, соответствующий случаю
m = 4), Σ = {p(aij) : aij ∈ ω}. Докажем, что Σ унисольвентно с
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Рис. 4. Максимально неполный лагранжев прямоугольный элемент с 16 степенями сво-
боды, P = Qmin

4 . Все узлы лежат на гранях элемента.

пространством полиномов P = Qmin
m , которое определим следующим
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образом:

Qmin
m =

{
p : p(x) =

1∑
α1=0

m∑
α2=0

cαx
α1
1 x

α2
2 +

m∑
α1=0

1∑
α2=0

cαx
α1
1 x

α2
2 , cα ∈ R1

}
.

Размерность пространства Qmin
m равна 4m и совпадает с числом эле-

ментов Σ. Построим базис Лагранжа. Введем функции:

ψ00(x) = (1− x1)(1− x2), ψm0(x) = x1(1− x2),

ψmm(x) = x1x2, ψ0m(x) = (1− x1)x2.

Пусть, далее, функции φk определяются по формуле (3.9). Покажем,
что функции

φk0(x) = φk(x1)(1− x2), φkm(x) = φk(x1)x2, k = 1, . . . ,m− 1,

φ0k(x) = (1− x1)φk(x2), φmk(x) = x1φk(x2), k = 1, . . . ,m− 1,

φst(x) = ψst(x)−
m−1∑
k=1

ψst(aks)φks(x)−
m−1∑
k=1

ψst(atk)φtk(x), s, t = 0,m,

образуют базис Лагранжа в Qmin
m . Действительно, каждая из функ-

ций φij принадлежит Qmin
m и обращается в нуль во всех узлах ω, кроме

узла aij, где она равна единице. Принадлежность построенного эле-
мента классу C0 обосновывается так же, как и в замечании 3. Заме-
чание 4 сохраняет силу.

Замечание 5. Использованный способ построения базисных функций легко обоб-
щается и на случай, когда на каждой стороне элемента узлы интерполяции, не совпада-
ющие с угловыми точками e, выбираются независимо (это также верно и для элементов,
рассмотренных в примере 2). Отметим, что элемент, указанный далее в задаче 4, с. 99,
находит применение при решении плоских задач теории упругости.

Для построенного элемента (e,Σ, P )

P = Qmin
m ⊃ Pm (3.10)

для m = 1, 2, 3, но при m > 4 включение (3.10) не выполняется. Это
хорошо видно из таблицы 3.1, показывающей степени тех мономов
xα = xα1

1 x
α2

2 , которые входят в определение пространства Qmin
m , m =

6, (они помечены символом ⊕) и степени мономов, которые имеются
в P5, но не входят в Qmin

m (они помечены символом ⊖).
Из таблицы 3.1 также видно, что в пространстве Qmin

m не хватает
ровно dimPm−4 = (m − 3)(m − 2)/2 мономов для выполнения усло-
вия (3.10) при m > 4.
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Таблица 3.1

α2

↑
6
5
4
3
2
1
0

⊕ ⊕
⊕ ⊕
⊕ ⊕
⊕ ⊕ ⊖
⊕ ⊕ ⊖ ⊖
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
0 1 2 3 4 5 6

→ α1

5. (m, s)-неполные прямоугольные элементы.
Пусть m > 4, (e,Σ, P ) — максимально неполный прямоугольный

элемент степени m, определенный выше, ω — множество его узлов
интерполяции, {φi, ai ∈ ω} — базис Лагранжа в P , s ∈ [4,m] —
заданное целое число.

Построим прямоугольный базисный конечный элемент (e, P s
m,Σ

s
m),

для которого выполнены условия
Qmin

m ⊂ P s
m, Ps ⊂ P s

m ̸⊂ Ps+1. (3.11)
Такой элемент назовем (m, s)-неполным прямоугольным элементом.

Пусть ωs = {ai ∈ e} — множество внутренних точек e та-
ких, что узловые параметры Σs = {p(ai), ai ∈ ωs} образуют Ts-
унисольвентное множество, где Ts — пространство полиномов, удо-
влетворяющих условию Ps−4 ⊆ Ts ⊆ Qs−4. Примеры 2–4 показывают,
что такие множества ωs существуют. Пусть далее {ψi, ai ∈ ωs} —
базис Лагранжа в Ts.

Определим пространство полиномов

P s
m =

{
p : p(x) = p1(x) + x1x2(1− x1)(1− x2)p2(x),

p1(x)∈Qmin
m , p2(x)∈Ts

}
,

а также множества узлов и узловых параметров ωs
m = ω ∪ ωs, Σs

m =
Σ ∪ Σs. По определению пространства P s

m условия (3.11) выполнены
(см. таблицу 3.1, соответствующую случаю m=6, s=5, Ts=P1). По
построению также выполнено условие dimP s

m = card Σs
m.

Осталось указать базис Лагранжа {φs
i , ai ∈ ωs

m} в P s
m.

Пусть w(x) = x1x2(1− x1)(1− x2). Легко проверить, что

φs
i (x) =


φi(x)−

∑
ak∈ωs

w(x)

w(ak)
φi(ak)ψk(x), если ai ∈ ω,

w(x)

w(ai)
ψi(x), если ai ∈ ωs.
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Конкретный (m, s)-неполный прямоугольный элемент определяется,
таким образом, выбором граничных узлов интерполяции ω, простран-
ства полиномов Ts и соответствующего ему множества внутренних
узлов интерполяции ωs. Для выбора множеств ω и ωs используются
дополнительные соображения, например, можно потребовать некото-
рой симметрии расположения узлов.
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Рис. 5. Примеры неполных прямоугольных элементов типа (4, 4) и (5, 5).

На рис. 5 приведены примеры расположения узлов интерполяции
для (m,m)-неполных элементов при m = 4 и m = 5 соответственно.
В последнем случае один внутренний узел можно исключить. Он до-
бавлен из соображений симметрии. Принадлежность определенных
здесь элементов классу C0 обосновывается так же, как и в замеча-
нии 3.

6. Одномерный эрмитов кубический элемент класса C1.

Пусть e = [0, 1], P = P3, ω = {a0 = 0, a1 = 1},

Σ = {ϕi0(p) = p(ai), ϕi1(p) = Dp(ai)(ai+1 − ai), i = 0, 1} , a2 = a0.

Отметим, что ϕi1(p) = (−1)ip′(ai).
Тройка (e,Σ, P ) образует конечный элемент (me = 4), его базис

Лагранжа составляют полиномы

φ00(x) = (1− x)2(1 + 2x), φ10(x) = x2(3− 2x),

φ01(x) = (1− x)2x, φ11(x) = x2(1− x).

Элемент принадлежит классу C1, поскольку в граничных узлах
элемента a0 = 0 и a1 = 1 заданы узловые параметры, соответствую-
щие значению функции и ее первой производной.
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7. Эрмитов бикубический элемент класса C1.

Пусть e = [0, 1] × [0, 1], P = Q3. В множество ω включим все
вершины e: ω = {a1 = (0, 0), a2 = (1, 0), a3 = (1, 1), a4 = (0, 1)}.
С каждым узлом ai ∈ ω свяжем функционалы

ϕi0(p) = p(ai), ϕi3(p) = D2p(ai)(ai−1 − ai, ai+1 − ai),

ϕik(p) =

{
Dp(ai)(ai−1 − ai), если (ai−1 − ai) || Oxk,
Dp(ai)(ai+1 − ai), если (ai+1 − ai) || Oxk,

где k = 1, 2, a0 = a4 (все индексы справа от знаков равенства берутся
по модулю 4), и положим Σ = {ϕik, i = 1, . . . , 4, k = 0, . . . , 3}. Оче-
видно, card Σ = dimP = 16. Базис Лагранжа строится так же, как и
для лагранжева прямоугольного элемента степени m, в виде произве-
дений базисных функций одномерных элементов. Укажем, например,
базисные функции, связанные с узлом a1. Базисные функции, связан-
ные с остальными узлами, строятся аналогично. Пусть

ψ0(t) = (1− t)2(1 + 2t), ψ1
0(t) = (1− t)2t,

ψ1(t) = t2(3− 2t), ψ1
1(t) = t2(1− t).

Тогда

φ10(x) = ψ0(x1)ψ0(x2), φ11(x) = ψ1
0(x1)ψ0(x2),

φ12(x) = ψ0(x1)ψ
1
0(x2), φ13(x) = ψ1

0(x1)ψ
1
0(x2).
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Рис. 6. Эрмитов бикубический элемент, P = Q3.

Рисунок 6 иллюстрирует построенный элемент. Здесь черный кру-
жок указывает, что в точке задано значение функции, вертикальная
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или горизонтальная стрелка — задана первая производная по направ-
лению, указанному стрелкой, наклонная стрелка — заданы вторые
смешанные производные.

Докажем, что этот элемент принадлежит классу C1. Заметим, что
по определению ϕi3(p) = ±∂12p(ai)1) и с точностью до знака ϕik(p)
совпадает с ∂kp(ai) при k = 1, 2, i = 1, . . . , 4. Фиксируем теперь неко-
торую сторону элемента, например, a1a2. Нетрудно проверить, что
базисные функции φ1k(x), k = 0, . . . , 3, и все их первые производные
обращаются в нуль на всех сторонах e, кроме сторон, содержащих a1.
Аналогично устанавливается, что базисные функции и их первые про-
изводные, соответствующие вершинам a3 и a4, равны нулю на стороне
a1a2. Таким образом, в силу следствия 1, c. 85, элемент принадлежит
классу C1.

8. Эрмитов треугольный кубический элемент класса C0.

Пусть e — единичный треугольник в R2, P = P3. В множество ω
включим вершины e и его центр масс:

ω = {a1 = (0, 0), a2 = (1, 0), a3 = (0, 1), a4 = (a1 + a3 + a3)/3}.

Положим

Σ = {ϕi0(p) = p(ai), ϕi1(p) = Dp(ai)(ai−1 − ai),

ϕi2(p) = Dp(ai)(ai+1 − ai), i = 1, 2, 3, ϕ40(p) = p(a4)}, a0 = a3

(индексы справа от знака равенства берутся по модулю 3). Имеем
x

2

x1

a 1 a 2

a 3

a 4

Рис. 7. Эрмитов кубический элемент класса C0, P = P3.

1)∂ip = ∂p/∂xi, ∂0p = p, ∂ijp = ∂2p/∂xi∂xj .
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dimP = card Σ = 10. Для доказательства унисольвентности па-
ры (Σ, P ) воспользуемся теоремой 2, c. 80. Пусть все узловые па-
раметры функции p ∈ P равны нулю. Покажем, что тогда p есть
тождественный нуль. Для этого обозначим через s абсциссу стороны
[ai, ai+1], и пусть q = q(s) — след функции p на этой стороне. Тогда
q′(ai) = Dp(ai)(ai+1 − ai) = 0, q′(ai+1) = −Dp(ai+1)(ai − ai+1) = 0.
Кроме того, q(ai) = q(ai+1) = 0. Нетрудно видеть, что q является
полиномом третьей степени от s, поэтому q ≡ 0. Иными словами,
p(x) ≡ 0 на стороне [ai, ai+1]. Это рассуждение верно для любой сто-
роны e. Таким образом, полином p обязан иметь вид p(x) = cx1x2x3,
где x3 = 1− x1 − x2 (см. задачу 1, с. 99). Отсюда, используя условие
p(a4) = 0, находим, что c = 0, т. е. p(x) ≡ 0 на e.

Мы показали, в частности, что если узловые параметры функции
из P на некоторой стороне элемента равны нулю, то функция есть
тождественный нуль на этой стороне. Отсюда в силу следствия 1,
с. 85, вытекает, что рассматриваемый элемент принадлежит клас-
су C0.

Построенный элемент имеет 10 степеней свободы (см. рис. 7). Его
базисные функции нетрудно выписать. Например,

φ10(x) = −2x33 + 3x23 − 7x1x2x3, φ11(x) = x1x3(2x3 + x1 − 1),

φ12(x) = x2x3(2x3 + x2 − 1), φ40(x) = 27x1x2x3,

где x3 = 1−x1−x2, и т. д. Однако в следующем примере выписывать
базис в явном виде было бы слишком утомительно.

9. Конечный элемент Белла (класса C1).

Пусть e — единичный треугольник в R2, ω — множество вершин e,

ω = {a1 = (0, 0), a2 = (1, 0), a3 = (0, 1)}.

Определим множество функционалов

Σ = {ϕi0(p) = p(ai), ϕi1(p) = Dp(ai)(ai−1 − ai),

ϕi2(p) = Dp(ai)(ai+1−ai), ϕi,j+2(p) = D2p(ai)(aj+1−aj)2, i, j = 1, 2, 3},

т. е. в каждой вершине e заданы значение функции, две первые про-
изводные и три вторые производные по соответствующим направле-
ниям (в определении Σ индексы справа от знака равенства берутся
по модулю 3, a0 = a3).

Пространство P определим следующим образом:

P = {p ∈ P5 : ∂νp ∈ P3 на каждой стороне e},
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где ν — единичный вектор внешней нормали к ∂e, ∂νp — производная
функции p по направлению ν, ∂νp рассматривается здесь как функция
абсциссы вдоль соответствующей стороны треугольника e.

Из данного определения сразу следует, что P4 ⊂ P .
Из определения пространства P вытекает также, что для любого

полинома
p(x) =

∑
|α|65

aαx
α1
1 x

α2
2 ∈ P

справедливы равенства

a1,4 = a4,1 = 0, 2(a2,3 + a3,2) + 5(a0,5 + a5,0) = 0,

откуда получаем, что dimP = 18 = card Σ.
Для доказательства унисольвентности пары (Σ, P ) воспользу-

емся теоремой 2, с. 80, и будем рассуждать аналогично тому, как
это делалось в предыдущем примере. Пусть все узловые параметры
функции p равны нулю. Покажем, что тогда p есть тождественный
нуль. Обозначим через s абсциссу вдоль стороны [ai, ai+1], и пусть
q = q(s) — след функции p на этой стороне. Имеем q(ai) = 0,
q′(ai) = Dp(ai)(ai+1 − ai) = 0, q′′(ai) = D2p(ai)(ai+1 − ai)

2 = 0.
Аналогично q(ai+1) = q′(ai+1) = q′′(ai+1) = 0. Поскольку q являет-
ся полиномом от s не выше пятой степени, отсюда следует, что q ≡ 0,
т. е. p(x) ≡ 0 на стороне [ai, ai+1]. Пусть теперь q(s) = ∂νp(s) на той
же стороне [ai, ai+1]. В каждой точке ai равны нулю две первых про-
изводных функции p по двум линейно независимым направлениям и
три вторых производных функции p по трем попарно линейно неза-
висимым направлениям (см. задачу 2, с. 99). Отсюда следует, что все
первые и все вторые производные функции p в каждой точке ai рав-
ны нулю и q(ai) = q′(ai) = q(ai+1) = q′(ai+1) = 0. Поскольку q ∈ P3,
то q ≡ 0 и ∂νp ≡ 0 на рассматриваемой стороне. Таким образом,
p = ∂νp = 0 на любой стороне e, поэтому p(x) = cx21x

2
2x

2
3 (см. зада-

чу 1, с. 99). Так как p ∈ P5, то p(x) ≡ 0 на e.
Выше мы показали, в частности, что если узловые параметры

функции из P на некоторой стороне элемента равны нулю, то сама
функция и ее нормальная производная есть тождественные нули на
этой стороне. Отсюда в силу следствия 1, c. 85, вытекает, что рас-
сматриваемый элемент принадлежит классу C1.

Иллюстрация элемента (e, P,Σ) дана на рис. 8, где окружность
означает, что в точке заданы все вторые производные функции.

Замечание 6. Можно дать эквивалентное определение пространства P :

P = {p ∈ P5 : χij(∂νp) = 0, 1 6 i < j 6 3},
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Рис. 8. Конечный элемент Белла класса C1.

где χij(v) = 4(v(ai)+v(aj))−8v(aij)−
(
Dv(aj)(aj−ai)−Dv(ai)(aj−ai)

)
, aij = (ai+aj)/2

(подчеркнем, что ∂νp здесь понимается как функция абсциссы вдоль соответствую-
щей стороны треугольника e). Действительно, если разложить слагаемые в первой
и третьей скобках в определении χij(v) в ряд Тейлора в окрестности точки aij , то
χij(v) = −1/24d4v(s)/ds4, где s — абсцисса вдоль стороны [ai, aj ]. Поэтому, если ∂νp ∈ P3

на стороне [ai, aj ], то χij(∂νp) = 0. Обратно, если p ∈ P5, то ∂νp ∈ P4 на стороне [ai, aj ]
и из условия χij(∂νp) = 0 получаем, что ∂νp ∈ P3 на [ai, aj ].

Отметим, что условие χij(∂νp) = 0 означает, что нормальная производная функ-
ции из P в центральной точке стороны является линейной комбинацией производных
первого и второго порядка в граничных точках этой стороны треугольника.

Замечание 7. Во всех рассмотренных примерах эрмитовых элементов обращает
на себя внимание способ определения узловых параметров, соответствующих произ-
водным. Он удобен в дальнейшем при определении эрмитовых элементов, отличных от
базисных. Совершенно ясно, что выбранный способ не является единственным. Важ-
но только то, что производные определенного порядка образуют в некотором смысле
полный набор. В связи с этим настоятельно рекомендуем решить задачу 8.

Задачи.

1. Показать, что если полином p = p(x1, x2) ∈ Pm обращается в нуль на прямой
l, определяемой уравнением x3 ≡ ax1 + bx2 + c = 0, то p = x3q, q ∈ Pm−1. Если
дополнительно Dp(x)ν ≡ 0 на l, где ν — нормаль к l, то p = x23q, q ∈ Pm−2.

2. Пусть µ, ν, τ ∈ R2 — попарно линейно независимы, a ∈ R2. Доказать, что

i) если Du(a)µ = Du(a)ν = 0, то Du(a)l = 0 ∀ l ∈ R2,

ii) если D2u(a)(µ, µ) = D2u(a)(ν, ν) = D2u(a)(τ, τ) = 0, то D2u(a)(l, n) = 0 ∀ l, n ∈ R2.

3. Показать, что тройка e = [0, 1], P = P2, Σ = {p(0),
1∫
0

pdx, p(1)} определяет

конечный элемент класса C0. Получить явный вид базисных функций.

4. Показать, что тройка e = [0, 1]× [0, 1], P = Qmin
2 , Σ = {p(a), a ∈ ω}, где

ω = {a1 = (0, 0), a2 = (1, 0), a3 = (1, 1), a4 = (0, 1),

a5 = (0.25, 0), a6 = (1, 0.5), a7 = (0.5, 1), a8 = (0, 0.25)},

определяет конечный элемент класса C0. Получить явный вид базисных функций.
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5. Показать, что следующая тройка определяет конечный элемент: e — единичный
треугольник в R2, P = P2, Σ = {p(ai), Dp(ai)(ai+1−ai), i = 1, 2, 3}, где a1 = (0, 0), a2 =
(1, 0), a3 = (0, 1). Какого он класса?

6. Показать, что следующая тройка определяет конечный элемент: e — единичный
треугольник в R2, P = P4, Σ = {p(ai), D2p(ai)(aj+1− aj)

2, i, j = 1, 2, 3, p(aij), 1 6 i <
j 6 3}, где a1 = (0, 0), a2 = (1, 0), a3 = (0, 1), aij = (ai + aj)/2. Какого он класса?

7. Пусть Σb — множество узловых параметров элемента Белла. Показать, что сле-
дующая тройка определяет конечный элемент класса C0 (но не C1): e — единичный
треугольник в R2, P = P5,

Σ = Σb ∪ {Dp(aij)(ak − aij), 1 6 i < j 6 3, k = 1, 2, 3, k ̸= i, k ̸= j},

где a1 = (0, 0), a2 = (1, 0), a3 = (0, 1), aij = (ai + aj)/2.

8. Пусть e — единичный треугольник в R2, P = P3,

Σ = {p(ai), ∂jp(ai), i = 1, 2, 3, j = 1, 2, p(a4)},

где a1 = (0, 0), a2 = (1, 0), a3 = (0, 1), a4 = (a1 + a2 + a3)/3.
a) Показать, что эта тройка определяет конечный элемент.
b) Показать, что в случае бикубического эрмитова элемента можно было бы поло-

жить Σ = {p(ai), ∂jp(ai), ∂12p(ai), i = 1, . . . , 4, j = 1, 2}.
c) Как аналогично определить элемент Белла?

§ 3. Ассоциированные конечные элементы

1. Определение и свойства ассоциированных элементов.
Предположим, что задан базисный конечный элемент (ê, P̂ , Σ̂) в Rn и
ω̂ = {âi}, ϕ̂i, φ̂i(x̂), x̂ ∈ ê, π̂ — соответственно узлы интерполяции,
узловые параметры, базисные функции и оператор интерполяции.

Достаточно общий способ построения конечных элементов (e, Pe,Σe)
в Rn таких, что замкнутое множество e диффеоморфно ê, дает сле-
дующая

Теорема 1. Пусть задан базисный конечный элемент (ê, P̂ , Σ̂)
в Rn и x = xe(x̂) — достаточно гладкое отображение множества ê
на заданное замкнутое множество e ∈ Rn, имеющее достаточно
гладкое обратное x̂ = x−1

e (x). Положим

Pe = {p : p(x) = p̂(x−1
e (x)), p̂ ∈ P̂},

Σe = {ϕei : ϕei (p) = ϕ̂i(p̂) ∀p ∈ Pe, ϕ̂i ∈ Σ̂, p̂(x̂) = p(xe(x̂))}. (3.12)

Тогда тройка (e, Pe,Σe) образует конечный элемент в Rn 1).
1)Отображение x = xe(x̂) должно быть настолько гладким, чтобы равенства (3.12), опреде-

ляющие функционалы Σe, были корректны.
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Доказательство. Покажем сначала, что dimPe = card Σe.
Для этого достаточно убедиться в том, что dimPe = dim P̂ . Послед-
нее вытекает из того, что линейное отображение A : P̂ → Pe, по-
рождаемое равенством p(x) = p̂(x−1

e (x), невырождено, так как для
диффеоморфного отображения | det(Dxe(x̂))| > c > 0, x̂ ∈ ê, и, сле-
довательно,

∥Ap̂∥L1(e) =

∫
e

|p(x)| dx =

∫
ê

| det(Dxe(x̂))||p̂| dx̂ > c

∫
ê

|p̂| dx̂ = c∥p̂∥L1(ê)

для любого p̂ ∈ P̂ . Заметим, наконец, что базис Лагранжа в Pe обра-
зуют функции

φe
i (x) = φ̂i(x

−1
e (x)), i = 1, . . . , Ne,

т. е. образы базисных функций базисного элемента. В самом деле,
поскольку φe

i (xe(x̂))=φ̂i(x̂), то по определению ϕej(φ
e
i )=ϕ̂j(φ̂i)=δij. �

Определение 1. Элемент (e, Pe,Σe), построенный согласно тео-
реме 1, назовем конечным элементом, ассоциированным с базисным
элементом (ê, P̂ , Σ̂).

Пусть ω̂ = {âi} — множество узлов интерполяции, по которым
определяются узловые параметры из Σ̂. Преобразование x = xe(x̂) од-
нозначно определяет на элементе e множество ωe = {aei = xe(âi), âi ∈
ω̂}, которое будем называть множеством узлов интерполяции элемен-
та e. Под вершинами и гранями элемента e будем понимать образы
вершин и граней элемента ê при преобразовании x = xe(x̂).

Замечание 1. Взаимно однозначное соответствие между пространствами функ-
ций Pe и P̂ , осуществляемое обратимым преобразованием x = xe(x̂), можно рассмат-
ривать как преобразование координат. Поэтому для произвольной функции v = v(x),
заданной на элементе e, для сокращения записи будем обозначать через v̂ = v̂(x̂) ее
образ при замене координат x = xe(x̂): v̂(x̂) = v(xe(x̂)) = v(x).

Из практических соображений ясно, что необходимо стремиться
выбирать наиболее простые отображения x = xe(x̂) из возможных.
В этой связи дадим

Определение 2. Пусть (e, Pe,Σe) — конечный элемент, ассо-
циированный с базисным (ê, P̂ , Σ̂) посредством преобразования x =
xe(x̂). Он называется:

1) аффинно-эквивалентным, если отображение x = xe(x̂) — аффин-
ное, т. е. xe(x̂) = Bex̂ + be, где Be — невырожденная (n× n)-ма-
трица, be — вектор в Rn;
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2) изопараметрическим, если xe(x̂)=(x1(x̂), . . . , xn(x̂))
T , xi(x̂) ∈ P̂ ,

i=1, 2, . . . , n, т. е. xe(x̂) ∈ [P̂ ]n;

3) криволинейным, если он не является аффинно-эквивалентным
или изопараметрическим.

Замечание 2. Название ≪аффинно-эквивалентный≫ мотивируется тем, что если
(e, Pe,Σe) и (τ, Pτ ,Στ ) — два конечных элемента, аффинно-эквивалентных базисному
(ê, P̂ , Σ̂), то они аффинно-эквивалентны между собой, т. е. (τ, Pτ ,Στ ) является ассо-
циированным с элементом (e, Pe,Σe) посредством аффинного отображения и наоборот.
Приставка ≪изо≫ в слове изопараметрический подчеркивает тот факт, что в определе-
нии отображения x = xe(x̂) (а, следовательно, в определении Pe и Σe) использовано само
пространство P̂ базисного элемента (ê, P̂ , Σ̂). Отметим также, что в некоторых случаях
изопараметрический конечный элемент может быть одновременно и аффинно-эквива-
лентным.

Замечание 3. Если P̂ является пространством полиномов, то пространство Pe бу-
дет полиномиальным только для аффинно-эквивалентных элементов. Отметим также,
что с практической точки зрения (для построения системы алгебраических уравнений
МКЭ) нам не понадобится явный вид базисных функций в Pe (так же, как и явный вид
отображения x̂ = x−1

e (x)). Все, что необходимо для реализации МКЭ — это базисные
функции базисного элемента, отображение x = xe(x̂) и матрица Якоби Dxe(x̂).

Далее мы рассмотрим конкретные примеры ассоциированных эле-
ментов более подробно, при этом изучим элементы класса C0 всех
трех отмеченных типов и ограничимся только аффинно-эквивалент-
ными эрмитовыми элементами класса C1.

Предварительно выведем из теоремы 1 три следствия.
Следствие 1. Конечный элемент (e, Pe,Σe), ассоциированный

с лагранжевым базисным элементом (ê, P̂ , Σ̂) класса C0, является
также лагранжевым элементом класса C0 и

Σe = {p(aei ), aei ∈ ωe = xe(ω̂)},

где ω̂ — множество узлов интерполяции базисного элемента.
Доказательство. Чтобы получить явное выражение для

ϕei ∈ Σe, мы должны осуществить преобразование координат x̂→ x в
выражении для ϕ̂i ∈ Σ̂. Полученный результат и будет определять ϕei .

Пусть p ∈ Pe, p̂ = p̂(x̂) = p(xe(x̂)) ∈ P̂ — образ p. Поскольку
ϕ̂i(p̂) = p̂(âi), то из (3.12) имеем

ϕei (p) = p̂(âi) = p(xe(âi)) = p(aei ).

Пусть, далее, e′ — некоторая грань e, e′ = xe(ê
′). Тогда

p(x)
∣∣
e′
= p̂(x̂)

∣∣
ê′
=
∑
âi∈ê′

p̂(âi)φ̂i(x̂) =
∑
aei∈e′

p(aei )φ
e
i (x),
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откуда вытекает, что (e, Pe,Σe) — элемент класса C0. �
Следствие 2. Конечный элемент (e, Pe,Σe), аффинно-эквива-

лентный эрмитову базисному элементу (ê, P̂ , Σ̂) класса C1, явля-
ется также эрмитовым элементом класса C1. Если x = Bex̂ + be
есть соответствующее преобразование координат и

Σ̂ = {p̂(âi), Dp̂(âj)ν̂k, D2p̂(âj)(ν̂k, µ̂l), . . .},

то
Σe = {p(aei ), Dp(aej)Beν̂k, D

2p(aej)(Beν̂k, Beµ̂l), . . .},
где aei = Beâi + be. В частности, если

Σ̂ = {p̂(âi), Dp̂(âj)(âk − âj), D
2p̂(âj)(âk − âj, âl − âj), . . .},

то способ определения узловых параметров сохраняется1):

Σe = {p(aei ), Dp(aej)(aek − aej), D
2p(aej)(a

e
k − aej, a

e
l − aej), . . .}. (3.13)

Доказательство. Пусть xe(x̂) = Bex̂+be. Используем правило
замены переменных в производных при аффинном преобразовании
(см. формулу (3), с. 56). Получим:

Dp̂(âj)ν̂k = Dp(aej)Beν̂k, D2p̂(âj)(ν̂k, µ̂l) = D2p(aej)(Beν̂k, Beµ̂l), . . . .

Поскольку при ν̂k = âk − âj имеем Beν̂k = Be(âk − âj) = aek − aej, то
соотношение (3.13) также выполнено. Проверку того, что (e, Pe,Σe) —
элемент класса C1, оставляем читателю. �

Следствие 3. Пусть π̂ — оператор интерполяции базисного
элемента, πe — оператор интерполяции ассоциированного элемен-
та, u(x) — достаточно гладкая функция, определенная на элементе
e, û(x̂) = u(xe(x̂)). Тогда (̂πeu) = π̂û.

Доказательство. Действительно,

(̂πeu) =

me∑
i=1

ϕei (u)φ̂
e
i (x) =

me∑
i=1

ϕ̂i(û)φ
e
i (xe(x̂)) =

me∑
i=1

ϕ̂i(û)φ̂i(x̂) = π̂û. �

1)Именно по этой причине в рассмотренных выше примерах эрмитовых элементов узловые
параметры были выбраны подобным образом. По поводу неоднозначности выбора узловых па-
раметров эрмитовых элементов см. далее определение на с. 111.
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2. Регулярность семейства ассоциированных элементов.
Пусть (ê, P̂ , Σ̂) — базисный конечный элемент в Rn, h > 0 — пара-
метр, Th = {e}h — семейство замкнутых областей в Rn таких, что для
любого элемента e ∈ Th:

i) e — диффеоморфный образ ê : e = xe(ê);
ii) diam e 6 h.
С каждой областью e из Th свяжем конечный элемент (e, Pe,Σe),

ассоциированный посредством преобразования x = xe(x̂) с базисным
элементом. Таким образом, получим семейство элементов

Eh = {(e, Pe,Σe), e ∈ Th}.

В дальнейшем чаще всего будем рассматривать два случая (см.
определение 4, с. 87).

1) Базисный элемент — симплекс в пространстве Rn. Соответ-
ствующее семейство Th будем называть семейством симплициальных
элементов.

2) Базисный элемент — единичный n-мерный куб. Соответству-
ющее семейство Th будем называть семейством прямоугольных эле-
ментов.

В зависимости от формы базисного элемента отображение xe :
ê → e мы подчиним некоторым условиям, что позволит устано-
вить оценки (в терминах параметра h) для обратного отображения
x−1
e : e → ê. Эти общие результаты будут использованы в дальней-

шем при получении оценок погрешности аппроксимации соболевских
пространств пространствами конечных элементов.

Определение 3. Семейство элементов Th и, соответственно, се-
мейство Eh ассоциированных конечных элементов в Rn назовем k-ре-
гулярным, k > 1, если для любого e ∈ Th справедлива оценка

c1h
n 6 det (Dxe(x̂)) 6 c2 h

n ∀x̂ ∈ ê, (3.14)

и, кроме того1),

max
x̂∈ê

∥∥Dlxe(x̂)
∥∥ 6 c3h

l, l = 1, 2, . . . , k, (3.15)

если Th — семейство симплициальных элементов, и

max
x̂∈ê

∥∥Dlxe(x̂)
∥∥ 6 c3h, max

x̂∈ê

[
Dlxe(x̂)

]
6 c3h

l, l = 1, 2, . . . , k,

(3.16)
1)Норма ∥ · ∥ и полунорма [·] для полилинейных отображений [Rn]m → Rn введены на с. 30.
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если Th — семейство прямоугольных элементов. Здесь c1, c2, c3 —
постоянные, не зависящие от h 1). Семейство Th (Eh) назовем регуляр-
ным, если оно k-регулярно для любого k > 1.

Определение 4. Семейство прямоугольных ассоциированных
конечных элементов Eh в Rn назовем сильно k-регулярным, k > 1,
если для любого e ∈ Th справедливы оценки (3.14), (3.15).

Замечание 4. Нетрудно видеть, что условия 1-регулярности симплициальных
и прямоугольных элементов совпадают, а из 1-регулярности аффинно-эквивалентного
семейства элементов следует его регулярность. Действительно, если xe = Bex̂+ be, то

Dxe(x̂) = Be, Dmxe(x̂) = 0, m > 2,

а нормы [Dxe(x̂)] и ∥Dxe(x̂)∥ = ∥Be∥ — эквивалентны, где ∥Be∥ — спектральная норма
матрицы Be, т. е. норма, подчиненная евклидовой норме вектора.

Замечание 5. По определению условие k-регулярности семейства симплициаль-
ных элементов идентично условию сильной k-регулярности семейства прямоугольных
элементов. Более слабое условие k-регулярности семейства прямоугольных элементов
вводится для того, чтобы обеспечить большее разнообразие допустимых геометриче-
ских форм элементов из Th.

Для отображения x = xe(x̂) = (x1(x̂), . . . , xn(x̂))
T положим

|xe|l,∞,ê = max
x̂∈ê

max
j=1,...,n

max
|α|=l

|Dαxj(x̂)|,

[xe]l,∞,ê = max
x̂∈ê

max
i,j=1,...,n

∣∣∣∣∂lxj(x̂)∂x̂li

∣∣∣∣ .
Учитывая замечание об эквивалентных нормировках конечномерного
пространства Ll(R

n, Rn) (см. с. 30), нетрудно убедиться в существо-
вании постоянных c1, c2, зависящих только от n и l, таких, что

c1|xe|l,∞,ê 6 max
x̂∈ê

∥∥Dlxe(x̂)
∥∥ 6 c2|xe|l,∞,ê,

c1[xe]l,∞,ê 6 max
x̂∈ê

[Dlxe(x̂)] 6 c2[xe]l,∞,ê.

Отсюда следует, что условия (3.15), (3.16) можно эквивалентным об-
разом сформулировать в терминах норм |xe|l,∞,ê и [xe]l,∞,ê. Далее мы
неоднократно будем это использовать.

Теорема 2. Пусть семейство Eh ассоциированных конечных
элементов в Rn является k-регулярным, k > 1. Тогда

c1h
−n 6 det

(
Dx−1

e (x)
)
6 c2 h

−n ∀x ∈ e, (3.17)
1)Условимся всюду в дальнейшем обозначать через c, c1, c2, . . . постоянные, не зависящие от

h; один и тот же символ может обозначать разные постоянные.
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и, кроме того,

| det (Dxe) |l,∞,ê 6 c hn+l, l = 1, 2, . . . , k, (3.18)
max
x∈e

∥Dlx−1
e (x)∥ 6 c h−1, l = 1, 2, . . . , k, (3.19)

в случае, когда Th — семейство симплициальных элементов, или

max
x∈e

∥Dlx−1
e (x)∥ 6 c h−l, l = 1, 2, . . . , k, (3.20)

если Th — семейство прямоугольных элементов.
Доказательство. Оценки (3.17) непосредственно вытекают из

оценок (3.14), поскольку (см. также лемму 6, с. 57)

Dx−1
e (x)Dxe(x̂) = E,

где E — единичная матрица, и следовательно,

det
(
Dx−1

e (x)
)
det (Dxe(x̂)) = 1.

Оценки (3.18) очевидны при n = 1. Докажем их при n = 2,
оставляя случай n > 2 в качестве упражнения. Пусть xe(x̂) =
(x1(x̂), x2(x̂))

T . Тогда

Je = det (Dxe(x̂)) =
∂x1(x̂)

∂x̂1

∂x2(x̂)

∂x̂2
− ∂x2(x̂)

∂x̂1

∂x1(x̂)

∂x̂2
.

В силу условия (3.15) каждое слагаемое в Je оценивается сверху ве-
личиной ch2. Поскольку ∂Je/∂x̂α есть сумма четырех слагаемых вида

∂2xi(x̂)

∂x̂α∂x̂j

∂xk(x̂)

∂x̂l
,

каждое из которых имеет порядок h3, то отсюда следует искомая
оценка при l = 1. Повторяя рассуждения, получим (3.18).

Оценки (3.19) докажем индукцией по l . Из равенства Dx−1
e (x) =(

Dxe(x̂)
)−1 следует, что элементы матрицы Dx−1

e (x) имеют вид
∂xα(x̂)

∂x̂β
/Je и оцениваются сверху величиной |xe|1,∞,ê/min

x̂∈ê
Je 6 c h−1.

Отсюда следует оценка (3.19) при l = 1. Пусть (3.19) имеет место при
l = 1, 2, . . . , s− 1. Тогда из леммы 6, с. 57, имеем

max
x∈e

∥Dsx−1
e (x)∥ 6 c

s−1∑
k=1

max
x̂∈ê

∥Dkx−1
e (x̂)∥

∑
i∈I(k,s)

max
x∈e

∥Dx−1
e (x)∥s−i1×

×max
x̂∈ê

(
∥D2xe(x̂)∥i2 . . . ∥Dsxe(x̂)∥is

)
. (3.21)
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Предположения индукции и условия регулярности позволяют оце-
нить сверху правую часть в (3.21) величиной

c
s−1∑
k=1

h−1
∑

i∈I(k,s)

hi1−s+2i2+...+sis 6 c h−1,

что доказывает оценку (3.19). В случае прямоугольных элементов
рассуждения аналогичны. Правая часть в (3.21) в этом случае оце-
нивается величиной

c
s−1∑
k=1

h−k
∑

i∈I(k,s)

hi1−s+i2+...+is 6 c
s−1∑
k=1

h−k
∑

i∈I(k,s)

hk−s 6 c h−s,

откуда следует (3.20). �
Упражнение 3. Доказать (3.18) при n > 2.

В следующих трех параграфах мы рассмотрим конкретные при-
меры ассоциированных элементов и укажем условия их k-регулярно-
сти.

â1 â2

â3

ê

P̂ = P1

a1

a2

a3

e

Рис. 9. Аффинно-эквивалентный элемент с 3 степенями свободы, P = P1.

§ 4. Аффинно-эквивалентные конечные элементы

1. Возможные геометрические формы элементов. Пусть
(e, Pe,Σe) — произвольный конечный элемент в Rn, аффинно-эквива-
лентный базисному элементу (ê, P̂ , Σ̂). Какое разнообразие геометри-
ческих форм e при этом допускается? Очевидно, возможны только
элементы следующих типов.

1) В одномерном случае ê = [0, 1] и, следовательно, e может быть
только замкнутым интервалом в R1. Пусть e = [a, b]. Отображение
x = xe(x̂) и обратное к нему определяются формулами

x = xe(x̂) = a+ hex̂, he = b− a, x̂ = x−1
e (x) = (x− a)/he.
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2) В двумерном случае (см. рис. 9), когда ê — единичный тре-
угольник, e может быть только треугольником в R2, так как прямые
при аффинном преобразовании переходят в прямые. Пусть ae1, ae2, ae3
есть вершины e, перечисленные против часовой стрелки. Тогда отоб-
ражение x = xe(x̂) определяется по правилу

x = xe(x̂) = ae1 + x̂1(a
e
2 − ae1) + x̂2(a

e
3 − ae1). (3.22)

Действительно, это отображение является аффинным и вершины ê
преобразуются в вершины e, причем (0, 0) → ae1, (1, 0) → ae2,
(0, 1) → ae3, т. е. отображение сохраняет ориентацию базисного эле-
мента. Пусть

Be =

(
(ae2 − ae1)1 (ae3 − ae1)1
(ae2 − ae1)2 (ae3 − ae1)2

)
, be =

(
(ae1)1
(ae1)2

)
,

тогда xe(x̂) = Bex̂+be. Якобиан отображения x = xe(x̂) равен det(Be),
и, следовательно, равен 2|e| — удвоенной площади элемента e, по-
скольку

|e| =
∫
e

d x =

∫
ê

det(Be)d x̂ = det(Be)

∫
ê

d x̂ = |ê| det(Be). (3.23)

Итак, отображение x = xe(x̂) полностью определяется координата-
ми вершин элемента e и является взаимно однозначным. Обратное
отображение имеет вид x̂ = x−1

e (x) = B−1
e (x− be).

