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ABSTRACT   

Soil erosion all over the world is an intensive, poorly controlled process. In many ways, this is a consequence of the lack 
of up-to-date high-resolution erosion maps. All over the world, the problem of information insufficiency is solved in 
different ways, mainly point-by-point, in local territories. Extrapolation of locally obtained results to a larger area 
inevitably leads to uncertainties and errors. For the anthropogenically developed part of Russia, this problem is 
particularly relevant, because the assessment of the intensity of erosion processes, even with the use of erosion models, 
does not allow to achieve the required scale due to the lack of all the necessary global large-scale remote sensing data of 
the Earth and the complexity of considering regional features of erosion over such large areas. The paper proposes a new 
technique for automated large-scale mapping of erosion processes, namely rill erosion, according to Sentinel-2. Deep 
learning neural networks are used to recognize washouts. To recognize rills, a transfer learning approach was used, 
namely, a combination of the LinkNet architecture with the EfficientNetB3 encoder. The accuracy of automated 
recognition of rill erosion in the study area of 3,200 square kilometers is 80% compared to the results of manual 
recognition. The average density of the rill erosion was 0.3 km/sq.km, the maximum – 0.66 km/sq.km. The greatest 
density of washouts corresponds to the plowed deforested territories actively used in agriculture, the minimum – is on 
cultivated lands with contour farming.    
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1. INTRODUCTION  

Soil erosion has been and remains the main factor in the degradation of the fertile layer of agricultural land. Intensive use 
of land in combination with natural factors creates conditions for intensifying the development of the so-called rill 
erosion, which includes gullies, erosion rills, and ephemeral ravines. Often, these erosional forms turn into permanent 
ravines, completely removing the territory from agricultural use. Therefore, it is not surprising that researchers all over 
the world pay special attention to the study of the problem of soil, and in particular, stream erosion. 
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Both field and mathematical methods are used as the main methods for studying soil erosion. Field methods make it 
possible to estimate the volume of erosional changes very accurately, but in local areas, which somewhat complicates the 
spatial interpretation of the results obtained at the regional or landscape levels. These include the classical methods of 
reference areas, the benchmarks method, and microprofiling, taking the length and width of erosion with a measuring 
tape. Reference sites allow one to estimate the direct volume of soil washed off the territory by artificially changing the 
conditions of the “environment” 1. Currently, geodetic methods are actively used to assess erosion, based on the 
reconstruction of the relief using laser scanning or photogrammetry data, both ground and air. The most accurate results 
can be achieved using terrestrial laser scanning data using reference points 2. Researchers from all over the world record 
in this way not only ravine 3 or ripple 4, but also microrill and planar soil erosion 5, the variations of which are within the 
first millimeters. Unfortunately, it is problematic to use such technologies for direct monitoring in areas larger than 1 
hectare. They try to solve this problem using airborne laser scanning; however, this technology has its limitations, 
primarily related to the positioning of the scanning equipment for subsequent resurvey equalization. This fact 
immediately excludes the possibility of using aerial scanning to assess the dynamics of microrill and planar erosion, 
however, it makes it possible to estimate the total length and width of rill and ravine erosion in a more or less automated 
mode. For this, various approaches are used, however, the most common one is based on the threshold value of the 
number of digital elevation model (DEM) cells from which flow into neighboring cells is possible. Depending on the 
resolution of the original DEM obtained from the scanned data, this approach makes it possible to recognize gullies with 
a depth of 5 cm or more. However, airborne laser scanning is not widely used due to the high cost of scanning 
equipment. Currently, inexpensive scanning sensors have appeared that can be installed not only on manned aircraft, but 
also on unmanned aerial vehicles (UAVs). However, the possibility of using such devices for solving the problem of soil 
erosion assessment has yet to be clarified - an analysis of existing experience has shown that the greatest applicability of 
such devices is in forestry 6. Despite the current trend towards cheaper scanning systems, they are still inaccessible to 
most researchers. The combination of these factors has led to the fact that photosensors are the most widely used payload 
for UAVs 7. UAV photogrammetry makes it possible to achieve a comparable density of a point cloud with scanning 
systems, a competitive accuracy of the resulting models, and to obtain an ultra-high-resolution orthophotomap as one of 
the final products. The use of UAVs provides geomorphological studies with up-to-date information on the state of the 
study area at a low cost, quickly, and fairly accurately. Unfortunately, despite the overall high performance, the use of 
UAVs does not allow continuous surveys of large regions 8,9, however, it does allow verification of model data. 

