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A model solution of the generalized Langevin equation:
Emergence and Breaking of Time-Scale Invariance in

Single-Particle Dynamics of Liquids∗∗
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It is shown that the solution of generalized Langevin equation can be obtained on the
basis of simple comparison of the time scale for the velocity autocorrelation function of
a particle (atom, molecule) and of the time scale for the corresponding memory function.
The result expression for the velocity autocorrelation function contains dependence on the
non-Markovity parameter, which allows one to take into account memory effects of the
investigated phenomena. It is demonstrated for the cases of liquid tin and liquid lithium
that the obtained expression for the velocity autocorrelation function is in a good agreement
with the molecular dynamics simulation results.
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Relaxation processes in a complex system
can be characterized by the pronounced memory
effects, which are manifested in the non-
exponential decay or oscillatory behavior of
the time correlation functions (TCF’s) for the
corresponding dynamical variables [1, 2]. Hence,
one can reasonably assume that the direct
accounting for the memory effects could simply
the theoretical description of the system behavior.
The convenient way to examine this is to consider
a system, in which the origin of the memory
effects is well studied. As an example of such
the physical system one can take a high-density
(viscous) liquid, a supercooled liquid or/and a
glass [3], where the memory effects appear in
single-particle dynamics as well as in collective
particle dynamics [4–6].

From theoretical point of view, the
convenient way to take these effects into account
most adequately is to use in the description
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the so-called memory function formalism [7],
which is associated with the projection operators
technique of Zwanzing and Mori [8, 9] as well as
with the recurrent relations method suggested
by Lee [10]. Remarkably, the memory function
formalism allows one to represent the equation
of the motion for a variable (originally, for the
velocity of a particle in liquid) in the form of
a non-Markovian integro-differential equation,
which contains a characteristic component – a
memory function. For the case when the velocity
of a particle represents such the variable, the
integro-differential equation is known as the
generalized Langevin equation (GLE). Herein,
if time behavior of the memory function is
defined, then the solution of the GLE will
determine the evolution of the variable (the
velocity) and the corresponding TCF – the
velocity autocorrelation function (VACF) –
can be computed [4, 5]. Nevertheless, although
the technique of projection operators gives a
prescription to calculate the memory function,
the direct computations are very difficult to
be realized for real physical systems [10–12].
In this work, we shall demonstrate that a
solution of GLE can be derived by simple
interpolation of its solutions for the memory-free
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case, the strong-memory case and the case with a
moderate memory. Further, the resulted solution
will contain the parameter which represents a
quantitative measure of the memory effects.

Let us take the velocity vα of a α-th particle
in liquid as a dynamical variable. Then, GLE can
be written as [6, 8, 9]

dvα(t)

dt
= −Ω2

1

∫ t

0
dτM1(t− τ)vα(τ) + f(t), (1)

where f(t) is the random force per unit mass,
M1(t) is the normalized first order memory
function, which is related to the random force f(t)
by the second fluctuation-dissipation theorem [8,
9], and Ω2

1 is the first-order frequency parameter
arising from normalization of M1(t). Note, it
is assumed that ⟨vα(0)f(t)⟩ = 0. Multiplying
Eq. (1) by vα(0), taking an appropriate ensemble
average ⟨. . .⟩ and applying further the projection
operators technique, it is possible to obtain
a hierarchical chain of integro-differential non-
Markovian equations in terms of TCF’s:

dMi−1(t)

dt
+Ω2

i

∫ t

0
dτMi(t− τ)Mi−1(τ) = 0, (2)

i = 1, 2, . . . .

If VACF is chosen as an initial TCF of this
hierarchy, then GLE will be the first equation (i.e.
i = 1) of this chain[a]. In the case,

M0(t) =
⟨vα(0)vα(t)⟩
⟨vα(0)2⟩

is VACF; Mi(t) is TCF of the corresponding
dynamical variable, which has meaning of the
ith-order memory function [13], whereas Ω2

i is
the i-th-order frequency parameter. Note that
all TCF’s of chain (2) including VACF are
normalized to unity for convenience, i.e.

lim
t→0

Mi−1(t) = 1,

[a] Originally, the equation (1) written for the variable-
velocity was called as the GLE. Nevertheless, the
related integro-differential equation written for
the corresponding time correlation function is also
mentioned as the GLE in the modern studies [7].

i = 1, 2, . . . .