3) В случае, когда ê — единичный квадрат, e может быть толь-
ко параллелограммом в R2, так как параллельность прямых при
невырожденном аффинном отображении сохраняется (см. рис. 10).
Если ae1, ae2, ae3 — любые три вершины параллелограмма, перечис-
ленные против часовой стрелки, то отображение x = xe(x̂) опреде-
ляется равенством (3.22). Отметим важный частный случай. Если
xe(x̂) = Bex̂+ be,

Be =

(
cos θ − sin θ
sin θ cos θ

)(
he1 0
0 he2

)
, be =

(
ae1
ae2

)
,

то множество e = xe(ê) является прямоугольником в R2 с длинами
сторон, равными he1 и he2. Он получается следующим образом: снача-
ла ê сжимается вдоль осей с коэффициентами сжатия he1 и he2, затем
полученный прямоугольник поворачивается на угол θ против часовой
стрелки (вершина (0, 0) остается неподвижной) и переносится так, что
точка (0, 0) переходит в be. В частности, мы получим прямоугольник
со сторонами, параллельными осям координат, если θ = 0.
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Рис. 10. Возможные формы аффинно-эквивалентных прямоугольных элементов.

Итак, мы выяснили, какие геометрические формы могут иметь
аффинно-эквивалентные конечные элементы в Rn при n = 1, 2 и в
каждом случае определили вид преобразования x = xe(x̂). Выби-
рая теперь элемент e конкретной формы (из указанных выше), мы
по нему однозначно определяем отображение x = xe(x̂) и конечный
элемент (e, Pe,Σe) так, как это описано в предыдущем параграфе. А
именно, определяем множества ωe, Pe, Σe, базисные функции Лагран-
жа φe

i и оператор интерполяции πe.

2. Регулярность семейства аффинно-эквивалентных эле-
ментов. Пусть (ê, P̂ , Σ̂) — базисный элемент в Rn и Eh =
{(e, Pe,Σe), e ∈ Th} — семейство аффинно-эквивалентных ему эле-
ментов максимального диаметра h. Каждый элемент e из Th являет-
ся образом ê при аффинном преобразовании координат x = xe(x̂) =
Bex̂+ be.

Отметим, что если аффинно-эквивалентный конечный элемент —
треугольник и P̂ = P̂s — множество всех полиномов степени не вы-
ше s по совокупности переменных x̂, то Pe = Ps — множество всех
полиномов степени не выше s по совокупности переменных x. Если
конечный элемент — параллелограмм и P̂ ⊃ P̂s, то Pe ⊃ Ps, при этом
максимальная степень мономов в Pe, вообще говоря, будет выше, чем
в P̂ .

Сформулируем условия на геометрические характеристики эле-
ментов семейства Th, обеспечивающие его регулярность.

Лемма 1. Пусть Th — определенное выше семейство аффинно-
эквивалентных элементов, ρe — максимальный радиус шара, содер-
жащегося в элементе e. Пусть, далее, существует постоянная c,
не зависящая от h, такая, что ρe > c h для любого элемента e ∈ Th.
Тогда семейство Th регулярно.
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Рис. 11. К доказательству леммы 1.

Доказательство. Убедимся предварительно в справедливости
оценок 1)

||Be|| ≤ he/ρ̂, ||B−1
e || ≤ ĥ/ρe, (3.24)

где he, ĥ — диаметры e и ê соответственно, а ρ̂ — максимальный
диаметр шара, содержащегося в ê. Отметим, что ĥ, ρ̂ — постоянные,
зависящие только от n. Ясно, что

||Be|| = max
ξ ̸=0

|Beξ|
|ξ|

= max

{
|Beξ|
|ξ|

; ξ ∈ Rn, |ξ| = ρ̂

}
.

Каждый вектор ξ ∈ Rn длины ρ̂ может быть представлен в виде
ξ = ŷ − ẑ, ŷ, ẑ ∈ ê. Поэтому Beξ = (Beŷ + be) − (Beẑ + be) = y − z,
где y, z ∈ e. Это означает, что |Beξ| ≤ he , откуда следует первое
неравенство (3.24). Вторая оценка доказывается аналогично.

Поскольку he 6 h, ρe > ch, то из (3.24) вытекают, оценки:

||Be|| ≤ c1 h, ||B−1
e || ≤ c2 h

−1, (3.25)

где c1 = 1/ρ̂, c2 = 1/c.
Далее, согласно равенству (3.23), c. 108, имеем det(Be) = |e|/|ê|.

Учитывая, что элемент e содержит шар радиуса ρe > ch и может
быть вписан в n-мерный куб со стороной h, получим

c3 h
n 6 det(Be) 6 c4 h

n (3.26)

с постоянными, не зависящими от h. Из оценок (3.25), (3.26) и заме-
чания 4, с. 105, следует утверждение леммы. �

Рассмотрим отдельно случай n = 2, когда Th — семейство тре-
угольников. Обозначим через hei и θei , i = 1, 2, 3, — стороны и углы

1)Здесь и далее под нормой матрицы понимаем норму, согласованную с евклидовой нормой
векторов.
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треугольника e, занумерованные против часовой стрелки, причем уг-
лы θe1 и θe2 будем считать прилегающими к стороне he1.

Следствие 1. Если для любого элемента e ∈ Th
c h 6 hei 6 h, θei > θ0, i = 1, 2, 3, (3.27)

где постоянные c и θ0 не зависят от h, то семейство Th регулярно.
Доказательство. Достаточно проверить, что из (3.27) следует,

что ρe > c h. Для каждого i = 1, 2, 3 имеют место равенства
ρe(h

e
1 + he2 + he3) = 2|e| = heih

e
i+1 sin θ

e
i+1, (3.28)

где индекс, превышающий 3, берется по модулю 3. Если условия (3.27)
выполнены, то из (3.28) вытекает, что ρe > c1 h c постоянной c1 =
(c2/3) sin θ0. �

Замечание 1. Из формулы 1, очевидно, вытекает, что если семейство элементов
Th регулярно, то θei 6 π − θ0, i = 1, 2, 3, для любого e ∈ Th.

3. Равные эрмитовы элементы. Как отмечалось ранее, в
случае эрмитовых элементов имеется некоторый произвол в определе-
нии узловых параметров базисного элемента, соответствующих про-
изводным (см., например, задачу 8, с. 100). Далее при определении
пространств конечных элементов, аппроксимирующих пространства
Соболева, нам будут необходимы и другие, в некотором смысле экви-
валентные, наборы узловых параметров ассоциированных элементов.

В этой связи дадим
Определение 1. Два эрмитовых конечных элемента (e, Pe,Σe)

и (τ, Pτ ,Στ) равны, если e = τ, Pe = Pτ , πe = πτ .
Для каждого эрмитова элемента можно указать множество рав-

ных ему элементов. Приведем пример равных элементов, из кото-
рого будет ясно, как можно вообще определить эрмитов элемент,
равный имеющемуся. Советуем читателю внимательно проанализи-
ровать этот пример, поскольку использованный в нем прием замены
узловых параметров является характерным и необходимым при ис-
пользовании эрмитовых элементов.

Элемент, равный ассоциированному элементу Белла.
Пусть элемент (e, Pe,Σe) является аффинно-эквивалентным ба-

зисному элементу Белла (см. пример на с. 97). Согласно следствию
2, c. 103, множество его узловых параметров имеет вид

Σe = {ϕei0(p) = p(aei ), ϕei1(p) = Dp(aei )(a
e
i−1 − aei ),

ϕei2(p) = Dp(aei )(a
e
i+1 − aei ), ϕei,j+2(p) = D2p(aei )(a

e
j+1 − aej)

2,

i, j = 1, 2, 3},
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где, как и ранее, индексы справа от знака равенства берутся по мо-
дулю 3, aei — координата i-той вершины треугольника e.

Сквозную нумерацию узловых параметров и базисных функ-
ций введем как на базисном элементе. Обозначим через ϕei (·) =
(ϕei0(·), . . . , ϕei5(·)) вектор узловых параметров, соответствующих вер-
шине aei , и пусть ϕe(·) = (ϕe1(·), ϕe2(·), ϕe3(·))T — вектор узловых па-
раметров элемента e. Аналогично пронумеруем базисные функции,
полагая

φe
i (x) = (φe

i0(x), . . . , φ
e
i5(x)), φe(x) = (φe

1(x), . . . , φ
e
3(x)).

Оператор интерполяции определяется при этом равенством πeu =
φe(x)ϕe(u). Зададим новое множество узловых параметров

Σg
e = {ϕgik(p), i = 1, 2, 3, k = 0, . . . , 5} =

= {p(aei ), ∂1p(aei ), ∂2p(aei ), ∂11p(aei ), ∂12p(aei ), ∂22p(aei ), i = 1, 2, 3} ,

и образуем конечный элемент (e, Pe,Σ
g
e). Покажем, что он равен ис-

ходному. Для этого аналогично предыдущему введем вектор новых
узловых параметров:

ϕeg(p) = (ϕg1(p), ϕ
g
2(p), ϕ

g
3(p))

T,

ϕgi (p) = (p(aei ), ∂1p(a
e
i ), ∂2p(a

e
i ), ∂11p(a

e
i ), ∂12p(a

e
i ), ∂22p(a

e
i )).

Векторы ϕe(p) и ϕeg(p) связаны линейным преобразованием, вид ко-
торого мы установим, используя равенства:

Dp(aei )(a
e
k − aei ) =

2∑
α=1

(aek − aei )α∂αp(a
e
i ),

D2p(aei )(a
e
j+1 − aej)

2 =
2∑

α,β=1

(aej+1 − aej)α(a
e
j+1 − aej)β∂αβp(a

e
i ),

где (a)k — k-тая компонента вектора a. Введем матрицы

De
1i =

(
(aei−1 − aei )1 (aei−1 − aei )2
(aei+1 − aei )1 (aei+1 − aei )2

)
,

De
2i =

 (ae2 − ae1)
2
1 2(ae2 − ae1)1(a

e
2 − ae1)2 (ae2 − ae1)

2
2

(ae3 − ae2)
2
1 2(ae3 − ae2)1(a

e
3 − ae2)2 (ae3 − ae2)

2
2

(ae1 − ae3)
2
1 2(ae1 − ae3)1(a

e
1 − ae3)2 (ae1 − ae3)

2
2

 ,

и образуем блочно-диагональные матрицы

De
i = diag(1, De

1i, D
e
2i), De = diag(De

1, D
e
2, D

e
3).
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Нетрудно убедиться, что ϕe(p) = Deϕeg(p). Следовательно,

πeu = φe(x)ϕe(u) = φe(x)Deϕeg(u) = φegϕeg(u), φeg = φeDe. (3.29)

Отсюда вытекает, что компоненты φeg
i (x) вектор-функции φeg(x) об-

разуют базис Лагранжа элемента (e, Pe,Σ
g
e). Пусть πge соответствую-

щий ему оператор интерполирования. Тогда из (3.29) следует искомое
равенство

πeu = φe(x)ϕe(u) = φeg(x)ϕegi (u) = πgeu.

Отличительной особенностью нового набора узловых параметров, ко-
торый назовем глобальным, является то, что он образован с исполь-
зованием производных только по фиксированным, не зависящим от
элемента, направлениям. Как мы увидим далее, введение множе-
ства Σg

e и соответствующего ему базиса Лагранжа необходимо, как
при определении пространства эрмитовых конечных элементов, так
и для программной реализации метода конечных элементов.

Задачи.

1. Пусть элемент (e, Pe,Σe) аффинно-эквивалентен базисному эрмитову треуголь-
ному кубическому элементу класса C0 (см. пример на с. 96). По аналогии с элементом
Белла показать, что ему равен элемент (e, Pe,Σ

g
e) с множеством узловых параметров

Σg
e = {p(aei ), ∂1p(aei ), ∂2p(aei ), p(ae4), i = 1, 2, 3} ,

где ae4 = (ae1 + ae2 + ae3)/3. Проверить, что функции {φeg
i (x)}10i=1, определяемые равен-

ствами

φeg(x) = φe(x)De, De = diag(De
1, D

e
2, D

e
3, 1), De

i = diag(1, De
1i), i = 1, 2, 3,

образуют базис Лагранжа этого элемента.

2. Пусть элемент (e, Pe,Σe) является аффинно-эквивалентным базисному эрмитову
бикубическому элементу класса C1 (см. пример на с. 95). По аналогии с элементом
Белла показать, что ему равен элемент (e, Pe,Σ

g
e) с множеством узловых параметров

Σg
e = {p(aei ), ∂1p(aei ), ∂2p(aei ), ∂12p(aei ), i = 1, . . . , 4} .

Указать способ вычисления базиса Лагранжа {φeg
i (x)}16i=1 этого элемента.

§ 5. Криволинейные конечные элементы

Криволинейные элементы естественным образом возникают при
построении точной триангуляции области с кусочно гладкой криво-
линейной границей. На практике обычно используются элементы с
прямолинейными сторонами внутри области, тогда как пригранич-
ные элементы имеют одну криволинейную сторону, совпадающую
с участком границы рассматриваемой области. Рассмотрим один из
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способов определения двумерных криволинейных лагранжевых тре-
угольных элементов (e, Pe,Σe), ассоциированных с базисным элемен-
том (ê, P̂ , Σ̂) в R2. Будем считать, что две стороны криволинейного
треугольника e с вершинами a1, a2, a3 — отрезки прямых, а третья —
дуга кривой Γ. Треугольник с вершинами a1, a2, a3 (с прямолинейны-
ми сторонами) обозначим через ẽ. Будем предполагать, что элементы
настолько малы, что криволинейная сторона ⌢

a2a3 не имеет общих
точек с прямолинейными сторонами этого треугольника за исключе-
нием точек a2, a3 (см. рис. 12).

e

a 1

a 2

a 3

y
1

y
2

G

Рис. 12. Криволинейный конечный элемент.

Совокупность всех таким образом определенных криволинейных
треугольных элементов обозначим через Th. Здесь h = max

e∈Th
diam(e).

Через T̃h обозначим соответствующее множество треугольников ẽ.
Для определения ассоциированного элемента мы должны задать

отображение базисного треугольника ê на e ∈ Th. Если e — прямоли-
нейный треугольник, то это — аффинное отображение x = Bex̂ + be.
При построении и исследовании отображения на криволинейный эле-
мент оказывается полезной следующая теорема о свойствах непре-
рывных взаимно однозначных отображений в конечномерных про-
странствах.

Теорема 1. Пусть Ω — ограниченное открытое множе-
ство в Rn такое, что int Ω̄ = Ω, f — непрерывное, взаимно од-
нозначное отображение Ω̄ в Rn. Тогда

f
(
Ω̄
)
= f(Ω), f (Ω) = intf(Ω̄), f(∂Ω) = ∂f(Ω) = ∂f(Ω̄).

Будем считать, что кривая Γ задана в параметрической форме

x = χ(s), 0 6 s 6 L,

причем
χ ∈ C1[0, L], |χ′(s)| > c0 > 0, s ∈ [0, L]. (3.30)
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Последнее неравенство означает, что у Γ нет особых точек. Для опре-
деленности предположим, что при возрастании параметра s соверша-
ется обход кривой против часовой стрелки.

Пусть a2 = χ(s2), a3 = χ(s3), le = s3 − s2. Положим

φ(t) = χ(s2 + tle), L1(t) = a2 + t(a3 − a2), 0 6 t 6 1.

Ясно, что L1 — линейный интерполянт функции φ — дает параметри-
ческое представление хорды a2a3. Определим отображение базисного
элемента:

x = xe(x̂) = a1 +Bex̂+ x̃e(x̂), x̃e(x̂) = x̂1Φ(x̂2), (3.31)

где

Φ(t) =
φ(t)− L1(t)

1− t
, 0 6 t 6 1.

Отметим, что слагаемое x̌e(x̂) = a1 +Bex̂ в правой части (3.31) зада-
ет отображение ê на ẽ, а слагаемое x̃e(x̂) не имеет особенностей, бо-
лее того, используя правило Лопиталя, нетрудно показать, что функ-
ция Φ(t) непрерывна.

Теорема 2. Пусть выполнены условия (3.30), более того, χ ∈
Ck+1, k > 1, h достаточно мало, семейство элементов T̃h регуляр-
но, т. е.

c−1h2 6 det(Be) 6 ch2, ||Be|| 6 ch, ||B−1
e || 6 ch−1 (3.32)

с постоянной c, не зависящей от h. Тогда отображение (3.31) —
непрерывное взаимно однозначное отображение ê на e, причем

c1h
2 6 det (Dxe(x̂)) 6 c2h

2 ∀x̂ ∈ ê, (3.33)
|xe|j,∞,ê 6 c hj, j = 1, 2, . . . , k, (3.34)

т. е. Th — k-регулярное семейство элементов.
Доказательство. Отметим прежде всего, что отображение

(3.31) переводит ∂ê в ∂e. Точнее, xe(â1â2) = a1a2, xe(â1â3) =

a1a3, xe(â2â3) =
⌢
a2a3 . Действительно, первые два равенства оче-

видны, поскольку xe(x̂) = a1 + Bex̂, если x̂1 = 0 или x̂2 = 0.
Для обоснования последнего равенства заметим, что a1 + Bex̂ =
a1 + x̂1(a2 − a1) + x̂2(a3 − a1). Если x̂ ∈ â2â3, т. е. x̂1 = 1 − x̂2, то
a1 + Bex̂ = a2 + x̂2(a3 − a2) = L1(x̂2), и, следовательно, при x̂ ∈ â2â3
имеем x = a1 +Bex̂+ φ(x̂2)− L1(x̂2) = φ(x̂2).
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Докажем, что отображение x̃e(x̂) является малым возмущением
аффинного преобразования, точнее, что выполняются оценки

|x̃e|j,∞,ê = O(hmax(j,2)), j = 0, 1, . . . , k. (3.35)

Для этого достаточно убедиться в том, что

Φ ∈ Ck,
∣∣Φ(t)∣∣ 6 c h2,

∣∣Φ(j)(t)
∣∣ 6 c hj+1, j = 1, 2, . . . , k. (3.36)

Докажем оценки (3.36). Ясно, что∣∣φ(j)(t)
∣∣ = ∣∣∣∣djχ(s2 + tle)

dsj
lje

∣∣∣∣ 6 c lje.

Вследствие условия (3.30)

∣∣ ⌢
a2a3

∣∣ = s3∫
s2

|χ′(s)|ds > c0 le.

С другой стороны, записывая выражение для длины дуги ⌢
a2a3 в

местной декартовой системе координат y1y2 (см. рис. 12), получим
| ⌢
a2a3| 6 c |a2a3| 6 c h, следовательно, le 6 ch и |φ(j)(t)| 6 c hj.

Заметим теперь, что1)

Φ(t) = φ(1)−φ(0)− φ(1)− φ(t)

1− t
=

1∫
0

(
φ′(τ)−φ′(t+ τ(1− t))

)
dτ.

Таким образом, Φ ∈ Ck и

Φ(t) =

1∫
0

τ∫
t+τ(1−t)

φ′′(θ) dθ dτ,

Φ(j)(t) = −
1∫

0

φj+1
(
t+ τ(1− t)

)
(1− τ)j dτ. (3.37)

Отсюда вытекают неравенства (3.36), а с ними и оценки (3.35). Из
(3.35), очевидно, следуют оценки (3.34), поскольку элементы матрицы
Be имеют порядок h.

1)Для x(t) ∈ Rn как обычно x′(t) = (x′
1(t), . . . , x

′
n(t))

T ,
∫
x(t)dt = (

∫
x1(t)dt, . . . ,

∫
xn(t)dt)

T .
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Покажем теперь, что при достаточно малом h отображение xe
взаимно однозначно. Пусть xe(x̂1) = xe(x̂2), x̂1, x̂2 ∈ ê. Тогда

Beẑ + x̃e(x̂1)− x̃e(x̂2) = 0,

где ẑ = x̂1 − x̂2. Отсюда имеем

ẑ +B−1
e

1∫
0

Dx̃e (x̂2 + tẑ) ẑ dt = 0,

и, следовательно1),

|ẑ|
(
1−

∥∥B−1
e

∥∥ max
06t61

∥Dx̃e (x̂2 + tẑ)∥
)
6 0. (3.38)

Поскольку из (3.35) вытекает оценка max
06t61

∥Dx̃e(x̂2 + tẑ)∥ 6 c h2, то

множитель при |ẑ| в (3.38) положителен при достаточно малом h,
следовательно, x̂1 = x̂2, т. е. отображение xe взаимно однозначно.
Кроме того, как показано выше, отображение xe переводит ∂ê в ∂e,
поэтому на основании теоремы 1 образом ê является e.

Учитывая обратимость матриц Be, получим

Dxe(x̂) = Be +Dx̃e(x̂) = Be

(
I +B−1

e Dx̃e(x̂)
)
.

Как отмечалось выше, ∥B−1
e Dx̃e(x̂)∥ 6 ch 6 γ < 1 при достаточно

малом h равномерно по x̂ ∈ ê. Отсюда следует обратимость матриц
Dxe(x̂) для всех x̂ ∈ ê, а также соотношения:

Dx−1
e (x) = (Dxe(x̂))

−1 =
(
I +B−1

e Dx̃e(x̂)
)−1

B−1
e ,

max
x̂∈ê

∥
(
I +B−1

e Dx̃e(x̂)
)−1∥ 6 1

1− γ
,

max
x∈e

∥Dx−1
e (x)∥ 6 ∥B−1

e ∥
1− γ

6 c

h
.

Докажем, наконец, оценки (3.33). Элементарные вычисления при-
водят к равенству det(Dxe(x̂)) = det

(
bij + b̃ij

)
, где bij — элементы

матрицы Be, а b̃ij = O(h2), следовательно, det(Dxe(x̂)) = det(Be) +
O(h3), откуда при достаточно малом h вытекает нужная оценка для
det(Dxe(x̂))

1). �
1)Напомним, что при x ∈ Rn справедливы оценки

∣∣ 1∫
0

B(t)xdt
∣∣ 6 1∫

0

|B(t)x|dt 6 max
06t61

∥B(t)∥ |x|.
1)Напомним, что из невырожденности матрицы Якоби следует лишь локальная обратимость

отображения.
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Замечание 1. Следует подчеркнуть, что регулярность семейства Th криволиней-
ных элементов лимитируется только гладкостью границы Γ.

Итак, требуемое отображение элемента ê на e построено. Оно
определяется по формуле (3.31). Соответствующий криволинейный
лагранжев конечный элемент определяется затем так, как это было
описано на с. 100. Достаточные условия для выполнения оценок (3.32)
были указаны ранее на с. 111.

Полезно отметить, что сужение любой функции из Pe на криво-
линейную сторону элемента e есть полином от параметра s ∈ [s1, s2].
Точнее, справедливо

Следствие 1. Пусть выполнены условия теоремы 2, P̂ = Pl.
Тогда для любой функции pe ∈ Pe выполнено равенство

pe(x) =
l∑

k=0

αks
k, x ∈ Γ, s ∈ [s1, s2], (3.39)

где α0, α1, . . . , αl — постоянные.
Доказательство. Ясно, что если x ∈ Γ, то по определению

pe(x) =
∑

06k1+k26l

ak1k2x̂
k1
1 x̂

k2
2 ,

где x̂ однозначно определяется по x, причем x̂1 + x̂2 = 1, т. е.

pe(x) =
l∑

k=0

βkx̂
k
2,

но x̂2 = (s− s2)/le и, следовательно, (3.39) выполнено. �
Простой анализ доказательства теоремы 2 показывает, что спра-

ведлива следующая теорема, из которой вытекает, в частности, обра-
тимость отображений, являющихся достаточно малыми возмущения-
ми обратимых.

Теорема 3. Пусть отображение x = xe(x̂) элемента ê на e ∈
Th имеет вид

x = xe(x̂) = x̌e(x̂) + x̃e(x̂),

причем

c−1h2 6 det(Dx̌e(x̂)) 6 ch2 ∀x̂ ∈ ê,

|x̌e|j,∞,ê 6 c hj, |x̃e|j,∞,ê 6 c hmax(j,2), j = 1, 2, . . . , k,
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с постоянными, не зависящими от h. Тогда при достаточно ма-
лом h отображение x = xe(x̂) — непрерывное взаимно однозначное
отображение ê на e, а семейство Th есть k-регулярное семейство.

Упражнение 4. Доказать теорему 3.

§ 6. Изопараметрические конечные элементы

1. Лагранжевы элементы. Опишем сначала общий подход
к построению изопараметрических лагранжевых элементов. Пусть
(ê, P̂ , Σ̂) — лагранжев базисный конечный элемент в Rn и ω̂ = {âi}Ni=1

есть множество его узлов интерполяции. Напомним, что в этом слу-
чае (P̂ , Σ̂) — унисольвентная пара.

Лемма 1. Для любого множества ω = {ai}Ni=1 ⊂ Rn существу-
ет единственное отображение x = xe(x̂) = (x1(x̂), . . . , xn(x̂))

T ∈
[P̂ ]n такое, что

xe(âi) = ai, i = 1, 2, . . . , N. (3.40)

Доказательство. Пусть φ̂i(x̂) базис Лагранжа в P̂ , т. е.
φ̂i(âj) = δij. Тогда отображение1)

xe(x̂) =
N∑
i=1

φ̂i(x̂) ai =
( N∑

i=1

ai1 φ̂i(x̂), . . . ,
N∑
i=1

ain φ̂i(x̂)
)T

(3.41)

удовлетворяет условиям (3.40).
С другой стороны, если отображение xe удовлетворяет услови-

ям (3.40), то
xj(âi) = aij (3.42)

для всех i = 1, 2, . . . , N , причем xj ∈ P̂ . Но (P̂ , Σ̂) — унисольвент-
ная пара, поэтому для заданного множества {aij}Ni=1 существует един-
ственная функция xj ∈ P̂ , удовлетворяющая условиям (3.42) и она,
фактически, определена выше формулой (3.41):

xj(x̂) =
N∑
i=1

aij φ̂i(x̂). �

Лемма 1 позволяет описать следующий подход к построению изо-
параметрических конечных элементов, ассоциированных с заданным
базисным элементом.

1)Через aik, k = 1, 2, . . . , n, обозначены координаты точки ai.
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1) По заданному множеству точек ω = {ai}Ni=1 ⊂ Rn и базисному
элементу ê определяем при помощи формулы (3.41) отображение x =
xe(x̂), а затем множество e = xe(ê). Множество ω следует выбирать
так, чтобы e имело непустую внутренность, а отображение xe : ê→ e
было взаимно однозначным.

2) Используя отображение x = xe(x̂), определяем конечный эле-
мент (e, Pe,Σe), ассоциированный с базисным, согласно теореме 1,
с. 100.

Отметим следующий тривиальный случай. Пусть задан элемент
(ẽ, Pẽ,Σẽ) аффинно-эквивалентный элементу (ê, P̂ , Σ̂), причем P̂ со-
держит P1. Выберем в качестве узлов ω̃ = {ãi} узлы интерполяции
на элементе ẽ и построим отображение x = xẽ по формуле (3.41):

xẽ(x̂) =
N∑
i=1

φ̂i(x̂)ãi. (3.43)

Это отображение оказывается аффинным, поскольку аффинное отоб-
ражение ê на ẽ удовлетворяет условиям (3.40), а в силу леммы 1 дру-
гих отображений xẽ(x̂) ∈ [P̂ ]n, удовлетворяющих условиям (3.40), не
существует. Таким образом,

xẽ(x̂) = bẽ +Bẽx̂. (3.44)

Это простое замечание позволяет надеяться, что можно удовле-
творить условию 1), выбирая множества ω так, что ai = ãi + εi, i =
1, 2, . . . , N , где ãi — узлы интерполяции элемента, аффинно-эквива-
лентного ê, а векторы εi достаточно малы.

Замечание 1. Польза от введения в рассмотрение изопараметрических элемен-
тов, в основном, заключается в том, что мы можем распорядиться выбором точек ω
так, чтобы получить более общие геометрические формы элементов по сравнению с аф-
финно-эквивалентными элементами, и более простые элементы (в смысле конструктив-
ного определения отображения x = xe) по сравнению с криволинейными элементами.
В случае изопараметрических элементов нет необходимости также в параметризации
криволинейной границы, что существенно облегчает программную реализацию метода
конечных элементов.

Рассмотрим примеры изопараметрических элементов.

1. Квадратичный изопараметрический элемент.

Пусть (ê, P̂ , Σ̂) — квадратичный треугольный базисный конечный
элемент в R2. Выберем на плоскости три точки a1, a3, a5, считая, что
треугольник ẽ с вершинами в этих точках имеет диаметр, меньший,
чем h. Множество таких треугольников обозначим через T̃h. Пусть
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далее точки ã2, ã4, ã6 расположены на серединах сторон треугольни-
ка ẽ, а узлы a2, a4, a6 выбраны соответственно в O(h2) окрестности
этих точек (рис. 13), т. е. |ãi − ai| = O(h2), i = 2, 4, 6. Рассмотрим

~

~

~

Рис. 13. Квадратичный изопараметрический элемент.

образ элемента ê при отображении, определяемом формулой (3.41)
и введенными узлами {ai}6i=1. По определению узлы âi переходят в
узлы ai. Образами сторон элемента ê являются дуги соответствую-
щих парабол. В самом деле, например, образ стороны â1â3 полностью
определяется узлами a1, a2, a3 (поскольку базисные функции φi(x̂) с
номерами, отличными от 1, 2, 3, обращаются в нуль на стороне â1â3),
и при этом каждая компонента отображения (3.41) является квадра-
тичной функцией x̂1. Таким образом, возникает криволинейный тре-
угольник e, ограниченный дугами парабол, проходящими через уз-
лы ai, i = 1, . . . , 6. Множество таких элементов обозначим через Th и
назовем семейством изопараметрических квадратичных элементов.

Пусть φ̂i — базисные функции на базисном элементе, i = 1, . . . , 6.
С учетом формул (3.43), (3.44) имеем

xe(x̂) = a1 +Bex̂+ x̃e(x̂), x̃e(x̂) =
3∑

k=1

(ã2k − a2k)φ̂2k(x̂), (3.45)

где матрица Be определяется узлами a1, a3, a5. Следующая теорема
является аналогом теоремы 2, c. 115 (см. также теорему 3, c. 118).

Теорема 1. Пусть h достаточно мало и семейство треуголь-
ников T̃h регулярно. Тогда отображение (3.45) — непрерывное вза-
имно однозначное отображение ê на e, причем

c1h
2 6 det(Dxe(x̂)) 6 c2h

2 ∀x̂ ∈ ê,

|xe|j,∞,ê 6 c hj, j = 1, 2, |xe|k,∞,ê = 0, k > 3,
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т. е. семейство изопараметрических квадратичных элементов Th
регулярно.

Доказательство теоремы опустим, поскольку оно проводится так
же, как и доказательство теоремы 2, c. 115, для криволинейных эле-
ментов, которое было основано на малости нелинейного возмущения
x̃e(x̂). В данном случае оно также имеет нужный порядок малости,
поскольку для любых α, |α| 6 2, и x̂ ∈ ê

|Dαx̃e(x̂)| = |
3∑

k=1

(ã2k − a2k)D
αφ̂2k(x̂)| 6 c

3∑
k=1

|ã2k − a2k| 6 c h2,

причем Dαx̃e(x̂) = 0 для |α| > 3.
Замечание 2. Обратимость отображения x = xe(x̂) при малых h можно гаранти-

ровать (проверьте!), если потребовать лишь, что |ãi − ai| = o(h), i = 2, 4, 6. Мы накла-
дываем более жесткие условия на расположение узлов, чтобы обеспечить регулярность
семейства Th.

2. Треугольный изопараметрический элемент с одной
криволинейной границей.

Если при определении элемента, рассмотренного выше, положить
a2 = ã2, a6 = ã6, то мы получим изопараметрический элемент с одной
криволинейной стороной, изображенный на рис. 14. Такие элементы
обычно используются как приграничные — при триангуляции области
с криволинейной границей. В этом случае преобразование xe(x̂) имеет

â1 â2 â3

â4

â5

â6
ê

P̂ = P2

a1
a2

a3

a4

a5

a6 e

Рис. 14. Дуга параболы аппроксимирует границу области.

особенно простой вид:

xe(x̂) = a1 +Bex̂+ (ã4 − a4)φ̂4(x̂), ã4 = (a3 + a5)/2.

Напомним, что φ̂4(x̂) = 4x̂1x̂2 (см. с. 90).



§ 6. Изопараметрические конечные элементы 123

Рассмотрим аналогичную ситуацию в общем случае. Пусть (ê, P̂ , Σ̂)
есть треугольный базисный конечный элемент степени m в R2, и
пусть ẽ — криволинейный треугольник с двумя прямолинейными
сторонами и криволинейной стороной Γ, параметризуемой так, как
указано на с. 115, с диаметром меньшим h. Множество таких эле-
ментов ẽ обозначим через T̃h. Выберем на Γ точки χ(tj), tj = j/m,
j = 0, 1, . . . ,m, и заменим функции φ1(t), φ2(t), определяющие па-
раметризацию φ(t) = (φ1(t), φ2(t))

T кривой Γ, интерполяционными
полиномами L1

m(t), L
2
m(t) степени m, полагая, что

φk(tj) = Lk
m(tj), tj = j/m, j = 0, 1, . . . , m.

При этом нелинейное отображение x = xe(x̂), определяемое по фор-
муле (3.31), c. 115, заменяется на полиномиальное отображение

x = x̄e(x̂) = a1 +Bex̂+ x̂1Φm−1(x̂2), (3.46)

где

Φm−1(t) =
φm(t)− L1(t)

1− t
, φm(t) = (L1

m(t), L
2
m(t))

T .

Каждая из компонент функции Φm−1 — полином степени m − 1, по-
скольку точка t = 1 — корень каждого из полиномов Lk

m−Lk
1, k = 1, 2.

Таким образом, компоненты вектор-функции x̄e — полиномы степени
m (по совокупности переменных).

Заметим, что отображение (3.46) можно представить в виде

x = x̄e(x̂) = xe(x̂) + x̌e(x̂), x̌e(x̂) = x̂1(Φm−1(x̂2)− Φ(x̂2)),

причем добавок x̌e(x̂) можно рассматривать как возмущение отобра-
жения xe(x̂), исследованного нами ранее (см. с. 115). Отметим так-
же, что образом элемента ê при отображении x = x̄e(x̂) является
элемент e, получающийся из элемента ẽ заменой дуги Γ на кривую
x = φm(t), 0 6 t 6 1. Множество таких элементов обозначим через
Th и назовем семейством треугольных изопараметрических элементов
степени m.

Теорема 2. Пусть Γ ∈ Cm+1, h достаточно мало, семейство
криволинейных элементов T̃h есть m-регулярное семейство. Тогда
отображение (3.46) — непрерывное взаимно однозначное отображе-
ние ê на e, причем

x̄e(x̂) = xe(x̂) +O(hm+1), x̄e(x̂) ∈ [P̂ ]2,

c1h
2 6 det(Dx̄e(x̂)) 6 c2h

2 ∀x̂ ∈ ê,

|x̄e|j,∞,ê 6 c hj, j = 1, 2, . . . ,m, |x̄e|j,∞,ê = 0, j > m+ 1,
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т. е. семейство треугольных изопараметрических элементов регу-
лярно.

Доказательство. Если мы покажем, что∣∣∣Φ(j)(t)− Φ
(j)
m−1(t)

∣∣∣ 6 chm+1, 0 6 t 6 1, j = 0, 1, . . . ,m,

то все утверждения теоремы, очевидно, будут непосредственно выте-
кать из теоремы 3, c. 118. Применяя форму Лагранжа для остаточ-
ного члена интерполяционного полинома, получим

Φ(t)− Φm−1(t)=
φ(t)− φm(t)

1− t
= −t(t− t1)(t− t2) . . . (t− tm−1)

(m+ 1)!
εm+1,

где εm+1 =
(
φ
(m+1)
1 (ξ1), φ

(m+1)
2 (ξ2)

)
, ξ1, ξ2 ∈ (0, 1), т. е.

|Φ(t)− Φm−1(t)| 6 c max
06t61

∣∣φ(m+1)(t)
∣∣ 6 chm+1.

Для оценки производных запишем Φ(t)− Φm−1(t) в виде

Φ(t)− Φm−1(t) =

(
φ(t)− L1(t)

)
−
(
φm(t)− L1(t)

)
1− t

.

Ясно, что φm(0) = L1(0), φm(1) = L1(1), поэтому аналогично (3.37),
с. 116, при j > 1 получим

|Φ(j)(t)− Φ
(j)
m−1(t)| 6 c max

06t61
|φ(j+1)(t)− φ(j+1)

m (t)|,

откуда после применения хорошо известной оценки погрешности ин-
терполирования (см., например, [1]) будем иметь

|Φ(j)(t)− Φ
(j)
m−1(t)| 6 c max

06t61
|φ(m+1)(t)| 6 c hm+1. �

Используя теперь отображение x = x̄e(x̂), можем определить изо-
параметрический конечный элемент (e, Pe,Σe), e ∈ Th, ассоциирован-
ный с базисным согласно теореме 1, c. 100 (см. рис. 15, соответству-
ющий случаю m = 3).

Замечание 3. Условия m-регулярности семейства криволинейных элементов Th
указаны в теореме 2 на с. 115.

В дальнейшем будет полезна следующая
Теорема 3. Пусть выполнены условия теоремы 2. Тогда для

достаточно малых h

dist (Γ,Γm) = sup
x∈Γ

inf
y∈Γm

|x− y| 6 chm+1, (3.47)
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â1 â2 â3 â4

â5

â6

â7

â8

â9
â10ê

P̂ = P3

a1 a2 a3 a4

a5

a6

a7

a8

a9 a10
e

Рис. 15. Изопараметрический треугольный элемент третьей степени.

dist(x(â),Γ) = inf
y∈Γ

|x(â)− y| > c dist(â, ∂ê)h, (3.48)

где â — произвольная внутренняя точка ê.
Доказательство. Пусть x ∈ Γ. Тогда существует точка x̂ ∈

â2â3 такая, что x = xe(x̂). При этом y = x̄e(x̂) ∈ Γm. Вследствие
теоремы 2 имеем: |y − x| 6 chm+1 равномерно по x̂ ∈ â2â3, следова-
тельно, оценка (3.47) доказана. Далее, если â ∈ int ê, b̂ ∈ â2â3, то по
теореме 1, с. 115, при достаточно малых h справедливы включения
a = xe(â) ∈ int ẽ, b = xe(b̂) ∈ Γ, причем (см. с. 117)

|â− b̂| = |x−1
e (a)− x−1

e (b)| 6 max
x∈e

∥Dx−1
e (x)∥|a− b| 6 c

h
|a− b|,

т. е. |a− b| > ch|â− b̂| > c dist(â, ∂ê)h, откуда вытекает (3.48). �
Следствие 1. Если â внутренняя точка ê, то при достаточно

малых h точка x̄e(â) — внутренняя точка ẽ и, следовательно, об-
ласти Ω.

Задачи.

1. Показать, что при m = 2 (см. рис. 14), функция Φm−1(x̂2) имеет вид

Φ1(x̂2) = 4
(
a4 −

a3 + a5
2

)
x̂2.

