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We propose the new method of f luid structure investigation based on numerical analytic continuation of
structural correlation functions with Pade approximants. The method particularly allows extracting hidden
structural features of disordered condensed matter systems from experimental diffraction data. The method
has been applied to investigate the local order of liquid gallium, which has a non-trivial structure in both the
liquid and solid states. Processing the correlation functions obtained from molecular dynamic simulations,
we show the method proposed reveals non-trivial structural features of liquid gallium such as the spectrum
of length-scales and the existence of different types of local clusters in the liquid.

DOI: 10.1134/S0021364016060035

INTRODUCTION
Gallium is a very specific metal [1]. First of all, it

has enormously large domain of its phase diagram cor-
responding to liquid state. For example, the tempera-
ture interval of stable liquid state at ambient pressure is
(302.93, 2477) K. Diffraction experiments have shown
that the local structure of liquid gallium is very com-
plicated and it differs much from the local structure of
typical simple liquids [2–5]. Accordingly, the crystal
structure of gallium is also nontrivial: below its melt-
ing temperature Tm = 302.93 K at the ambient pressure
the stable phase corresponds to the orthorhombic lat-
tice, which is atypical for single-component metallic
systems [6] (amount the other metals, the only Eu has
the same lattice structure at ambient pressure). At
higher pressures, there are many polymorphic transi-
tions to other nontrivial crystal structures [7, 8].

Last time, a lot of theoretical efforts were concen-
trated on investigation of the local structures and
anomalies of gallium in liquid phase [9–12]. However,
there is a gap between theoretical investigations of gal-

lium and experiment. The main problem is that the
only way to directly access the local structure is
molecular dynamics (MD) simulations, which cannot
unambiguously describe structure of real materials.
Indeed, classical MD deals with model approximate
potentials and first-principles MD has a problem of
restricted spatial and time scales available in simula-
tions. Experiment also cannot directly access the local
structure: the information about angle correlations is
mostly lost in the static structure factor or radial distri-
bution function (RDF); so only radial correlations can
be extracted. Here, we develop a new method of cor-
relation function processing based on complex analy-
sis with Pade approximants.

Using this method, we study local structure of liq-
uid gallium and extract its non-trivial features. Ana-
lyzing structural correlation functions obtained from
MD simulations with EAM potentials, we extract the
spectrum of spatial length scales and the existence of
two types of local clusters. We show that the best fit of
the gallium RDF can be performed using Lorentzians
instead of Gaussians, which are usually used for that
purpose.

1 The article is published in the original. See the supplemental
material for this paper at www.jetpletters.ac.ru.
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LOCAL ORDER OF GALLIUM
For MD simulations of liquid gallium, we have

used LAMMPS molecular dynamics package. The
system of N = 20000–100000 particles interacting via
EAM potential [13], specially designed for gallium
[14], was simulated under periodic boundary condi-
tions in Nose–Hoover NPT ensemble. This amount
of particles is enough to obtain satisfactory results.
More simulation details can be found in [15] where a
similar simulation was described. We checked that
radial distribution functions obtained by our simula-
tion quantitatively agree with those extracted from
experiment [15].

Here, we focus on gallium at ambient pressure and
investigate how its properties in liquid state depend on
temperature. Figure 1a shows the radial distribution
function g(r) of gallium taken for several temperatures
in the range of (313, 1073) K. The distance-dependent

coordination number N(< r) ≡ , which
is the mean number of particles inside a sphere of
radius r, is also plotted in Fig. 1a; in part, the distance-
dependent coordination number N(< r) shows the
number of nearest neighbors in the first coordination
shell.

It is clear from the figure that the shape of the first
RDF peak is nontrivial. It can be seen that the first
RDF peak of gallium has a clear shoulder. Particles
forming the local clusters are mostly located at dis-
tances corresponding to the first coordination sphere
(first peak of RDF). That suggests that local structure
of liquid gallium is rather nontrivial. More detailed
information can be extracted only after specific pro-
cessing of RDF.