Moreover, applying the operator of Laplace
transformation L̂ =

∫∞
0 dt e−st[. . .] to equations

of chain (2), one obtains the infinite fraction [7]:

M̃0(s) =
1

s+Ω2
1M̃1(s)

=
1

s+
Ω2
1

s+
Ω2
2

s+
Ω2
3

s+ . . .

.

(3)
It is necessary to note that the ith-order

memory function Mi(t) corresponds to a concrete
relaxation process, the physical meaning of which
can be established directly from consideration of
the analytical expression for Mi(t). On the other
hand, the squared characteristic time scale τ2 of
the relaxation process can be defined as [1]

τ2i−1 =

∣∣∣∣∫ ∞

0
tMi−1(t) dt

∣∣∣∣ =
∣∣∣∣∣lims→0

(
−∂M̃i−1(s)

∂s

)∣∣∣∣∣ ,
(4)

i = 1, 2, . . . .

The time scales τi−1 corresponding to TCF’s
of chain (2) form the hierarchy, which has the
following peculiarity: the quantity τi defines
a memory time scale for TCF Mi−1(t), the
relaxation time of which is τi−1. As a quantitative
measure of memory effects for the ith relaxation
level it is convenient to use the dimensionless
parameter [1]

δi =
τ2i−1

τ2i
, i = 1, 2, . . . , (5)

where τ2i is defined by Eq. (4). This simple
criterion allows one to determine whether the
considered process is characterized by a strong
statistical memory, or it has a memoryless
behavior. Namely, one has

δ → 0 for a strong memory limit,
δ ≃ 1 for a case of moderate memory,

δ → ∞ for a memory-free limit.
(6)
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It is remarkable that for the three cases
determined by (6) there are known exact solutions
of the GLE written for the VACF [14, 15]:

dM0(t)

dt
+Ω2

1

∫ t

0
dτM1(t− τ)M0(τ) = 0,

where the first frequency parameter of a many-
particle system (say, for a liquid), where
atoms/moleculs interact through a spherical
potential U(r), can be written as [16–18]

Ω2
1 =

4πn

3m

∫ ∞

0
dr g(r)r3

×
[
d

dr

(
1

r

dU(r)

dr

)
+

3

r2
dU(r)

dr

]
.

(7)

Here n is the numerical density, m is the particle
mass, and g(r) is the pair distribution function;
and Eq. (7) is the first equation of the chain (2),
i.e. at i = 1. Let us consider these three cases in
detail.

First, one assumes that Eq. (7) describes the
behavior of the system without memory, i.e. τ20 ≫
τ21 . For the case one has δ → ∞. Here, the memory
function M1(t) has to decay extremely fast; and,
therefore, it can be taking in the following form:

M1(t) = 2τ1δ(t), (8)

where δ(t) is the Dirac Delta-function, τ1 is the
time scale of M1(t). By substituting Eq. (8)
into Eq. (7) and solving the resulted equation,
one obtain the VACF M0(t) with ordinary
exponential dependence:

M0(t) = e−Ω2
1τ1t. (9)

As known, such the dependence is correct for
the velocity correlation function of the Brownian
particle with the relaxation time τ0 = (Ω2

1τ1)
−1 =

m/ξβ , m and ξβ are the mass and the friction
coefficient, correspondingly. As for the self-
diffusion phenomena in a liquid, where particle
(α) moving with the velocity vα(t) is identical to
all others, exponential relaxation of the VACF is
rather strongly idealized model [19].

Second, one considers the opposite situation
appropriate to the system, the single-particle

dynamics of which is characterized by a strong
memory, i.e. τ20 ≪ τ21 . For the case one obtains
from definition (5) that δ → 0. The most relevant
form of the non-decaying memory function can be
taken as

M1(t) = H(t) =

{
1, t ≥ 0
0, t < 0

, (10)

where H(t) is the step Heaviside function. By
substituting Eq. (10) under the convolution
integral of Eq. (7), one obtains

dM0(t)

dt
= −Ω2

1

∫ t

0
dτM0(τ). (11)

After solving this equation one finds that

M0(t) = cos(Ω1t). (12)

It should be noted that no the characteristic time-
scale τ0 is included into solution (12) as well
as that M0(t) does not satisfy the condition of
attenuation of correlation at t → ∞ [20]. Actually,
the system with an ideal memory “remembers” its
initial state and returns periodically to this state,
functionally reproducing it with precision.