2. Показать, что при m = 3 (см. рис. 15)

Φ2(x̂2) = 9/2
(
(a4 − a7 + 3(a6 − a5))x̂2 + 2a5 − a6 − a4

)
x̂2.

3. Изопараметрический четырехугольный элемент первой
степени.
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Пусть (ê, P̂ , Σ̂) — билинейный базисный конечный элемент. Выбе-
рем на плоскости четыре точки a1, . . . , a4, считая, что четырехуголь-
ник e с вершинами в этих точках обладает следующими свойствами
для заданного h > 0:

1) e — выпуклый;
2) diam(e) 6 h;
3) углы e лежат в пределах [θ0, π − θ0], θ0 > 0 не зависит от h;
4) длины сторон лежат в пределах от c1h до c2h, где постоянные

0 < c1 6 c2 не зависят от h.
Множество таких элементов обозначим через Th (см. рис. 16). Не-

â1 â2

â3â4

ê
P̂ = Q1

a1

a2

a3
a4

e

Рис. 16. Изопараметрический четырехугольный элемент первой степени.

посредственно проверяется в силу аффинности функций из Q1 по
направлению каждой координатной оси, что отображение

x = xe(x̂) =
4∑

k=1

akφ̂k(x̂), (3.49)

определяемое согласно формуле (3.41), отображает стороны ê на со-
ответствующие стороны e и внутренность ê — на внутренность e. На-
помним, что функции φk(x̂) в этом случае определяются формула-
ми (??), c. ??, следовательно, преобразование (3.49) можно записать
в виде

xe(x̂) = (1− x̂1)(1− x̂2)a1+ x̂1(1− x̂2)a2+ x̂1x̂2a3+(1− x̂1)x̂2a4. (3.50)

Теорема 4. Отображение (3.50) — непрерывное взаимно одно-
значное отображение ê на e ∈ Th, причем

c1h
2 6 det(Dxe(x̂)) 6 c2h

2 ∀x̂ ∈ ê, [xe]1,∞,ê 6 c h, (3.51)
|xe|k,∞,ê 6 c h, k = 1, 2, |xe|k,∞,ê = 0, k > 3, [xe]j,∞,ê = 0, j > 2,

(3.52)

т. е. семейство четырехугольных элементов Th регулярно.
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Доказательство. Пусть d = a1+a3−a2−a4. Из формулы (3.50)
следует, что

xe(x̂) = a1 + x̂1(a2 − a1) + x̂2(a4 − a1) + x̂1x̂2d,

т. е. xe(x̂) = a1 + Bex̂ + x̂1x̂2d. Матрица Якоби этого отображения
имеет вид

Dxe(x̂) =

(
(a2 − a1)1 + d1x̂2 (a4 − a1)1 + d1x̂1
(a2 − a1)2 + d2x̂2 (a4 − a1)2 + d2x̂1

)
.

Определитель этой матрицы является аффинной функцией от x̂1, x̂2
и поэтому достигает своих экстремальных значений в вершинах эле-
мента ê, т. е. в узлах âi. Нетрудно проверить, что det(Dxe(âi)) равен
удвоенной площади треугольника, построенного на сторонах e, име-
ющих общей вершиной ai. Отсюда следует первая оценка (3.51). По-
скольку diam(e) 6 h, то |a2 − a1| 6 h, |a4 − a1| 6 h, |d| 6 h. Отсюда
следует вторая оценка в (3.51) и первая оценка в (3.52). �

Для того, чтобы семейство Th было сильно регулярным, дополни-
тельно необходимо потребовать выполнения неравенства ∥D2xe(x̂)∥ 6
c h2 для любых x̂ ∈ ê. Поскольку,

∂2xe
∂x̂2i

≡ 0, i = 1, 2,
∂2xe
∂x̂1∂x̂2

≡ d,

то оценки ∥D2xe(x̂)∥ 6 c h2 и |d| = |a1 + a3 − a2 − a4| 6 c h2 эквива-
лентны.

Нетрудно видеть, что условие |d| 6 c h2 приводит к следующе-
му дополнительному ограничению на выбор вершин элементов из Th:
точка ai должна лежать в O(h2)-окрестности точки ãi такой, что ãi,
i = 1, . . . , 4, являются вершинами некоторого параллелограмма. Та-
ким образом, требование сильной регулярности триангуляции приво-
дит в рассматриваемом случае к элементам, ≪близким≫ к параллело-
граммам.

Задачи.

1. Пусть Ω — произвольный выпуклый четырехугольник. Определим разбиение Ω
на семейство Th изопараметрических четырехугольников первой степени следующим
образом. Каждую сторону Ω разобьем на n равных частей и соединим соответствую-
щие точки разбиения противоположных сторон четырехугольника отрезками прямых.
В результате образуется n2 ≪маленьких≫ четырехугольников, которые и отнесем к Th
(h = h(n)). Доказать, что семейство Th является сильно k-регулярным, k > 2.

2. Исследовать изопараметрический элемент, изображенный на рис. 17. Показать,
что если узлы A = {a2, a4, a6, a8, a9} выбрать в O(h2) окрестности соответствующих
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â5â6â7
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Рис. 17. Прямоугольный изопараметрический элемент второй степени.

середин сторон и центра тяжести четырехугольника a1a3a5a7 (с прямолинейными сто-
ронами), удовлетворяющего условиям 1)–4), с. 126, то преобразование, определяемое
согласно формуле (3.41), с. 119, является при достаточно малом h взаимно однознач-
ным отображением ê на e, причем

c1h
2 6 det(Dxe(x̂)) 6 c2h

2 ∀x̂ ∈ ê,

|xe|j,∞,ê 6 c h, 1 6 j 6 4, |xe|j,∞,ê = 0, j > 5,

[xe]j,∞,ê 6 c hj , j = 1, 2, [xe]k,∞,ê = 0, k > 3,

т. е. семейство элементов указанного вида регулярно.
Указание. Обратите внимание, что если радиус, указанной выше окрестности равен

нулю, то преобразование x = xe(x̂) имеет вид (3.50). Представьте искомое преобразо-
вание как O(h2)-возмущение (определяемое множеством узлов A) отображения (3.50)
и воспользуйтесь теоремой 3, c. 118.

3. Исследовать изопараметрический элемент, являющийся следующим частным
случаем элемента из предыдущего упражнения: узлы A = {a2, a4, a8, a9} совпадают с со-
ответствующими серединами сторон и центром тяжести четырехугольника a1a3a5a7.
Такие элементы естественно использовать как приграничные. Проверить, что

xe(x̂) = x̃e(x̂) + (a6 − ã6)x̂1x̂2(1− x̂1), ã6 = (a5 + a7)/2,

где x̃e(x̂) ∈ [Q1]
2 определяется вершинами a1, a3, a5, a7 и имеет вид (3.50). Показать, что

условие сильной k-регулярности, k > 3, равносильно требованию O(h2)-близости к па-
раллелограмму, а также условию |a6 − ã6| 6 c h3. Последнее ограничение не является
излишне жестким и выполняется, например, если точки a5, a7 лежат на некоторой
кривой Γ ⊂ C3, a точка a6 выбрана подходящим образом.

2. Эрмитовы изопараметрические элементы. Рассмотрим
кратко эрмитовы изопараметрические элементы, узловые параметры
которых включают производные по направлениям порядка не выше
первого, т. е. элементы класса C0. Пусть (ê, P̂ , Σ̂) — базисный элемент
такого типа вRn. Из множества всех его узлов интерполяции выделим
подмножество ω̂0, которому соответствуют функционалы ≪значение
функции в точке≫, и подмножество ω̂1, которому соответствуют про-
изводные по направлениям. Пусть ω̂0 = {â0i}

N0

i=1, ω̂
1 = {â1i}

N1

i=1 ⊂ ω̂0.
С каждой точкой â1i ∈ ω̂1 свяжем подпространство Φ̂i ⊂ Rn размер-
ности di с базисом ν̂i,1, . . . , ν̂i,di. Пусть далее множество Σ̂ узловых
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параметров ϕ̂i имеет вид

ϕ̂0i (p) = p(â0i ), i = 1, 2, . . . , N0,

ϕ̂1i,k(p) = Dp(â1i )ν̂i,k, i = 1, 2, . . . , N1, k = 1, 2, . . . , di,

и dim P̂ = N0 + d1 + . . .+ dN1−1.

Лемма 2. Для любого множества ω0 = {a0i}
N0

i=1, и любых N1

подпространств Φi ⊂ Rn с базисами νi,1, . . . , νi,di существует, и при-
том единственное, отображение xe(x̂) = (x1(x̂), . . . , xn(x̂))

T такое,
что

a) xi ∈ P̂ для всех i;
b) xe(â0i ) = a0i , i = 1, 2, . . . , N0;
c) Dxe(â1i ) ν̂i,k = νi,k, i = 1, 2, . . . , N1, k = 1, 2, . . . , di.
Доказательство. Определим отображение

xe =

N0∑
j=1

a0jφ̂
0
j +

N1∑
j=1

dj∑
k=1

νj,kφ̂
1
j,k, (3.53)

где φ̂0
j , φ̂1

j,k базис Лагранжа в P̂ , т. е.

φ̂0
j(â

0
i ) = δji, φ̂1

j,k(â
0
i ) = 0,

Dφ̂0
j(â

1
i )ν̂i,l = 0, Dφ̂1

j,k(â
1
i ) = δjiδkl

для всех допустимых значений индексов i, j, k, l.
Нетрудно проверить, что это отображение удовлетворяет услови-

ям a)–c). Вследствие унисольвентности Σ̂ и P̂ оно единственно. �
В качестве примера рассмотрим эрмитов кубический треугольный

элемент. Имеем P̂ = P3, множество ω0 = ω состоит из вершин и
центра тяжести треугольника ê, ω1 — множество его вершин. Далее,
ξ̂i,k = âk − âi, i ̸= k, i, k = 1, 2, 3 (см. левый рис. 18).

Зададим на плоскости три точки a1, a2, a3 и пусть a4 = (a1+ a2+
a3)/3. Положим ω0 = {a1, a2, a3, a4}. В первых трех точках опреде-
лим по два вектора ξi,k и зададим отображение x = xe(x̂) по этим
данным согласно формуле (3.53). Оно переводит узлы âi в ai, сторо-
ны элемента ê — в дуги кубических кривых. Отметим, что согласно
условию c) векторы ξi,k, образы базисных векторов ξ̂i,k, являются ка-
сательными к этим кривым. Таким образом, приходим к криволиней-
ному треугольнику e, изображенному справа на рис. 18. Как и ранее,
можно заметить, что если векторы ξi,k выбрать в виде ξi,k = Beξ̂i,k
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Рис. 18. Эрмитов изопараметрический кубический элемент.

(т. е. ξi,k = ak − ai), где Be — матрица соответствующего аффин-
ного преобразования, то отображение x = xe(x̂) будет аффинным
и, соответственно, построенный изопараметрический элемент будет
аффинно-эквивалентным базисному. Теперь ясно, что представляя
преобразование x = xe(x̂) как малое возмущение аффинного, мож-
но провести анализ его свойств. Отметим важный частный случай,

â1 â2

â3

â4
ξ̂1,2

ξ̂1,1 ξ̂2,1

ξ̂2,2

ξ̂3,1 ξ̂3,2

P̂ = P3

a1 a2

a3

a4

ξ1,1

ξ1,2

ξ2,1

ξ2,2

ξ3,1
ξ3,2

P

Рис. 19. Приграничный изопараметрический эрмитов элемент.

представленный на рис. 19. Такие элементы используются как при-
граничные — при триангуляции областей с криволинейными грани-
цами.

§ 7. Пространства конечных элементов

Целью настоящего параграфа является построение для различ-
ных типов областей Ω ⊂ Rn, n = 1, 2, конечномерных пространств Vh,
аппроксимирующих пространства Соболева V = Hk(Ω), k = 1, 2.

Для всех рассматриваемых нами областей (отрезок, многоуголь-
ник, область, составленная из прямоугольников, область с кусочно
гладкой границей) построения будут вестись по единой схеме, вклю-
чающей следующие шаги:

1) множество Ω̄ представляется в виде такого объединения ко-
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нечных элементов e семейства Th выбранной формы, что различные
элементы из Th либо не пересекаются, либо имеют общую вершину
или общую грань; указанное разбиение будем называть правильной
триангуляцией области Ω, или просто триангуляцией области Ω (см.
рис. 20);

Рис. 20. Пример правильной (слева) и неправильной (справа) триангуляции области.

2) с каждым элементом e триангуляции связывается конечный
элемент (e, Pe,Σe), и таким образом получается семейство конеч-
ных элементов Eh = {(e, Pe,Σe), e ∈ Th}; предполагается, что Pe ⊂
Ck(e), k = 1, 2, для любого элемента e;

3) определяется пространство конечных элементов:

Vh =
{
vh ∈ Ck−1(Ωh) : vh

∣∣
e
∈ Pe ∀e ∈ Th

}
, k = 1, 2,

где Ωh =
∪
e
e; конструируется базис этого пространства1).

В силу теоремы 8, с. 44, имеем вложение Vh ⊂ Hk(Ωh), k = 1, 2.
Прокомментируем подробнее первый шаг. Выбор конфигурации

элементов зависит, обычно, от формы области Ω. Так, многоугольник
можно покрыть без налеганиий множеством треугольников с прямо-
линейными сторонами, область, составленная из прямоугольников,
легко разбивается на элементы прямоугольной формы (а также на
треугольники). Произвольная область с кусочно гладкой границей
уже не может быть покрыта без налеганиий отмеченными выше эле-
ментами. В этом случае используются как треугольники с прямоли-
нейными сторонами, так и треугольники с криволинейными сторона-
ми (обычно это приграничные элементы). Во всех указанных случаях

1)Обозначения типа
∪
e
,
∑
e

, max
e

, . . ., понимаются как
∪

e∈Th

,
∑

e∈Th

, max
e∈Th

и т.д..
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имеем
Ω =

∪
e

e.

В случае областей с кусочно гладкой границей будем рассматривать
также триангуляции, образованные ≪изопараметрическими≫ элемен-
тами. С одной стороны, это упрощает конструкцию пространства
конечных элементов Vh (в сравнении с криволинейными элемента-
ми), с другой — позволяет использовать произвольные четырехуголь-
ники с прямолинейными сторонами при разбиении области. Посколь-
ку в этом случае область не точно разбивается на элементы из Th
(граница приближается, как правило, кусочно полиномиальной кри-
вой), то

Ωh =
∪
e

e ̸= Ω̄.

Обычно, область разбивается на элементы одного типа (например,
треугольные или четырехугольные), хотя это и не обязательно. Неза-
висимо от формы конечных элементов e семейство Th будем называть
триангуляцией области Ω.

Значок h (в обозначениях Th, Vh, и т.д.) характеризует максималь-
ный размер элементов в триангуляции и определяется равенством

h = max
e

diam(e).

Замечание 1. Построение триангуляций произвольных двумерных областей яв-
ляется самостоятельной и нетривиальной задачей. Известные алгоритмы и программы
триангуляции плоской области различаются как по способу задания области Ω, так и
по типу элементов, на которые производится разбиение. Например, произвольная об-
ласть Ω может быть задана своей характеристической функцией или как композиция
простых (канонических) областей; односвязная многоугольная область Ω — перечисле-
нием координат вершин; произвольная односвязная область может быть задана пара-
метрическим описанием ее границы и т. д. Существующие алгоритмы позволяют стро-
ить разбиение области на треугольные элементы (с прямолинейными сторонами или
≪изопараметрические≫). Известны также алгоритмы разбиения области на аналогич-
ные четырехугольные элементы. Поскольку произвольную область достаточно трудно
покрыть четырехугольниками, обеспечив при этом нужное качество триангуляции, то
обычно в такую триангуляцию включается и небольшое число треугольных элементов.

Перейдем к описанию конструкции пространств Vh.
Пусть Th — триангуляция области Ω и фиксировано целое чи-

сло m > 1, определяющее порядок полиномов, используемых при
построении конечных элементов. В одномерном случае Th — совокуп-
ность отрезков, в двумерном — совокупность треугольников и (или)
четырехугольников как с прямолинейными, так и с криволинейными
сторонами. С каждым элементом e ∈ Th свяжем конечный элемент
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(e, Pe,Σe), которые в совокупности образуют семейство конечных эле-
ментов

Eh = {(e, Pe,Σe), e ∈ Th}.

Замечание 2. Процедура триангуляции области тесно связана с образованием
семейства Eh конечных элементов. Можно считать, что это происходит, практически,
одновременно. Хорошим подтверждением сказанному служит семейство изопараметри-
ческих лагранжевых конечных элементов: для определения формы множества e нуж-
ны узлы интерполяции aei , которые, в свою очередь, однозначно определяют конечный
элемент (e, Pe,Σe). Поэтому часто употребляются высказывания типа: триангуляция
области на линейные треугольные конечные элементы (четырехугольные изопарамет-
рические конечные элементы степени m, прямоугольные бикубические эрмитовы конеч-
ные элементы и т.д.). Мы также будем употреблять такие высказывания, понимая под
этим то, что сначала область триангулируется, а потом строится семейство конечных
элементов Eh.

В дальнейшем предполагаются выполненными следующие усло-
вия.

1) Все элементы триангуляции являются либо лагранжевыми
класса C0, либо эрмитовыми (класса C0 или C1).

2) Лагранжевы конечные элементы могут быть ассоциированы с
различными базисными элементами. Допускается использование как
аффинно-эквивалентных, так и криволинейных или изопараметриче-
ских конечных элементов (в зависимости от формы границы множе-
ства e). Для всех базисных элементов P̂ ⊇ Pm, на каждой стороне
базисного элемента задан m+1 узел интерполяции, включая верши-
ны элемента. Для каждой стороны способ распределения узлов один
и тот же. Предполагается, что узлы расположены симметрично отно-
сительно середины стороны.

3) Все элементы эрмитова типа ассоциированы с одним базисным
конечным элементом и являются аффинно-эквивалентными, P̂ ⊇ Pm.
Узловые параметры эрмитова элемента (e, Pe,Σe) являются глобаль-
ными, т. е. используются элементы (e, Pe,Σ

g
e), равные (e, Pe,Σe) (см.

с. 111). Для единообразия обозначений верхний индекс g в обозначе-
ниях базисных функций и узловых параметров элемента (e, Pe,Σ

g
e),

как правило, будем опускать.
Примеры точного разбиения области Ω (Ωh = Ω̄), соответственно,

на аффинно-эквивалентные треугольные лагранжевы конечные эле-
менты (m = 2), кубические эрмитовы конечные элементы (m = 3),
конечные элементы Белла (m = 4) и прямоугольные бикубические эр-
митовы конечные элементы (m = 3) даны далее в §8 (см. рис. 22–25).
На рисунке 26 представлен пример неточного разбиения области на
лагранжевы конечные элементы различных типов (Ωh ̸= Ω̄, m = 2).
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На каждом элементе e ∈ Th введем нумерацию узлов интерполя-
ции и узловых параметров. Пусть ωe = {aei , i = 1, 2, . . . , ne} есть мно-
жество узлов интерполяции на элементе e, а ϕeik, k = 0, 1, . . . ,me

i , —
множество всех степеней свободы, соответствующих узлу aei . Пару
(e, i) будем называть локальным номером узла aei . Например, для
произвольных лагранжевых элементов me

i = 0 для всех e и i; для
элементов Белла имеем ne = 3, me

i = 5 также для всех e и i. Таким
образом, произвольная функция p из Pe представляется в виде

p(x) =

ne∑
i=1

me
i∑

k=0

peik φ
e
ik(x), peik = ϕeik(p), dimPe = ne

ne∑
i=1

(me
i + 1).

aa

a

a

a

a

a

a

a

aa

2

3

1

4

6

3

a
2

4
55

6

1

e

t

e

e

e

e

e

e

tt
t

t

t

t

Рис. 21. Соседние квадратичные изопараметрические элементы.

Замечание 3. Если e и τ — два соседних элемента из Th с общей стороной γ = e∩τ
(см. рис. 21, соответствующий случаю изопараметрических квадратичных элементов),
то узлы aei и aτk одинакового геометрического положения на γ (такие, как ae3 и aτ1 , a

e
4 и

aτ6 и т.д.) в силу определения конечных элементов e и τ будут совпадать.

При определении пространства Vh будет использована также
сквозная нумерация узлов и узловых параметров. Пусть ωh — подмно-
жество всех различных узлов из

∪
e
ωe, Nh = card ωh. Множество ωh

будем называть множеством узлов интерполяции в области Ωh. Про-
нумеруем узлы из ωh произвольным образом и пусть al есть l-тый
узел из ωh в этой нумерации. Число l будем называть глобальным
номером узла al.

Любому локальному номеру (e, i) узла aei соответствует точно
один глобальный номер l. Это соответствие мы будем указывать в ви-
де l = s(e, i). Обратное, вообще говоря, неверно: одному глобальному
номеру l могут соответствовать несколько локальных номеров (e, i).
Равенство al = as(e,i) означает, что узел интерполяции al являет-
ся i-тым узлом на элементе e.
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Пусть в узле al задано ml+1 узловых параметров. Будем считать,
что ml = me

i , где l = s(e, i), и ml не зависит от выбора локального
номера (e, i), соответствующего l (легко проверить, что это так для
всех рассмотренных выше примеров конечных элементов).

В каждом узле al ∈ ωh зададим произвольно ml + 1 чисел vlk,
k = 0, 1, . . . ,ml. По этим числам построим функцию vh, определенную
на Ωh так, что для любого e ∈ Th имеет место равенство:

vh(x)
∣∣
e
=

ne∑
i=1

me
i∑

k=0

vs(e,i),k φ
e
ik(x). (3.54)

По построению vh
∣∣
e
∈Pe для любого e ∈ Th. Покажем, что vh ∈ C(Ωh).

Действительно, пусть e и τ — два соседних элемента из Th с об-
щей гранью γ. Вследствие (3.54) функции vh|e и vh|τ непрерывны и на
γ имеют равные значения узловых параметров. Отсюда следует, что
равны и следы этих функций на общей грани (они однозначно опре-
деляются узловыми параметрами этой грани, поскольку рассматри-
ваемые элементы принадлежат классу C0), поэтому vh ∈ C(Ωh).

Если все элементы, использованные при определении функции vh,
относятся к семейству лагранжевых элементов, то, вообще говоря,
vh /∈ C1(Ωh)

1). Использование же эрмитовых элементов класса C1,
имеющих вторые производные в качестве узловых параметров, га-
рантирует, что vh ∈ C1(Ωh) (совпадение на γ первых производных
функций vh|e и vh|τ следует из определения элементов класса C1).
Таким образом, vh ∈ Ck−1(Ωh) для соответствующего k, k = 1, 2.

Итак, мы определили способ представления произвольной функ-
ции из пространства

Vh = {vh ∈ Ck−1(Ωh) : vh
∣∣
e
∈ Pe ∀e ∈ Th}, k = 1, 2,

которое будем называть пространством конечных элементов. Если все
элементы, использованные при определении Vh, имеют один и тот же
тип, то в название пространства включается название использованно-
го элемента (или соответствующего базисного элемента). Например,
говорят: пространство лагранжевых прямоугольных изопараметри-
ческих конечных элементов степени m, пространство конечных эле-
ментов Белла и т. д.

В силу теоремы 8, с. 44, имеем Vh ⊂ Hk(Ωh) с соответствую-
щим k = 1, 2.

1)В этом легко убедиться, например, в случае аффинно-эквивалентных линейных (m = 1)
треугольных конечных элементов
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Укажем теперь конструкцию базиса в Vh, состоящего из функ-
ций с малыми носителями. Для этого фиксируем узел с глобальным
номером i, i = 1, 2, . . . , Nh, и узловой параметр с номером j, соответ-
ствующий этому узлу, j = 0, 1, . . . ,mi. По этой паре (i, j) зададим
набор чисел vlk, полагая

vlk = δliδkj, l = 1, 2, . . . , Nh, k = 0, . . . ,ml.

Пусть, далее, функция φij определяется на Ωh так, что

φij(x)|e =
ne∑
i=1

me
i∑

k=0

vs(e,i)k φ
e
ik(x) ∀e ∈ Th. (3.55)

Из соотношения (3.55) сразу вытекает, что φij(x) ∈ Vh и, кроме того,

φij(x)|e =

{
φe
kj(x), если найдется такое k, что i = s(e, k),

0, в противном случае,
(3.56)

т. е. функция φij(x) является непрерывной ≪склейкой≫ соответствую-
щих базисных функций элементов и функции, тождественно равной
нулю.

Замечание 4. Для иллюстрации процесса построения базисных функций про-
странства Vh полезно обратиться к простейшему примеру, разобранному на с. 16.

Убедимся в том, что система {φij, i = 1, . . . , Nh, j = 0, . . . ,mi}
образует базис в Vh. Проверим сначала, что она линейно независима.
Пусть

vh(x) =

Nh∑
i=1

mi∑
j=0

cijφij(x) = 0 в Ωh.

Фиксируем глобальный номер l = 1, 2, . . . , Nh и пусть al ∈ e для
некоторого e ∈ Th и l = s(e, k). Возьмем сужение функции vh на e.
Тогда

vh(x)
∣∣
e
=

ne∑
i=1

me
i∑

j=0

cs(e,i),j φ
e
ij(x) = 0.

Так как функции φe
ij(x) линейно независимы, то отсюда следует, что

все числа cs(e,i),j = 0, в частности, clj = 0 для j = 0, . . . ,mi. В силу
произвольности номера l отсюда вытекает, что все cij = 0.

Покажем теперь, что любая функция vh ∈ Vh раскладывается по
системе {φlk}. Для этого заметим, что для любого e ∈ Th из формул
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(3.54), (3.56) следует:

vh(x)
∣∣
e
=

ne∑
i=1

mi∑
k=0

vs(e,i),kφ
e
ik(x) =

Nh∑
l=1

ml∑
k=0

vlkφlk(x)
∣∣
e
.

Отсюда получаем, что

vh(x) =

Nh∑
l=1

ml∑
k=0

vlkφlk(x).

Таким образом, система {φlk, l = 1, 2, . . . , Nh, k = 0, 1, . . . ,ml} дей-
ствительно образует базис в Vh. Будем называть его базисом Лагран-
жа пространства Vh.

По построению базисные функции равны нулю на большей части
области Ωh. В самом деле, функция φlk отлична от нуля только на
тех элементах, которые содержат узел al. Объединение всех таких
элементов будем называть звездой элементов и обозначать через Zl.
Таким образом,

Zl = suppφlk =
∪

{e ∈ Th : al ∈ e}.

Например, если узел al является внутренним узлом некоторого эле-
мента e, то Zl = e. Если узел al принадлежит общей стороне двух
элементов, но не является вершиной какого-либо элемента, то в Zl

входят все точки этих двух элементов. В любом случае функции φlk

имеют ≪малый≫ носитель. Действительно, |Zl| = mes Zl = O(hn), и
мера носителя φlk при малых h значительно меньше меры области Ωh.

Определение 1. Пусть u(x) ∈ Ck−1(Ωh). Функция uI ∈ Vh на-
зывается Vh-интерполянтом функции u, если для любого e ∈ Th

uI(x)
∣∣
e
=

ne∑
i=1

me
i∑

k=0

ϕeik(u)φ
e
ik(x).

Оператор, ставящий в соответствие функции u ∈ Ck−1(Ωh) ее Vh-ин-
терполянт, будем называть оператором Vh-интерполяции и обозна-
чать через πh.

Справедливость следующей формулы вытекает из определения
базисных функций Лагранжа: (πhu)

∣∣
e
= πe(u

∣∣
e
).
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§ 8. Примеры пространств конечных элементов

В предыдущем параграфе была описана общая схема построения
пространств конечных элементов. Рассмотрим примеры пространств
конечных элементов, конкретизируя в общей схеме форму области Ω
и семейство конечных элементов.

1. Пространство лагранжевых треугольных элементов
степени m.

Пусть Ω — многоугольник в R2, Th — правильное разбие-
ние Ω на треугольные элементы с прямолинейными сторонами,
{(e, Pe,Σe), e ∈ Th} — семейство аффинно-эквивалентных лагранже-
вых треугольных конечных элементов степени m, ассоциированных с

Рис. 22. Триангуляция области на аффинно-эквивалентные квадратичные лагранжевы
элементы.

одним и тем же базисным элементом (ê, P̂ , Σ̂) (см. пример 3, с. 90). На
рис. 22 представлен пример триангуляции при m = 2. Для каждого
элемента e ∈ Th имеем в этом случае

Pe = Pm, Σe = {p(aei ), i = 1, 2, . . . , ne}, ne = (m+ 1)(m+ 2)/2,

и, кроме того,

Ωh =
∪
e

e = Ω̄, me
i = 0, ml = 0 ∀ i, l, e,

Vh = {vh ∈ C(Ω̄) : vh
∣∣
e
∈ Pm ∀e ∈ Th} ⊂ H1(Ω).

Базисные функции Лагранжа {φi(x)} в пространстве Vh определяют-
ся из условий

φi ∈ Vh, φi(al) = δil, i, l = 1, 2, . . . , Nh,
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а произвольная функция vh ∈ Vh может быть представлена в виде

vh(x) =
Nh∑
i=1

vh(ai)φi(x). При m = 1 пространство Vh будем называть

пространством линейных конечных элементов.
Упражнение 5. Описать пространство конечных элементов, основанное на ис-

пользовании прямоугольного лагранжева элемента (см. с. 89) для двумерной области,
составленной из прямоугольников.

2. Пространство эрмитовых кубических элементов.

Пусть Ω — многоугольник в R2, Th — правильное разбие-
ние Ω на треугольные элементы с прямолинейными сторонами,
{(e, Pe,Σe), e ∈ Th} — семейство аффинно-эквивалентных эрмито-
вых кубических треугольных конечных элементов. На рис. 23 пред-
ставлен пример такой триангуляции. Напомним, что на каждом эле-

Рис. 23. Триангуляция области на аффинно-эквивалентные эрмитовы кубические эле-
менты. Окружность указывает на задание в узле всех производных до первого порядка
включительно.

менте e ∈ Th имеется четыре узла интерполяции (вершины элемента
и его центр масс), ωe = {aei , i = 1, . . . , 4}, произвольная функция из
Pe = P3 может быть представлена в виде (см. определение элемента
(e, Pe,Σ

g
e) в задаче 1 с. 113):

p =
4∑

i=1

pi0φ
eg
i0 (x) +

3∑
i=1

2∑
k=1

pikφ
eg
ik(x),

где pi0 = p(aei ), pik = ∂p(aei )/∂xk.
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Для каждого элемента e ∈ Th имеем, таким образом, Pe = P3,
ne = 4,

Σe = {p(aei ), i = 1, . . . , ne,
∂p

∂xk
(aei ), i = 1, 2, 3, k = 1, 2},

кроме того,

Ωh =
∪
e

e = Ω̄, me
i = 2, i = 1, 2, 3, me

4 = 0 ∀ e,

Vh = {vh ∈ C(Ω̄) : vh
∣∣
e
∈ P3 ∀e ∈ Th} ⊂ H1(Ω).

Пусть {al}N1

l=1 — множество вершин, {al}Nh

l=N1+1 — множество центров
масс элементов из Th, ωh = {al}Nh

l=1 — множество всех узлов интер-
поляции в области Ω. Произвольная функция vh ∈ Vh может быть
представлена в виде

vh(x) =

Nh∑
i=1

viφ
g
i0(x) +

N1∑
i=1

2∑
k=1

vikφ
g
ik(x), (3.57)

где vi = vh(ai), vik = ∂vh(ai)/∂xk. Отметим, что первые производные
функций из Vh непрерывны в узлах интерполяции ωh.

3. Пространство конечных элементов Белла.

Пусть Ω — многоугольник в R2, Th — правильное разбие-
ние Ω на треугольные элементы с прямолинейными сторонами,
{(e, Pe,Σe), e ∈ Th} — семейство аффинно-эквивалентных конечных
элементов Белла. На рис. 24 представлен пример триангуляции. Для
каждого элемента e ∈ Th имеем Pe ⊃ P4, ne = 18,

Σe = Σg
e = {p(aei ),

∂p

∂xk
(aei ),

∂2p

∂xk∂xl
(aei ), i = 1, 2, 3, l, k = 1, 2}.

Кроме того, Ωh =
∪
e
e = Ω̄, me

i = 5, ml = 5, i = 1, 2, 3, ∀ l, e. Пусть

ωh = {al}Nh

l=1 — множество всех узлов интерполяции в области Ω.
Произвольная функция vh ∈ Vh ⊂ H2(Ω) может быть представлена в
виде

vh(x) =

Nh∑
i=1

5∑
k=0

vikφik(x),
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Рис. 24. Двойная окружность указывает на задание в узле всех производных до второго
порядка включительно.

где vi0 = vh(ai), vik = ∂vh(ai)/∂xk при k = 1, 2,

vi3 =
∂2vh
∂x21

(ai), vi4 =
∂2vh
∂x1∂x2

(ai), vi5 =
∂2vh
∂x22

(ai).

Отметим, что Vh ∈ C1(Ω̄), и все производные второго порядка функ-
ций из Vh непрерывны в узлах интерполяции ωh.

Рис. 25. Триангуляция области на аффинно-эквивалентные бикубические эрмитовы
элементы. Окружность указывает на задание первых производных в узле, диагональ-
ная стрелка — смешанных вторых производных.

4. Пространство прямоугольных бикубических конечных
элементов.
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Пусть Ω — область в R2, составленная из прямоугольников со
сторонами, параллельными осям координат, Th — правильное раз-
биение Ω на прямоугольные элементы, Eh = {(e, Pe,Σe), e ∈ Th}
есть семейство аффинно-эквивалентных бикубических конечных эле-
ментов. На рис. 25 представлен пример триангуляции области. Для
всех элементов e ∈ Th имеем Pe = Q3, ne = 16, Σe = Σg

e =

{p(aei ),
∂p

∂xk
(aei ),

∂2p

∂x1∂x2
(aei ), i = 1, . . . , 4, k = 1, 2}, Ωh=

∪
e
e=Ω̄, me

i=

3,ml = 3, i = 1, . . . , 4,∀ l, e. Произвольная функция vh ∈ Vh ⊂ H2(Ω)
может быть представлена в виде

vh(x) =
N∑
i=1

3∑
k=0

vikφik(x),

где vi0 = vh(ai), vik = ∂vh(ai)/∂xk при k = 1, 2, vi3 =
∂2vh
∂x1∂x2

(ai).

Отметим, что Vh ∈ C1(Ω̄), а смешанные производные второго порядка
функций из Vh непрерывны в узлах интерполяции ωh.

Рис. 26. Триангуляция области на элементы различных типов. Штриховая линия соот-
ветствует криволинейной части границы области.

Упражнение 6. Следуя приведенным выше примерам, дать определение про-
странства конечных элементов в случае, когда область с частично криволинейной гра-
ницей разбивается на треугольные элементы различных типов: треугольные изопара-
метрические квадратичные элементы и аффинно-эквивалентные элементы второй сте-
пени (см. рис. 26).

§ 9. Аппроксимация подпространств Hk(Ω), k = 1, 2

Рассмотрим важный для МКЭ вопрос о том, как учесть главные
граничные условия при построении пространства конечных элемен-
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тов.

1. Аппроксимация подпространств H1(Ω).

Пусть
V 0 = {v ∈ H1(Ω) : v(x) = 0, x ∈ Γ0},

где Γ0 — часть границы Γ области Ω ненулевой меры и конечной
связности. Если Γ0 = Γ, то по определению V 0 = H1

0(Ω).
Опишем способы построения конечно-элементных аппроксимаций

пространства V 0 по некоторым конкретным аппроксимациям Vh про-
странства H1(Ω).

1. Лагранжевы элементы. Рассмотрим сначала наиболее
простую ситуацию. Пусть Ω — двумерная многоугольная область,
Vh — пространство лагранжевых конечных элементов (построенное
на основе аффинно-эквивалентных или (и) изопараметрических эле-
ментов) такое, что Vh ⊂ H1(Ω). Будем предполагать, что гранич-
ные точки Γ0 являются вершинами каких-либо конечных элементов,
т. е. Γ̄0 является объединением некоторого количества сторон конеч-
ных элементов.

Определим подпространство V 0
h :

V 0
h = {vh ∈ Vh : vh(x) = 0, x ∈ Γ0}. (3.58)

Очевидно, что V 0
h ⊂ V 0. Пусть ωh — множество узлов интерполяции

в области Ω̄, γh = ωh ∩ Γ̄0 — узлы интерполяции, лежащие на Γ̄0.
Нетрудно видеть, что пространство V 0

h может быть также определено
следующим образом:

V 0
h = {vh ∈ Vh : vh(ai) = 0, ai ∈ γh}, (3.59)

поскольку на каждой стороне конечного элемента ∂e
∩

Γ ⊂ Γ̄0 усло-
вия vh(x) = 0 на ∂e

∩
Γ и vh(ai) = 0, ai ∈ γh ∩ ωe

h, эквивалентны (см.
лемму 1, с. 85).

Пусть теперь {φi(x)}Ni=1 — базис Лагранжа в Vh и Ih = {i : ai ∈
ωh \ γh}. Из определения (3.59) следует, что произвольная функция
vh из V 0

h допускает представление

vh(x) =
∑
i∈Ih

viφi(x), vi = vh(ai), (3.60)

т. е. система функций {φi(x), i ∈ Ih} образует базис Лагранжа в V 0
h .
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Все сказанное выше остается справедливым также в случае, ес-
ли Ω — область с кусочно гладкой границей, и для точной триангу-
ляции области используются лагранжевы криволинейные пригранич-
ные конечные элементы. В этом случае, как и выше, имеем V 0

h ⊂ V 0.
Если используются изопараметрические приграничные конечные

элементы, то область, вообще говоря, триангулируется не точно, и
Ωh ̸= Ω, Vh ⊂ H1(Ωh). Предполагая опять, что граничные точки Γ0 и
угловые точки Γ (если они имеются) являются вершинами каких-ли-
бо конечных элементов, обозначим через Γh

0 объединение тех граней
элементов из Th, которые имеют с Γ0 не менее двух общих точек.
Непрерывная кривая Γh

0 является в данном случае естественной ап-
проксимацией Γ0 (см. рис. 27). Пространство

Ω

Рис. 27. Использование лагранжевых треугольных изопараметрических элементов
(m > 2) вблизи криволинейной части Γ0 границы (штриховая линия). Жирной линией
выделен участок Γh

0 .

V 0
h = {vh ∈ Vh : vh(x) = 0, x ∈ Γh

0}

назовем пространством конечных элементов, аппроксимирующим
пространство V 0. Имеем

V 0
h ⊂ {v ∈ H1(Ωh) : v(x) = 0, x ∈ Γh

0}.

Как и ранее, V 0
h допускает эквивалентное определение (3.59), спра-

ведлива также формула (3.60).

2. Эрмитовы элементы. Определение аппроксимации про-
странства V 0 при помощи соотношения (3.58) сохраняется и при ис-
пользовании эрмитовых элементов. Рассмотрим для примера про-
странство эрмитовых кубических элементов. По-прежнему, в узлах
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Рис. 28. Выделены направления, производные по которым полагаются равными нулю
с целью учесть краевое условие на Γ0.

интерполяции ai, принадлежащих γh, мы должны потребовать вы-
полнения условия vh(ai) = 0. Далее, очевидно также, что в узлах γh
должны быть равны нулю и производные вдоль направлений сторон,
лежащих на Γ0. Множество таких направлений в узле a обозначим
через τ(a) (см. рис. 28).

Таким образом, пространство V 0
h может быть определено также

соотношениями:

V 0
h = {vh ∈ Vh : vh(ai) = 0, ∂τvh(ai) = 0, τ ∈ τ(ai), ai ∈ γh}. (3.61)

Опишем теперь пространство V 0
h в терминах условий на узловые па-

раметры приграничных элементов. Из условия ∂τvh(a) = 0, a ∈ γh
вытекает, что 1)

∂vh(a)

∂x2
= − tgα(a)

∂vh(a)

∂x1
, (3.62)

где α(a) — угол наклона соответствующей стороны области Ω к оси x2.
Если a — угловая точка области Ω, то условие (3.62) выполняется для
двух непараллельных направлений, следовательно,

∂vh(a)

∂x2
=
∂vh(a)

∂x1
= 0.