The promising way to extract features of local order
hidden in RDF is performing analytic continuation to
complex plane of distances. This is usual way in the
theory of correlation functions of quantum systems
especially for analytic continuation of the Greens
functions from imaginary (Matsubara [16]) frequen-
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cies to the real frequency domain [17–19]. Recently,
the method of numerical analytic continuation was
successfully applied to investigations of velocity auto-
correlation function of Lennard-Jones (LJ) f luid [20,
21] and in classical hydrodynamics of the Stokes waves
[22]. Here we use this method for analysis of gallium
RDFs. For numerical analytic continuation we build
the Pade approximant [23, 24] as was done in [17, 21].
More details can be found in the supplemental mate-
rial for this paper in [25].

The static structure factor is related to RDF as [26]:

. (1)

Therefore, if g(r) has a pole, at the position rp, we
should expect that the contribution of this pole to the
structure factor oscillates as cos(kRerp) or sin(kRerp)

and decays with k as . Thus, knowledge of the
poles gives important scales characterizing the particle
system.

In Figs. 1b and 1c, we show the results of the typical
processing of gallium RDF by Pade approximants. As
follows, we use the Pade approximant of RDF for its
analytic continuation in complex-r. Figure 1b shows
the absolute value of RDF in complex-r plane while
the peaks correspond to the poles. We see a limited
number of poles near the real axis: so the Lorenzian fit
of RDF perfectly matches all its basic features, see
Figs. 1c and 1d. The real parts of the positions of the
poles are important length scales characterizing gal-
lium: as follows, in the first coordination sphere: r =
2.58, 2.69, 2.84 Å; the scale r = 3.33 Å corresponds to
the tail of the first coordination sphere. These scales
are in fact characteristic interparticle distances in the
first coordination shell. Thus, we see that analytic
continuation with Pade approximants allows extract-
ing multi-scale character of local structure of liquid
gallium. In that connection, remember that, at ambi-
ent pressure, gallium crystallizes into non-trivial ort-
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Fig. 1. (Color online) Pade spectroscopy of the radial distribution function. (a) (Solid lines) Radial distribution function g(r) of
liquid gallium and (dashed lines) its distance-dependent coordination number N(< r) at different temperatures T (indicated on
the plot). (b)–(d) Liquid gallium, T = 500 K. (b) Doing the Pade approximation, we find characteristic scales of gallium for par-
ticle distribution in the first coordination sphere: r = 2.58, 2.69, 2.84 Å. The scale r = 3.33 Å corresponds to the tail of the first
coordination sphere. (c) Density plot of the Pade approximant. (d) First peak of g(r).
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horhombic lattice and so it is interesting to find rela-
tion between unusual multiscale local order of the liq-
uid and non-trivial crystal symmetry.

In Fig. 2, we show RDF obtained for ideal lattice of
α-Ga (orthorhombic) with small random noise which
mimics thermal vibrations. We see that first coordina-
tion shell contains two atoms located at short distance
of 2.46 Å. Such Ga2 dimers were earlier suggested to be
formed by covalent-like bonding [27]. Each Ga atom
has other six nearest neighbors located in pairs in dif-
ferent coordination shells at distances 2.7, 2.73,
2.79 Å. Therefore, the crystal structure of α-Ga
demonstrates spectrum of spatial scales. The compar-
ison of these scales with those obtained from analytic
continuation of RDF shows good agreement. Indeed
the ratios of maximal and minimal distances are 1.134
for experimental lattice structure and 1.1 for scales

extracted from liquid RDF. Of course, the analytic
continuation of liquid RDF does not distinct two
nearly located scales. Recently, the similar analysis of
liquid Ga structure was performed in [15] where sim-
ulated RDF were approximated by a set of Gaussians
that gave similar interval of spatial scales. However,
this method can distinct only two scales in mentioned
interval. Moreover, the results strongly depend on the
choice of approximation parameters such as the num-
ber and the shape of approximating functions [25].