These two above considered cases are
limiting ones. However, it is known that single-
particle dynamics of real systems is characterized
by a memory, albeit the memory is not ideal.
Therefore, for the case one can write that the
parameter δ takes values from the range 0 < δ ≪
∞. There is also the physically correct solution
of Eq. (7) for this region of δ, and the solution
was firstly obtained by Yulmetyev (see Ref. [21]).
Let us consider the case, when the time scales
of the initial TCF and of its memory became
comparable, i.e.

δ ≃ 1.

The case can be realized at the time-scale
invariance of the relaxation processes in many-
particle systems [13]. In addition, if the time-
dependencies of the VACF and of its memory
function are approximately identical, then one can
write

M1(t) ≃ M0(t). (13)
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Taking into account relation (13) and applying
Laplace transformation to Eq. (7), we obtain
ordinary quadratic equation:

Ω2
1M̃

2
0 (s) + sM̃0(s)− 1 = 0. (14)

By solving the last equation and by applying the
operator of the inverse Laplace transformation
L̂−1, we find the VACF

M0(t) =
1

Ω1t
J1(2Ω1t), (15)

where J1(. . .) is the Bessel function of the first
kind. Then, for the squared characteristic time
scales of the VACF and of its memory function
one obtains from definition (5) and Eq. (14) that

τ20 = τ21 =
1

2Ω2
1

. (16)

Thus, the quantity proportional to the inverse
frequency parameter determines both the squared
time scales. Solution (15) describes the damped
oscillated behavior of the function M0(t). It is
worth nothing that the TCF’s scenario is observed
frequently in such the physical systems as electron
gas models, linear chain of the neighbor-coupled
harmonic oscillators and others [10, 22] as well
as in collective particle dynamics in simple
liquids [13], where the TCF of the local density
fluctuations is considered.

The three considered cases allow one to
find solution of Eq. (7) at the three different
values of the memory parameter: δ = 1 with
solution (15); the memory-free case with solution
(9) corresponds to δ → ∞, whereas solution (12)
was obtained for the system with ideal memory at
δ → 0. So, if we shall generalize Eqs. (9) and (12)
in a unified functional dependence, then we can
obtain the following solution of Eq. (7) in terms
of the Mittag-Leffler function [23]:

M0(t) =

∞∑
k=0

(−Ω2
1τ

1−ν
1 tν+1)k

Γ(νk + k + 1)
, (17)

where Γ is the Gamma function, τ1 is the
time scale of the memory function M1(t), the
frequency parameter is determined by (7), and

the dimensionless parameter ν is the redefined
memory measure:

ν = (2/π) arctan(1/δ), (18)

and ν ∈ [0; 1]. For an strong memory case, i.e. δ →
0, Eq. (17) gives expansion in series of Eq. (12),
whereas for a memory-free limit with δ → ∞ we
obtain expansion of Eq. (9). Relation (17) has
a stretched exponential behavior at short times
and demonstrate an inverse power-law relaxation
at long times. It should be noted that the
similar solution of integro-differential equations
was proposed earlier by Stanislavskii in Ref. [12]
on the basis of applying the fractional calculus
technique.

Moreover, one can obtain the general
solution of Eq. (7) by interpolation of all three
solutions (9), (12) and (15). Assuming the smooth
parabolic crossover from the strong memory and
memory-free limits to a case of the moderate
memory (δ = 1) we obtain

M0(t) = 4

(
ν − 1

2

)2 ∞∑
k=0

(−Ω2
1τ

1−ν
1 tν+1)k

Γ(νk + k + 1)

+

[
1− 4

(
ν − 1

2

)2
] ∞∑

k=0

(−2Ω2
1t

2)k

k!(k + 1)!
, (19)

where the parameter ν is defined by (18). The
significance of the first contribution increases at
approaching δ to the zeroth value or at δ → ∞.
Thus, for example, Eq. (19) gives a standard
exponential relaxation in the memory-free limit
with δ → ∞. The second contribution in (19)
provides the Gaussian behavior for the short-
time range t < Ω−1

1 . Further, the numerical
coefficient before sum in the second contribution
of Eq. (19) dominates in the intermediate region,
where the time scales of memory function and
of the VACF are comparable. This contribution
becomes maximal at δ = 1, whereas the first item
turns into zero[b].