Таким образом, произвольная функция vh ∈ V 0
h допускает представ-

1)Для упрощения записей считаем, что α(a) ̸= π/2 для любой точки a ∈ γh
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ление (см. также формулу (3.57), с. 140):

vh(x) =
∑

ai∈γh/γ∗
h

vi1(φ
g
i1(x)− tgα(ai)φ

g
i2(x))+

+
∑

ai∈ωh/γh

viφ
g
i0(x) +

∑
ai∈ω(1)

h /γh

2∑
k=1

vikφ
g
ik(x).

Здесь ω(1)
h — множество вершин конечных элементов, γ∗h — множество

угловых точек области Ω.
Упражнение 7. Рассмотреть аналогичные вопросы в случаях, когда Vh — про-

странство конечных элементов Белла или пространство прямоугольных бикубических
конечных элементов.

2. Аппроксимация подпространств H2(Ω).

Пусть

V 0 = {v ∈ H2(Ω) : v(x) = 0, ∂νv(x) = 0, x ∈ Γ0},

где Γ0 — часть границы Γ области Ω, имеющая ненулевую меру и
конечную связность, ν — единичный вектор внешней нормали к Γ0.
Если Γ0 = Γ, то по определению V 0 = H2

0(Ω).
Рассмотрим сначала случай, когда область Ω составлена из пря-

моугольников со сторонами, параллельными координатным осям, а
пространство Vh — пространство прямоугольных бикубических ко-
нечных элементов. Как и ранее, будем считать, что Γ0 в точности
совпадает с объединением некоторого множества сторон конечных
элементов, входящих в триангуляцию. Положим

V 0
h = {vh ∈ Vh : vh(x) = 0, ∂νvh(x) = 0, x ∈ Γ0}. (3.63)

Очевидно, V 0
h — подпространство V 0. Пусть e′ — сторона некоторо-

го конечного элемента, лежащая на Γ0, τ — направление вдоль e′ и
vh ∈ V 0

h . Тогда из определения V 0
h следует, что на e′ и, в частности,

в узлах интерполяции на e′, имеют место равенства

vh(x) = ∂τvh(x) = ∂νvh(x) = ∂ττvh(x) = ∂ντvh(x) = 0. (3.64)

Пусть γh — множество узлов интерполяции на Γ̄0. Из равенств (3.64)
следует, что все узловые параметры, связанные с узлами γh, должны
быть равны нулю. Таким образом, приходим к следующему эквива-
лентному определению:

V 0
h = {vh ∈ Vh : vh(x) =

∂vh(x)

∂x1
=
∂vh(x)

∂x2
=
∂2vh(x)

∂x1∂x2
= 0, x ∈ γh}.
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В случае, когда Ω — многоугольник в R2, а пространство Vh —
пространство конечных элементов Белла, определение (3.63) и свой-
ства (3.64) также сохраняют силу. Как и в случае подпространств
H1, в вершинах многоугольника Ω (принадлежащих γh) необходимо
потребовать выполнения дополнительного условия, а именно, в ука-
занных узлах все узловые параметры должны быть равны нулю. В
остальных узлах γh единственной неопределенной степенью свободы
является ∂ννvh(x).

§ 10. Оценки погрешности интерполяции

1. Оценки на базисном конечном элементе. Пусть (ê, P̂ , Σ̂) —
базисный конечный элемент в Rn и

ω̂ = {âi}, ϕ̂i, φ̂i(x̂), x̂ ∈ ê, π̂

есть его узлы интерполяции, степени свободы, базисные функции и
оператор интерполяции, dim P̂ = N .

Пусть максимальная степень производных, использованных в
определении Σ̂, равна r ≥ 0, функционалы ϕ̂i непрерывны вCr(ê), т. е.

|ϕ̂i(u)| 6 c ∥u∥∞,r,ê, ∥u∥∞,r,ê = max
x̂∈ê

∑
|α|≤r

|Dαu(x̂)| .

Очевидно, что это предположение справедливо для любых лагранже-
вых или эрмитовых конечных элементов. Будем также считать, что
базисные функции Лагранжа φ̂i(x̂) являются достаточно гладкими
функциями (во всех примерах, которые мы рассматривали, они были
полиномами).

Пусть û ∈ Hs+1
p (ê) при целом s таком, что (s + 1 − r)p > n.

По теореме вложения Соболева (см. теорему 3, c. 40) имеем включе-
ние û ∈ Cr(ê). Отсюда следует, что по функции û можно построить ее
P̂ -интерполянт ûI = π̂û. Напомним, что функция ûI ∈ P̂ называет-
ся P̂ -интерполянтом функции û, если ϕ̂i(ûI) = ϕ̂i(û), i = 1, 2, . . . , N .

Теорема 1. Пусть û, ûI ∈ Hs+1
p (ê), (s + 1 − r)p > n. Тогда

для любого неотрицательного целого m такого, что m 6 s + 1,
справедлива оценка

|û− ûI |m,p,ê ≤ c1 |û|s+1,p,ê, (3.65)

если пространство P̂ содержит Ps, и

[û− ûI ]m,p,ê ≤ c2 [û]s+1,p,ê, (3.66)
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если P̂ содержит Qs. Здесь постоянные c1, c2 не зависят от функ-
ции û.

Доказательство. Обоснуем оценку (3.65). Пусть q — показа-
тель, сопряженный к p, т. е. 1/p+1/q = 1, ŵ ∈ Lq(ê) — произвольная
фиксированная функция, |α| = m. Докажем, что выражение

f(û) =

∫
ê

Dα(û− ûI)ŵ dx̂

определяет линейный непрерывный функционал на пространст-
ве Hs+1

p (ê). Линейность функционала непосредственно следует из его
определения и линейности оператора интерполяции. Докажем огра-
ниченность f . Используя неравенство Гельдера, получим

|f(û)| ≤ |Dα(û− ûI)|0,p,ê|ŵ|0,q,ê ≤ (|Dαû|0,p,ê + |DαûI |0,p,ê)|ŵ|0,q,ê.

Для оценки полунормы |DαûI |0,p,ê используем представление ûI в ба-
зисе Лагранжа {φ̂i(x̂)}Ni=1 пространства P̂ . Имеем:

|DαûI |0,p,ê =
∣∣ N∑
i=1

ϕ̂i(û)D̂
αφi

∣∣
0,p,ê

6

≤ max
i=1,...,N

|ϕ̂i(û)|
N∑
i=1

|Dαφ̂i|0,p,ê ≤ c max
i=1,...,N

|ϕ̂i(û)|.

Из непрерывности вложения Hs+1
p (ê) в Cr(ê) и предположения о

непрерывности функционалов, принадлежащих Σ̂, следует, что

max
i=1,...,N

|ϕ̂i(û)| ≤ c ∥û∥∞,r,ê 6 c ||û||s+1,p,ê,

откуда и вытекает ограниченность функционала f в простран-
стве Hs+1

p :
|f(û)| ≤ c ||û||s+1,p,ê|ŵ|0,q,ê. (3.67)

Заметим теперь, что f(p̂) = 0 при p̂ ∈ Ps ⊂ P̂ , поскольку в этом слу-
чае p̂I = p̂. Учитывая это, а также оценку (3.67), мы можем исполь-
зовать лемму Брамбла — Гильберта (с. 50). В результате получим,
что

|f(û)| ≤ c |û|s+1,p,ê|ŵ|0,q,ê,
или в силу (2.25), c. 35,

|Dα(û− ûI)|0,p,ê = sup
w∈Lq(ê)

|f(û)|/|ŵ|0,q,ê ≤ c |û|s+1,p,ê.
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Отсюда следует оценка (3.65), поскольку

|û− ûI |m,p,ê =
( ∑

|α|=m

|Dα(û− ûI)|p0,p,ê
)1/p

.

Оценка (3.66) доказывается аналогично. Функционал f в этом случае
определяется равенством

f(û) =

∫
ê

m∑
i=1

∂m(û− ûI)

∂xmi

∂mŵ

∂xmi
dx̂,

а в дальнейших выкладках полунорма | · | заменяется на полунор-
му [·], затем используется соответствующая лемма Брамбла — Гиль-
берта (с. 52). �

Теорема 2. Пусть û, ûI ∈ Hs+1
p (ê), (s+1− r)p > n, простран-

ство P̂ содержит Ps. Тогда для любого неотрицательного целого m
такого, что (s+ 1−m)p > n, справедлива оценка

|û− ûI |∞,m,ê ≤ c |û|s+1,p,ê. (3.68)

Доказательство. Пусть x∗ ∈ ê. Для любого фиксированно-
го α, |α| ≤ m, функционал f(û) = Dα(û−ûI)(x∗) является линейным
и непрерывным в Hs+1

p (ê). Действительно, рассуждая аналогично до-
казательству предыдущей теоремы, можем написать

|f(û)| ≤ max
x̂∈ê

|Dαû(x̂)|+max
x̂∈ê

|DαûI(x̂)| ≤

≤ c ||û||s+1,p,ê + max
i=1,...,N

|ϕ̂i(û)|max
x̂∈ê

N∑
i=1

|Dαφ̂i(x̂)| ≤ c ||û||s+1,p,ê.

С другой стороны, рассматриваемый функционал обращается в нуль
на полиномах из Ps ⊂ P̂ , так что в силу леммы Брамбла — Гильберта

|Dα(û− ûI)(x
∗)| ≤ c |û|s+1,p,ê.

Из этого неравенства в силу произвольности x∗ ∈ ê и α, |α| ≤ m
следует (3.68). �

2. Оценка погрешности интерполяции для аффинно-эк-
вивалентных элементов. Пусть (ê, P̂ , Σ̂) — базисный элемент
в Rn (либо лагранжев, либо эрмитов) и Eh = {(e, Pe,Σe), e ∈ Th}
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есть семейство аффинно-эквивалентных ему элементов, диаметры ко-
торых не превосходят h. Пусть далее для фиксированного элемен-
та e ∈ Th отображение ê на e задано формулой xe(x̂) = Bex̂ + be,
u ∈ Hs

p(e), и функция û(x̂) связана с функцией u(x) соотношением
û(x̂) = u(xe(x̂)). Согласно следствию 3, c. 56,

|û|s,p,ê ≤ c | detBe|−1/p ||Be||s|u|s,p,e, (3.69)
|u|s,p,e ≤ c | detBe|1/p ||B−1

e ||s|û|s,p,ê, (3.70)

где ||Be|| — спектральная норма матрицы Be.
Теорема 3. Пусть u, uI ∈ Hs+1

p (e), (s+1−r)p > n и простран-
ство P̂ содержит Ps. Тогда для любого e ∈ Th и неотрицательного
m такого, что m 6 s+ 1, справедлива оценка

|u− uI |m,p,e ≤ c ||B−1
e ||m ||Be||s+1|u|s+1,p,e, (3.71)

где uI есть Pe-интерполянт функции u.
Доказательство. Используем теорему 1 и оценки (3.69),

(3.70). Тогда

|u− uI |m,p,e ≤ c | detBe|1/p ||B−1
e ||m |û− ûI |m,p,ê ≤

≤ c | detBe|1/p ||B−1
e ||m|û|s+1,p,ê ≤ c ||B−1

e ||m||Be||s+1|u|s+1,p,e,

откуда, очевидно, следует (3.71). Здесь мы учли, что

(̂uI) = (̂πeu) = π̂û = ûI . �

Пусть теперь Ω — многоугольная область в Rn и Th — точная три-
ангуляция области Ω семейством аффинно-эквивалентных конечных
элементов. Напомним, что при этом:

1) различные элементы e ∈ Th либо не пересекаются, либо имеют
общую вершину или общую грань;

2) diam e ≤ h ∀e ∈ Th;
3) Ω̄ =

∪
e∈Th

e.

Предположим дополнительно, что триангуляция Th является ре-
гулярной (как семейство элементов), т. е.

4) для радиуса ρe вписанного в e шара справедлива оценка

ρe > c h ∀e ∈ Th.
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Теорема 4. Пусть Th точная регулярная триангуляция об-
ласти Ω, и Eh = {(e, Pe,Σe), e ∈ Th} — семейство аффинно-
эквивалентных элементов, ассоциированных с базисным элементом
(ê, P̂ , Σ̂). Пусть, далее, пространство конечных элементов Vh, по-
строенное на основе этого семейства, является подпространством
Hm

p (Ω) ⊂ Hs+1
p (Ω) с m ≥ 0, s ≥ 1, максимальный порядок произ-

водных в определении Σ̂ равен r ≥ 0 и Ps ⊂ P̂ . Тогда для любой
функции u ∈ Hs+1

p (Ω), (s + 1 − r)p > n, m 6 s + 1, справедлива
оценка погрешности интерполяции

|u− uI |m,p,Ω ≤ c hs+1−m|u|s+1,p,Ω, (3.72)

где uI есть Vh-интерполянт функции u.
Доказательство. В силу регулярности семейства элементов Th

имеем ∥Be∥ 6 c h, ∥B−1
e ∥ 6 c h−1 для любого e ∈ Th. Комбинируя эти

неравенства с оценкой (3.71), будем иметь

|u− uI |pm,p,e ≤ c hp(s+1−m)|u|ps+1,p,e.

Суммируя эти оценки по всем e ∈ Th, получим неравенство (3.72). �
Отметим некоторые частные случаи:
Если область Ω ⊂ R2 разбита на треугольники с прямолинейными

сторонами или на параллелограммы, и на каждом элементе исполь-
зована интерполяция Лагранжа (r = 0), или Эрмита (r > 0) поряд-
ка s > r (полиномы Ps или Qs) при построении пространства Vh, то
справедливы оценки (p = 2):

|u− uI |0,Ω ≤ c hs+1|u|s+1,Ω, |u− uI |1,Ω ≤ c hs|u|s+1,Ω.

Мы не можем оценить |u − uI |m,Ω при m > 1 для лагранжевых
элементов, поскольку разность u − uI в этом случае, вообще гово-
ря, принадлежит только пространству H1. При использовании эр-
митовых элементов класса C1 справедлииво вложение Vh ⊂ H2(Ω),
поэтому в оценке (3.72) можно выбрать m = 0, 1, 2. Например, для
пространства бикубических эрмитовых элементов Vh (P̂ = Q3 ⊃ P3)
мы можем оценить u− uI в пространстве H2. Из теоремы 4 следует,
что

|u− uI |m,Ω ≤ c h4−m|u|4,Ω, m = 0, 1, 2.

3. Оценка погрешности интерполяции для криволиней-
ных и изопараметрических элементов. Исследование погреш-
ности в данном случае проводится по той же схеме, что и в случае
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аффинно-эквивалентных элементов. А именно, осуществляется пере-
ход с исходного элемента на базисный в определении функционала
погрешности, затем используется лемма Брамбла — Гильберта и в по-
лученной оценке делается обратный переход на исходный конечный
элемент. Различие между криволинейными и изопараметрическими
элементами при таком подходе отсутствует, поскольку эти элемен-
ты различаются только видом преобразования, но не его свойствами.
Имеется, однако, некоторое различие в исследовании треугольных и
четырехугольных элементов в силу разных определений регулярно-
сти.

Рассмотрим вначале треугольные элементы.

Теорема 5. Пусть (ê, P̂ , Σ̂) — базисный треугольный лагран-
жев конечный элемент в R2 и (e, Pe,Σe) — ассоциированный с ним
посредством преобразования x = xe(x̂) криволинейный (изопарамет-
рический) элемент. Предположим, что P̂ ⊇ Ps, s > 1, элемент e
принадлежит семейству (s + 1)-регулярных элементов, т. е. вы-
полнены условия теоремы 2, c.115, при k = s + 1 (теоремы 2, c.123,
при m = s+ 1). Тогда

|û|s,p,ê ≤ c hs−2/p∥u∥s,p,e, s > 0, (3.73)
|u|s,p,e ≤ c h2/p−s|û|s,p,ê, s > 0, (3.74)

|u− uI |m,p,e ≤ c hs+1−m∥u∥s+1,p,e, s > 1. (3.75)

Здесь û(x̂) = u(xe(x̂)), uI есть Pe-интерполянт функции u, 0 6 m 6
s+ 1, p ∈ [1,∞].

Доказательство. Установим оценку (3.73) при p < ∞. Для
этого воспользуемся оценкой (2.49), c. 55,

|û|ps,p,ê 6 cmax
x∈e

| det(Dx−1
e (x))|

s∑
l=0

|u|pl,p,e∑
i∈I(l,s)

max
x̂∈ê

(
∥Dxe(x̂)∥pi1 · · · ∥Dsxe(x̂)∥pis

)
, (3.76)

где множество индексов I(l, s) определяется соотношением:

I(l, s) = {i = (i1, . . . , is) : i1 + . . .+ is = l, i1 + 2i2 . . .+ sis = s}.

В силу предположения о регулярности семейства конечных элементов



§ 10. Оценки погрешности интерполяции 153

величины max
x̂∈ê

∥Dkxe(x̂)∥ имеют порядок hk. Поэтому∑
i∈I(l,s)

max
x̂∈ê

(
∥Dxe(x̂)∥pi1∥D2xe(x̂)∥pi2 · · · ∥Dsxe(x̂)∥pis

)
6 c

∑
i∈I(l,s)

hp i1hp 2i2hp sis 6 c
∑

i∈I(l,s)

hp s 6 c hp s.

Поскольку | det(Dx−1
e (x))| = O(h−2), то из (3.76) получаем искомую

оценку

|û|ps,p,ê 6 c hp s−2
s∑

l=0

|u|pl,p,e = c hp s−2∥u∥ps,p,e.

Аналогично рассматривается случай p = ∞. Для доказательства
(3.74) воспользуемся следствием 2, c. 56. Имеем при конечных p:

|u|ps,p,e 6 c max
x̂∈ê

| det(Dxe(x̂))|
s∑

l=0

|û|pl,p,ê ×

×
∑

i∈I(l,s)

max
x∈e

(
∥Dx−1

e (x)∥pi1 · · · ∥Dsx−1
e (x)∥pis

)
6 c h2

s∑
l=0

|û|pl,p,ê ×

×
∑

i∈I(l,s)

h−p(i1+i2+...+is) 6 c h2
s∑

l=0

|û|pl,p,ê h
−pl 6 c h2−ps∥û∥ps,p,ê.

Здесь мы воспользовались оценкой (3.19) теоремы 2, c. 105. Доказа-
тельство оценки (3.74) при p = ∞ проводится аналогично.

Заключительная оценка (3.75) получается комбинированием уже
найденных оценок и оценки из теоремы 1, c. 147, поскольку по усло-
вию ûI ∈ P̂ ⊇ Ps:

|u− uI |m,p,e ≤ c h2/p−m|û− ûI |m,p,ê 6
6 c h2/p−m|û|s+1,p,ê ≤ c hs+1−m∥u∥s+1,p,e. �

Пусть теперь Vh — пространство криволинейных конечных эле-
ментов, аппроксимирующее пространство Соболева H1(Ω) в случае
ограниченной области Ω ⊂ R2 с кусочно гладкой границей Γ такое,
что Vh ⊂ H1(Ω).

Напомним кратко его определение, основанное на точной триан-
гуляции Th области Ω. Каждый элемент e является либо треугольни-
ком, либо криволинейным треугольником, причем две стороны криво-
линейного треугольника — отрезки прямых, третья — дуга кривой Γ.
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Триангуляция считается (s+1)-регулярной для некоторого s ≥ 1.
Последнее предполагает регулярность триангуляции, которая полу-
чается из описанной заменой криволинейных сторон треугольников
соответствующими хордами. Это предположение обеспечивает спра-
ведливость условия (3.32) теоремы 2, c. 115.

С каждым элементом триангуляции свяжем конечный элемент
(аффинно-эквивалентный или криволинейный) ассоциированный с
базисным лагранжевым конечным элементом (ê, P̂ , Σ̂) класса C0,
причем P̂ = Ps. На основе этого семейства конечных элементов стан-
дартным образом определяется далее пространство Vh (пространство
криволинейных конечных элементов).

Дадим оценку погрешности интерполирования функциями из Vh.
Теорема 6. Пусть Vh — пространство треугольных криволи-

нейных конечных элементов, ассоциированных с лагранжевым ба-
зисным элементом (ê, P̂ , Σ̂) класса C0, причем P̂ = Ps для неко-
торого s ≥ 1. Пусть далее u ∈ Hs+1

p (Ω), uI есть Vh-интерполянт
функции u, триангуляция (s+ 1)-регулярна. Тогда

|u− uI |m,p,Ω 6 c hs+1−m∥u∥s+1,p,Ω, m = 0, 1.

Доказательство. Понятно, что в представлении погрешности

|u− uI |pm,p,Ω =
∑
e∈Th

|u− uI |pm,p,e (3.77)

достаточно оценить лишь вклады от каждого из элементов. Если эле-
мент e является аффинно-эквивалентным, то соответствующая оцен-
ка получена в теореме 3, c. 150. В силу регулярности триангуляции
она имеет вид

|u− uI |m,p,e 6 c hs+1−m|u|s+1,p,e.

Если элемент e является криволинейным, то требуемая оценка полу-
чена выше (см. оценку (3.75)). Из этих оценок и представления (3.77)
следует утверждение теоремы. �

Замечание 1. Если в определении пространства Vh, сформулированном выше,
заменить криволинейные элементы на изопараметрические, то мы получим аппрокси-
мацию пространства H1(Ωh). Очевидно, что в этом случае справедлива теорема, полу-
чающаяся из теоремы 6 заменой области Ω на Ωh.

Рассмотрим теперь прямоугольные изопараметрические элемен-
ты.

Теорема 7. Пусть (ê, P̂ , Σ̂) — базисный прямоугольный лагран-
жев конечный элемент в R2, а (e, Pe,Σe) — ассоциированный с ним
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посредством преобразования x = xe(x̂) изопараметрический эле-
мент. Если элемент e принадлежит семейству (s+ 1)-регулярных
элементов, пространство P̂ содержит Qs, то

[û]s,p,ê ≤ c hs−2/p∥u∥s,p,e, s > 0, (3.78)
|u|s,p,e ≤ c h2/p−s|û|s,p,ê, s > 0, (3.79)

|u− uI |m,p,e ≤ c hs+1−m∥u∥s+1,p,e, s > 1. (3.80)
Здесь uI есть Pe-интерполянт функции u, 0 6 m 6 s+1, p ∈ [1,∞].

Доказательство. Докажем оценку (3.78). Для этого восполь-
зуемся леммой 5, c. 57. При конечных p имеем

[û]ps,p,ê 6 cmax
x∈e

| det(Dx−1
e (x))|

s∑
l=0

|u|pl,p,e∑
i∈I(l,s)

max
x̂∈ê

(
[Dxe(x̂)]

pi1 · · · [Dsxe(x̂)]
pis
)
. (3.81)

В силу предположения о регулярности семейства конечных элементов
величины max

x̂∈ê
[Dkxe(x̂)] имеют порядок hk. Поэтому∑

i∈I(l,s)

max
x̂∈ê

(
[Dxe(x̂)]

pi1[D2xe(x̂)]
pi2 · · · [Dsxe(x̂)]

pis
)

6 c
∑

i∈I(l,s)

hp i1hp 2i2hp sis lec
∑

i∈I(l,s)

hp s 6 c hp s.

Поскольку | det(Dx−1
e (x))| = O(h−2), то из (3.81) получаем искомую

оценку

[û]ps,p,ê 6 c hp s−2
s∑

l=0

|u|pl,e = c hp s−2∥u∥ps,p,e.

Аналогично рассматривается случай p = ∞. Для доказательства
(3.79) воспользуемся следствием 2, c. 56. Имеем при конечных p:

|u|ps,p,e 6 c max
x̂∈ê

| det(Dxe(x̂))|
s∑

l=0

|û|pl,p,ê ×

×
∑

i∈I(l,s)

max
x∈e

(
∥Dx−1

e (x)∥pi1 · · · ∥Dsx−1
e (x)∥pis

)
6 c h2

s∑
l=0

|û|pl,p,ê ×

×
∑

i∈I(l,s)

h−p(i1+2i2+...+sis) 6 c h2
s∑

l=0

|û|pl,p,ê h
−ps 6 c h2−ps∥û∥ps,p,ê.
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Здесь мы воспользовались оценкой (3.20) теоремы 2, c. 105. Заклю-
чительная оценка (3.75) получается комбинированием уже найден-
ных оценок и оценки из теоремы 1, c. 147, поскольку по условию
ûI ∈ P̂ ⊇ Qs:

|u− uI |m,p,e ≤ c h2/p−m|û− ûI |m,p,ê ≤
6 c h2/p−m[û]s+1,p,ê ≤ c hs+1−m∥u∥s+1,p,e. �

Непосредственным следствием доказанной теоремы является
Теорема 8. Пусть Vh — пространство прямоугольных изопара-

метрических конечных элементов, ассоциированных с лагранжевым
базисным элементом (ê, P̂ , Σ̂) класса C0, причем P̂ = Qs для неко-
торого s ≥ 1. Пусть далее u ∈ Hs+1

p (Ωh), Ωh =
∪
{e : e ∈ Th}, uI

есть Vh-интерполянт функции u, триангуляция (s + 1)-регулярна.
Тогда

|u− uI |m,p,Ωh
6 c hs+1−m∥u∥s+1,p,Ωh

, m = 0, 1.



Глава 4
Метод конечных элементов для эллиптических

уравнений

В настоящей главе построены и исследованы методы конечных
элементов для эллиптических уравнений второго и четвертого поряд-
ков в плоской двумерной области с кусочно гладкой границей.

Для уравнений второго порядка рассматриваются методы, осно-
ванные на использовании пространства лагранжевых криволинейных
элементов с точной аппроксимацией границы области, а также схемы
для плоской многоугольной области, основанные на использовании
эрмитова треугольного элемента класса C0. Для уравнений четверто-
го порядка — схемы, основанные на использовании прямоугольного
бикубического элемента и треугольника Белла.

Подробно проанализированы схемы, возникающие при примене-
нии квадратурных формул для вычисления элементов матриц и пра-
вых частей системы линейных алгебраических уравнений, определя-
ющей приближенное решение в методе конечных элементов.

§ 1. Схемы с точной аппроксимацией границы для
уравнений второго порядка

1. Задача Дирихле. Лагранжевы элементы. Рассмотрим
неоднородную задачу Дирихле.

− div (A∇u) + a∇u+ a0u = f, x ∈ Ω, (4.1)

u(x) = g(x), x ∈ Γ, (4.2)
предполагая выполненными условия теоремы 1, c. 64. Кроме того,
функцию g будем считать непрерывной на Γ и допускающей продол-
жение в пространство H1(Ω). При этих условиях задача (4.1), (4.2)
имеет единственное обобщенное решение из H1(Ω).

Введем в рассмотрение пространство Vh лагранжевых конечных
элементов с точной аппроксимацией границы, построенное на осно-
ве триангуляции Th области Ω треугольными элементами. Напомним,
что приграничные элементы — треугольники, одна сторона каждого
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которых, вообще говоря, криволинейна и совпадает с соответству-
ющим участком кривой Γ. Каждый конечный элемент ассоцииро-
ван с треугольным базисным элементом (ê, P̂ , Σ̂) класса C0, при-
чем P̂ ⊇ Pm для некоторого m ≥ 1. Отметим, что в простейшем
случае, когда область Ω — многоугольник, пространство Vh строится
на основе семейства аффинно-эквивалентных треугольных элементов
степени m.

Наряду с пространством Vh будем рассматривать его подпро-
странство

V 0
h = {vh ∈ Vh : vh(x) = 0, x ∈ Γ}.

Его эквивалентное определение (см. с. 143):

V 0
h = {vh ∈ Vh : vh(x) = 0, x ∈ γh},

где γh — множество узлов интерполяции, лежащих на Γ.
Определение 1. Функцию uh ∈ Vh будем называть приближен-

ным решением задачи (4.1), (4.2), если она удовлетворяет интеграль-
ному тождеству

a(uh, vh) = f(vh) ∀vh ∈ V 0
h (4.3)

и граничному условию

uh(x) = g(x), x ∈ γh. (4.4)

Напомним, что

a(u, v) =

∫
Ω

(A∇u · ∇v + a∇uv + a0uv) dx ∀u, v ∈ H1, (4.5)

f(v) =

∫
Ω

fvdx. (4.6)

Обозначим, как обычно, через φi(x), i = 1, 2, . . . , N , базис Лагран-
жа в Vh, причем φi(x) с номерами i = 1, 2, . . . , N0 соответствуют уз-
лам, не лежащим на Γ. Тогда

uh(x) =

N0∑
j=1

yjφj(x) +
N∑

j=N0+1

g(xj)φj(x), (4.7)

yj = uh(xj), а произвольная функция vh ∈ V 0
h записывается в виде

vh(x) =

N0∑
i=1

viφi(x), vi = vh(xi). (4.8)
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Подставляя разложения (4.7) и (4.8) в (4.3), придем к си-
стеме линейных алгебраических уравнений для отыскания y =
(y1, y2, . . . , yN0

):
Ay = F,

где A — матрица с элементами

Aij = a(φi, φj), i, j = 1, 2, . . . , N0,

F — вектор с элементами

Fi =

∫
Ω

f(x)φi(x)dx−
N∑

j=N0+1

Aijg(xj), i = 1, 2, . . . , N0.

Способы вычисления элементов матрицы и правой части этой си-
стемы будут подробно описаны далее в §2 приложения. Здесь мы
займемся исследованием ее разрешимости и оценкой точности при-
ближенного решения uh.

Отметим, что вследствие неоднородности граничного условия (4.4)
мы не можем непосредственно сослаться на результаты §1 гл. 2, от-
носящиеся к методу Галеркина, но будем использовать развитые там
способы исследования.

Теорема 1. Пусть выполнены условия теоремы 1, с. 64. Тогда
задача (4.3), (4.4) имеет единственное решение.

Доказательство. Убедимся, что соответствующая однородная
система уравнений

a(uh, vh) = 0 ∀vh ∈ V 0
h , (4.9)

uh(x) = 0, x ∈ γh, (4.10)
имеет только тривиальное решение. Действительно, любое реше-
ние uh системы (4.9), (4.10) принадлежит пространству V 0

h ⊂ H1
0 .

Поэтому в тождестве (4.9) можно положить vh = uh, следовательно,
a(uh, uh) = 0. На основании леммы 2, c. 64, форма a(·, ·) положитель-
но определена на H1

0 , таким образом, uh = 0. �
Оценка точности приближенного решения наиболее просто полу-

чается в случае однородных граничных условий.
Теорема 2. Пусть u — решение задачи (4.1), (4.2), uh — реше-

ние задачи (4.3), (4.4), g(x) = 0, x ∈ Γ, выполнены условия теор-
емы 1, с. 64. Тогда существует постоянная c > 0 такая, что

∥u− uh∥1,Ω 6 c∥u− vh∥1,Ω (4.11)
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для любой функции vh ∈ V 0
h .

Доказательство. В рассматриваемом случае задачу Дирих-
ле (4.1), (4.2) можно трактовать как задачу об отыскании функции
u ∈ H1

0 , такой что

a(u, v) = f(v) ∀v ∈ H1
0 , (4.12)

а метод конечных элементов — как метод Галеркина приближен-
ного решения задачи (4.12). Именно, мы разыскиваем функцию uh
из V 0

h ⊂ H1
0 , удовлетворяющую интегральному тождеству

a(uh, vh) = f(vh) ∀v ∈ V 0
h .

Таким образом, утверждение теоремы — непосредственное следствие
леммы Сеа (см. с. 25). �

Теорема 3. Пусть выполнены условия теоремы 2. Область
Ω — многоугольник, триангуляция Th регулярна, P̂ ⊇ Pm, m ≥ 1,
решение задачи (4.1), (4.2) принадлежит пространству H l+1(Ω),
1 6 l 6 m. Тогда

∥u− uh∥1,Ω 6 chl∥u∥l+1,Ω.

Доказательство. В неравенстве (4.11) положим vh = uI , где
uI есть V 0

h -интерполянт функции u и воспользуемся оценкой теоре-
мы 4, с. 151, при m = 1, s = l, p = 2. �

Замечание 1. Условие принадлежности решения пространству H l(Ω) налагает
определенные ограничения на исходные данные задачи (4.1), (4.2). В общем случае из-
за наличия углов области они имеют сложный интегральный характер. В простейшем
случае, когда область Ω — выпуклый многоугольник, l = 2, достаточно потребовать
выполнения следующих условий: aij ∈ W 1

∞(Ω), ai ∈ L∞(Ω), f ∈ L2(Ω).

Для криволинейных областей с гладкой границей, опираясь на
теорему 4, c. 72, можно сформулировать простые достаточные усло-
вия в терминах исходных данных задачи (4.1), (4.2), обеспечивающие
заданный порядок точности метода конечных элементов.

Теорема 4. Пусть выполнены условия теоремы 2, P̂ ⊇ Pm,
m ≥ 1, и справедливы следующие условия гладкости исходных дан-
ных задачи (4.1), (4.2):

aij ∈ W l
∞(Ω), ai ∈ W l−1

∞ (Ω), f ∈ W l−1
2 (Ω), Γ ∈ C l+1 (4.13)

при некотором l, 1 6 l 6 m. Тогда ∥u− uh∥1,Ω 6 c hl ∥f∥l−1,Ω.
Доказательство. В неравенстве (4.11) положим vh = uI , где

uI есть V 0
h -интерполянт функции u. Поскольку Γ ∈ C l+1, то точная
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триангуляция области Ω является (l+1)-регулярной, поэтому можно
воспользоваться оценкой теоремы 6, c. 154, при m = 1, s = l, p = 2.
Получим ∥u−uh∥1,Ω 6 chl∥u∥l+1,Ω. Теперь остается учесть, что соглас-
но теореме 4, c. 72, справедливо неравенство ∥u∥l+1,Ω 6 c∥f∥l−1,Ω. �

Получим оценки точности для неоднородной задачи Дирихле.
Теорема 5. Пусть выполнены условия теоремы 1, с. 64, u —

решение задачи (4.1), (4.2), uh — решение задачи (4.3), (4.4). Тогда

∥uh − u∥1,Ω 6 c∥uI − u∥1,Ω.

Доказательство. Поскольку uI−uh ∈ H1
0 , справедлива оценка

c|uI − uh|21,Ω 6 a(uI − uh, uI − uh).

Далее,

a(uI −uh, uI −uh) = a(uI −u, uI −uh)+a(u, uI −uh)−a(uh, uI −uh) =

= a(uI − u, uI − uh) 6 c∥uI − u∥1,Ω|uI − uh|1,Ω,
следовательно,

|uI − uh|1,Ω 6 c∥uI − u∥1,Ω,
и, наконец, ∥uh−u∥1,Ω 6 ∥uh−uI∥1,Ω+ ∥uI −u∥1,Ω 6 c∥uI −u∥1,Ω. �

Используя теперь оценки погрешности интерполяции, получен-
ные в теоремах 4, 6 §10 гл. 3, можно сформулировать оценки по-
грешности, полностью аналогичные случаю однородной задачи. От-
метим только, что дополнительно к условиям (4.13) нужно, естествен-
но, предположить, что функция g есть след на Γ некоторой функции
из H l+1(Ω).

2. Задача Дирихле. Эрмитов кубический элемент клас-
са C0. При построении и исследовании метода конечных элементов
для задачи (4.1), (4.2) с использованием эрмитова кубического эле-
мента класса C0 будем предполагать, что область Ω — многоуголь-
ник и рассматриваемая задача имеет решение, непрерывно диффе-
ренцируемое в замыкании области Ω. Отсюда вытекает, что функция
g непрерывно дифференцируема вдоль каждой стороны многоуголь-
ника Ω. Причем uτ(x) = gτ(x), где τ — единичный вектор касатель-
ной к Γ в точке x. Ясно, что если x — угловая точка области Ω, то
∂u(x)/∂x1, ∂u(x)/∂x2 выражаются через производные функции g по
направлениям соответствующих сторон.

Построим на области Ω триангуляцию и введем в рассмотрение
пространство Vh эрмитовых кубических элементов (см. с. 139), а так-
же его подпространство V 0

h (см. с. 144).
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Определение 2. Функцию uh ∈ Vh назовем приближенным ре-
шением задачи (4.1), (4.2), если она удовлетворяет интегральному
тождеству

a(uh, vh) = f(vh) ∀vh ∈ V 0
h (4.14)

и граничным условиям

uh(x) = g(x), x ∈ γh, uhτ(x) = gτ(x), τ ∈ τ(x), x ∈ γh/γ
∗
h, (4.15)

∂uh(x)

∂x1
=
∂u(x)

∂x1
,

∂uh(x)

∂x2
=
∂u(x)

∂x2
, x ∈ γ∗h. (4.16)

Напомним, что, как обычно, через γh обозначено множество всех уз-
лов элементов, принадлежащих Γ, γ∗h — угловые точки области Ω.

Рассуждая так же, как при описании пространства V 0
h на с. 145,

получим, что функция uh ∈ Vh, удовлетворяющая граничным усло-
виям (4.15), (4.16), представима в виде

uh(x) =
∑

ai∈γh/γ∗
h

ui1(φ
g
i1(x)− tgα(ai)φ

g
i2(x)) +

∑
ai∈ωh/γh

uiφ
g
i0(x)+

+
∑

ai∈ω(1)
h /γh

2∑
k=1

uikφ
g
ik(x) +

∑
ai∈γh/γ∗

h

gτ(ai)(cosα(ai))
−1φg

i2(x)+

+
∑
ai∈γ∗

h

2∑
k=1

∂u(ai)

∂xk
φg
ik(x) +

∑
ai∈γh

u(ai)φ
g
i0(x). (4.17)

Параметры ui, ui1, ui2 подлежат определению из системы линейных
алгебраических уравнений, порождаемой тождеством (4.14).

Теорема 6. Пусть выполнены условия теоремы 1, с. 64. Тогда
задача (4.14), (4.15) имеет единственное решение.

Доказательство. Как показано на с. 144, функция uh ∈ Vh,
удовлетворяющая однородным граничным условиям (4.15), принад-
лежит V 0

h ⊂ H1
0 . Поэтому в однородном тождестве, соответствующем

(4.14), можно положить vh = uh, откуда вследствие положительной
определенности квадратичной формы a(·, ·) на пространстве H1

0 по-
лучаем, что uh = 0, т. е. однородная задача (4.14), (4.15) может иметь
только тривиальное решение. �

Теорема 7. Пусть выполнены условия теоремы 1, c. 64, триан-
гуляция, использованная при построении пространства, Vh регуляр-
на, решение задачи (4.1), (4.2) принадлежит пространству H l(Ω),
l = 3, 4. Тогда

∥u− uh∥1,Ω 6 chl−1∥u∥l,Ω.
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Доказательство проводится вполне аналогично доказательству
теоремы 5 с последующим использованием оценки погрешности ин-
терполирования, полученной в теореме 4, c. 151. Отметим, что усло-
вие l > 3 вызвано тем, что в число узловых параметров в рассматри-
ваемом случае входят значения производных в угловых точках эле-
ментов, а это значит, что оператор интерполирования определен лишь
на функциях из C1.

3. Третья краевая задача. Рассмотрим третью краевую за-
дачу для эллиптического уравнения второго порядка как задачу об
отыскании функции u ∈ H1(Ω), удовлетворяющей интегральному
тождеству

a(u, v) =

∫
Ω

(A∇u · ∇η + a∇uη + a0uη) dx+

∫
Γ

σuη dx =

=

∫
Ω

fη dx+

∫
Γ

gη dx ∀η ∈ H1(Ω). (4.18)

Предположим выполненными условия теоремы 2, c. 66, обеспе-
чивающие ограниченность и положительную определенность квадра-
тичной формы a(·, ·).