To solve the problem of mapping rill erosion, considering the existing limitations, approaches are used based on the 
manual selection of erosion according to remote sensing data, namely satellite images 10,11. Such a solution allows for 
achieving the best accuracy, but it is laborious and inefficient. To solve this problem, it is necessary to develop 
approaches based on the automation of the selection of rill washouts, which is the goal of this work. The initial data used 
as a cartographic basis defines a list of possible approaches that can be applied to achieve the goal. The simplest of them 
is the recognition of objects based on the threshold approach, where the threshold defines the limit of the reflectivity of 
the spectral data typical for the object of study. Such approaches are good for identifying different types of land use 
12,13(p8). However, when recognizing rills using this approach on different soil types, the result will be unpredictable. To 
consider the spatial variability of environmental factors, machine learning methods can be used, for example, the well-
established Random Forest method or Support Vector Machine 14,15. However, such approaches only give the probability 
that there may be soil erosion in a particular pixel, without separating the erosions themselves into a “tree pattern”. In 
addition, the methods are very sensitive to the amount of input data - the more information is used for analysis, the more 
stable the results will be. In small watersheds, such approaches can be successfully applied; for large areas, their 
applicability is questionable. 

Recently, there has been a rapid increase in the number of works on the use of deep neural networks (DNN) for the 
semantic segmentation of remote sensing data. This was facilitated both by improving the quality of remote sensing data 
and by increasing the computing power available to researchers. Currently, DNNs make it possible to successfully solve 
problems of automated interpretation of anthropogenic objects 16–18, coastline 19,20, land use 21–23, and vegetation cover 
dynamics 24–26. In all cases, the authors note a higher accuracy of recognition of objects of interest compared to other 
methods and emphasize the possibility of scaling the trained models. Deep neural networks were not used to solve the 
problem of recognition and mapping of rill erosion. However, the importance of the problem under study and the 
prospects for using artificial intelligence to solve this problem determine the need to develop an appropriate 
methodology. 
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2. STUDY AREA 

The territory of the Buinsky and Tetyushsky municipal districts of the Republic of Tatarstan serves as the study area. The 
territory is located in the central part of the East European Plain 27 and is confined to the Pre-Volga region of the 
republic. The study area is 3,200 sq. km. The study area is completely included in the forest-steppe landscape zone (Fig. 
1), has an average height of 120 m, and average slopes of 1.2–2 degrees. and is composed mainly of clayey and heavy 
loamy gray forest soils. There are also leached chernozems. Very favorable natural conditions ensure efficient 
agriculture, which has a strong impact on the natural-territorial complexes, primarily on the soil cover. Considering the 
intensity of plowing, livestock grazing, and natural conditions that contribute to the development of exogenous 
processes, this territory is highly susceptible to soil erosion. 

 

 

Figure 1. Study area. 

 

3. MATERIALS AND METHODS 

Data from the cloudless composite of the Sentinel-2 mission of the near-infrared range with the original resolution for 
the spring period (April-June) were used as initial data for the rill erosion recognition technique development. The 
composite was created using the Google Earth Engine (GEE) 28, “Sentinel-2 MSI: MultiSpectral Instrument, Level-2A” 
product (COPERNICUS/S2_SR). GEE allows the processing of large remote sensing data and facilitates some routine 
operations. To create a composite, the 2018–2019 images were filtered by date, the images were cleaned from clouds and 
shadows, the median pixel brightness values were calculated, and the images were cropped along the boundaries of the 
study area, as well as reprojected into the WGS 84/Pseudo-Mercator projection coordinate system (EPSG: 3857). 