[b] Notice that the second contribution in expression (19)
can be considered as a particular case of the Mainardi
function [24] (or the Wright function [23]), which
includes such functions as the Gaussian function, the
Dirac delta-function and others.
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Both the memory-free situation with
absolutely uncorrelated particle motions and
the strong-memory case with the pronounced
correlations in the particle velocities related with
the vibrational particle dynamics are only limit
ones for a real liquids. A real liquid (a fluid)
tends to the first one at high temperatures and
low density, whereas it approaches to another
limit at low temperatures with large values of
the density. Moreover, it is realized a regime of
dense fluids, where the surrounding medium with
neighbor particles has an appreciable impact
on a forward moving particle (α), causing the
so-called vortex diffusion [25] and existence of
the power law decay of M0(t) with time. This
indicates on the memory effects in single-particle
dynamics, albeit the memory is far to be strong.
Our numerical estimations of the memory effects
for self-diffusion processes in the Lennard-Jones
fluids [14] have found that the parameter δ at
the reduced temperature T ∗ ≈ 1 and the reduced
density n∗ = 0.5 has a value ≈ 5.9, and then
it increases with the growth of temperature
and the decreasing of density. The parameter δ
achieves value ≈ 8.7 at the temperature T ∗ ≈ 4.8
and the density n∗ = 0.5, and demonstrates
non-linear smooth Markovization. For more
visibility of aforesaid we present in Fig. 1 the
density- and the temperature-dependence of the
memory parameter δ calculated for the VACF of
Lennard-Jones fluids [14].

Moreover, as known, the Bessel function of
Eq. (15) has the following asymptotic behavior
[26]:

J1(z) =
√

2/πz
{
cos (z − (3π/4)) +O(|z|−1)

}
.

Then, returning to Eq. (19), it is easy to make sure
that in a case of moderate memory this equation
yields the following long-time tail:

M0(t) ∝ t−3/2, (20)

which is a well-known feature of the VACF’s
of liquids [27, 28]. The long-time tails of the
VACF of a simple liquid can be reproduced
within the microscopic mode coupling theories
(see, for example, [5]), according to which where

FIG. 1. Density- and temperature-dependence of
the memory parameter δ computed on the basis of
molecular dynamics simulation results for the VACF
of the Lennard-Jones liquid for the following region
of the (n∗, T ∗)-phase diagram: 0.3 ≤ n∗ ≤ 0.7 and
1 ≤ T ∗ ≤ 4.7, n∗ = nσ3, T ∗ = kBT/ϵ, where σ and
ϵ are the parameters of the Lennard-Jones potential
[14].

it is related to a viscous mode. The approach
presented in this study is consistent with the
mode-coupling theories and provides a theoretical
description, in which information about complex
correlated vibrational-diffusive motions of the
particles is included into a single parameter δ.
Furthermore, it is seen that Eqs. (17) and (19)
contain such the characteristics of a many-particle
system as the characteristic time scale of the
memory τ1 and the averaged frequency Ω2

1, which
is defined through the radial distribution function
g(r) and the particle’s interaction potential U(r).
These quantities can be calculated from their
definitions for concrete systems, or may be
taken from molecular dynamics simulations (see,
for example, [29]). On the other hand, while
analysing experimental data, the term δ may be
used as a fitting parameter to do the quantitative
estimation of the memory effects in the considered
system.

As an example, we demonstrate in Fig. 2
results of Eq. (19) for a model system with the
frequency parameter Ω2

1 = 5 ps−2. The memory

Нелинейные явления в сложных системах Т. 19, № 3, 2016
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FIG. 2. Velocity autocorrelation function M0(δ, t) as
a function of the time t and of the memory parameter
δ computed from Eq. (19) for model case: δ ∈
[0.001; 6.593], where Ω2

1 = 5 ps−2 and the time scale
τ1 = 1/

√
2Ω2

1δ. The arrow points to the direction of
Markovization.

parameter δ varies within the interval from 0.001
to 6.593, whereas the memory time scale τ1 has
been defined here as τ1 = 1/

√
2Ω2

1δ. Thus, the
presented results include situations of a system
with a strong memory when the ratio between
the time scales of the VACF and of its memory
function archive the value 0.001, and situations
when these time scales are comparable. One can
see from this figure that the oscillations in the
VACF disappear with attenuation of the memory
effects (at Markovization) [14]. These oscillations
will disappear completely at δ → ∞. The stronger
memory effects in the single-particle dynamics of
a system, the more considerable the amplitude of
fluctuations and their decay.