Построение и исследование метода конечных элементов в рас-
сматриваемом случае выполняется проще, чем для задачи Дирих-
ле. Оно целиком укладывается в схему метода Галеркина. Для опре-
деленности остановимся на использовании конечноэлементного про-
странства Vh лагранжевых треугольных, вообще говоря, криволиней-
ных элементов.

Функцию uh ∈ Vh назовем приближенным решением третьей кра-
евой задачи, если она удовлетворяет интегральному тождеству

a(uh, vh) =

∫
Ω

fvh dx+

∫
Γ

gvh dx ∀vh ∈ Vh.

Представляя функции uh, vh в виде разложений по базисным
функциям Лагранжа пространства Vh:

uh(x) =
N∑
j=1

yjφj(x), vh(x) =
N∑
j=1

vjφj(x), yj = uh(xj), vj = vh(xj),

получим систему линейных алгебраических уравнений для отыскания
вектора y = (y1, y2, . . . , yN):

Ay = F. (4.19)
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Элементы матрицы A и вектора F определяются соотношениями:

Aij = a(φi, φj), i, j = 1, . . . , N,

Fi =

∫
Ω

fφi(x) dx+

∫
Γ

gφi(x) dx, i = 1, . . . , N.

Способы фактического построения системы уравнений (4.19) об-
суждаются в §2 приложения.

Однозначная разрешимость системы (4.19) обеспечивается поло-
жительной определенностью формы a(·, ·). Из леммы Сеа (см. с. 25)
вытекает оценка погрешности приближенного решения:

∥u− uh∥1,Ω 6 c∥u− vh∥1,Ω ∀vh ∈ Vh,

откуда согласно теореме 6, c. 154, следует, что если триангуляция об-
ласти Ω является (l+1)-регулярнoй, P̂ ⊇ Pm, m > 1, точное решение
задачи (4.18) принадлежит пространству H l+1(Ω), 1 6 l 6 m, то

∥u− uh∥1,Ω 6 chl∥u∥l+1,Ω.

§ 2. Схемы с точной аппроксимацией границы для
уравнений четвертого порядка

В этом параграфе будет построен и исследован метод конечных
элементов решения первой краевой задачи для эллиптических урав-
нений четвертого порядка:

2∑
i,j,k,l=1

∂2

∂xi∂xj

(
aijkl

∂2u

∂xk∂xl

)
−

2∑
i,j=1

∂

∂xi
aij

∂u

∂xj
+

+
2∑

i=1

ai
∂u

∂xi
+ a0u = f(x), x ∈ Ω, (4.20)

u(x) = g1(x),
∂u

∂ν
= g2(x), x ∈ Γ. (4.21)

Будем предполагать, что f ∈ L2(Ω), функции g1(x), g2(x) допус-
кают продолжение в H2(Ω) и H1(Ω) соответственно, коэффициен-
ты уравнения удовлетворяют условиям, обеспечивающим ограничен-
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ность и положительную определенность квадратичной формы

a(u, u) =

∫
Ω

( 2∑
i,j,k,l=1

aijkl
∂2u

∂xi∂xj

∂2u

∂xk∂xl
+

2∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
+

+
2∑

i=1

ai
∂u

∂xi
u+ a0u

2
)
dx

на пространстве H2
0(Ω)×H2

0(Ω) (см. с. 74). Можно показать, что при
этих условиях задача (4.20), (4.21) имеет единственное обобщенное
решение из пространства H2(Ω).

При построении метода конечных элементов, как и в случае урав-
нений второго порядка при использовании эрмитовых элементов, на
граничные функции g1, g2 будут налагаться некоторые дополнитель-
ные требования гладкости.

Будем рассматривать два случая — схемы, построенные на основе
прямоугольных бикубических элементов, и схемы с использованием
треугольных элементов Белла.

1. Прямоугольные бикубические элементы. Пусть об-
ласть Ω составлена из прямоугольников, решение задачи (4.20), (4.21)
дважды непрерывно дифференцируемо в замыкании области Ω. То-
гда функции g1, g2 непрерывны на Γ и непрерывно дифференцируемы
на каждой прямой, образующей границу области Ω, причем произ-
водная функции g2 вдоль Γ непрерывна в угловых точках области Ω,
а функция g2 дважды непрерывно дифференцируема вдоль каждой
прямой, образующей Γ.

Введем в рассмотрение пространство Vh, образованное семейством
афинно-эквивалентных прямоугольных бикубических элементов (см.
с. 141), а также его подпространство V 0

h ⊂ H2
0 (см. с. 146):

V 0
h = {vh ∈ Vh : vh(x) = ∂τvh(x) = ∂νvh(x) = ∂ντvh(x) = 0, x ∈ γh}.

Под приближенным решением задачи (4.20), (4.21) будем пони-
мать функцию uh ∈ Vh, удовлетворяющую интегральному тождеству

a(uh, vh) =

∫
Ω

fvhdx ∀vh ∈ V 0
h (4.22)

и граничным условиям

uh(x) = g1(x), ∂τuh(x) = g1τ(x), ∂νuh(x) = g2(x),

∂ντuh(x) = g2τ(x), x ∈ γh. (4.23)
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Граничные условия (4.23) определяют все узловые параметры
функции uh в узлах, принадлежащих γh.

Теорема 1. Пусть выполнены условия положительной опреде-
ленности билинейной формы a(·, ·) на пространстве H2

0(Ω)×H2
0(Ω).

Тогда задача (4.22), (4.23) имеет единственное решение при любых
f , g1, g2.

Доказательство вполне аналогично доказательству теоремы 1 и
использует тот факт, что функция uh ∈ Vh, удовлетворяющая одно-
родным граничным условиям (4.23), принадлежит пространству V 0

h .
Аналогично теореме 5, с. 161, доказывается
Теорема 2. Пусть выполнены условия положительной опре-

деленности билинейной формы a(·, ·), u — решение задачи (4.20),
(4.21), uh — решение задачи (4.22), (4.23), uI ∈ Vh — интерполянт
функции u. Тогда

∥u− uh∥2,Ω 6 c∥u− uI∥2,Ω.

Используя теперь оценку погрешности интерполяции из теоре-
мы 4, c. 151, получим

Следствие 1. Пусть u ∈ H4(Ω), триангуляция области Ω ре-
гулярна. Тогда

∥u− uh∥2,Ω 6 ch2∥u∥4,Ω. (4.24)

Замечание 1. Условие принадлежности точного решения задачи пространству
H4(Ω) при получении оценки (4.24) необходимо, поскольку в число узловых параметров,
определяющих интерполянт функции u, в данном случае входят ее вторые производ-
ные.

2. Треугольные элементы Белла. Предположим, что об-
ласть Ω — многоугольник. Под пространством Vh будем теперь пони-
мать пространство, образованное семейством афинно-эквивалентных
элементов Белла, соответствующим некоторой регулярной триангу-
ляции области Ω (см. с. 140). Через V 0

h ⊂ Vh обозначим подпростран-
ство (см. с. 146), состоящее из функций, удовлетворяющих граничным
условиям:

vh(x) = ∂τvh(x) = ∂νvh(x) = ∂ττvh(x) = ∂ντvh(x) = 0, x ∈ γh/γ
∗
h,

vh(x) = 0, Dvh(x)h1 = 0, Dvh(x)h2 = 0,

D2vh(x)h
2
1 = 0, D2vh(x)h

2
2 = 0, D2vh(x)h1h2 = 0, x ∈ γ∗h, (4.25)

где h1, h2 — векторы, совпадающие по длине и направлению со сто-
ронами элемента, пересекающимися в точке x ∈ γ∗h.
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Ясно, что если u — решение задачи (4.20), (4.21), то значения

u(x), Du(x)h1, Du(x)h1, D
2u(x)h21, D

2u(x)h22, D
2u(x)h1h2

в любой точке x ∈ γ∗h и для любой пары векторов h1, h2 выражаются
через значения функций g1, g2 и их производных не выше второго
порядка вдоль сторон многоугольника Ω, пересекающихся в точке x.

Под приближенным решением задачи (4.20), (4.21) будем пони-
мать функцию uh ∈ Vh, удовлетворяющую интегральному тождеству

a(uh, vh) =

∫
Ω

fvhdx ∀vh ∈ V 0
h

и граничным условиям

uh(x) = g1(x), ∂τuh(x) = g1τ(x), ∂νuh(x) = g2(x), ∂ττuh(x) = g1ττ(x),

∂ντuh(x) = g2τ(x), x ∈ γh/γ
∗
h,

uh(x) = u(x), Duh(x)h1 = Du(x)h1, Duh(x)h2 = Du(x)h2,

D2uh(x)h
2
1 = Du(x)h21, D

2uh(x)h
2
2 = Du(x)h22,

D2uh(x)h1h2 = Du(x)h1h2, x ∈ γ∗h.

Здесь векторы h1, h2 имеют тот же смысл, что и в равенствах (4.25).
Задача.

Построить представление функции uh, аналогичное представлению (4.17) на с. 162.

Исследование разрешимости и получение оценки точности проте-
кает здесь по той же схеме, что и при использовании прямоугольных
бикубических элементов. Если u ∈ Hs, s = 4, 5, то вследствие вклю-
чения P̂ ⊃ P4 справедлива оценка: ∥u− uh∥2,Ω 6 chs−2∥u∥s,Ω.

§ 3. Дополнительные замечания

1. Сходимость к обобщенному решению. Приближенные
решения, построенные при помощи методов, рассмотренных в преды-
дущих параграфах настоящей главы, обладают свойством сходимости
к соответствующим обобщенным решениям без каких-либо дополни-
тельных предположений об их гладкости. Докажем это утверждение
для однородной задачи Дирихле (4.1), (4.2), т. е. при g = 0, приме-
нительно к методу с лагранжевыми треугольными криволинейными,
вообще говоря, элементами (см. с. 157). Мы предполагаем, что ис-
пользуется 2-регулярная триангуляция, P̂ = Pl, l > 1. Поскольку в



168 Глава 4. Метод конечных элементов для эллиптических уравнений

данном случае метод конечных элементов совпадает с методом Га-
леркина, достаточно установить, что семейство подпространств V 0

h
предельно полно в пространстве H1

0 . Иными словами, нужно пока-
зать, что для любой функции u ∈ H1

0 существует последовательность
функций vh ∈ V 0

h , h→ 0, такая, что lim
h→0

∥u−vh∥1,Ω → 0. По определе-

нию пространства H1
0(Ω) для любого ε > 0 можно указать функцию

v ∈ C∞
0 (Ω) такую, что ∥u−v∥1,Ω 6 ε/2. Положим vh = vI , где vI ∈ Vh

есть Vh-интерполянт функции v. Применяя полученные ранее оценки
погрешности интерполяции (см. теорему 4, с. 151), будем иметь, что
∥v − vh∥1,Ω 6 h∥v∥2,Ω, причем ∥v − vh∥1,Ω 6 ε/2, если h достаточно
мало, т. е. ∥u − vh∥1,Ω 6 ε и сходимость метода конечных элементов
доказана.

2. Оценки погрешности метода конечных элементов в
слабых нормах. В предыдущих параграфах настоящей главы бы-
ли получены оценки погрешности метода конечных элементов в энер-
гетических нормах, а именно, в норме пространства H1(Ω) для урав-
нений второго порядка и в норме пространства H2(Ω) для уравнений
четвертого порядка. Из них тривиальным образом вытекают оцен-
ки скорости сходимости с тем же порядком относительно h в более
слабых нормах, например, в норме L2(Ω) для уравнений второго по-
рядка.

Эти оценки, однако, не являются оптимальными. Как установлено
в теоремах аппроксимации, в пространстве Vh можно указать элемент,
приближающий решение в соответствующей слабой норме лучше, чем
это гарантируется доказанными нами теоремами о сходимости метода
конечных элементов.

Оказывается, что при некоторых естественных дополнительных
предположениях о гладкости исходных данных задачи можно полу-
чить оценки погрешности решения в слабых нормах того же порядка,
что и оценки погрешности интерполяции.

Мы продемонстрируем это на примере решения однородной зада-
чи Дирихле для уравнения второго порядка в области с достаточно
гладкой границей.

Итак, пусть u ∈ H1
0(Ω) и удовлетворяет интегральному тождеству

a(u, v) = f(v) ∀v ∈ H1
0(Ω), (4.26)

где формы a(·, ·) и f(·) определены соотношениями (4.5), (4.6), с. 158.
Наряду с задачей (4.26) будем рассматривать сопряженную зада-

чу, состоящую в отыскании функции u∗ ∈ H1
0(Ω), удовлетворяющей
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интегральному тождеству

a(v, u∗) = f(v) ∀v ∈ H1
0(Ω). (4.27)

Будем говорить, что задача (4.27) регулярна, если она однозначно
разрешима при любой правой части f ∈ L2(Ω), причем u∗ ∈ H2(Ω) и
справедлива оценка ∥u∗∥2,Ω 6 c∥f∥0,Ω.

Замечание 1. Тождество (4.27) соответствует обобщенной постановке однород-
ной задачи Дирихле для эллиптического уравнения с оператором, сопряженным опе-
ратору, порождаемому билинейной формой a(·, ·):

−
2∑

i,j=1

∂

∂xi

(
aji

∂u

∂xj

)
−

n∑
i=1

∂(aiu)

∂xi
+ a0u = f, x ∈ Ω.

Условия регулярности налагают определенные ограничения на гладкость коэффициен-
тов уравнения и границы области Ω (см. теорему 4, c. 72).

Пусть V 0
h — конечноэлементное пространство, построенное при

помощи лагранжевых треугольных элементов (приграничные элемен-
ты, вообще говоря, криволинейны). Пусть далее uh — приближенное
решение задачи (4.26), т. е. uh ∈ V 0

h и

a(uh, vh) = f(vh) ∀vh ∈ V 0
h . (4.28)

Теорема 1. Пусть выполнены условия теоремы 1, с. 64. Зада-
ча (4.27) регулярна, триангуляция, использованная при построении
пространства Vh, является 1-регулярной, P̂ ⊃ P1. Тогда для разно-
сти решений задач (4.26) и (4.28) справедлива оценка:

∥u− uh∥0,Ω 6 ch∥u− uh∥1,Ω. (4.29)

Доказательство. Поскольку u − uh ∈ L2(Ω), можно опреде-
лить функцию u∗ ∈ H1

0 как решение задачи

a(v, u∗) = (u− uh, v)0,Ω ≡
∫
Ω

(u− uh)v dx ∀v ∈ H1
0 . (4.30)

Вследствие регулярности этой задачи имеем

∥u∗∥2,Ω 6 c∥u− uh∥0,Ω. (4.31)

Полагая v = u− uh в равенстве (4.30), получим

a(u− uh, u
∗) = ∥u− uh∥20,Ω.

Заметим теперь, что

a(u− uh, u
∗) = a(u− uh, u

∗ − vh) ∀vh ∈ V 0
h ,
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следовательно,

∥u− uh∥20,Ω 6 c∥u− uh∥1,Ω∥u∗ − vh∥1,Ω.

Выбирая в качестве vh интерполянт функции u∗ и используя оценки
погрешности из теоремы 6, c. 154, получим:

∥u− uh∥20,Ω 6 ch∥u− uh∥1,Ω∥u∗∥2,Ω,

откуда вследствие неравенства (4.31) вытекает (4.29). �
Следствие 1. Предположим дополнительно к условиям теоре-

мы 1, что триангуляция (m+ 1)-регулярна, P̂ ⊃ Pm, u ∈ Hm+1(Ω),
m > 1. Тогда

∥u− uh∥0,Ω 6 chm+1∥u∥m+1,Ω. (4.32)

Оценка (4.32) согласуется с полученной ранее оценкой погрешно-
сти интерполяции в норме пространства L2(Ω).

3. Об асимптотической неулучшаемости оценок погреш-
ности метода конечных элементов. Оценки точности метода
конечных элементов, полученные в настоящем параграфе, асимптоти-
чески неулучшаемы на классе задач, в том смысле, что можно указать
такие коэффициенты, правые части рассматриваемого уравнения и
граничных условий, что для погрешности приближенного решения
справедлива оценка снизу того же порядка.

Проведем доказательство этого утверждения применительно к за-
даче Дирихле для эллиптического уравнения второго порядка. При
этом будет использована следующая элементарная

Лемма 1. Пусть Ω — ограниченная область в простран-
стве Rn, pk+1 ∈ Pk+1 и pk+1 /∈ Pk. Тогда

inf
qk∈Pk

∥pk+1 − qk∥L2(Ω) = c0 > 0.

Доказательство. Множество всех полиномов Pk степени не
выше k по совокупности переменных — линейное замкнутое подпро-
странство пространства L2(Ω), поэтому существует полином q0k ∈ Pk

такой, что
inf

qk∈Pk

∥pk+1 − qk∥L2(Ω) = ∥pk+1 − q0k∥L2(Ω).

Ясно, что ∥pk+1 − q0k∥L2(Ω) ̸= 0, иначе pk+1 = q0k ∈ Pk. �
Теорема 2. Пусть Ω — многоугольник в R2, Vh — простран-

ство аффинно-эквивалентных треугольных лагранжевых конечных
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элементов, построенное с использованием регулярной триангуля-
ции области Ω, P̂ = Pm, m > 1. Тогда существует f ∈ C∞

0 (Ω)
такая, что для обобщенного решения задачи Дирихле

−∆u = f, x ∈ Ω, (4.33)
u(x) = 0, x ∈ Γ, (4.34)

для всех достаточно малых h справедливы оценки

c1h
m 6 |u− uh|1,Ω 6 c2h

m.

Здесь uh — приближенное решение по методу конечных элементов,
т. е. uh ∈ V 0

h и ∫
Ω

∇uh · ∇vhdx =

∫
Ω

fvh ∀ vh ∈ V 0
h .

Доказательство. Пусть BR — круг радиуса R > 0 такой,
что B̄R ⊂ Ω. Фиксируем функцию φ ∈ C∞

0 (Ω) такую, что φ(x) =
1, x ∈ BR. Положим u(x) = xm+1

1 φ(x) ∈ C∞
0 (Ω). Ясно, что u —

обобщенное решение задачи (4.33), (4.34) при f(x) = −∆(xm+1
1 φ(x)) ∈

C∞
0 (Ω). В рассматриваемом случае метод конечных элементов можно

трактовать как метод Ритца, поэтому

|u− uh|1,Ω = inf
vh∈V 0

h

|u− vh|1,Ω,

и оценка сверху для |u−uh|1,Ω следует из теоремы 3, c. 160, в которой
можно выбрать максимально возможное l = m.

Получим оценку снизу. Рассмотрим произвольный треугольник
e ∈ Th, принадлежащий BR. При достаточно малом h вследствие ре-
гулярности триангуляции множество таких треугольников не пусто.
Более того, можно считать, что mes

( ∪
e∈BR

e
)

ограничена снизу посто-

янной, не зависящей от h. Для любой функции vh ∈ V 0
h

|u− vh|21,e =
∫
e

(
(m+ 1)xm1 − ∂vh

∂x1

)2
dx ≡ Ie.

Выполним в интеграле Ie замену переменных, полагая x1 = ae1 + t1h,
x2 = ae2 + t2h, где ae1, ae2 — координаты центра окружности, вписан-
ной в треугольник e. При такой замене переменных треугольник e
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переходит в подобный треугольник ẽ, центр вписанной окружности
которого лежит в начале координат плоскости t1t2, причем

Ie = h2m+2

∫
ẽ

((m+ 1)tm1 − qm−1(t))
2dt,

где qm−1 — полином степени не выше m−1 по совокупности перемен-
ных. Вследствие регулярности триангуляции, очевидно, существует
r0 > 0, не зависящее от h и выбора треугольника e ∈ Th такое, что
круг Br0(0) радиуса r0 с центром в начале координат принадлежит ẽ.
Отсюда и из леммы 1 вытекает, что

Ie > h2m+2

∫
Br0

(0)

((m+ 1)tm1 − qm−1(t))
2dt > ch2m+2.

Вновь используя регулярность триангуляции, можем написать, что
mes(e) 6 c h2 ∀e ∈ Th, поэтому

|u− vh|21,Ω > ch2m
∑
e⊂BR

h2 > c h2m
∑
e⊂BR

mes(e) > c h2m. �

4. О методе конечных элементов для систем уравнений.
Остановимся вкратце на построении и исследовании схем метода ко-
нечных элементов для двумерных задачи теории упругости (см. с. 71).
Будем рассматривать однородную первую краевую задачу, состоя-
щую в отыскании вектор-функции u = (u1, u2) ∈ V = H1

0(Ω)×H1
0(Ω),

удовлетворяющей интегральному тождеству

a(u, v) = f(v) ∀v ∈ V, (4.35)

где

a(u, v) =

∫
Ω

2∑
i,j=1

σij(u)εij (η) dx, σij = σij(u) =
2∑

k,l=1

aijklεkl,

εij = εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2, f = (f1, f2) ∈ (L2(Ω))

2.

Относительно элементов aijkl матрицы Гука предполагаются вы-
полненными условия симметрии и положительной определенности,
так что и билинейная форма a(·, ·) оказывается симметричной и по-
ложительно определенной.
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Введем в рассмотрение пространство V0
h = V 0

h × V 0
h , где V 0

h —
какая-либо из рассмотренных ранее конечноэлементных аппрокси-
маций пространства H1

0 , и определим приближенное решение зада-
чи (4.35) как вектор-функцию uh ∈ V0

h, удовлетворяющую интеграль-
ному тождеству

a(uh, vh) = f(vh) ∀vh ∈ V0
h. (4.36)

Вследствие симметрии и положительной определенности били-
нейной формы a(·, ·) задача (4.36) имеет единственное решение при
любой правой части f ∈ (L2(Ω))

2. При этом

∥u− uh∥V 6 c∥u− vh∥V ∀vh ∈ Vh,

откуда вытекают оценки точности, такие же, как для эллиптических
уравнений второго порядка (см. §1).

Замечание 2. При построении метода конечных элементов для системы урав-
нений теории упругости можно было бы использовать пространство V0

h = V 0
h,1 × V 0

h,2,
где V 0

h,1, V 0
h,2 — различные конечноэлементные аппроксимации пространства H0

1 . Та-
кой подход редко используется при решении задач теории упругости, однако является
типичным при решении многих систем уравнений механики сплошной среды, напри-
мер, уравнений теории вязкой жидкости, теории пластин и оболочек, где различные
компоненты искомого решения по самой постановке задачи принадлежат различным
функциональным пространствам.

5. О точности аппроксимации области. Рассмотрим одно-
родную задачу Дирихле для уравнения Пуассона в произвольной об-
ласти Ω с границей Γ ∈ C∞. Обобщенная формулировка этой задачи
имеет вид

u ∈ V 0 ≡ H1
0(Ω) :

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx ∀v ∈ V 0. (4.37)

Схемы МКЭ на основе криволинейных элементов для решения
этой задачи были изучены нами в предыдущем параграфе. Учи-
тывая бо́льшую сложность криволинейных элементов по сравнению
с элементами с прямолинейными сторонами, естественно поставить
вопрос: нельзя ли использовать аффинно-эквивалентные элементы
для решения этой задачи? Ответим на этот вопрос, предполагая,
для упрощения рассуждений, что область Ω является выпуклой,
f ∈ C∞(Ω) и, следовательно, u ∈ C∞(Ω).

Пусть Th — регулярная триангуляция Ω. Будем предполагать, что
все элементы Th — треугольники с прямолинейными сторонами,

Ωh =
∪
e∈Th

e ⊂ Ω,
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Рис. 1. Аппроксимация Ω многоугольной областью Ωh: mes(Ω\Ωh) = O(h2).

Γh = ∂Ωh, все вершины треугольников, принадлежащие Γh, лежат
на Γ (см. рис. 1, соответствующий случаю m = 2). Пусть далее
Vh ⊂ H1(Ωh) — пространство аффинно-эквивалентных лагранжевых
треугольных конечных элементов степени m > 1, V 0

h ⊂ H1
0(Ωh) —

подпространство Vh. Схему МКЭ определим тождеством

uh ∈ V 0
h :

∫
Ωh

∇uh · ∇vh dx =

∫
Ωh

fvh dx ∀ vh ∈ V 0
h . (4.38)

Лемма 2. Если u — решение задачи (4.37), uh — решение зада-
чи (4.38), то

|u− uh|1,Ωh
= inf

vh∈V 0
h

|u− vh|1,Ωh
. (4.39)

Доказательство. Продолжим функции из V 0
h нулем в пригра-

ничную полосу Ω\Ωh, т. е. введем в рассмотрение пространство

Ṽ 0
h = {ṽh : ṽh = vh ∈ V 0

h на Ωh, ṽh ≡ 0 на Ω\Ωh}.

Очевидно, что Ṽ 0
h ⊂ V 0, а схема МКЭ (4.38) эквивалентна задаче

ũh ∈ Ṽ 0
h :

∫
Ω

∇ũh · ∇vh dx =

∫
Ω

fvh dx ∀vh ∈ Ṽ 0
h .

Отсюда следует, что ũh является приближением к u по методу Галер-
кина, или в силу симметрии оператора исходной задачи — по методу
Ритца (см. с. 22). Поэтому

|u− ũh|1,Ω = inf
vh∈Ṽ 0

h

|u− vh|1,Ω,
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откуда непосредственно следует утверждение леммы. �
Лемма 3. Справедлива оценка

|u− uh|1,Ωh
6 c h3/2. (4.40)

Доказательство. Пусть uI есть Vh-интерполянт решения u.
Поскольку u = 0 на Γh только в вершинах элементов, то uI не при-
надлежит, вообще говоря, V 0

h и мы не можем из (4.39) получить нера-
венство |u− uh|1,Ωh

6 |u− uI |1,Ωh
и непосредственно воспользоваться

оценкой погрешности интерполяции. Поэтому поступим следующим
образом.

Обозначим через γh множество всех узлов интерполяции, лежа-
щих на Γh, а через ω0

h — множество всех остальных узлов. Имеем
uI(x) = ūI + ũI , где

ūI =
∑
ai∈ω0

h

u(ai)φi(x), ũI =
∑
ai∈γh

u(ai)φi(x).

По определению ūI ∈ V 0
h . Носитель ũI (обозначим его через ΩΓ) со-

стоит из объединения O(1/h) тех приграничных элементов, которые
имеют сторону, принадлежащую Γh. Из (4.39) следует, что

|u− uh|1,Ωh
6 |u− ūI |1,Ωh

6 |u− uI |1,Ωh
+ |uI − ūI |1,Ωh

. (4.41)

Поскольку |u − uI |1,Ωh
6 c hm|u|m+1,Ωh

, то остается оценить второе
слагаемое в правой части (4.41). Имеем

|uI − ūI |21,Ωh
= |ũI |21,Ωh

=
∑
e∈ΩΓ

∫
e

∣∣ ∑
ai∈γh∩e

u(ai)∇φi

∣∣2dx 6

6 (m− 1)max
ai∈γh

|u(ai)|2
∑
e∈ΩΓ

∑
ai∈γh∩e

∫
e

|∇φi|2dx 6 c

h
max
ai∈γh

|u(ai)|2.

(4.42)

Здесь мы учли оценку
∫
e

|∇φi|2dx 6 c, которая легко устанавливает-

ся переходом на базисный элемент. Обозначим через xi ∈ Γ точку,
ближайшую к ai ∈ γh. Учитывая, что |ai − xi| = O(h2), получим

|u(ai)| =
∣∣∣ 1∫
0

Du
(
xi + t(ai − xi)

)
(ai − xi) dt

∣∣∣ 6 c h2max
x∈Ω

|∇u(x)| 6 c h2.
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Подставляя эту оценку в (4.42) и используя затем (4.41), получим
оценку (4.40). �

Оценка (4.40) неулучшаема по порядку h. Не останавливаясь на
доказательстве этого факта, отметим, что отсюда следует нецелесооб-
разность использования в случае произвольной области аффинно-эк-
вивалентных элементов степени m > 3. В следующих параграфах
мы покажем, что схемы, построенные на основе изопараметрических
элементов, являются наиболее подходящими в этой ситуации: они су-
щественно проще схем, использующих криволинейные элементы, при
той же оценке точности. Одновременно мы проанализируем влияние
численного интегрирования на точность схем метода конечных эле-
ментов.

§ 4. Численное интегрирование в методе конечных
элементов. Общие построения

В §1 мы рассмотрели различные схемы МКЭ для эллиптического
уравнения второго порядка. Каждая из схем в конечном итоге сво-
дила исходную задачу к решению системы линейных алгебраических
уравнений. При этом мы предполагали, что элементы матрицы систе-
мы, определяемые формулами

Akl = a(φl, φk) ≡
∫
Ωh

( 2∑
i,j=1

aij
∂φl

∂xj

∂φk

∂xi
+

2∑
i=1

ai
∂φl

∂xi
φk + a0φlφk

)
dx,

а также компоненты вектора правой части

Fl = f(φl) ≡
∫
Ωh

fφl dx

вычисляются точно. Это требование трудно выполнить, даже если
функции aij, ai и f постоянны.

Поясним сказанное подробнее. Положим, как и ранее,A= {aij}2i,j=1

и пусть ai ≡ 0, i = 0, 1, 2. Введем для сокращения записей обозна-
чения: p = φl, q = φk, и будем считать, что область Ω не является
многоугольником. Тогда Akl является суммой интегралов

Ie =

∫
e

A∇p · ∇q dx

по всем e ∈ Th. Среди элементов e ∈ Th обязательно найдется криво-
линейный (или изопараметрический) элемент. Пусть для определен-
ности e — треугольный изопараметрический элемент степени m.
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О функциях p и q нам известно лишь следующее: p(x)=p̂(x−1
e (x)),

q(x) = q̂(x−1
e (x)), p̂ , q̂ ∈ Pm, где p̂, q̂ — базисные функции эле-

мента ê. Обратим внимание на то, что хотя мы имеем явные вы-
ражения для p̂, q̂, нам не известно в явном виде обратное отобра-
жение x̂ = x−1

e (x), следовательно, мы не имеем явных формул для
вычисления функций p и q.

Выходом из создавшегося положения является замена перемен-
ных x = xe(x̂) в интеграле Ie. Пусть x = xe(x̂) = (x1(x̂), x2(x̂))

T —
преобразование ê на e, Je(x̂) = Dxe(x̂) — матрица Якоби, J−T

e (x̂) =(
J−1
e (x̂)

)T . Отметим, что

J−1
e (x̂) =

1

det(Je(x̂))

 ∂x2(x̂)

∂x̂2
−∂x1(x̂)

∂x̂2

−∂x2(x̂)
∂x̂1

∂x1(x̂)

∂x̂1

 .

Будем предполагать, что det(Je(x̂)) > 0 для всех x̂ ∈ ê. При замене
переменных выполняются следующие преобразования

e→ ê, dx = det(Je(x̂)) dx̂, A(x) = Â(x̂),

∇p = J−T
e (x̂)∇̂p̂, ∇̂p̂ =

( ∂p̂
∂x̂1

,
∂p̂

∂x̂2

)T
.

Таким образом,

Ie =

∫
ê

det(Je(x̂)) Â J
−T
e (x̂)∇̂p̂ · J−T

e (x̂)∇̂q̂ dx̂. (4.43)

Нетрудно заметить, что под интегралом в равенстве (4.43) стоит сум-
ма слагаемых вида

b̂(x̂)
∂p̂

∂x̂i

∂q̂

∂x̂j
, b̂(x̂) =

1

det(Je(x̂))

∂xα(x̂)

∂x̂k

∂xβ(x̂)

∂x̂l
âst .

Например, при постоянных коэффициентах aij имеем

b̂(x̂) =
полином степени 2m− 2

полином степени 2m− 2
,

∂p̂

∂x̂i

∂q̂

∂x̂j
∈ P2m−2.

Таким образом, задача вычисления элементов матрицы систе-
мы МКЭ в рассматриваемой ситуации сводится к интегрированию
дробно-рациональных функций по треугольной области.

Ясно, что в случае переменных коэффициентов aij и использова-
ния криволинейных элементов эта задача может быть решена только
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приближенно, с использованием формул численного интегрирования,
называемых квадратурными (кубатурными) формулами.

Опишем общую схему применения квадратурных формул в МКЭ.
Для приближенного вычисления интеграла Ie определим сначала
некоторую квадратурную формулу на базисном элементе ê:∫

ê

ϕ̂(x̂) dx̂ ≈
L∑
l=1

ĉl ϕ̂(b̂l) ≡ Ŝ(ϕ̂). (4.44)

Числа ĉl и точки b̂l ∈ ê называются соответственно коэффициентами
и узлами квадратурной формулы Ŝ. Преобразованием переменных
x = xe(x̂) по этой формуле нетрудно определить квадратуру Se для
произвольного элемента e ∈ Th. Действительно,∫

e

ϕ(x) dx =

∫
ê

det(Je(x̂))ϕ(xe(x̂)) dx̂ ≈

≈
L∑
l=1

ĉl det(Je(b̂l))ϕ(xe(b̂l)) =
L∑
l=1

cel ϕ(b
e
l ) ≡ Se(ϕ),

где cel = det(Je(b̂l)) ĉl, bel = xe(b̂l). Отметим, что если ϕ̂(x̂) = ϕ(xe(x̂)),
то

Se(ϕ) = Ŝ(det(Je)ϕ̂). (4.45)
Таким образом,

Ie ≈ Se

(
A∇p · ∇q

)
,

или, после перехода на базисный элемент,

Ie ≈ Ŝ
(
det(Je) ÂJ

−T
e ∇̂p̂ · J−T

e ∇̂q̂
)
=

=
L∑
l=1

ĉl det(Je(b̂l))
(
ÂJ−T

e ∇̂p̂ · J−T
e ∇̂q̂

)
(b̂l).

Полученная приближенная формула легко реализуется: все, что необ-
ходимо для этого при заданной квадратуре Ŝ, это уметь вычис-
лять xe(x̂) и Je(x̂) в узлах квадратуры x̂ = b̂l. Последнее в методе
конечных элементов всегда гарантируется.

В результате вычислений элементов матрицы и правой части си-
стемы алгебраических уравнений МКЭ по приближенным формулам
мы приходим к системе уравнений, отличной от системы уравнений
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МКЭ. Таким образом, использование квадратурных формул приво-
дит к новым конечномерным задачам. Эти задачи мы будем называть
схемами МКЭ с численным интегрированием.

При использовании численного интегрирования в МКЭ квадра-
турные формулы естественно выбирать так, чтобы:

1) сохранялись условия разрешимости исходной задачи; напри-
мер, если исходная задача была однозначно разрешима, то схе-
ма с численным интегрированием также должна быть однознач-
но разрешима; если исходная задача имела множество решений ви-
да const+ u(x), с единственным u(x) (как в случае задачи Неймана),
то аналогичное множество решений должна иметь и схема с числен-
ным интегрированием и т.д.;

2) сохранялся порядок оценки точности, которым обладала схе-
ма МКЭ.

Мы будем рассматривать только случай однозначно разрешимых
схем и исследуем вначале обозначенные проблемы для схем МКЭ с
аффинно-эквивалентными элементами, а затем приведем обобщение
на криволинейные и изопараметрические элементы. В последнем слу-
чае дополнительную трудность составляет аппроксимация границы
области. Во всех случаях будем стремиться трактовать изучаемые
схемы как возмущенный метод Галеркина и для оценки их точно-
сти использовать лемму Стренга (см. с. 27). Будем разделять также
исследование схем с треугольными и четырехугольными элементами:
изложение материала при исследовании схем с треугольными элемен-
тами будет проведено достаточно подробно, в случае четырехуголь-
ных элементов рассуждения могут быть проведены по аналогии и
потому более кратко.

При обсуждении основных вопросов, возникающих при использо-
вании квадратурных формул в методе конечных элементов, ограни-
чимся рассмотрением следующей двумерной задачи Дирихле:

−
2∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
= f(x), x ∈ Ω,

u = 0, x ∈ Γ.

Будем предполагать, что функции aij ∈ L∞(Ω), f ∈ L2(Ω), всюду
определены на Ω̄, и

2∑
i,j=1

aij(x)ξjξi > c|ξ|2 ∀ξ ∈ R2, ∀x ∈ Ω̄. (4.46)
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При указанных условиях существует единственное обобщенное ре-
шение u ∈ H1

0(Ω) этой краевой задачи. Функция u удовлетворяет ин-
тегральному тождеству

a(u, v) ≡
∫
Ω

2∑
i,j=1

aij
∂u

∂xj

∂v

∂xi
dx =

∫
Ω

fv dx ≡ f(v) ∀ v ∈ H1
0(Ω).

(4.47)
При определении пространств конечных элементов и квадратур-

ных формул будем предполагать для заданного m > 1, что:
1) все конечные элементы (e, Pe,Σe) ассоциированы с одним ба-

зисным конечным элементом (ê, P̂ , Σ̂), P̂ ⊇ Pm;
2) семейство триангуляций Th является (m+ 1)-регулярным;
3) все квадратурные формулы Se индуцированы одной квадра-

турной формулой Ŝ на базисном элементе.

§ 5. Схемы с численным интегрированием для
многоугольных областей

1. Аффинно-эквивалентные треугольные элементы. Рас-
смотрим случай многоугольной области Ω. Построим конечноэле-
ментную схему, используя лагранжевы или эрмитовы аффинно-эк-
вивалентные треугольные элементы.

Пусть Th — точная регулярная триангуляция области Ω̄, т. е.∪
{e, e ∈ Th} = Ω̄, h — максимальный из диаметров элементов e ∈ Th.

Пусть, далее, (ê, P̂ , Σ̂), P̂ = Pm, — некоторый базисный треугольный
элемент класса C0 или C1 и Eh = {(e, Pe,Σe), e ∈ Th} — семей-
ство ассоциированных с ним треугольных аффинно-эквивалентных
элементов, x = xe(x̂) = Bex̂ + be — аффинное отображение ê на e,
причем det(Be) > 0. Предположение det(Be) > 0 означает, что вы-
брана подходящая нумерация вершин e при определении отображе-
ния xe. Регулярность триангуляции обеспечивает выполнение оценок
∥Be∥ ≤ ch, ∥B−1

e ∥ ≤ ch−1 для всех e ∈ Th.
Пусть Vh ⊂ V = H1

0(Ω) — соответствующее Eh пространство ко-
нечных элементов:

Vh = {vh ∈ C(Ω̄) : vh|e ∈ Pm ∀e ∈ Th, vh(x) = 0, x ∈ Γ}.

Решение схемы МКЭ есть функция uh ∈ Vh такая, что

a(uh, vh) = f(vh) ∀ vh ∈ Vh. (4.48)
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Условия на коэффициенты дифференциального уравнения обеспечи-
вают однозначную разрешимость задачи (4.48).

Выберем некоторую формулу численного интегрирования Ŝ
на базисном конечном элементе ê (см. (4.44), с. 178). Поскольку
det(Dxe)= det(Be), то

Se(ϕ) =
L∑
l=1

cel ϕ(b
e
l ) = det(Be)

L∑
l=1

ĉl ϕ(xe(b̂l)),

где cel = det(Be)ĉl, bel = Beb̂l + be ∈ e, и формула (4.45), с. 178, прини-
мает вид

Se(ϕ) = det(Be)Ŝ(ϕ̂),

где det(Be) = 2mes(e).
Используя квадратуры Se, построим составную квадратурную

формулу 1):∫
Ω

ϕ(x) dx =
∑
e

∫
e

ϕ(x) dx ≈
∑
e

Se(ϕ) ≡ SΩ(ϕ).