In the resulting spring composite, continuous manual recognition of rill erosion was performed to create a sample of 
reference data (Fig. 2). 

The resulting sample was rasterized and reduced to the resolution of a satellite image fragment, then both rasters were 
cut into patches of 256*256 pixels. A total of 11,000 satellite image-binary mask pairs were obtained (Fig. 3). The 
resulting rasters were additionally randomly transformed to artificially increase the number of rasters by 3 times. The 
resulting dataset was divided into training and test sets of a 1/5 ratio. 
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LinkNet, a fully convolutional neural network for semantic image segmentation, was chosen as the neural network 
architecture 29. Through the trial-and-error method, it became clear that the best results in rills interpretation can be 
achieved using transfer learning, a method of training deep neural networks that allows you to use the knowledge gained 
about one deep learning problem and apply it to another, but with a similar task. In our case, we used encoders applied 
for EfficientNetB3 image classification 30. The algorithm for model training and applying was produced in the Python 
3.7 programming environment using the Keras library. A stack of image-mask pairs, previously prepared at the previous 
stage, was sent to the input of the neural network. To prevent the model overfitting, EarlyStopping monitoring was used, 
and the IOU Score metric – the Jaccard coefficient 31 was used as a metric for checking the model trainability. 

 

 

Figure 2. Example of training sample data. 

 

 

Figure 3. Example of satellite image patch (a) and binary mask (b) of training data. 

 

4. RESULTS AND DISCUSSION 

The trained neural network was tested on an independent dataset. The recognition accuracy was 0.67, the F1-measure – 
was 0.8, and the loss function – was 0.21. As a result of a qualitative analysis of the semantic segmentation results (Fig. 
4), a fairly high level of the rill net recognition, including visually, was obtained. Not a single case of ravines or dirt 
roads identifying instead of rills must be recorded. 

It was decided to apply the trained and tested model throughout the study area (Fig. 5). The length of the resulting rill 
geometry was recalculated into a basins grid 32 (Fig. 6). 

Proc. of SPIE Vol. 12296  1229604-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 16 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 

 

 

 

The average density of rill erosion – was 0.3 km/km2, and the maximum density was 0.66 km/km2. The highest rills density 
corresponds to plowed deforested areas actively used in agriculture, and the minimum density – is to cultivated lands with 
contour farming. The results obtained, in general, are in good agreement with the data on the gully density assessment, as 
the next evolutionary stage in the development of the erosion belt 33. 

 

 

Figure 4. Semantic segmentation of rill erosion. From left to right, a fragment of the satellite image, the results of manual 
detection of washouts, and the results of automated detection of washouts. 

 

 

Figure 5. Results of automated mapping of rill erosion. 
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Figure 6. Map of rill erosion in the Pre-Volga region of the Republic of Tatarstan. 

 

5. CONCLUSION 

Deciphering the rill element of soil erosion according to remote sensing data is a complex and time-consuming task. The 
use of modern convolutional neural networks makes it possible to speed up rill net mapping many times over, and the 
presence of a constantly updated high-resolution satellite images catalog makes it possible for an up-to-date assessment 
of the erosion network development. In general, the achieved level of accuracy of the erosion network pattern 
recognition is already sufficient for large-scale mapping, however, the accuracy of semantic segmentation can be 
improved. For example, it seems promising to use as initial data not direct satellite images of Sentinel 2, but derivatives 
in the form of vegetation indices rasters, for example, NDVI. It is also possible to use more complex encoders with a 
much larger number of model parameters, such as EfficientNetB7. 
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