The dependence presented by Eq. (19) is
supported by experimental results. Experimental
and molecular dynamic studies of simple liquids
such as liquid tin [30], liquid germanium and
lithium [31], liquid selenium [32], liquid sodium
[33], Lennard-Jones fluids [34] and other systems
[29, 35] have allowed one to discover the
relaxation of the VACF with the signatures of the
pronounced memory effects, which is manifested,
in particular, in algebraic decay of the VACF.
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FIG. 3. VACF of liquid tin at the temperature
T = 523 K (the melting temperature is Tm =
505.08 K) calculated from Eq. (19) with parameters
Ω2

1 ≃ 130 ps−2, δ ≃ 0.75 and τ1 = 1/
√
2Ω2

1δ
(solid curve) and obtained from the classical molecular
dynamics simulations [30] (dotted line). The value of
the memory parameter confirms the presence of strong
memory effects in the single-particle dynamics, which
appear due to the specific ion-ion interaction and the
correlated disorder in the structure of the melting
metal.

To test Eq. (19) for the liquids, we perform the
compuations for the cases liquid tin and liquid
lithium, for which the VACF’s were found before
from molecular dynamics simulations [30, 31]. In
Figs. 3 and 4, numerical solutions of Eq. (19) are
compared with the results of molecular dynamics
simulations [30, 31]. As for Fig. 3, the full
circles represent the VACF of liquid tin at T =
523 K (the melting temperature Tm = 505.08 K)
calculated by the classical molecular dynamics
[30] and the solid curve shows solution of the
GLE (19) with Ω2

1 ≃ 130 ps−2, δ ≃ 0.75 and
τ1 = 1/

√
2Ω2

1δ. It is seen that Eq. (19) well agrees
with the molecular dynamics simulations over the
whole time interval. The value of the memory
parameter reveals the pronounced memory effects
in self-diffusion phenomena in liquid tin near its
melting point. Strong memory effects, which take
place in single-particle dynamics of liquid near its
melting point, can be related with the structural
transformations of the system [36]. Fig. 4 shows
the VACF of liquid lithium at T = 1073 K (the
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FIG. 4. VACF of liquid lithium at the temperature
T = 1073 K (the melting temperature is Tm =
453.65 K) found from Eq. (19) with the parameters
Ω2

1 ≃ 120 ps−2, δ ≃ 10 and τ1 = 1/
√

2Ω2
1δ (solid

curve) and from molecular dynamics simulations [31]
(dotted line). The value of the memory parameter δ
reveals a weak memory in single-particle dynamics in
liquid lithium for this thermodynamic state, that can
be related with a weak influence of the “cage effects” [5]
as well as with a low ordering in the system. As a
result, a tagged diffusing atom can propagate over
larger distances without collisions with neighboring
atoms.

melting temperature Tm = 453.65 K) determined
from the molecular dynamics simulations [31] as
full circles, whereas the solid line corresponds
to the solution of Eq. (19) with the frequency

parameter Ω2
1 ≃ 120 ps−1, the memory parameter

δ ≃ 10 and the time scale of the memory function
τ1 = 1/

√
2Ω2

1δ. As may be seen from Fig. 4, the
theoretical results and the data of the molecular
dynamics simulations [31] are in good agreement.
The VACF of liquid lithium at this temperature
does not practically oscillate. This is direct
indications of weak memory effects in the system,
that can be caused by the absence of structural
order in the the system and by the diffusive
character of the single-particle dynamics [37].

Finally, the presented approach may
also be used to investigate microscopical
dynamics in more complex liquids, whose
interatomic potentials include angular-dependent
contributions. The memory function M1(t) of
these systems, which represents the TCF of the
stochastic force f(t), will represent a combination
of certain relaxation coupling modes. As a result,
the VACF will have a more complex time
behavior.
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