Рассмотрим теперь конечноэлементную схему (4.48) и заменим
все входящие в нее интегралы квадратурной формулой SΩ. В итоге
получим схему МКЭ с численным интегрированием:

найти uh ∈ Vh : ah(uh, vh) = fh(vh) ∀ vh ∈ Vh. (4.49)

Здесь

ah(u, v) = SΩ

( 2∑
i,j=1

aij
∂u

∂xj

∂v

∂xi

)
=

=
∑
e

det(Be)
L∑
l=1

ĉl

( 2∑
i,j=1

aij
∂u

∂xj

∂v

∂xi

)
(bel ), (4.50)

fh(v) = SΩ(fv) =
∑
e

det(Be)
L∑
l=1

ĉl(f v)(b
e
l ). (4.51)

Исследуем разрешимость и точность полученной схемы. Для это-
го понадобятся дополнительные понятия и утверждения.

1)Напомним, что
∑
e

означает суммирование по всем e ∈ Th.
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Лемма 1. Пусть A, B — симметричные неотрицатель-
ные матрицы порядка m, a(x, x) = Ax · x, b(x, x) = Bx · x — со-
ответствующие им квадратичные формы;

X = ker(b) = {x ∈ Rm : b(x, x) = 0} ⊆ ker(a).

Тогда существует такая положительная постоянная cab, что
a(x, x) 6 cab b(x, x) ∀x ∈ Rm. (4.52)

Если ker(b) = ker(a), то формы a и b эквивалентны:
cba b(x, x) 6 a(x, x) 6 cab b(x, x) ∀x ∈ Rm. (4.53)

Доказательство. Отметим, прежде всего, что X — подпро-
странство Rm, поэтому для любого x ∈ Rm справедливо представле-
ние x = x0 + x1, где x0 ∈ X, x1 ∈ X⊥ = {x ∈ Rm : x · y = 0 ∀y ∈ X}.
Если x ∈ X, то неравенство a(x, x) 6 cab b(x, x) выполняется триви-
альным образом. Если x /∈ X, то b(x, x) = Bx0·x0+2Bx0·x1+Bx1·x1 =
Bx1 ·x1, точно так же a(x, x) = Ax0 ·x0+2Ax0 ·x1+Ax1 ·x1 = Ax1 ·x1.
Таким образом, a(x, x) 6 ∥A∥|x1|2, b(x, x) > λB|x1|2, где λB —
минимальное ненулевое собственное число матрицы B, и неравен-
ство (4.52) выполнено, причем cab = ∥A∥/λB. Неравенства (4.53) непо-
средственно следуют из (4.52). �

Упражнение 1. Доказать, что множество X, введенное в лемме 1, — подпро-
странство пространства Rm.

Определим функционалы погрешности квадратурных формул:

Ê(ϕ̂) =

∫
ê

ϕ̂(x̂) dx̂− Ŝ(ϕ̂), Ee(ϕ) =

∫
e

ϕ(x) dx− Se(ϕ),

EΩ(ϕ) =

∫
Ω

ϕ(x) dx− SΩ(ϕ) =
∑
e

Ee(ϕ).

Нетрудно видеть, что Ee(ϕ) = det(Be)Ê(ϕ̂).

Будем говорить, что квадратура Ŝ точна на полиномах из Ps,
s > 0, если Ê(ϕ̂) = 0 для любого ϕ̂ ∈ Ps. Легко проверить, что в этом
случае

L∑
l=1

ĉl = mes(ê). (4.54)

Введем обозначения для дискретных аналогов норм | · |0,Ω, | · |1,Ω
в пространстве Vh:

|uh|20,h = SΩ(u
2
h), |uh|21,h = SΩ(|∇uh|2). (4.55)
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Лемма 2. Пусть квадратурная формула Ŝ такова, что
1) ĉl > 0, l = 1, . . . , L;
и выполнено одно из следующих двух условий:
2) множество узлов {b̂l}Ll=1 содержит подмножество, унисоль-

вентное с Pm−1
1),

2 ′) квадратурная формула Ŝ точна на полиномах из P2m−2.
Тогда существуют не зависящие от h положительные посто-

янные c1 и c2 такие, что
c1|uh|1,Ω 6 |uh|1,h 6 c2|uh|1,Ω, (4.56)

|uh|0,h 6 c2|uh|0,Ω (4.57)
для любого uh ∈ Vh.

Доказательство. Установим сначала справедливость оце-
нок (4.56). Для этого достаточно проверить, что для любого конечно-
го элемента e ∈ Th и любой функции uh ∈ Vh справедливы неравен-
ства:

c21

∫
e

|∇uh(x)|2 dx ≤ Se(|∇uh|2) ≤ c22

∫
e

|∇uh(x)|2 dx

с положительными, не зависящими от h постоянными c1, c2.
Выполняя замену переменных x = Bex̂ + be и используя обозна-

чение û(x̂) = uh(Bex̂+ be), получаем (см. (4.43), с. 177):

|∇uh(x)|2 = B−T
e ∇̂û(x̂) ·B−T

e ∇̂û(x̂) = |B−T
e ∇̂û(x̂)|2.

Таким образом,∫
e

|∇uh(x)|2 dx = det(Be)

∫
ê

|B−T
e ∇̂û(x̂)|2 dx̂,

Se(|∇uh|2) = det(Be) Ŝ
(
|B−T

e ∇̂û|2
)
,

и, следовательно, достаточно доказать неравенства

c21

∫
ê

|B−T
e ∇̂û(x̂)|2 dx̂ 6 Ŝ

(
|B−T

e ∇̂û|2
)
6 c22

∫
ê

|B−T
e ∇̂û(x̂)|2 dx̂. (4.58)

Предположим сначала, что существуют не зависящие от h постоян-
ные k1, k2 такие, что

k1

∫
ê

|∇̂û(x̂)|2 dx̂ 6 Ŝ
(
|∇̂û|2

)
6 k2

∫
ê

|∇̂û(x̂)|2 dx̂. (4.59)

1)Предполагается, что множество линейных функционалов вида p(b̂l) отождествляется с мно-
жеством узлов b̂l.
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Тогда, учитывая равенство ∥Be∥ = ∥BT
e ∥ 2) и оценки

∥Be∥ ∥B−1
e ∥ 6 c, |y| = |BT

e B
−T
e y| 6 ∥BT

e ∥ |B−T
e y|,

получим неравенства:∫
ê

|B−T
e ∇̂û(x̂)|2 dx̂ 6 ∥B−T

e ∥2
∫
ê

|∇̂û(x̂)|2 dx̂ 6

6 ∥B−T
e ∥2/k1 Ŝ

(
|∇̂û|2

)
6 c2/k1 Ŝ

(
|B−T

e ∇̂û|2
)
,

т. е. оценку снизу в (4.58) с постоянной c21 = k1/c
2. Аналогично до-

казывается оценка сверху с постоянной c22 = k2 c
2. Поскольку c не

зависит от h, отсюда получаем неравенства (4.56).
Обратимся теперь к доказательству оценок (4.59). Имеем û ∈

P̂=Pm, значит û =
M∑
i=1

ûiφ̂i(x̂), где M = dimPm, ûi = û(âi), φ̂i —

базисные функции Лагранжа. Следовательно,

Î1 =

∫
ê

|∇̂û(x̂)|2 dx̂ =
M∑

i,j=1

âijûiûj, где âij =
∫
ê

∇̂φ̂j · ∇̂φ̂i dx̂,

Î2 = Ŝ
(
|∇̂û|2

)
=

M∑
i,j=1

b̂ijûiûj, где b̂ij = Ŝ
(
∇̂φ̂j · ∇̂φ̂i

)
есть неотрицательные квадратичные формы, причем неотрицатель-
ность Î2 обеспечивается положительностью коэффициентов квадра-
туры Ŝ.

Покажем, что ядра этих квадратичных форм совпадают. Если
Î1 = 0, то û = const, т. е. û1 = · · · = ûM . Вычисляя ядро квадратич-
ной формы Î2, мы должны различать два случая. Если выполнено
условие 2′), то Î2 = Î1, поскольку |∇̂û|2 ∈ P2m−2. Если выполнено
условие 2) то, используя тот факт, что из равенства Î2 нулю вытека-
ет, что ∇̂û(b̂l) = 0, l = 1, 2, . . . , L, а ∂û/∂xk ∈ Pm−1, k = 1, 2, получим,
что ∇̂û ≡ 0, следовательно, как и для квадратичной формы Î1, ядро
определяется уравнениями û1 = · · · = ûM .

Таким образом, вследствие леммы 1 формы Î1 и Î2 эквивалентны.
Постоянные эквивалентности k1, k2 зависят от выбранной квадрату-
ры Ŝ и базисного элемента (ê, P̂ , Σ̂), но не зависят от h, что означает
справедливость неравенств (4.59).

2)Напомним, что ∥B∥2 совпадает с максимальным собственным числом матрицы BTB.
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При доказательстве оценки (4.57) будем рассуждать аналогично.
Из леммы 1 следует, что

Ŝ(û2) 6 c

∫
ê

û2(x̂) dx̂,

с постоянной, не зависящей от h, поскольку квадратичная форма,
определяемая интегралом в правой части последнего неравенства,
имеет тривиальное ядро. Таким образом,

Se(u
2
h) = det(Be)Ŝ(û

2) 6 c det(Be)

∫
ê

û2(x̂) dx̂ = c

∫
e

u2h(x) dx ∀e ∈ Th.

Суммируя эти неравенства по всем e∈Th, получим (4.57). �
Достаточные условия однозначной разрешимости схемы МКЭ с

численным интегрированием очевидным образом вытекают из следу-
ющей теоремы.

Теорема 1. Пусть квадратурная формула Ŝ удовлетворяет
условиям леммы 2. Тогда билинейная форма ah равномерно по h по-
ложительно определена и ограничена на Vh×Vh, линейная форма fh
равномерно непрерывна на Vh, т. е. существуют положительные,
не зависящие от h, постоянные m, M и c такие, что

ah(uh, uh) > m |uh|21,Ω, | ah(uh, vh) | 6M |uh|1,Ω|vh|1,Ω,

|fh(vh)| 6 c |vh|1,Ω
для любых uh, vh ∈ Vh.

Доказательство. Из условия (4.46), с. 179, и леммы 2 следует,
что

ah(uh, uh) = SΩ

( 2∑
i,j=1

aij
∂u

∂xj

∂v

∂xi

)
> c SΩ

(
|∇uh|2

)
= c |uh|21,h > m |uh|21,Ω.

Далее, пусть A(x) = {aij(x))}2i,j=1, β = max
x∈Ω

∥A(x)∥. Используя по-

ложительность коэффициентов квадратуры и неравенство Коши —
Буняковского, получим (см. далее задачу 3, с. 193)

|ah(uh, vh)| =
∣∣SΩ

(
A∇uh · ∇vh

)∣∣ 6 βSΩ

(
|∇uh| |∇vh|

)
6

6 β|uh|1,h|vh|1,h 6M |uh|1,Ω|vh|1,Ω.
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Наконец, аналогично предыдущему,

|fh(vh)| =
∣∣SΩ(fvh)

∣∣ 6 |f |0,h|vh|0,h 6 c |vh|0,Ω 6 c |vh|1,Ω.

В последней оценке использовано неравенство Фридрихса. �
Замечание 1. Условие положительности коэффициентов квадратурной формулы

не является необходимым для разрешимости сеточной схемы, и в некоторых случаях
разрешимость может быть доказана и при использовании квадратурных формул, не
удовлетворяющих этому условию (см. далее задачи 2 a) и 4). Однако подавляющее
большинство используемых на практике квадратурных формул имеет положительные
коэффициенты. Примеры квадратурных формул будут приведены ниже.

Итак, исходная задача (4.47) аппроксимирована дискретной за-
дачей (4.49), найдены условия, при которых последняя однозначно
разрешима.

Перейдем к оценке точности схемы (4.49). Благодаря теореме 1,
мы можем использовать теорию возмущенного метода Галеркина для
оценки погрешности этой схемы. Именно, мы используем оценку из
леммы Стренга (см. неравенство (2.17), с. 27), которая в рассматри-
ваемой ситуации принимает вид :

|u−uh|1,Ω 6 C

{
inf

vh∈Vh

(
|u− vh|1,Ω + sup

wh∈Vh

|a(vh, wh)− ah(vh, wh)|
|wh|1,Ω

)
+

+ sup
wh∈Vh

|f(wh)− fh(wh)|
|wh|1,Ω

}
. (4.60)

Здесь u — решение исходной задачи, uh — решение задачи (4.49).
Предполагая функцию u достаточно гладкой, мы можем оценить
сверху правую часть неравенства (4.60), заменив vh на uI ∈ Vh, где
uI есть Vh-интерполянт точного решения u(x). Получим:

|u− uh|1,Ω 6 C {|u− uI |1,Ω + Ea(uI) + Ef} , (4.61)

где

Ea(uI) = sup
wh∈Vh

| a(uI , wh)− ah(uI , wh)|
|wh|1,Ω

, Ef = sup
wh∈Vh

| f(wh)− fh(wh)|
|wh|1,Ω

.

Таким образом, требуется оценить три составляющие погрешно-
сти: погрешность интерполяции |u − uI |1,Ω; погрешность квадрату-
ры Ea(uI) при вычислении формы a, и, наконец, погрешность квад-
ратуры Ef при вычислении формы f .

Для оценки погрешности интерполяции можно использовать до-
казанную ранее теорему 4, c. 151, в которой надо положить s = m,
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p = 2, n = 2. Ясно, что условие m > r выполняется как для лагран-
жевых, так и для эрмитовых элементов. Согласно этой теореме, ес-
ли u ∈ V ∩Wm+1

2 (Ω), то

|u− uI |1,Ω 6 c hm|u|m+1,Ω. (4.62)

В дальнейшем будем часто использовать следующую лемму, до-
казательство которой оставляем читателю (см. задачу 5, с. 193).

Лемма 3. Пусть u ∈ W k
p (Ω), φ ∈ W k

∞(Ω), p ∈ [1,∞]. Тогда
φu ∈ W k

p (Ω), существует постоянная c такая, что

|φu|k,p,Ω 6 c
k∑

l=0

|φ|l,∞,Ω|u|k−l,p,Ω, [φu]k,p,Ω 6 c
k∑

l=0

[φ]l,∞,Ω[u]k−l,p,Ω.

Оценки погрешности квадратур при вычислении форм a и f непо-
средственно вытекают из следующей леммы.

Лемма 4. Пусть квадратурная формула Ŝ точна на полиномах
из P2m−2, т. е. Ê(ϕ̂) = 0 для всех ϕ̂ ∈ P2m−2, a∈Wm

∞(e), f ∈Wm
r (e),

rm > 2, r > 1. Тогда для любых функций p, q ∈ Pm и любого эле-
мента e ∈ Th справедливы оценки

|Ee(a
∂q

∂xj

∂p

∂xi
)| 6 chm ∥a∥m,∞,e∥q∥m,e|p|1,e, (4.63)

|Ee(fp)| 6 chm
(
mes(e)

)1/2−1/r ∥f∥m,r,e ∥p∥1,e (4.64)
с постоянной c, не зависящей от h.

Доказательство. Докажем неравенство (4.63). Введем обозна-
чения:

u =
∂q

∂xj
∈ Pm−1, v =

∂p

∂xi
∈ Pm−1, ϕ = au.

Тогда

E ≡ Ee

(
a
∂q

∂xj

∂p

∂xi

)
= det(Be)Ê(ϕ̂v̂), (4.65)

где ϕ̂ ∈ Wm
∞(ê), v̂ ∈ Pm−1. Учитывая равенство (4.54), получим:

|Ê(ϕ̂v̂)| =
∣∣∣ ∫
ê

ϕ̂(x̂)v̂(x̂) dx̂−
L∑
l=1

ĉl(ϕ̂v̂)(b̂l)
∣∣∣ 6 |ϕ̂v̂|0,∞,ê 6 |ϕ̂|0,∞,ê|v̂|0,∞,ê.
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Используя эквивалентность норм на Pm−1, нетрудно показать, что
(см. задачу 6, с. 193)

|v̂|j,∞,ê 6 c|v̂|j,ê, j = 0, 1, . . . ,m− 1. (4.66)

Таким образом,
|Ê(ϕ̂v̂)| 6 c∥ϕ̂∥m,∞,ê|v̂|0,ê,

откуда следует, что линейный функционал f(ϕ̂) = Ê(ϕ̂v̂) является
непрерывным в Wm

∞(ê) и в силу условия на точность квадратуры об-
ращается в нуль на пространстве Pm−1. Используя лемму Брамбла —
Гильберта, получим:

|Ê(ϕ̂v̂)| 6 c |ϕ̂|m,∞,ê|v̂|0,ê.

Из леммы 3 и неравенства (4.66) следует, что

|ϕ̂|m,∞,ê = |âû|m,∞,ê 6 c
m−1∑
j=0

|â|m−j,∞,ê|û|j,∞,ê 6 c
m−1∑
j=0

|â|m−j,∞,ê|û|j,ê.

Здесь мы учли, что û ∈ Pm−1. Таким образом,

|Ê(ϕ̂v̂)| 6 c
(m−1∑

j=0

|â|m−j,∞,ê|û|j,ê
)
|v̂|0,ê.

Перейдем в полученной оценке с базисного элемента ê на элемент
e. Согласно следствию 3, с. 56, имеем: |â|m−j,∞,ê 6 c hm−j|a|m−j,∞,e,

|û|j,ê 6 c hj
(
det(Be)

)−1/2|u|j,e, |v̂|0,ê 6 c
(
det(Be)

)−1/2|v|0,e, т. е.

|Ê(ϕ̂v̂)| 6 c hm
(
det(Be)

)−1
(m−1∑

j=0

|a|m−j,∞,e|u|j,e
)
|v|0,e 6

6 c hm
(
det(Be)

)−1∥a∥m,∞,e∥u∥m−1,e|v|0,e.

Эта оценка и равенство (4.65) приводят к неравенству (4.63).
Докажем теперь оценку (4.64). Пусть â — некоторый узел ин-

терполяции на ê. По функции p̂ ∈ Pm определим постоянную на ê
функцию p̂0(x̂) = p̂(â). Отметим, что p̂0 является P0-интерполянтом
функции p̂. Отсюда и из конечномерности Pm следует, что

|p̂0| 6 |p̂|0,∞,ê 6 c |p̂|0,ê, |p̂− p̂0|0,ê 6 c |p̂|1,ê.



§ 5. Схемы с численным интегрированием для многоугольных областей 189

Ясно, что
Ee(fp) = det(Be)Ê(f̂ p̂), p̂ ∈ Pm, (4.67)

причем

Ê(f̂ p̂) = Ê(f̂ p̂0) + Ê(f̂(p̂− p̂0)) ≡ E0(f̂) + E1(f̂). (4.68)

Оценим величину E0(f̂). Учитывая вложение Wm
r (ê) ⊂ C(ê) при

mr > 2, получим

|E0(f̂)| = |Ê(f̂)| |p̂0| 6 c |f̂ |0,∞,ê |p̂|0,ê 6 c ∥f̂∥m,r,ê |p̂|0,ê.
Поскольку E0(Pm−1) = 0, то из леммы Брамбла — Гильбер-
та следует оценка |E0(f̂)| 6 c |f̂ |m,r,ê |p̂|0,ê. Аналогично, учитывая,
что E1(Pm−2) = 0, имеем:

|E1(f̂)| 6 c ∥f̂∥m,r,ê |p− p̂0|0,ê 6 c (|f̂ |m−1,r,ê + |f̂ |m,r,ê) |p|1,ê.

Далее, поскольку |f̂ |j,r,ê 6 c hj
(
det(Be)

)−1/r|f |j,r,e, j = m − 1,m,

|p̂|k,ê 6 c hk
(
det(Be)

)−1/2|p|k,e,k = 0, 1, a det(Be) = 2mes(e), то

|E0(f̂)|+ |E1(f̂)| 6 c hm
(
mes(e)

)−1/2−1/r ∥f∥m,r,e ∥p∥1,e.
Последняя оценка вместе с равенствами (4.67), (4.68) приводит к
(4.64). �

Замечание 2. Необходимо сделать несколько пояснений к доказательству оцен-
ки (4.64). Во-первых, всегда можно указать подходящее r. При m = 1 имеем r > 2,
при m > 1 можно считать r = 2. Отметим, что при r > 2 имеем: 1/s ≡ 1/2 − 1/r > 0,
1/s+1/r+1/2 = 1. С какой целью был введен полином p̂0? Иначе бы мы имели оценку

|Ê(f̂)| 6 c ∥f̂∥m,r,ê |p̂|0,ê 6 c (|f̂ |m−1,r,ê + |f̂ |m,r,ê) |p|0,ê,

из которой в правой части неравенства (4.64) получили бы множитель hm−1 вместо hm.

Теперь все готово для доказательства основной теоремы настоя-
щего параграфа.

Теорема 2. Пусть квадратурная формула Ŝ имеет положи-
тельные коэффициенты и является точной на полиномах из P2m−2.
Пусть, кроме того,

u ∈ Wm+1
2 (Ω), aij ∈ Wm

∞(Ω), i, j = 1, 2, f ∈ Wm
r (Ω), rm > 2, r > 2.

Тогда справедлива следующая оценка точности схемы (4.49):

∥u− uh∥1,Ω 6 c hm
(
|u|m+1,Ω +

2∑
i,j=1

∥aij∥m,∞,Ω∥u∥m+1,Ω + ∥f∥m,r,Ω

)
,

(4.69)
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где постоянная c не зависит от h.
Доказательство. Вследствие условия на точность квадрату-

ры Ŝ можно использовать теорему 1, а, значит, и оценку (4.61), для
первого слагаемого в правой части которой справедливо неравен-
ство (4.62). При этом надо заметить, что в силу граничного условия
Дирихле нормы ∥ · ∥1,Ω и | · |1,Ω на пространстве V эквивалентны.

Два других слагаемых в правой части неравенства (4.61) оценим,
используя лемму 4. Применяя неравенство Коши — Буняковского,
получим, что для любого wh ∈ Vh

|a(uI , wh)− ah(uI , wh)| 6
∑
e

2∑
i,j=1

∣∣∣Ee(aij
∂uI
∂xj

∂wh

∂xi
)
∣∣∣ 6

6 c hm
∑
e

2∑
i,j=1

∥aij∥m,∞,e∥uI∥m,e|wh|1,e 6

6 c hm
( 2∑

i,j=1

∥aij∥m,∞,Ω

)∑
e

∥uI∥m,e|wh|1,e 6

6 c hm
( 2∑

i,j=1

∥aij∥m,∞,Ω

)(∑
e

∥uI∥2m,e

)1/2|wh|1,Ω. (4.70)

По теореме 3, c. 150, имеем:

|u− uI |j,e ≤ c hm+1−j|u|m+1,e 6 c |u|m+1,e, j = 0, 1, . . . ,m+ 1.

Следовательно, |uI |j,e 6 |u|j,e + |u− uI |j,e 6 c ∥u∥m+1,e, и

∥uI∥m,e 6 c ∥u∥m+1,e,
∑
e

∥uI∥2m,e 6 c
∑
e

∥u∥2m+1,e = c ∥u∥2m+1,Ω.

Таким образом, после деления неравенства (4.70) на |wh|1,Ω и перехода
к точной верхней грани по всем wh ∈ Vh, получим:

Ea(uI) 6 c hm
2∑

i,j=1

∥aij∥m,∞,Ω∥u∥m+1,Ω. (4.71)

Аналогично, при s = 1/2− 1/r) имеем

|f(wh)−fh(wh)| 6
∑
e

∣∣Ee(fwh)
∣∣ 6 c hm

∑
e

(
mes(e)

)s∥f∥m,r,e ∥wh∥1,e 6

6 c hm
(
mes(Ω)

)s∥f∥m,r,Ω ∥wh∥1,Ω 6 c hm ∥f∥m,r,Ω |wh|1,Ω. (4.72)
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Здесь использовано неравенство Гельдера (см. с. 35)∑
e

|aebece| 6
(∑

e

|ae|α
)1/α(∑

e

|be|β
)1/β(∑

e

|ce|γ
)1/γ

, (4.73)

справедливое для любых α, β, γ > 1, 1/α+ 1/β + 1/γ = 1 (1/α = s,
β = r, γ = 2). Из (4.72), очевидно, следует, что

Ef 6 c hm∥f∥m,r,Ω. (4.74)

Подставляя оценки (4.62), (4.71) и (4.74) в (4.61), приходим к (4.69). �
Замечание 3. Требование точности квадратурной формулы Ŝ на полиномах из

P2m−2 для аффинно-эквивалентных треугольных элементов равносильно требованию
того, чтобы интегралы ∫

e

aij
∂uh
∂xj

∂vh
∂xi

dx

по этой квадратурной формуле вычислялись точно для любых uh, vh ∈ Vh, если коэф-
фициенты aij — постоянные.

Примеры квадратурных формул. Приведем примеры квад-
ратурных формул для треугольного базисного конечного элемента ê.
При этом будем помнить, что mes(ê) = 1/2.

1) m = 1. Формула численного интегрирования с одним узлом∫
ê

ϕ̂(x̂) dx̂ ≈ 1

2
ϕ̂(b̂1) = Ŝ(ϕ̂), b̂1 ∈ ê,

при любом выборе b̂1 ∈ ê точна на P0. Поэтому она может быть ис-
пользована в схемах МКЭ с линейными лагранжевыми элементами.
Заметим, что если b̂1 совпадает с центром тяжести треугольника ê,
т. е. b̂1 = (1/3, 1/3), то эта квадратура точна на P1.

В схемах МКЭ с линейными лагранжевыми элементами можно
применять также квадратуру∫

ê

ϕ̂(x̂) dx̂ ≈ 1

6

3∑
l=1

ϕ̂(b̂l) = Ŝ(ϕ̂),

где b̂1 = (0, 0), b̂2 = (1, 0), b̂3 = (0, 1) (вершины треугольника ê). Эта
квадратура точна на P1, и, тем более, на P0.

2) m = 2. Формула∫
ê

ϕ̂(x̂) dx̂ ≈ 1

6

3∑
l=1

ϕ̂(b̂l) = Ŝ(ϕ̂),
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где b̂1 = (1/2, 0), b̂2 = (0, 1/2), b̂3 = (1/2, 1/2) (середины сторон тре-
угольника ê), точна на P2. Таким образом, эта квадратурная формула
может быть использована в конечно-элементных схемах с P2- интер-
поляцией, т. е. с квадратичными элементами.

Примеры более сложных квадратур приведены в задаче 2.
Задачи.

1. Проверить все утверждения о точности приведенных выше квадратур на тре-
угольном элементе ê. Убедиться, что достаточно проверить равенства∫

ê

x̂α1
1 x̂α2

2 dx̂ = Ŝ(x̂α1
1 x̂α2

2 ), 0 6 α1 + α2 6 s,

если утверждается, что Ŝ точна на Ps.
2. Приведем примеры более сложных квадратурных формул на треугольном ба-

зисном элементе. Для сокращения записей будем придерживаться следующих согла-
шений. Узел квадратуры будем определять тройкой чисел b̂ и кратностью k. В тройке
b̂ = (x1, x2, x3) всегда x3 = 1−x1−x2, и пара (x1, x2) определяет координаты узла квад-
ратуры. Если кратность узла равна трем, то пары (x1, x3), (x3, x2) также определяют
узлы квадратуры. Кратным узлам соответствуют равные коэффициенты квадратуры ĉ.

a) Точность P3, 4 узла:

b̂1−3 = (1/5, 1/5, 3/5), k = 3, ĉ1−3 = 25/96,

b̂4 = (1/3, 1/3, 1/3), k = 1, ĉ4 = −9/32.

b) Точность P3, 6 узлов:

b̂1−3 = (1/2, 1/2, 0), k = 3, ĉ1−3 = 1/60,

b̂4−6 = (1/6, 1/6, 2/3), k = 3, ĉ4−6 = 9/60.

c) Точность P3, 7 узлов:

b̂1−3 = (0, 0, 1), k = 3, ĉ1−3 = 1/40,

b̂4−6 = (1/2, 1/2, 0), k = 3, ĉ4−6 = 1/15,

b̂7 = (1/3, 1/3, 1/3), k = 1, ĉ7 = 27/120.

d) Точность P4, 6 узлов (узлы и коэффициенты даны с точностью 16 знаков):

b̂1−3 = (0.09157621350977073, 0.09157621350977073, x3), k = 3, ĉ1−3 = 0.1099517436553218/2,

b̂4−6 = (0.4459484909159649, 0.4459484909159649, x3), k = 3, ĉ4−6 = 0.2233815896780115/2.

e) Точность P5, 7 узлов:

b̂1−3 =
(6−√

15

21
,
6−

√
15

21
,
9 + 2

√
15

21

)
, k = 3, ĉ1−3 =

155−
√
15

2400
,

b̂4−6 =
(6 +√

15

21
,
6 +

√
15

21
,
9− 2

√
15

21

)
, k = 3, ĉ4−6 =

155 +
√
15

2400
,

b̂7 = (1/3, 1/3, 1/3), k = 1, ĉ7 = 9/80.
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Проверить правильность указанных формул. Может быть проще составить программу
для ЭВМ?

3. Пусть коэффициенты квадратуры Ŝ неотрицательны. Показать, что

Ŝ(f̂) 6 Ŝ(ĝ), если f̂(x̂) 6 ĝ(x̂) ∀x̂ ∈ ê,

|Ŝ(f̂ ĝ)|2 6 Ŝ(f̂2) Ŝ(ĝ2).

4. Пусть квадратура Ŝ точна на полиномах P2m−2, а ее коэффициенты не обяза-
тельно все положительны. Доказать, что для любого uh ∈ Vh

|a(uh, uh)− ah(uh, uh)| 6 c h
2∑

i,j=1

|aij |1,∞,Ω |uh|21,Ω,

и, как следствие, форма ah равномерно положительно определена на Vh при достаточно
малых h, если положительно определена форма a.

5. Используя формулу

Dα(φu) =
m∑
j=0

∑
|β|=j, β+γ=α

DβφDγu, |α| = m, m > 1,

и неравенства вида ∣∣ k∑
j=1

ajfj
∣∣
0,p,Ω

6
k∑

j=1

|aj |0,∞,Ω|fj |0,p,Ω,

доказать лемму 3.
6. Пусть v̂ ∈ Pm. Пользуясь оценкой |v̂|0,∞,ê 6 c|v̂|0,ê, доказать, что |v̂|j,∞,ê 6 c|v̂|j,ê

для j = 0, 1, . . . ,m.
7. Пусть Ω — единичный квадрат и его триангуляция Th построена следующим

образом. Область Ω разбивается на квадраты размеров h×h и затем каждый квадрат —
на два треугольника биссектрисой левого нижнего угла.

a) Рассмотреть задачу Дирихле для уравнения Пуассона

−∆u = f(x) при x ∈ Ω, u(x) = 0 при x ∈ Γ

и построить схему МКЭ с численным интегрированием, используя линейные лагран-
жевы конечные элементы и квадратурные формулы с одним узлом, совпадающим с
вершиной при прямом угле. Убедиться, что построенная схема совпадает со стандарт-
ной пятиточечной разностной схемой

h−2(4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1) = fi,j ,

где ui,j — значение сеточной функции в узле сетки (i, j) = (ih, jh).
b) Сделать то же для задачи Неймана:

−∆u = f(x) при x ∈ Ω,
∂u(x)

∂n
= 0 при x ∈ Γ.
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2. Аффинно-эквивалентные прямоугольные элементы.
Полагая, что читатель знаком с материалом предыдущего пара-
графа, в котором было подробно проанализировано влияние чис-
ленного интегрирования на МКЭ в случае треугольных аффинно-
эквивалентных элементов, рассмотрим те же вопросы в случае пря-
моугольных аффинно-эквивалентных элементов, придерживаясь ана-
логичной схемы рассуждений.

Пусть область Ω составлена из прямоугольников и (или) парал-
лелограммов. В этом случае она может быть точно триангулирована
семейством Th четырехугольных элементов, каждый из которых яв-
ляется либо прямоугольником, либо параллелограммом.

Пусть (ê, P̂ , Σ̂) — базисный прямоугольный элемент класса C0

или C1, Pm ⊂ P̂ ⊆ Qm, и Eh = {(e, Pe,Σe), e ∈ Th} — семейство
ассоциированных с ним четырехугольных аффинно-эквивалентных
элементов; x = xe(x̂) = Bex̂ + be — аффинное отображение ê на e
такое, что det(Be) > 0 1) и ∥Be∥ ≤ ch, ∥B−1

e ∥ ≤ ch−1 для всех e ∈ Th,
что равносильно требованию регулярности Th.

Определим Vh ⊂ V = H1
0(Ω) как соответствующее Eh простран-

ство конечных элементов:

Vh = {vh ∈ C(Ω̄) : vh|e ∈ Pe ∀e ∈ Th, vh(x) = 0, x ∈ Γ}.

Пусть далее Ŝ — некоторая квадратурная формула на базис-
ном элементе (т. е. на квадрате [0, 1] × [0, 1]), Se и SΩ — индуци-
рованные Ŝ квадратуры на e ∈ Th и Ω соответственно. Напомним,
что det(Be) = mes(e).

Рассмотрим схему МКЭ с численным интегрированием:

найти uh ∈ Vh : ah(uh, vh) = fh(vh) ∀vh ∈ Vh, (4.75)

где формы ah и fh определяются формулами (4.50) и (4.51).
Оставим пока в стороне вопрос о разрешимости схемы (4.75) и

установим аналог леммы 4, что позволит нам сразу описать класс
допустимых квадратур Ŝ, обеспечивающих нужную точность.

Лемма 5. Пусть квадратурная формула Ŝ точна на полиномах
из Q2m−1, т. е. Ê(ϕ̂) = 0 ∀ϕ̂ ∈ Q2m−1,

a ∈ Wm
∞(e), f ∈ Wm

r (e), rm > 2, r > 1.

1)Предположение det(Be) > 0 означает, что выбрана подходящая нумерация вершин e при
определении отображения xe.
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Тогда для любых функций p, q ∈ Pe и любого элемента e ∈ Th спра-
ведливы оценки∣∣∣Ee

(
a
∂q

∂xj

∂p

∂xi

)∣∣∣ 6 chm ∥a∥m,∞,e∥q∥m,e|p|1,e, (4.76)

|Ee(fp)| 6 chm
(
mes(e)

)1/2−1/r ∥f∥m,r,e ∥p∥1,e (4.77)
с постоянной c, не зависящей от h.

Доказательство. В основном, рассуждения проводятся анало-
гично доказательству леммы 4. Докажем неравенство (4.76). Введем
обозначения:

u =
∂q

∂xj
, v =

∂p

∂xi
, φ = au.

Тогда

E ≡ Ee

(
a
∂q

∂xj

∂p

∂xi

)
= det(Be)Ê(φ̂v̂),

причем φ̂ ∈ Wm
∞(ê), v̂ ∈ P̂ , Pm ⊂ P̂ ⊆ Qm. Имеем

|Ê(ϕ̂v̂)| 6 2|ϕ̂v̂|0,∞,ê 6 2|ϕ̂|0,∞,ê|v̂|0,∞,ê 6 c∥ϕ̂∥m,∞,ê|v̂|0,ê,

откуда следует, что линейный функционал f(ϕ̂) = Ê(ϕ̂v̂) непрерывен
наWm

∞(ê) и в силу предположения о точности квадратуры обращается
в нуль на пространстве Qm−1 и, тем более, на Pm−1. Используя лем-
му Брамбла — Гильберта, получим |Ê(ϕ̂v̂)| 6 c |ϕ̂|m,∞,ê|v̂|0,ê . Далее
рассуждения проводятся так же, как и при доказательстве леммы 4.

При доказательстве оценки (4.77) теперь нет необходимости во
введении функции p̂0. В самом деле,

Ee(fp) = det(Be)Ê(f̂ p̂) ≡ det(Be)F (f̂), p̂ ∈ P̂ , Pm ⊂ P̂ ⊆ Qm.

Учитывая вложение Wm
r (ê) ⊂ C(ê) при mr > 2, получим

|F (f̂)| 6 c |f̂ |0,∞,ê |p̂|0,∞,ê 6 c ∥f̂∥m,r,ê |p̂|0,ê.

Поскольку F (Qm−1) = 0, и, тем более, F (Pm−1) = 0, то из леммы
Брамбла — Гильберта следует, что

|F (f̂)| 6 c |f̂ |m,r,ê |p̂|0,ê.

Далее рассуждения проводятся по аналогии с доказательством лем-
мы 4. �
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Как и в случае треугольных элементов, из этой леммы следует
оценка

Ea(uI) + Ef 6 c hm
( 2∑
i,j=1

∥aij∥m,∞,Ω∥u∥m+1,Ω + ∥f∥m,r,Ω

)
.

Примеры квадратурных формул. Можно указать два типа
квадратурных формул на базисном элементе, удовлетворяющих усло-
вию леммы 5.

Пусть задана одномерная квадратура
1∫

0

φ̂(x̂) dx̂ ≈
L∑
i=1

ĉiφ̂(b̂i), b̂i ∈ [0, 1], i = 1, 2, . . . , L, (4.78)

точная на полиномах из Ps. Вычисляя интеграл по элементу ê как
повторный, можем написать∫

ê

ϕ̂(x̂) dx̂ =

1∫
0

( 1∫
0

ϕ̂(x̂1, x̂2) dx̂1

)
dx̂2 ≡

1∫
0

φ̂(x̂2) dx̂2 ≈
L∑

j=1

ĉjφ̂(b̂j) =

=
L∑

j=1

ĉj

1∫
0

ϕ̂(x̂1, b̂j) dx̂1 ≈
L∑

i,j=1

ĉiĉjϕ̂(b̂i, b̂j) = Ŝ(ϕ̂).

Говорят, что квадратура Ŝ получена суперпозицией одномерных
квадратур (4.78). Ясно, что она точна на полиномах из Qs. Таким
образом, достаточно построить квадратуру (4.78), точную на P2m−1.

С вычислительной точки зрения естественно применять квадра-
туры с минимально возможным L. Приведем примеры таких квадра-
тур.

Пусть

Lm(t) =
1

2mm!

dm

dtm
(t2 − 1)m (4.79)

есть полином Лежандра степени m1), ti ∈ (−1, 1), i = 1, . . . ,m, — его
корни, t(k) ∈ (−1, 1), k = 2, . . . ,m, — корни L′

m(t).
a) Квадратура Гаусса. Узлы и коэффициенты определяются по

формулам

b̂i = (1 + ti)/2, ĉi =
1

(1− t2i )
(
L′
m(ti)

)2 , i = 1, 2, . . . ,m.

1)Система полиномов L0, L1, L2, . . . ортогональна в L2(−1, 1), т. е.
1∫

−1

LiLj dt = 0, если i ̸= j.
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b) Квадратура Лобатто. Узлы и коэффициенты определяются
следующим образом: b̂1 = 0, b̂m+1 = 1, b̂k = (1 + t(k))/2, k = 2, . . . ,m,
— точки экстремума полинома Lm(2t− 1),

ĉi =
1

m(m+ 1)
(
Lm(t(i))

)2 , i = 1, 2, . . . ,m+ 1.

Замечание 4. Хорошо известно, что не существует квадратуры вида (4.78) с
числом узлов, меньшим m, точной на любом полиноме степени 2m − 1. Если два узла
квадратуры совпадают с концами отрезка интегрирования, то единственная квадратура
вида (4.78), имеющая m + 1 узел и точная на любом полиноме степени 2m − 1, есть
квадратура Лобатто.

Квадратуру Ŝ, полученную суперпозицией одномерных m-точеч-
ных квадратур Гаусса ((m+ 1)-точечных квадратур Лобатто), будем
называть m×m-точечной квадратурой Гаусса ((m+1)× (m+1)- то-
чечной квадратурой Лобатто). Эти квадратуры точны на полиномах
из Q2m−1, а их коэффициенты положительны.

Лемма 6. Пусть û ∈ Qm, m ≥ 1, Ŝ является m×m-точечной
квадратурой Гаусса или Лобатто, Ŝ

(
|∇̂û|2

)
= 0. Тогда

û = c1 + c2

m∏
i,j=1

(x̂1 − b̂i)(x̂2 − b̂j), c1, c2 ∈ R.

Доказательство. Из условий леммы сразу вытекает, что
∂û

∂x̂1
(b̂i, b̂j) =

∂û

∂x̂2
(b̂i, b̂j) = 0, i, j = 1, 2, . . . ,m.

Поскольку û ∈ Qm, то для фиксированного x̂2 = b̂j производная
∂û/∂x̂1 ≡ p(x̂1) ∈ Pm−1 и p(b̂i) = 0, i = 1, . . . ,m, следовательно,

∂û

∂x̂1
(x̂1, b̂j) = 0 для всех x̂1 ∈ [0, 1], j = 1, 2, . . . ,m.

Это означает, что для любого фиксированного x̂1 полином q(x̂2) ≡
∂û/∂x̂1 ∈ Pm обращается в нуль в m точках x̂2 = b̂j и потому

∂û

∂x̂1
(x̂) = p1(x̂1)

m∏
j=1

(x̂2 − b̂j), p1 ∈ Pm−1.

Аналогично,

∂û

∂x̂2
(x̂) = q1(x̂2)

m∏
i=1

(x̂1 − b̂i), q1 ∈ Pm−1.
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Интегрируя эти соотношения и сравнивая полученные результаты,
получим утверждение леммы. �

Лемма 7. Пусть квадратурная формула Ŝ совпадает с s × s-
точечной квадратурой Гаусса или Лобатто и

i) s > m+ 1, если P̂ = Qm;
ii) s > m, если Pm ⊂ P̂ ⊂ Qm.
Тогда существуют не зависящие от h постоянные c1 и c2 такие,

что для любого uh ∈ Vh

c1|uh|1,Ω 6 |uh|1,h 6 c2|uh|1,Ω, (4.80)

|uh|0,h 6 c2|uh|0,Ω, (4.81)
где |uh|0,h и |uh|1,h — величины, определенные равенствами (4.55).

Доказательство. Будем рассуждать, как при доказатель-
стве леммы 2. Обоснование оценки (4.81) дословно повторяет обос-
нование неравенства (4.57). Чтобы убедиться в справедливости нера-
венств (4.80), достаточно доказать, что для любого конечного элемен-
та e ∈ Th и любой функции uh ∈ Pe

c21

∫
e

|∇uh(x)|2 dx ≤ Se(|∇uh|2) ≤ c22

∫
e

|∇uh(x)|2 dx

с постоянными c1, c2, не зависящими от h. При доказательстве лем-
мы 2 эта задача была сведена к установлению справедливости нера-
венств

k1

∫
ê

|∇̂û(x̂)|2 dx̂ 6 Ŝ
(
|∇̂û|2

)
6 k2

∫
ê

|∇̂û(x̂)|2 dx̂,

где û =
M∑
i=1

ûiφ̂i(x̂) ∈ P̂ . Теперь достаточно доказать, что u(x̂)≡ const,

если Î2 ≡ Ŝ
(
|∇̂û|2

)
= 0. Ясно, что из равенства Î2 = 0 вытекает, что

∂û/∂x̂k = 0, k = 1, 2 в узлах квадратуры В случае i) множество
узлов квадратуры содержит подмножество, унисольвентное с Qm, и
∂û/∂x̂k ∈ Qm. Отсюда следует, что ∂û/∂x̂k ≡ 0, и û ≡ const. В слу-
чае ii) мы находимся в условиях леммы 6, из которой в силу условия
Pm ⊂ P̂ ⊂ Qm вытекает, что û ≡ c1. �

Доказательство следующих двух теорем проводится так же, как
и для треугольных элементов.
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Теорема 3. Пусть для квадратурной формулы Ŝ выполнены
условия леммы 7. Тогда существуют такие положительные, не за-
висящие от h постоянные m, M и c, что

ah(uh, uh) > m |uh|21,Ω, | ah(uh, vh) | 6M |uh|1,Ω|vh|1,Ω,
|fh(vh)| 6 c |vh|1,Ω

для произвольных uh, vh ∈ Vh.
Теорема 4. Пусть квадратурная формула Ŝ удовлетворяет

условиям леммы 7,
u ∈ Wm+1

2 (Ω), aij ∈ Wm
∞(Ω), i, j = 1, 2, f ∈ Wm

r (Ω), rm > 2, r > 2.

Тогда справедлива оценка точности схемы (4.75):

∥u− uh∥1,Ω 6 c hm
(
|u|m+1,Ω +

2∑
i,j=1

∥aij∥m,∞,Ω∥u∥m+1,Ω + ∥f∥m,r,Ω

)
,

где постоянная c не зависит от h.

Задачи.

1. Целью этой задачи является проверка точности условий леммы 7 и, соответ-
ственно, теоремы 3. Пусть Ω — единичный квадрат и его триангуляция Th состоит
из прямоугольных элементов размера h × h; P̂ = Qm; узлы интерполяции образуют
ортогональную равномерную сетку на ê; Ŝ есть m × m-точечная квадратура Гаусса;
Vh ⊂ H1

0 (Ω) — пространство аффинно-эквивалентных прямоугольных элементов. По-
казать, что:

a) ah(uh, uh) > 0 для любого uh ∈ Vh, uh ̸= 0;
b) найдется элемент uh ∈ Vh такой, что ah(uh, uh)/|uh|21,Ω = O(h), т. е. форма ah

положительно определена, но не равномерно по h.
2. Используя формулу (4.79), найти корни Lm, точки экстремума L′

m, определить
узлы и коэффициенты квадратур Гаусса и Лобатто для m = 1, 2, 3. Убедиться, что при
m = 1 квадратура Лобатто совпадает с формулой трапеций:

1∫
0

ϕ̂(x̂) dx̂ ≈ 1

2

(
ϕ̂(0) + ϕ̂(1)

)
,

а при m = 2 — с формулой Симпсона:
1∫

0

ϕ̂(x̂) dx̂ ≈ 1

6

(
ϕ̂(0) + 4ϕ̂(1/2) + ϕ̂(1)

)
.

3. Пусть Ω — единичный квадрат, и его триангуляция Th состоит из квадратов со
стороной h. Рассмотрим задачу Дирихле для уравнения Пуассона:

−∆u = f(x) при x ∈ Ω, u(x) = 0 при x ∈ Γ.

a) Построить сеточную схему, используя лагранжевы конечные элементы первого
порядка (Q1-интерполяция) и квадратурную формулу трапеций (m = 1). Сравнить
построенную сеточную схему со стандартной пятиточечной разностной схемой.

b) Проделать то же самое, используя 1-точечную формулу Гаусса.
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§ 6. Схемы с численным интегрированием для областей с
произвольной границей

1. Изопараметрические треугольные элементы. Рассмот-
рим теперь случай произвольной области Ω с кусочно гладкой лип-
шицевой границей Γ. Начнем с построения области Ωh =

∪
e — ап-

проксимации области Ω — как объединения элементов e ∈ Th. Будем
предполагать, что Eh = {(e, Pe,Σe), e ∈ Th} — семейство треугольных
изопараметрических конечных элементов лагранжева типа, ассоции-
рованных с одним базисным элементом (ê, P̂ , Σ̂), P̂ = Pm, m > 1. Ис-
ходя из соображений простоты вычислений, естественно стремиться
обойтись минимальным числом ≪истинно изопараметрических эле-
ментов≫, используя треугольники с прямолинейными сторонами в
качестве ≪внутренних≫ элементов, и треугольники с одной криволи-
нейной стороной — в качестве приграничных элементов (определение
таких элементов дано на с. 122). Пример триангуляции области на
элементы указанного типа приведен на рис. 2.

Для элементов с прямолинейными сторонами преобразование x =
xe(x̂) = Bex̂ + be ∈ [P1]

2 и изопараметрический элемент (e, Pe,Σe)
является в то же время аффинно-эквивалентным, поскольку x =
xe(x̂) ∈ [P̂ ]2. Будем предполагать далее, что триангуляция Th яв-

Рис. 2. Триангуляция области с частично криволинейной границей, m = 2. Использо-
ваны лагранжевы аффинно-эквивалентные элементы второй степени внутри области и
квадратичные изопараметрические — у криволинейной границы Γ (обозначенной пунк-
тирной линией).

ляется (m+ 1)-регулярной. Напомним, это означает, что для любого
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e ∈ Th (см. определение и теорему 2 на с. 105):

c1h
2 6 det (Dxe(x̂)) 6 c2 h

2 ∀ x̂ ∈ ê,

c1h
−2 6 det

(
Dx−1

e (x)
)
6 c2 h

−2 ∀x ∈ e,

|xe|k,∞,ê 6 c hk, |x−1
e |k,∞,e 6 c h−1, k = 1, 2, . . . ,m+ 1,

| det (Dxe) |k,∞,ê 6 c h2+k, k = 1, 2, . . . ,m+ 1.

Пусть Vh ⊂ V = H1
0(Ωh) — соответствующее Eh пространство конеч-

ных элементов:

Vh = {vh ∈ C(Ω̄h) : vh|e ∈ Pe ∀e ∈ Th, vh(x) = 0, x ∈ Γh},

где Γh = ∂Ωh — граница области Ωh. Отметим, что в силу теоре-
мы 3, с. 124, расстояние между Γ и Γh есть величина O(hm+1), если Γ
состоит из кривых класса Cm+1.

Определим схему МКЭ с численным интегрированием для зада-
чи (4.47). Учитывая проведенный нами анализ точности аффинно-эк-
вивалентных элементов, ограничимся далее квадратурами Ŝ, удовле-
творяющими следующим условиям:

K1) коэффициенты Ŝ положительны;
K2) Ê(ϕ̂) = 0 для любого ϕ̂ ∈ P2m−2.

Кроме того, будем предполагать, что:
K3) если узел квадратуры Ŝ лежит на границе ê, то он является

узлом интерполяции элемента (ê, P̂ , Σ̂).
Упражнение 1. Считая, что узлы интерполяции на границе ê расположены рав-

номерно, установить, какие из приведенных на с. 191 и в задаче 2, с. 192, квадратурных
формул удовлетворяют ограничениям K1 −K3.

â1 â2 â3 â4

â5

â6

â7

â8

â9
â10ê

P̂ = P3

a1 a2 a3 a4

a5

a6

a7

a8

a9 a10
e

Рис. 3. Пример приграничного кубического изопараметрического элемента.

Условие K3 позволяет утверждать, что узлы bei квадратуры Se,
индуцированной Ŝ, принадлежат области Ω̄ при достаточно малых h
для любого элемента e ∈ Th. В самом деле, это так для элементов,
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имеющих с Γ не более одной общей точки (вершины элемента). Ес-
ли e — приграничный элемент (см. рис. 3) и bei ∈ ∂e

∩
Γh, то bei явля-

ется узлом интерполяции и также лежит на Γ вследствие условия K3.
Если bei — внутренняя точка e, то bei ∈ Ω в силу следствия 1, с. 125.

Определим формы ah и fh, аппроксимирующие формы a и f со-
ответственно:

ah(u, v) = SΩh

( 2∑
i,j=1

aij
∂u

∂xj

∂v

∂xi

)
=
∑
e

Se

( 2∑
i,j=1

aij
∂u

∂xj

∂v

∂xi

)
=

=
∑
e

det(Je)
L∑
l=1

ĉl

( 2∑
i,j=1

aij
∂u

∂xj

∂v

∂xi

)
(bel ), (4.82)

fh(v) = SΩh
(fv) =

∑
e

det(Je)
L∑
l=1

ĉl(f v)(b
e
l ), (4.83)

где Je(x̂) = Dxe(x̂) — матрица Якоби преобразования xe
1). В итоге

придем к схеме МКЭ с численным интегрированием:

найти uh ∈ Vh : ah(uh, vh) = fh(vh) ∀vh ∈ Vh. (4.84)

Положим по аналогии с принятыми ранее обозначениями

|uh|20,h = SΩh
(u2h), |uh|21,h = SΩh

(|∇uh|2).

Лемма 1. Существуют не зависящие от h постоянные c1 и c2
такие, что

c1|uh|1,Ωh
6 |uh|1,h 6 c2|uh|1,Ωh

, (4.85)
|uh|0,h 6 c2|uh|0,Ωh

(4.86)
для любого uh ∈ Vh.

Доказательство. Докажем (4.85). Для этого достаточно уста-
новить, что для любого конечного элемента e ∈ Th и любой функции
uh ∈ Vh справедливы неравенства

c21

∫
e

|∇uh(x)|2 dx ≤ Se(|∇uh|2) ≤ c22

∫
e

|∇uh(x)|2 dx (4.87)

с постоянными c1, c2, не зависящими от h.
1)Считаем, что det(Je(x̂)) > 0 для любого x̂ ∈ ê и e ∈ Th.
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Выполняя замену переменных x = xe(x̂) и используя обозначение
û(x̂) = uh(xe(x̂)), получаем J−T

e (x̂) =
(
J−1
e (x̂)

)T , J−1
e (x̂) = Dx−1

e (x)),

|∇uh(x)|2 = |J−T
e ∇̂û(x̂)|2.

Таким образом,

I1 ≡
∫
e

|∇uh(x)|2 dx =

∫
ê

det(Je)|J−T
e ∇̂û(x̂)|2 dx̂,

S1 ≡ Se(|∇uh|2) = Ŝ
(
det(Je) |J−T

e ∇̂û|2
)
.

Ранее было доказано (см. с. 183), что

k1

∫
ê

|∇̂û(x̂)|2 dx̂ 6 Ŝ
(
|∇̂û|2

)
6 k2

∫
ê

|∇̂û(x̂)|2 dx̂.

Учитывая оценку |y| 6 ∥JT
e ∥ |J−T

e y| и равенство ∥Je∥ = ∥JT
e ∥, полу-

чим

I1 6 | det(Je)|0,∞,ê∥J−T
e ∥20,∞,ê

∫
ê

|∇̂û(x̂)|2 dx̂ 6

6 | det(Je)|0,∞,ê∥J−1
e ∥20,∞,ê/k1 Ŝ

(
|∇̂û|2

)
6

6 d/k1 Ŝ
(
det(Je)|J−T

e ∇̂û|2
)
= d/k1 S1,

т. е. оценку снизу в (4.87) с постоянной c21 = k1/d. Здесь

d =
| det(Je)|0,∞,ê

min
x̂∈ê

det(Je(x̂))
∥J−1

e ∥20,∞,ê∥Je∥20,∞,ê.

В силу регулярности Th имеем ∥Je∥0,∞,ê 6 c h, c−1h2 6 det(Je) 6 ch2,

∥J−1
e ∥0,∞,ê = ∥Dx−1

e ∥0,∞,e 6 c h−1,

поэтому d 6 c, причем c не зависит от h. Аналогично доказывается
оценка сверху в (4.87) с постоянной c2 = k2 d. Доказательство нера-
венства (4.86) оставляем читателю в качестве упражнения. �

Из леммы 1 вытекает
Теорема 1. Пусть квадратурная формула Ŝ удовлетворяет

условиям K1–K3. Тогда существуют положительные не зависящие
от h постоянные m, M и c такие, что ∀uh, vh ∈ Vh

ah(uh, uh) > m |uh|21,Ωh
, | ah(uh, vh) | 6M |uh|1,Ωh

|vh|1,Ωh
, (4.88)
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|fh(vh)| 6 c |vh|1,Ωh
.

Следствие 1. Схема МКЭ с численным интегрированием
(4.84) однозначно разрешима.

Перейдем к оценке точности схемы (4.84). При этом мы сразу
сталкиваемся с двумя затруднениями, не встречавшимися ранее.

Первое затруднение, однако, не очень серьезное и часто встреча-
ющееся при обосновании приближенных методов, связано с понятием
близости решений uh ∈ Vh и u ∈ V и вызвано тем, что uh и u опреде-
лены на разных множествах: Ωh и Ω соответственно.

Второе затруднение более серьезно. Поскольку Ωh ̸= Ω, то Vh не
является подпространством V и, как следствие, мы не можем трак-
товать схему (4.84) как метод Галеркина с возмущениями для задачи
(4.47) и использовать лемму Стренга для оценки ее точности.

Первая трудность преодолевается следующим образом. Так как
по построению Γh и Γ близки, то ясно, что существует такое ограни-
ченное открытое множество Ω̃, что Ω, Ωh ⊂ Ω̃ для всех рассматри-
ваемых триангуляций Th (при достаточно малых h). Следовательно,
согласно теореме 4, с. 40, функцию u ∈ Wm+1

2 (Ω) можно продол-
жить на область Ω̃ с сохранением нормы. Точнее, существует функ-
ция ũ ∈ Wm+1

2 (Ω̃) такая, что ũ(x) = u(x) при x ∈ Ω и

∥ũ∥m+1,Ω̃ 6 c ∥u∥m+1,Ω,

где c — постоянная, зависящая от областей Ω и Ω̃, но не зависящая от
u. Положим Ṽ = W 1

2 (Ωh). По определению имеем Vh ⊂ Ṽ . Поскольку
функции ũ и uh принадлежат Ṽ , то под погрешностью схемы есте-
ственно понимать ∥ũ− uh∥1,Ωh

.
Для преодоления второй трудности получим оценку, аналогичную

установленной в лемме Стренга, с. 27. С этой целью определим такие
продолжения ãij(x) коэффициентов исходного уравнения, что

∥ãij∥m,∞,Ω̃ 6 c ∥aij∥m,∞,Ω 6M = const, i, j = 1, 2, (4.89)

и положим

f̃(x) = −
2∑

i,j=1

∂

∂xi

(
ãij(x)

∂ũ(x)

∂xj

)
, x ∈ Ω̃. (4.90)

Отметим, что f̃ является продолжением f на Ω̃. Умножим обе части
равенства (4.90) на произвольную функцию vh ∈ Vh и проинтергри-
руем почленно по области Ωh. Используя формулу интегрирования
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по частям и учитывая, что vh = 0 на Γh, получим тождество:

ũ ∈ Ṽ : ã(ũ, vh) = f̃(vh) ∀vh ∈ Vh, (4.91)

где

ã(ũ, vh) =
2∑

i,j=1

∫
Ωh

ãij(x)
∂ũ(x)

∂xj

∂vh
∂xi

dx, f̃(vh) =

∫
Ωh

f̃vh dx.

Теперь нетрудно заметить, что иследуемую схему МКЭ с числен-
ным интегрированием можно трактовать как аппроксимацию тож-
дества (4.91). Действительно, заменяя в (4.91) пространство Ṽ его
подпространством Vh, а интегралы по области Ωh — составной квад-
ратурой формулой SΩh

, придем к схеме (4.84). Справедливость ра-
венств

SΩh

(
ãij
∂uh
∂xj

∂vh
∂xi

)
= SΩh

(
aij
∂uh
∂xj

∂vh
∂xi

)
, SΩh

(
f̃vh
)
= SΩh

(
fvh
)

для произвольных uh, vh ∈ Vh обеспечивается тем, что все узлы квад-
ратуры SΩh

лежат в Ω.
Замечание 1. Подчеркнем, что тождество (4.91) лишь характеризует функцию

ũ и не служит для ее фактического определения. В частности, функции из Ṽ , в отличие
от элементов Vh, не удовлетворяют краевому условию ũ = 0 на Γh.

Сказанное выше позволяет, фактически, воспроизвести рассуж-
дения, применявшиеся при доказательстве леммы Стренга, с. 27, и
на основании теоремы 1 получить оценку:

|ũ−uh|1,Ωh
6 c

{
inf

vh∈Vh

(
|ũ− vh|1,Ωh

+ sup
wh∈Vh

|ã(vh, wh)− ah(vh, wh)|
|wh|1,Ωh

)
+

+ sup
wh∈Vh

|f̃(wh)− fh(wh)|
|wh|1,Ωh

}
. (4.92)

Действительно, для любого элемента vh ∈ Vh справедливо тождество

ah(uh − vh, uh − vh) = ã(ũ− vh, uh − vh)+

+ {ã(vh, uh − vh)− ah(vh, uh − vh)}+ {fh(uh − vh)− f̃(uh − vh)},
откуда, используя оценки (4.88), (4.89), получим

m|uh − vh|21,Ωh
6
{
M |ũ− vn|1,Ωh

+
|ã(vh, uh − vh)− ah(vh, uh − vh)|

|uh − vh|1,Ωh

+

+
|fh(uh − vh)− f̃(uh − vh)|

|uh − vh|1,Ωh

}
|uh − vh|1,Ωh

,
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или

m|uh − vh|1,Ωh
6M |ũ− vh|1,Ωh

+ sup
wh∈Vh

|ã(vh, wh)− ah(vh, wh)|
|wh|1,Ωh

+

+ sup
wh∈Vn

|fh(wh)− f̃(wh)|
|wh|1,Ωh

.

Используя неравенство треугольника

|ũ− uh|1,Ωh
6 |ũ− vh|1,Ωh

+ |uh − vh|1,Ωh

и вычисляя нижнюю грань по vh ∈ Vh, получим (4.92).
Отсюда, полагая vh = ũI , где ũI есть Vh-интерполянт функции ũ,

будем иметь1)

|ũ− uh|1,Ωh
6 c {|ũ− ũI |1,Ωh

+ Ea(ũI) + Ef} , (4.93)

Ea(ũI) = sup
wh∈Vh

| ã(ũI , wh)− ah(ũI , wh)|
|wh|1,Ωh

, Ef = sup
wh∈Vh

| f̃(wh)− fh(wh)|
|wh|1,Ωh

.

Оценка погрешности интерполяции |ũ − ũI |1,Ωh
вытекает из тео-

ремы 6, c. 154, (см. также замечание к ней) при s = m, n = 2, r = 0,
p = 2, Ω = Ωh. Согласно этой теореме

|ũ− ũI |1,Ωh
6 c hm∥ũ∥m+1,Ωh

.

Учитывая, что

∥ũ∥m+1,Ωh
6 ∥ũ∥m+1,Ω̃ 6 c ∥u∥m+1,Ω,

для первой составляющей оценки погрешности (4.93) получим

|ũ− ũI |1,Ωh
6 c hm∥u∥m+1,Ω. (4.94)

Оценки остальных слагаемых вытекают из следующей леммы, явля-
ющейся аналогом леммы 4, с. 187.

Лемма 2. Пусть квадратурная формула Ŝ точна на полиномах
из P2m−2,

aij ∈ Wm
∞(e), i, j = 1, 2, f ∈Wm

r (e), rm > 2, r > 1.

Тогда для любых функций p, q ∈ Pe и любого e ∈ Th справедливы
оценки:∣∣∣Ee

( 2∑
i,j=1

aij
∂q

∂xj

∂p

∂xi

)∣∣∣ 6 chm
2∑

i,j=1

∥aij∥m,∞,e∥q∥m,e|p|1,e, (4.95)

1)Мы учли здесь, что ũI ∈ Vh, поскольку ũ равна нулю в узлах, принадлежащих Γ.
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|Ee(fp)| 6 chm
(
mes(e)

)1/2−1/r ∥f∥m,r,e ∥p∥1,e (4.96)
с постоянной c, не зависящей от h.

Доказательство. Докажем сначала неравенство (4.95). Перей-
дем на базисный элемент (см. также (4.43), c. 177). Получим:

Ie ≡ Ee

( 2∑
i,j=1

aij
∂q

∂xj

∂p

∂xi

)
= Ê

( 2∑
i,j=1

b̂ij
∂q̂

∂x̂j

∂p̂

∂x̂i

)
,

где
B̂(x̂) = {b̂ij}2i,j=1 = det(Je(x̂)) J

−1
e (x̂)Â J−T

e (x̂).

Принимая во внимание выражения для элементов матрицы J−1
e , бу-

дем иметь отсюда, что b̂ij является суммой слагаемых вида

â(x̂) =
1

det(Je(x̂))

∂xi(x̂)

∂x̂k

∂xj(x̂)

∂x̂l
âkl .

Следовательно, оценка Ie сводится к оценке величиныE ≡ Ê
(
â
∂q̂

∂x̂j

∂p̂

∂x̂i

)
,

где p̂, q̂ ∈ Pm. Введем обозначения:

û =
∂q̂

∂x̂j
∈ Pm−1, v̂ =

∂p̂

∂x̂i
∈ Pm−1, ϕ̂ = âû.

Тогда E = Ê(ϕ̂v̂), причем ϕ̂ ∈ Wm
∞(ê), v̂ ∈ Pm−1. Оценка функцио-

нала E была получена ранее при рассмотрении аффинных элементов
(см. доказательство леммы 4, с. 187):

|E| 6 c
(m−1∑

j=0

|â|m−j,∞,ê|û|j,ê
)
|v̂|0,ê 6

6 c
(m−1∑

j=0

|â|m−j,∞,ê|q̂|j+1,ê

)
|p̂|1,ê. (4.97)

Осталось перейти в полученной оценке на элемент e. Из теоремы 5,
c. 152, следует, что

|q̂|j+1,ê 6 c hj ∥q∥j+1,e, |p̂|1,ê 6 c |p|1,e. (4.98)

Далее, используя лемму 3, с. 187, получим

|â|s,∞,ê 6 c
s∑

t=0

∣∣∣ 1

det(Je(x̂))

∂xi(x̂)

∂x̂k

∂xj(x̂)

∂x̂l

∣∣∣
t,∞,ê

|âkl|s−t,∞,ê.
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Аналогично неравенствам (4.98) доказывается оценка: |âkl|s−t,∞,ê 6
c hs−t∥akl∥s−t,∞,e. Из уcловия (m + 1)-регулярности триангуляции
нетрудно вывести, что∣∣∣ 1

det(Je(x̂))

∂xi(x̂)

∂x̂k

∂xj(x̂)

∂x̂l

∣∣∣
t,∞,ê

6 c ht, 0 6 t 6 m.

Таким образом,

|â|s,∞,ê 6 c hs∥akl∥s,∞,e, 0 6 s 6 m. (4.99)

Наконец, используя неравенства (4.98) и (4.99) для оценки правой
части неравенства (4.97), получим, что

|E| = |Ê(ϕ̂v̂)| 6 c hm∥akl∥m,∞,e∥q∥m,e|p|1,e,

откуда вытекает неравенство (4.95).
Схема доказательства оценки (4.96) аналогична аффинному слу-

чаю. Имеем:

Ee(fp) = Ê(det(Dxe)f̂ p̂) = Ê(ϕ̂p̂0) + Ê(ϕ̂(p̂− p̂0)) ≡ E0(ϕ̂) + E1(ϕ̂),

где p̂ ∈ Pm, ϕ̂ = det(Dxe)f̂ , p̂0 есть P0-интерполянт p̂. Оценка E0

также соответствует аффинному случаю:

|E0(ϕ̂)| 6 c |ϕ̂|m,r,ê |p̂|0,ê.

Поскольку |p̂|k,ê 6 c hk−1∥p∥k,e, k > 0,

|ϕ̂|m,r,ê = | det(Dxe)f̂ |m,r,ê 6 c

m∑
j=0

| det(Dxe)|j,r,ê|f̂ |m−j,r,ê,

и, кроме того,

| det(Dxe)|j,r,ê 6 c | det(Dxe)|j,∞,ê 6 c hj+2,

|f̂ |m−j,r,ê 6 c hm−j−2/r∥f∥m−j,r,e,

то
|E0(ϕ̂)| 6 c hm+1−2/r ∥f∥m,r,e ∥p∥1,e.

Учитывая, что h1−2/r 6 c
(
mes(e)

)1/2−1/r, получаем требуемую оцен-
ку E0. Оценку E1 оставляем читателю в качестве упражнения. �

Упражнение 2. В условиях леммы 2 доказать справедливость оценки∣∣∣Ee

( 2∑
i,j=1

aij
∂q

∂xj

∂p

∂xi

)∣∣∣ 6 ch

2∑
i,j=1

∥aij∥1,∞,e|q|1,e|p|1,e.
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Используя этот факт, дать другое доказательство равномерной положительной опре-
деленности формы ah на Vh при достаточно малых h.

Теорема 2. Пусть квадратурная формула Ŝ удовлетворяет
ограничениям K1–K3,

u ∈ Wm+1
2 (Ω), aij ∈ Wm

∞(Ω), i, j = 1, 2, f̃ ∈ Wm
r (Ω), rm > 2, r > 2.

Тогда справедлива следующая оценка точности схемы (4.84)

∥ũ− uh∥1,Ω 6 c hm
(
∥u∥m+1,Ω +

2∑
i,j=1

∥aij∥m,∞,Ω∥u∥m+1,Ω + ∥f̃∥m,r,Ω̃

)
,

(4.100)
где постоянная c не зависит от h.

Доказательство. Достаточно оценить Ea(ũI) и Ef в правой
части неравенства (4.93). Используя лемму 2, получим

|ã(ũI , wh)− ah(ũI , wh)| =
∣∣∣∑

e

Ee

( 2∑
i,j=1

ãij
∂ũI
∂xj

∂wh

∂xi

)∣∣∣ 6
6 chm

∑
e

2∑
i,j=1

∥ãij∥m,∞,e∥ũI∥m,e|wh|1,e 6

6 chm
2∑

i,j=1

∥ãij∥m,∞,Ω̃

∑
e

∥ũI∥m,e|wh|1,e 6

6 chm
2∑

i,j=1

∥ãij∥m,∞,Ω̃∥ũI∥m,Ωh
|wh|1,Ωh

6

6 chm
2∑

i,j=1

∥aij∥m,∞,Ω∥u∥m+1,Ω|wh|1,Ωh
. (4.101)

Здесь мы учли, что

∥ũI∥m,Ωh
6 ∥ũ− ũI∥m,Ωh

+ ∥ũ∥m,Ωh
6 c ∥ũ∥m+1,Ωh

6 c ∥u∥m+1,Ω.

Из неравенства (4.101) следует, что

Ea(ũI) 6 chm
2∑

i,j=1

∥aij∥m,∞,Ω∥u∥m+1,Ω. (4.102)
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Аналогично, используя неравенство Гельдера (4.73), с. 191, и эквива-
лентость норм ∥wh∥1,Ωh

и |wh|1,Ωh
на пространстве Vh, получим:

| f̃(wh)−fh(wh)| = |
∑
e

Ee(f̃wh)| 6 c hm
∑
e

|e|1/2−1/r ∥f̃∥m,r,e ∥wh∥1,e 6

6 c hm |Ωh|1/2−1/r ∥f̃∥m,r,Ωh
∥wh∥1,Ωh

6 c hm ∥f̃∥m,r,Ω̃ |wh|1,Ωh
,

где |e| = mes(e). Отсюда вытекает требуемая оценка:

Ef 6 chm ∥f̃∥m,r,Ω̃. (4.103)

Подставляя теперь оценки (4.94), (4.102), (4.103) в неравенство (4.93),
получим (4.100). �

2. Произвольная область. Изопараметрические прямо-
угольные элементы. Предполагается, что читатель знаком с ма-
териалом, изложенным в предыдущих двух параграфах. Будем ис-
пользовать все принятые в предыдущем параграфе обозначения и
определения, за исключением определения базисного конечного эле-
мента и квадратурной формулы Ŝ.

Как и ранее, начнем с построения области Ωh =
∪
e, аппроксими-

рующей область Ω семейством изопараметрических прямоугольных
элементов e ∈ Th, и определим Eh = {(e, Pe,Σe), e ∈ Th} — семейство
прямоугольных изопараметрических конечных элементов лагранже-
вого типа, ассоциированных с базисным элементом (ê, P̂ , Σ̂), P̂ = Qm,
m > 1. Будем предполагать далее, что триангуляция Th является
(m + 1)-регулярной. Напомним, это означает, что для любого e ∈ Th
(см. определение и теорему 2 на с. 105):

c1h
2 6 det (Dxe(x̂)) 6 c2 h

2 ∀x̂ ∈ ê,

c1h
−2 6 det

(
Dx−1

e (x)
)
6 c2 h

−2 ∀x ∈ e,

[xe]k,∞,ê 6 c hk, |xe|k,∞,ê 6 c h,

|x−1
e |k,∞,e 6 c h−k, k = 1, 2, . . . ,m+ 1.

Пусть Vh ⊂ H1
0(Ωh) — соответствующее Eh пространство конечных

элементов:

Vh = {vh ∈ C(Ω̄h) : vh|e ∈ Pe ∀e ∈ Th, vh(x) = 0, x ∈ Γh}.

При определении схемы МКЭ с численным интегрированием для за-
дачи (4.47) учтем проведенный нами анализ точности аффинно-экви-
валентных прямоугольных элементов. Будем предполагать, что квад-
ратура Ŝ является s × s-точечной квадратурой Гаусса, s > m + 1. В
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этом случае все узлы bei квадратуры Se, индуцированной Ŝ, для любо-
го элемента e ∈ Th принадлежат области Ω, если h достаточно мало.

Определяя дискретные формы соотношениями (4.82), (4.83), c.
202, придем к схеме МКЭ с численным интегрированием:

найти uh ∈ Vh : ah(uh, vh) = fh(vh) ∀ vh ∈ Vh. (4.104)

Справедливость следующей теоремы устанавливается аналогично
случаю треугольных изопараметрических элементов.

Теорема 3. Существуют положительные не зависящие от h
постоянные m, M и c такие, что

ah(uh, uh) > m |uh|21,Ωh
, | ah(uh, vh) | 6M |uh|1,Ωh

|vh|1,Ωh
,

|fh(vh)| 6 c |vh|1,Ωh

для произвольных uh, vh ∈ Vh.
Доказательство теоремы основывается на лемме 1, c. 202. Эта

лемма справедлива и в рассматриваемом случае, поскольку при ее
доказательстве использовалась лишь 1-регулярность триангуляции,
что для треугольных и прямоугольных изопараметрических элемен-
тов означает одно и то же. Из теоремы 3 вытекает

Следствие 2. Схема МКЭ с численным интегрированием
(4.104) однозначно разрешима.

Оценка точности схемы (4.104), как и в случае треугольных изо-
параметрических элементов, имеет вид

|ũ− uh|1,Ωh
6 c {|ũ− ũI |1,Ωh

+ Ea(ũI) + Ef} , (4.105)

где

Ea(ũI) = sup
wh∈Vh

| ã(ũI , wh)− ah(ũI , wh)|
|wh|1,Ωh

, Ef = sup
wh∈Vh

| f̃(wh)− fh(wh)|
|wh|1,Ωh

.

Оценку погрешности интерполяции |ũ− ũI |1,Ωh
получим на осно-

вании теоремы 8, c. 156, в которой надо положить m = 1, s = m,
n = 2, p = 2, r = 0, Ω = Ωh. В результате будем иметь

|ũ− ũI |1,Ωh
6 c hm∥ũ∥m+1,Ωh

6 c hm∥u∥m+1,Ω. (4.106)

Оценки погрешности квадратурных формул даны в следующей лем-
ме.
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Лемма 3. Пусть квадратурная формула Ŝ точна на полиномах
из Q3m−2, триангуляция Th является (m+ 1)-регулярной. Тогда∣∣∣Ee

( 2∑
i,j=1

aij
∂q

∂xj

∂p

∂xi

)∣∣∣ 6 chm |e|1/2−1/r
2∑

i,j=1

∥aij∥m,∞,e∥q∥m+1,r,e|p|1,e.

(4.107)
Если Ŝ точна на полиномах из Q4m−3, то

|Ee(fp)| 6 chm |e|1/2−1/r ∥f∥m,r,e ∥p∥1,e. (4.108)

Здесь |e| = mes(e), p, q ∈ Pe, e ∈ Th,

aij ∈ Wm
∞(e), i, j = 1, 2, f ∈Wm

r (e), rm > 2, r > 1.

Доказательство. Докажем (4.107). Достаточно оценить слага-
емое Ee(v∂p/∂xi), где v = aij∂q/∂xj. Перейдем на базисный элемент.
Имеем:

∇̂p = J−T
e ∇̂p̂, Ee(v∂p/∂xi) = Ê(det(Je)v̂∂̂p/∂xi),

det(Je)
∂̂p

∂x1
=
∂x2
∂x̂2

∂p̂

∂x̂1
− ∂x2
∂x̂1

∂p̂

∂x̂2
,

det(Je)
∂̂p

∂x2
= −∂x1

∂x̂2

∂p̂

∂x̂1
+
∂x1
∂x̂1

∂p̂

∂x̂2
.

Отсюда следует, что величина Ee(v∂p/∂xi) представляет собой сумму
двух слагаемых вида

Ĵ(v̂) = Ê(v̂ĝ), ĝ =
∂xk
∂x̂i

∂p̂

∂x̂j
, i ̸= j,

причем ĝ ∈ Q2m−1. Оценим функционал Ĵ(v̂), учитывая, что
Ĵ(Qm−1) = 0. Имеем

|Ĵ(v̂)| 6 2|v̂|0,∞,ê|ĝ|0,∞,ê 6 c∥v̂∥m,r,ê|ĝ|0,ê 6 c [v̂]m,r,ê|ĝ|0,ê.

Осталось перейти в полученной оценке на элемент e, принимая во
внимание, что |ĝ|0,ê 6 c h|p̂|1,ê. Таким образом,

|Ĵ(v̂)| 6 c hm
(
mes(e)

)1/2−1/r ∥v∥m,r,e|p|1,e.
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Используя здесь лемму 3, c. 187, получим оценку (4.107). Аналогично,

Ee(fp) = Ê(det(Je)f̂ p̂) = Ê(f̂ det(Je)p̂0)+

+ Ê(f̂ det(Je)(p̂− p̂0)) = J0(f̂) + J1(f̂). (4.109)

Здесь p̂0 есть P0-интерполянт p̂, det(Je) ∈ Q2m−1. Введем обозначения:

g0 = det(Je)p̂0 ∈ Q2m−1, g1 = det(Je)(p̂− p̂0) ∈ Q3m−1.

Поскольку det(Je) = O(h2), то

|g0|0,ê 6 c h2|p̂0|0,ê 6 c h2|p̂|0,ê, |g1|0,ê 6 c h2|p̂− p̂0|0,ê 6 c h2|p̂|1,ê.

Далее, J0(Qm−1) = 0, J1(Qα) = 0, где α = max{0,m− 2}, поэтому

|Ĵ0(f̂)| 6 c ∥f̂∥m,r,ê |ĝ0|0,ê 6 c [f̂ ]m,r,ê |ĝ0|0,ê 6
6 c h2[f̂ ]m,r,ê |p̂|0,ê 6 chm (mes(e))1/2−1/r ∥f∥m,r,e ∥p∥0,e,

|Ĵ1(f̂)| 6 c ∥f̂∥m,r,ê |ĝ1|0,ê 6 c ([f̂ ]m−1,r,ê + [f̂ ]m,r,ê)|ĝ1|0,ê 6
6 c h2([f̂ ]m−1,r,ê + [f̂ ]m,r,ê)|p̂|1,ê 6 c hm (mes(e))1/2−1/r ∥f∥m,r,e ∥p∥1,e.

Из этих оценок и равенства (4.109) следует (4.108). �
Поскольку 4m− 3 > 3m− 2 для любого m > 1, то из доказанной

леммы следует, что квадратурная формула, используемая для вычис-
ления формы f , должна быть точнее, чем квадратура, соответствую-
щая форме a. Если используется одна и та же s× s-точечная квадра-
тура Гаусса и для f , и для a, то необходимо положить 2s−1 > 4m−3,
s > m + 1 (для обеспечения эллиптичности формы ah). Отсюда по-
лучаем условие s > max{m+ 1, 2m− 1}.

Используя рассуждения, аналогичные, применявшимся при дока-
зательстве теоремы 2, с. 209, нетрудно показать, что из (4.105), (4.106)
и леммы 3 следует

Теорема 4. Пусть Ŝ есть s × s-точечная квадратура Гаусса,
s > max{m + 1, 2m − 1}, триангуляция Th является (m + 1)-регу-
лярной,

u ∈ Wm+1
r (Ω), aij ∈ Wm

∞(Ω), i, j = 1, 2, f̃ ∈ Wm
r (Ω̃), rm > 2, r > 2.

Тогда справедлива следующая оценка точности схемы (4.104):

∥ũ− uh∥1,Ωh
6 c hm

(
∥u∥m+1,Ω +

2∑
i,j=1

∥aij∥m,∞,Ω∥u∥m+1,r,Ω + ∥f̃∥m,r,Ω̃

)
.
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Замечание 2. Интересно сравнить требования на точность квадратурной фор-
мулы Ŝ в случае использования аффинно-эквивалентных и изопараметрических эле-
ментов. Если элементы треугольные, то как в том, так и в другом случае может ис-
пользоваться одна и та же квадратура, точная на полиномах из P2m−2. Если же эле-
менты прямоугольные, то во втором случае квадратура должна быть точнее, когда
m > 3 (для s × s-точечной квадратуры Гаусса s > m + 1 и s > max{m + 1, 2m − 1}
соответственно). Причина такого различия между треугольными и прямоугольными
изопараметрическими элементами кроется в различном определении их регулярности.
Если предполагать выполненными условия сильной регулярности пространства прямо-
угольных изопараметрических элементов, то можно налагать такие же требования на
точность квадратурных формул, как и для аффинно-эквивалентных элементов.



Приложение. Алгоритмические аспекты метода
конечных элементов

В предыдущих главах мы рассмотрели основные теоретические
вопросы, касающиеся метода конечных элементов, а именно, вопросы,
посвященные построению и исследованию точности дискретных ана-
логов краевых задач. Дискретная задача представляет собой не что
иное, как систему алгебраических уравнений, линейных, если исход-
ная задача была линейной. С практической точки зрения основным
является:

1) формирование системы алгебраических уравнений, т. е. вычис-
ление элементов матрицы и правой части системы;

2) решение полученной системы уравнений.

Сразу надо отметить, что эти два вопроса тесно взаимосвязаны,
в особенности, если используются прямые методы решения системы
линейных алгебраических уравнений. Дело в том, что возникающие
в приложениях матрицы имеют очень высокую размерность (средней
считается задача, включающая около десяти тысяч неизвестных) и
нетривиальной является даже организация хранения таких матриц
в памяти ЭВМ. Спасает положение то, что эти матрицы являются
разреженными (подавляющее число их элементов — нули). Поэтому
достаточно каким-либо образом хранить только индексы и значения
ненулевых элементов. Ясно, что соответствующий способ хранения
матриц должен позволять эффективно реализовать метод решения
системы уравнений (например, метод Гаусса). Указанные вопросы
(кодирование разреженных матриц, решение систем уравнений с раз-
реженными матрицами) составляют предмет технологии разрежен-
ных матриц. Ему посвящены специальные монографии (см., напр. [4],
[16]). Учитывая сказанное, основное внимание мы уделим вопросам
формирования систем алгебраических уравнений. Для простоты из-
ложения ограничимся рассмотрением лагранжевых конечных элемен-
тов класса C0 для двумерных эллиптических уравнений.
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§ 1. Форма данных для представления триангуляции в
ЭВМ

1. Простейший случай. Линейные треугольные элемен-
ты. Рассмотрим триангуляцию Th, изображенную на рис. 1. Предпо-
лагается, что с каждым элементом (треугольником) связан линейный
конечный элемент. Какие данные необходимы для однозначного пред-
ставления триангуляции в ЭВМ? Прежде всего, это два числа: N —
общее число узлов сетки (вершин треугольников) и ne — общее число
конечных элементов.

Рис. 1. Триангуляция Th: N = 10, ne = 10. Рядом с вершиной треугольника проставлен
ее глобальный номер, номера треугольников указаны в кружочках.

Далее, очевидно, необходимо также указать

- координаты узлов;

- информацию о соединении узлов между собой.

Для этих целей достаточно ввести два массива: массив координат
узлов x, размера 2×N и так называемую матрицу связности элемен-
тов M размера 3×ne. Элемент xij матрицы x — это i-тая координата
j-го узла сетки; элемент mij матрицы M — глобальный номер i-го
узла (в локальной нумерации) на j-том конечном элементе. Напом-
ним, что локальная нумерация узлов 1) вводится парой чисел (j, i),
где j — номер элемента, i — номер узла на этом элементе. Таким

1)Точнее, узловых параметров. Для лагранжевых элементов между узлами и узловыми па-
раметрами имеется взаимно однозначное соответствие.
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образом, матрица M определяет соответствие между локальными и
глобальными номерами узлов. Для рассматриваемой нами триангу-
ляции матрица связности элементов имеет следующий вид:

M =

5 6 7 1 2 8 5 3 4 5
2 3 1 4 5 5 6 8 5 7
7 9 10 10 8 9 9 9 10 10

 .

Мы воспользовались следующим общепринятым способом локаль-
ной нумерации: узлы каждого элемента нумеруются против часовой
стрелки.

Замечание 1. На локальную нумерацию узлов на элементах не накладывается
никаких ограничений, кроме того, что правило нумерации должно быть одинаковым
для всех элементов (включая базисный элемент). Использованное нами правило "про-
тив часовой стрелки" удобно тем, что обеспечивает положительность якобиана преобра-
зования произвольного элемента в базисный. Глобальная нумерация узлов определяет
положение ненулевых элементов матрицы системы алгебраических уравнений, одно-
значно определяемой по матрице M .

Числа N , ne и матрицы x и M однозначно определяют триангу-
ляцию. Используя их, легко

- выполнить чертеж триангуляции, подобный рис. 1, на экране
графического дисплея;

- найти координаты вершин заданного элемента;

- вычислить площадь или периметр элемента и т. д.

Задачи.

1. Нарисовать триангуляцию области, соответствующую данным:

M =

2 2 6 3 4 4 1 5
7 5 5 6 6 9 7 7
5 8 8 8 5 5 9 9

 ,

x =

(
0.0 1.0 1.0 0.0 0.5 0.5 0.5 1.00.0
0.0 0.0 1.0 1.0 0.5 1.0 0.0 0.00.5

)
.

2. Написать программу (на любом языке программирования) триангуляции пря-
моугольной области Ω = (0, lx) × (0, ly), вычисляющую числа N и ne и массивы x, M
по следующему правилу: Ω разбивается на nx × ny равных прямоугольников, которые
в свою очередь разбиваются на два треугольника одной из диагоналей.
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Рис. 2. Разбиение области на четырехугольные элементы: N = 12, ne = 6. Рядом с
вершиной элемента проставлен его глобальный номер, номера элементов указаны в
кружочках.

2. Другие типы триангуляций и конечных элементов.
Рассмотрим случай разбиения области на четырехугольные элемен-
ты первой степени (Q1), изображенный на рис. 2. В данном случае
матрица связности элементов имеет вид:

M =

1 2 3 5 6 7
2 3 4 6 7 8
6 7 8 10 11 12
5 6 7 9 10 11

 ,

координаты узлов x определяются как и ранее. Для локальной ну-
мерации узлов мы опять воспользовались правилом ≪против часовой
стрелки≫ для всех элементов.

Для элементов более высокой степени в матрицу связности эле-
ментов удобно включать глобальные номера всех узловых параметров
элемента, а не только узлов интерполяции. Например, для лагранже-
вых элементов второй степени (рис. 3) матрица M будет иметь раз-
мер 6 × ne, поскольку на каждом элементе имеется шесть узловых
параметров, соответствующих значению функции в точке. В данном
конкретном случае матрица связности элементов имеет вид:

M =


1 2 3 1 2 3
2 3 4 6 7 8
6 7 8 5 6 7
9 10 11 13 15 17
14 16 18 19 20 21
13 15 17 12 14 16


(какое правило использовано при локальной нумерации узлов?).
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Рис. 3. Разбиение области на лагранжевые треугольные элементы второй степени:
N = 21, ne = 6.

§ 2. Алгоритм сборки системы уравнений

Отметим прежде всего, что алгоритм формирования системы ал-
гебраических уравнений в методе конечных элементов является еди-
ным для всех типов конечных элементов и допускает простую и эф-
фективную программную реализацию. Перейдем к его рассмотрению.

1. Краевые условия 3-го рода. Рассмотрим следующую за-
дачу: найти функцию u(x) ∈ H1(Ω) такую, что∫

Ω

(A∇u · ∇v + auv) dx+

∫
Γ

σuv dx =

=

∫
Ω

fv dx+

∫
Γ

gv dx ∀ v ∈ H1(Ω), (4.110)

где Ω область в R2 с достаточно гладкой границей Γ. Исходные дан-
ные, а именно, функции A, a, f , σ, g, будем считать, для простоты
изложения, определенными на всей плоскости.

Напомним, что задача (4.110) представляет собой обобщенную
формулировку третьей краевой задачи:

− div(A(x)∇u) + a(x)u = f(x), x ∈ Ω,

A(x)∇u · ν(x) + σ(x)u = g(x), x ∈ Γ.

Здесь ν(x) — единичный вектор внешней нормали в точке x ∈ Γ.
Пусть Th — триангуляция области Ω на конечные элементы e

какого-либо типа (треугольные или четырехугольные), Ωh = ∪
e
e, Γh —

граница области Ωh, Vh — соответствующее пространство лагранже-
вых конечных элементов (аффинно-эквивалентных, изопараметриче-
ских или криволинейных элементов).
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Построение приближенного решения задачи (4.110) по методу ко-
нечных элементов сводится к отысканию функции uh ∈ Vh такой, что∫

Ωh

(A∇uh · ∇vh + auhvh) dx+

∫
Γh

σuhvh dx =

=

∫
Ωh

fvh dx+

∫
Γh

gvh dx ∀ vh ∈ Vh. (4.111)

Пусть φi(x), i = 1, 2, . . . , N (N зависит от h), есть базис Лагранжа
в Vh,

uh(x) =
N∑
i=1

yiφi(x).

Вектор y = {y1, . . . , yN}T , вектор узловых параметров функции uh,
определяется как решение системы линейных алгебраических урав-
нений

Ay = F, (4.112)
где ≪глобальная матрица жесткости≫ A = {aij}Ni,j=1 задается элемен-
тами

Aij =

∫
Ωh

(A(x)∇φj · ∇φi + a(x)φjφi) dx+

∫
Γh

σ(x)φjφi dx, (4.113)

а ≪глобальный вектор сил≫ F = {Fi}Ni=1 имеет компоненты

Fi =

∫
Ωh

f(x)φi dx+

∫
Γh

g(x)φi dx, 1 6 i 6 N. (4.114)

Формулы (4.113), (4.114) дают некоторый способ вычисления эле-
ментов матрицы A и вектора F , но ими непосредственно не поль-
зуются при практических вычислениях, поскольку существует более
удобный и более экономичный метод, который мы и рассмотрим.

Из формулы (4.113) следует, что матрица A является суммой двух
матриц: A = AΩ + AΓ,

AΩ =
{∫
Ωh

(A∇φj · ∇φi + aφjφi) dx
}N

i,j=1
, AΓ =

{∫
Γh

σφjφi dx
}N

i,j=1
.

Аналогично,

F = FΩ + FΓ, FΩ =
{∫
Ωh

fφi dx
}N

i=1
, FΓ =

{∫
Γh

gφi dx
}N

i=1
.
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Вычисление AΩ и FΩ. Согласно определению

AΩy · v =

∫
Ωh

(A∇uh · ∇vh + auhvh) dx,

где v — вектор узловых параметров функции vh, или

AΩy · v =
∑
e

∫
e

(A∇uh · ∇vh + auhvh) dx. (4.115)

Пусть me — количество узловых параметров функции из Vh на эле-
менте e. Воспользуемся представлением функций из Vh на элементе e:

uh(x) =

me∑
β=1

yeβφ
e
β(x), vh(x) =

me∑
α=1

veαφ
e
α(x).

Подставляя эти разложения в (4.115), получим

AΩy · v =
∑
e

me∑
α,β=1

aeαβy
e
βv

e
α.

Образовавшаяся здесь матрица Ae = {aeαβ}
me

α,β=1, где

aeαβ =

∫
e

(
A(x)∇φe

β · ∇φe
α + a(x)φe

βφ
e
α

)
dx

называется матрицей жесткости элемента e (или просто локальной
матрицей жесткости).

Используя связь между локальной и глобальной нумерация-
ми (задаваемую матрицей связности элементов), можем написать
yeβ = ymβe

, veα = vmαe
, и, следовательно,

AΩy · v =
∑
e

me∑
α,β=1

aeαβymβe
vmαe

. (4.116)

Преобразуем это равенство. Введем в рассмотрение матрицу Ãe раз-
мера N × N , состоящую из нулей, за исключением m2

e элементов,
которые определим соотношением

Ãe
mαe,mβe

= aeαβ, α, β = 1, 2, . . . ,me.
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Тогда формула (4.116) примет вид

AΩy · v =
∑
e

me∑
α,β=1

Ãe
mαe,mβe

ymβe
vmαe

=
∑
e

N∑
i,j=1

Ãe
ijyjvi =

=
∑
e

Ãey · v =
(∑

e

Ãe
)
y · v,

откуда в силу произвольности векторов y и v вытекает, что

AΩ =
∑
e

Ãe.

Последнее равенство показывает, что глобальную матрицу жестко-
сти можно получить суммированием по всем конечным элементам
локальных матриц жесткости. Поскольку нули не имеет смысла сум-
мировать, приходим к следующему алгоритму, известному как

Алгоритм сборки матрицы жесткости.

• Положить A = 0 (A — матрица размера N ×N).

• Для каждого e ∈ Th:

• вычислить Ae (размера me ×me).

• Для α, β = 1, 2, . . . ,me суммировать:

Amαe,mβe
= Amαe,mβe

+ aeαβ.

Аналогичные соображения приводят к алгоритму вычисления
вектора FΩ.

Алгоритм сборки вектора сил.

• Положить F = 0 (F — вектор длины N).

• Для каждого e ∈ Th:

• вычислить F e (вектор длины me).

• Для α = 1, 2, . . . ,me суммировать:

Fmαe
= Fmαe

+ F e
α.
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Здесь F e — вектор сил элемента e, имеет компоненты

F e
α =

∫
e

f(x)φe
α dx.

Вычисление AΓ и FΓ. Граница Γh области Ωh является объ-
единением граней элементов из Th. Пусть Γh = ∪τ , τ ⊂ Γh — грань
некоторого конечного элемента, mτ — количество узловых парамет-
ров, соответствующих грани τ . В рассматриваемом нами случае —
это число узлов интерполяции на τ . По определению функции из Vh,
сужение ее на грань τ определяются узловыми параметрами только
этой грани. Поэтому

uh(x)
∣∣
τ
=

mτ∑
α=1

yταφ
τ
α(x),

где (α, τ) — локальный номер узлового параметра на грани τ . Точно
так же, как при вычислении матрицы AΩ, можем написать, что

AΓy · v =
∑
τ⊂Γh

∫
τ

σ(x)uhvh dx =
∑
τ⊂Γh

mτ∑
α,β=1

aταβy
τ
βv

τ
α,

где Aτ = {aταβ}
mτ

α,β=1 — ≪матрица жесткости≫ элемента τ :

aταβ =

∫
τ

σ(x)φτ
βφ

τ
α dx.

Вводя расширенную матрицу Ãτ , как и ранее, получим:

AΓ =
∑
τ⊂Γh

Ãτ .

Нет необходимости хранить матрицу AΓ отдельно. Поэтому ее элемен-
ты по мере их вычисления сразу прибавляются к соответствующим
элементам матрицы AΩ.

Аналогично строится и вектор FΓ, при этом вводится ≪вектор
сил≫ F τ грани τ , определяемый компонентами

F τ
α =

∫
τ

g(x)φτ
α dx.

Итак, если матрица A = AΩ и вектор F = FΩ уже вычислены при
помощи описанного выше алгоритма сборки, то затем применяется
следующий
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Алгоритм учета краевых условий 3-го рода.

• Для каждого τ ∈ Γh:

• вычислить Aτ и F τ (размера mτ ×mτ и mτ соответственно).

• Для α, β = 1, . . . ,mτ суммировать:

Amατ ,mβτ
= Amατ ,mβτ

+ aταβ.

• Для α = 1, . . . ,mτ суммировать:

Fmατ
= Fmατ

+ F τ
α .

Здесь mατ — глобальный номер узла α на грани τ .
Задачи.

1. Получить из тождества (4.111) систему (4.112).
2. Выполнить подробно построения, приводящие к алгоритму сборки вектора сил.

2. Главное краевое условие. Предположим, что на части Γ0

границы ∂Ω задано краевое условие Дирихле (главное краевое усло-
вие)

u(x) = g(x), x ∈ Γ0.

Введем обозначения:

V g = {v ∈ H1(Ω) : v(x) = g(x), x ∈ Γ0},
V 0 = {v ∈ H1(Ω) : v(x) = 0, x ∈ Γ0}.

Рассмотрим задачу: найти функцию u(x) ∈ V g такую, что1)∫
Ω

(A(x)∇u · ∇v + a(x)uv) dx =

∫
Ω

fv dx ∀v ∈ V 0. (4.117)

Упражнение 3. Дать классическую формулировку задачи (4.117).

Пусть Th — триангуляция области Ω на конечные элементы e
какого-либо типа (треугольные или четырехугольные), согласован-
ная с границей Γ0 (граничные точки Γ0 являются вершинами каких-
либо конечных элементов). Пусть Ωh = ∪

e
e, Γ0

h — соответствующая Γ0

часть границы области Ωh. Пусть, далее, Vh— соответствующее Th
1)Для простоты изложения мы ограничились рассмотрением однородного граничного усло-

вия на Γ1 = Γ \ Γ0 при σ ≡ 0.
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пространство конечных элементов (аффинно-эквивалентных, изопа-
раметрических или криволинейных), аппроксимирующееH1(Ω). Обо-
значим через γ0 множество узлов интерполяции, принадлежащих Γ0

h.
Аппроксимации аффинного множества функций V g и пространства
V 0 определяются следующим образом:

V g
h = {v ∈ Vh : v(x) = g(x), x ∈ γ0},
V 0
h = {v ∈ Vh : v(x) = 0, x ∈ γ0}.

Построение приближенного решения задачи (4.117) по методу ко-
нечных элементов сводится к отысканию функции uh ∈ V g

h такой,
что∫

Ωh

(A(x)∇uh · ∇vh + a(x)uhvh) dx =

∫
Ωh

fvh dx ∀vh ∈ V 0
h . (4.118)

Пусть φi(x), i = 1, 2, . . . , N , есть базис Лагранжа в Vh, причем φi(x)
с номерами i = 1, 2, . . . , N0 соответствуют узлам, не лежащим на Γ0

h.
Тогда

uh(x) =

N0∑
j=1

yjφj(x) +
N∑

j=N0+1

g(xj)φj(x), (4.119)

а произвольная функция vh ∈ V 0
h имеет представление

vh(x) =

N0∑
i=1

viφi(x). (4.120)

Подставляя разложения (4.119) и (4.120) в тождество (4.118), придем
к системе линейных алгебраических уравнений:

A0y = F 0. (4.121)

Определим, как и ранее, глобальную матрицу жесткостиA = (Aij)
N
i,j=1

и вектор сил F = (Fi)
N
i=1 (без учета краевого условия Дирихле),

Aij =

∫
Ωh

(A(x)∇φj · ∇φi + a(x)φjφi) dx, Fi =

∫
Ωh

fφi dx.

Тогда матрица A0 размера N0 × N0 и вектор F 0 будут иметь компо-
ненты

A0
ij = Aij, 1 6 i, j 6 N0,
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F 0
i = Fi −

N∑
j=N0+1

Aijg(xj), 1 6 i 6 N0.

Видно, что в вычислениях участвуют, вообще говоря, все столбцы
матрицы A с номерами, большими N0.

Укажем простой способ получения системы алгебраических урав-
нений, эквивалентный системе (4.121), но не требующий специальной
нумерации неизвестных. При этом, однако, нужно предварительно
построить вектор d длины N такой, что di = 0, если узел с гло-
бальным номером i не принадлежит границе; di = 1, если в i-том
узле задано условие Дирихле, и di = 2 в противном случае. Далее,
через a∗j будем обозначать j-тый столбец матрицы A, через gi — зна-
чение функции g в i-той граничной точке.

Алгоритм учета главных краевых условий.

• Вычислить матрицу A и вектор F , используя алгоритмы сборки
матрицы жесткости и вектора сил.

• Для каждого i такого, что di = 1:

• суммировать: F = F − a∗igi (a∗i — i-й столбец матрицы A).

• все элементы i-той строки и i-того столбца положить равными
нулю.

• положить: Aii = 1, Fi = gi.

Замечание 1. Если все же необходимо, как, например, при решении задачи на
собственные значения, получить непосредственно матрицу A0, то можно поступить сле-
дующим образом.

(1) Определим число N0 как число не равных единице элементов вектора d.
(2) Перенумеруем узлы. Для этого определим вектор p длины N такой, что pi = 0,

если в i-том узле задано условие Дирихле, иначе pi определим как новый номер i-го
узла (pi ∈ [1, N0]). Для этого используем алгоритм:

• j=0;

• Для каждого i = 1, ..., N :

• если di ̸= 1 то {j = j + 1; pi = j } иначе {pi = 0}.

(3) Вычислим матрицу A0, используя
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Модифицированный алгоритм сборки матрицы жесткости.

• Положить A0 = 0 (A0 — матрица размера N0 ×N0).

• Для каждого e ∈ Th:

• вычислить Ae (размера me ×me).

• Для α, β = 1, . . . ,me:

• mα = p(mαe), mβ = p(mβe);

• A0
mα,mβ

= A0
mα,mβ

+ aeαβ .

3. Вычисление матрицы жесткости элемента. Рассмот-
рим, наконец, задачу вычисления матрицы жесткости элемента e:

aeαβ =

∫
e

(A(x)∇φe
β · ∇φe

α + a(x)φe
βφ

e
α) dx. (4.122)

Будем предполагать, что элемент (e, Pe,Σe) является ассоциирован-
ным с базисным элементом (ê, P̂ , Σ̂) посредством преобразования:

x = xe(x̂) = (xe1(x̂), x
e
2(x̂))

T .

Определитель матрицы

Je(x̂) ≡
(
Dxe(x̂)

)T
=

∂x
e
1

∂x̂1

∂xe2
∂x̂1

∂xe1
∂x̂2

∂xe2
∂x̂2

 (x̂)

этого преобразования будем считать положительным. Перейдем в ин-
теграле (4.122) от элемента e к элементу ê, учитывая, что

A(x) = Â(x̂) = A(xe(x̂)), φe
α(x) = φ̂α(x̂),

∇ = J−1
e (x̂)∇̂, ∇̂ = (∂/∂x̂1, ∂/∂x̂2)

T , dx = |Je(x̂)|dx̂,
где φ̂α(x̂) — базисные функции Лагранжа в пространстве P̂ . Будем
иметь

aeαβ =

∫
ê

(
Â(x̂)J−1

e (x̂)∇̂φ̂β ·J−1
e (x̂)∇̂φ̂α+â(x̂)φ̂βφ̂α

)
|Je(x̂)| dx̂. (4.123)

Подынтегральная функция в (4.123) вычисляется по явным форму-
лам в любой точке x̂, если известны явные формулы для преобразо-
вания координат и базисных функций φ̂α. Конечно, только в частных
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случаях этот интеграл может быть вычислен точно (например, в слу-
чае аффинно-эквивалентных элементов и постоянных A(x) и a(x)).

В общем случае необходимо использовать квадратурные формулы
для приближенного вычисления1) интеграла (4.123). Если∫

ê

f̂(x̂) dx̂ ≈
s∑

i=1

cif̂(bi),

то окончательно получим допускающую простую программную реа-
лизацию формулу для элементов матрицы жесткости:

aeαβ =
s∑

i=1

ci

((
ÂJ−1

e ∇̂φ̂β · J−1
e ∇̂φ̂α + âφ̂βφ̂α

)
|Je|
)
(bi). (4.124)

Задачи.

1. Указать способ вычисления компонент вектора сил элемента

F e
α =

∫
e

f(x)φe
α dx.

2. Конкретизировать формулу (4.124) для линейных треугольных конечных эле-
ментов (P̂ = P1). Какую квадратурную формулу следует использовать в этом случае?

3. Решить предыдущую задачу в случае, когда P̂ = Q1 (изопараметрические че-
тырехугольные элементы).

1)Напомним, что в этом случае мы приходим к схеме МКЭ с численным интегрированием
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Основные обозначения

Общие обозначения

δij — символ Кронекера.
R — множество всех вещественных чисел.
cardA — число элементов конечного множества A.
dimB — размерность конечномерного линейного пространства B.
Rn — n–мерное евклидово пространство.
AT — матрица, полученная транспонированием матрицы A.
x = (x1, ... , xn)

T , x ∈ R — элементы пространства Rn.
x · y = xTy = x1y1 + · · ·+ xnyn — скалярное произведение в Rn.
|x| = (x · x)1/2 — длина вектора x ∈ Rn.
[Rn]k = Rn × Rn × · · · × Rn — прямое произведение k экземпляров евклидова
пространства.
A(ξ1, . . . , ξk), ξi ∈ Rn, i = 1, . . . , k — полилинейная форма (полилинейное отоб-
ражение [Rn]k в R).
Aξk = A(ξ, . . . , ξ) (для симметричной полилинейной формы).
Ω — ограниченная область евклидова пространства Rn.
Γ или ∂Ω — граница области Ω.
ν — единичный вектор внешней нормали к Γ.
mes(Ω) или |Ω| — мера области Ω.
intB — внутренность множества B ⊂ Rn.

Производные и дифференциальные операторы

∂ku

∂xi1∂xi2 . . . ∂xik
, i1, i2, . . . , ik ∈ {1, 2, . . . , n}, k > 1 — частная производная

порядка k функции u = u(x1, . . . , xn).
α = (α1, α2, . . . , αn) — мультииндекс (вектор с целочисленными неотрицательны-
ми компонентами).
|α| = α1 + α2 + · · ·+ αn — длина мультииндекса α.

Dαu =
∂|α|u

∂xα1
1 ∂x

α2
2 . . . ∂xαn

n

— производная порядка |α| (классическая или обобщен-

ная).

Dku(x)(h1, h2, . . . , hk) =
n∑

i1, i2,..., ik=1

∂ku(x)

∂xi1∂xi2 . . . ∂xik
h1i1h

2
i2
. . . hkik — симметричная

полилинейная форма, порожденная частными производными порядка k функции
u.
Dku(x)hk = Dku(x)(h, h, . . . , h) — дифференциал порядка k функции u в точке x.

∇u(x) =
(
∂u(x)

∂x1
,
∂u(x)

∂x2
, . . . ,

∂u(x)

∂xn

)T

— градиент функции u в точке x.

Du(x)h ≡ D1u(x)h = (∇u(x))T h ∀h ∈ Rn.
u+(x) = (u(x) + |u(x)|) /2 — положительная часть функции u.
u−(x) = (u(x)− |u(x)|) /2 — отрицательная часть функции u.
∆u — оператор Лапласа.
supp u = {x ∈ Rn : u(x) ̸= 0} — носитель функции u.
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Линейные нормированные пространства

H — вещественное пространство Гильберта.
(·, ·) — скалярное произведение в гильбертовом пространстве.
∥ · ∥ = (·, ·)1/2 — норма в гильбертовом пространстве.
f(·): H → R — непрерывная линейная форма (линейный ограниченный функци-
онал).
a(·, ·): H ×H → R — непрерывная билинейная форма.
(u, v)a = a(u, v) (для симметричной положительно определенной формы a) —
энергетическое скалярное произведение.
Hn — замкнутое подпространство гильбертова пространства H (обычно конечно-
мерное).
Lp(Ω), p > 1, — пространство Лебега функций, измеримых на Ω и суммируемых
со степенью p.

∥u∥p,Ω =
(∫

Ω

|u|pdx
)1/p

— норма на пространстве Lp(Ω).

ess sup
x∈Ω

|u(x)| — существенная верхняя грань функции u на Ω.

L∞(Ω) — линейное пространство функций с нормой ∥u∥∞,Ω = ess sup
x∈Ω

|u(x)|.

C(Ω) — линейное пространство непрерывных на Ω вещественных функций.
∥u∥C(Ω) = max

x∈Ω
|u(x)| — норма на пространстве C(Ω).

Ck(Ω) — линейное пространство k раз дифференцируемых на области Ω функ-
ций.
Ck,λ(Ω) — линейное пространство k раз дифференцируемых на области Ω функ-
ций, все k-е производные которых удовлетворяют условию Липшица с показате-
лем λ ∈ (0, 1].
C∞

0 (Ω) — множество бесконечно дифференцируемых финитных на Ω функций.
C∞ (Ω) — линейное пространство, получаемое сужением на Ω = Ω

∪
Γ множества

бесконечно дифференцируемых на Rn функций.
W s

p (Ω) — пространство Соболева.

∥u∥s,p,Ω =
(∫
Ω

∑
|α|6s

|Dαu|p dx
)1/p

— норма на пространстве Соболева при

1 6 p < ∞.
∥u∥s,∞,Ω = max

|α|6s
ess sup

x∈Ω

∣∣Dαu(x)
∣∣ — норма на пространстве Соболева при p = ∞.

|u|s,p,Ω =
(∫
Ω

∑
|α|=s

|Dαu|pdx
)1/p

, [u]s,p,Ω =
(∫
Ω

n∑
i=1

∣∣∣∂su
∂xsi

∣∣∣p)1/p — полунормы на про-

странстве Соболева при 1 6 p < ∞.

|u|s,∞,Ω = max
|α|=s

ess sup
x∈Ω

|Dαu(x)|, [u]s,∞,Ω = max
i=1,...,n

ess sup
x∈Ω

∣∣∣∣∂su∂xsi (x)
∣∣∣∣ — полунормы на

пространстве Соболева при p = ∞.

(u, v)s,Ω =

∫
Ω

∑
|α|6s

Dαu Dαv dx — скалярное произведение на пространстве W s
2 (Ω).

∥ · ∥s,Ω — норма на пространстве W s
2 (Ω).

Hs(Ω) = W s
2 (Ω).
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Конечные элементы

Th = {e} — триангуляция области Ω.
Ωh =

∪
e∈Th

e.

(e, Pe,Σe) или e — конечный элемент.
ρe — максимальный радиус шара, содержащегося в e.
he — диаметр e.
ϕe
i — степени свободы конечного элемента.

Σe — множество всех степеней свободы конечного элемента.
φe
i (x) — базисные функции Лагранжа конечного элемента.

ωe — множество узлов интерполяции конечного элемента
(ê, Pê,Σê) = (ê, P̂ , Σ̂) или ê — базисный конечный элемент.
ρ̂ — максимальный радиус шара, содержащегося в ê.
ĥ — диаметр ê.
ϕ̂i — степени свободы базисного конечного элемента.
Σ̂ — множество всех степеней свободы базисного конечного элемента.
φ̂i(x) — базисные функции Лагранжа базисного конечного элемента.
ω̂ — множество узлов интерполяции базисного конечного элемента
x = xe(x̂) — отображение ê→ e ∈ Th.
Je = Dxe(x̂) — матрица Якоби отображения xe.
det(Dxe) — якобиан отображения xe.
Eh = {(e, Pe,Σe), e ∈ Th} — семейство конечных элементов на области Ω.
xα = xα1

1 · · ·xαn
n — моном степени |α| = α1 + · · ·+ αn.

Pm = Pm(x) =
{
p : p =

∑
|α|6m

cαx
α
}

— пространство полиномов степени не выше

m по совокупности переменных x1, . . . , xn.

Qm = Qm(x) =
{
p : p =

m∑
α1,...,αn=0

cαx
α
}

— пространство полиномов степени не

выше m по каждой переменной.
uI — интерполянт функции u.
π — оператор интерполирования.
ûI — интерполянт функции û на базисном элементе.
π̂ — оператор интерполирования на базисном элементе.
Vh =

{
vh ∈ Ck−1(Ωh) : vh

∣∣
e
∈ Pe ∀e ∈ Th

}
, k = 1, 2, — пространство конечных

элементов.

Квадратурные формулы

b̂l — узлы квадратурной формулы на базисном элементе ê.
ĉl — коэффициенты квадратурной формулы на базисном элементе ê.

Ŝ(ϕ̂) =
L∑
l=1

ĉl ϕ̂(b̂l) — квадратурная формула на базисном элементе.

bel — узлы квадратурной формулы на элементе e.
cel — коэффициенты квадратурной формулы на элементе e.

Se(ϕ) =
L∑
l=1

cel ϕ(b
e
l ) — квадратурная формула на элементе e.
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SΩ(ϕ) =
∑
e

Se(ϕ) — квадратурная формула на области Ω.

ah(u, v) = SΩ

( 2∑
i,j=1

aij
∂u

∂xj

∂v

∂xi

)
— билинейная форма, порожденная квадратурной

формулой.

fh(v) = SΩ(fv) — линейная форма, порожденная квадратурной формулой.

Ê(ϕ̂) =

∫
ê

ϕ̂(x̂) dx̂ − Ŝ(ϕ̂) — погрешность квадратурной формулы на базисном

элементе.

Ee(ϕ) =

∫
e

ϕ(x) dx− Se(ϕ) — погрешность квадратурной формулы на элементе.

EΩ(ϕ) =

∫
Ω

ϕ(x) dx− SΩ(ϕ) — погрешность квадратурной формулы на области.
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Алгоритм
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— коэффициенты, 178
— узлы, 178
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— степени свободы, 83, 84
— узлы интерполяции, 83, 84
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— ассоциированные, 100
— аффинно-эквивалентные, 107
— эрмитовы
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Конечный элемент, 75
— m-мерный, 83
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— аффинно-эквивалентный, 101
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— — прямоугольный, 87
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— — симплициальный, 87
— изопараметрический, 101, 120
— — квадратичный, 121
— — прямоугольный второй степени, 128
— — четырехугольный первой степени, 126
— — эрмитов, 129
— — эрмитов кубический, 130
— Белла (класса C1), 97
— изопараметрический с одной криволинейной границей, 122
— класса Ck, 84
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— — эрмитов кубический класса C1, 94
— прямоугольный
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— — максимально неполный степени m, 91
— равный ассоциированному элементу Белла, 112
— треугольный
— — лагранжев степени m, 90
— эрмитов, 84
— — бикубический класса C1, 95
— — треугольный кубический класса C0, 96
Конечных элементов
— Белла пространство, 140
— лагранжевых треугольных степени m пространство, 138
— пространство, 131
— прямоугольных бикубических пространство, 141
— семейство, 75
— эрмитовых кубических треугольных пространство, 139
Ламе постоянные, 69
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— Лакса — Мильграма, 21, 25, 27, 64
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— Стренга, 27, 179
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— жесткости
— — глобальная, 220
— — локальная, 221
— положительно определенная
— — равномерно, 62
— разреженная, 15, 215
— связности элементов, 216, 218
Матрицы
— жесткости элемента
— — вычисление, 227
Метод
— Галеркина, 8, 14, 25
— — возмущенный, 27, 179
— Ритца, 22, 25
— конечных элементов, 9
— — для системы уравнений теории упругости, 172
— — для уравнений второго порядка, 158, 163
— — для уравнений четвертого порядка, 165, 167
— — с численным интегрированием, 178
Мультииндекс, 29, 78
Мультииндекса
— длина, 29
Неравенство
— Гельдера, 34, 56
— — обобщенное, 35
— Коши — Буняковского, 35
— Корна, 70
— Пуанкаре, 49
— Фридрихса, 47, 50
— треугольника, 28
Норма
— ∥u∥s,∞,Ω, 38
— ∥u∥s,p,Ω, 38
— на пространстве Гильберта, 20
— полилинейной формы, 29
— — симметричной, 30
Нормы
— эквивалентные, 22
Нумерация
— узлов
— — глобальная, 135, 216
— — локальная, 134, 216
Область
— Ωh, 75
— класса Ck,λ, 38
— липшицева, 39
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Оператор
— Лапласа, 65
— вложения, 40
— — вполне непрерывный, 40
— интерполяции, 82
— положительно определенный, 20
— самосопряженный, 21
— энергетически эквивалентный, 25
Остаточный член
— в интегральной форме, 32
— в форме Лагранжа, 33
— в форме Пеано, 33
Отображение
— полилинейное, 30
Отображения
— якобиан, 32
Оценка погрешности метода конечных элементов
— асимптотическая неулучшаемость, 1170
— для уравнений второго порядка, 160, 161, 163, 164
— для уравнений четвертого порядка, 167
— для уравнений второго порядка в норме L2, 170
Оценка погрешности схемы МКЭ с численным интегрированием, 190, 199, 209
Погрешности интерполяции
— оценка, 147, 149–152, 154, 156
Полунорма
— [u]s,∞,Ω, 38
— [u]s,p,Ω, 38
— |u|s,∞,Ω, 39
— |u|s,p,Ω, 38
Проектор, 82
Произведение
— скалярное, 20
— — (u, v)s,Ω, 40
— — энергетическое, 22
Производная
— конормальная, 65
— обобщенная, 36
Пространств
— семейство
— — предельно полное, 23
Пространство
— C(Ω), 34
— C[0, 1], 7
— C∞ (Ω), 39
— Ck[0, 1], 7
— Ck

0 [0, 1], 7
— C∞

0 (Ω), 36
— Hs(Ω), 40
— Hs

0(Ω), 45
— L∞(Ω), 34
— Lp(Ω), 34
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— Rn, 28
— V 0

h , 144
— Vh, 74
— W s

p (Ω), 38, 40
— [Rn]k, 28
—

◦
Ws

p(Ω), 45
— Гильберта, 20
— Соболева, 28, 38
— полиномов
— — степени не выше m по каждой переменной, 78
— — степени не выше m по совокупности переменных, 78
Регулярность
— решений эллиптических уравнений, 72
Решение
— классическое, 61
— обобщенное, 8, 61, 63, 65, 66
Семейства аффинно-эквивалентных элементов регулярность
— условия, 109
Семейства конечных элементов
— k-регулярность, 104
— k-регулярность сильная, 104
Семейства криволинейных элементов k-регулярность
— условия, 116
Семейства треугольных афинно-эквивалентных элементов регулярность
— условия, 111
Семейство подпространств
— предельно полное, 26
Сетка, 9
След функции, 43
Существенная верхняя грань функции, 34
Схема разностная, 11
Тензор
— деформаций, 68
— напряжений, 68
Теорема
— Рисса, 20, 25
— Соболева об эквивалентных нормировках, 46
Теории упругости
— задачи двумерные, 71
— система уравнений, 67
Теория Фредгольма, 64
Тождество интегральное, 7, 14, 63
Триангуляция, 75
Узловой параметр, 84
Унисольвентная пара, 80, 81
Уравнение
— Пуассона, 14
— Эйлера, 59
— бигармоническое, 74
— дифференциальное
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— — обыкновенное второго порядка, 7
— эллиптическое
— — четвертого порядка, 73
Условие
— Липшица, 39
— положительной определенности
— — равномерной, 27
Условия
— разрешимости схемы МКЭ с численным интегрированием, 185, 204
Форма
— билинейная, 27
— — симметричная, 21
— — непрерывная, 20
— линейная, 27
— — непрерывная, 20
— полилинейная, 28
— — кососимметричная, 30
— — симметричная, 28
— положительно определенная, 20
Формула
— Тейлора, 32
— интегрирования по частям, 44
— квадратурная
— — на базисном элементе, 178
— — на произвольном элементе, 178
Функции
— P -интерполянт, 82
— Vh-интерполянт, 137
— базисные, 8, 14
— — Куранта, 16
— — с локальным носителем, 10
— гессиан, 32
— градиент, 32
— дифференциал порядка k, 31
— отрицательная часть, 64
— положительная часть, 64
— продолжение с сохранением нормы, 41
Функционал
— линейный
— — ограниченный, 20
— квадратичный, 21
— погрешности квадратурной формулы, 182
— энергетический, 65
Функция
— класса
— — Ck,λ, 39
— финитная, 36
Функция l раз непрерывно дифференцируемая, 31
Эквивалентные нормировки соболевских пространств, 45
Элемент конечный, 9, 75
Элемент наилучшего приближения, 23
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