For comparison we investigated LJ f luid and saw,
unlike Gallium, two merging poles deep in the com-
plex plain corresponding to the first peak of RDF. The
poles show one characteristic scale—maximum of
RDF [25].

ORIENTATIONAL ORDER OF GALLIUM

More detailed structural information can be
obtained from analysis of the local orientational order.
The simplest way to describe it is calculating angular
distribution function P(θ) which is probability density
of angle θ between two vectors connecting a particle
with its two nearest neighbors.

Figure 3 shows bond angle distribution functions of
liquid gallium at different temperatures T (indicated
on the plot). Additionally the BADF of LJ-melt
(which is nearly universal on the LJ melting curve) is
also plotted for the comparison. Figures 3b–3d show
BADF for T = 500 K. Looking at BADFs at real-θ
axis, it is difficult to say something specific about the
clusters forming the local order. However, after its
processing with the Pade approximant, we see a num-
ber of poles in complex-θ plane. The positions of poles
(Re θ) give characteristic angles between the particles
forming the local order clusters. In particular, we see
two pronounced poles at the vicinity of the first peak,
which are located near the angles 45 and 60. The value

Fig. 2. Radial distribution function obtained for the ideal
lattice of α-Ga with small random noise, which mimics
thermal vibrations. The distance-dependent coordination
number N(< r) is also plotted by the dashed line to evaluate
the number of atoms at different shells.

Fig. 3. (Color online) Pade spectroscopy of the bond angle distribution function (BADF). (a) Bond angle distribution function
of liquid gallium at different temperatures T (indicated on the plot). The bond angle distribution function of the LJ melt (which
is nearly universal on the LJ melting curve) is also plotted for comparison. (b–d) Bond angle distribution function for T = 500 K
and its processing with Pade approximant. We see a number of poles; their positions (Re θ) give characteristic angles between the
particles forming local order clusters.



JETP LETTERS  Vol. 103  No. 6  2016

PADE SPECTROSCOPY OF STRUCTURAL CORRELATION FUNCTIONS 393

of θ = 60 is typical for simple liquids and corresponds
to tetrahedral local order [28]. However, the angle θ =
45 suggests non-trivial symmetry of local clusters
probably caused by the existence of short-bonded par-
ticles revealed by RDF analysis.

Another way to analyze the orientational order is
the well-known bond order parameter method, which
is widely used to characterize order in simple f luids,
solids and glasses [29–33], hard spheres [34, 35], col-
loidal suspensions [36], complex plasmas [37–39],
and metallic glasses [40].

Each particle i is connected via vectors (bonds)
with its Nnn(i) nearest neighbors (NN), and the rota-
tional invariants (RIs) of rank l of second ql(i) and
third wl(i) orders are calculated as:

 (2)

 (3)

where qlm(i) = Nnn(i)–1 , Ylm are the
spherical harmonics and rij = ri – rj are the vectors
connecting the centers of particles i and j. In Eq. (3),

 are the Wigner 3j-symbols, and the sum-

mations performed over all the indexes mi = –l, …, l
satisfying the condition m1 + m2 + m3 = 0. As was
shown in the pioneering work [29], the bond order
parameters ql and wl can be used as measures to char-
acterize the local orientational order and the phase
state of considered systems.
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Because each lattice type has a unique set of bond
order parameters, the method of RIs can also be used
to identify lattice and liquid structures in mixed sys-
tems. The values of ql and wl for a few common lattice
types (including liquid-like Lennard-Jones melt) are
presented in table.

To quantify the local orientational order, it is also
convenient to use the probability distribution func-
tions (PDFs) P(ql) and P(wl). Figure 4 shows the PDFs
at different l (l = 4, 6) at different temperatures of liq-
uid gallium in comparison to those calculated for LJ
liquid [25, 28] whose PDFs are nearly universal along
the melting line. We see again that such PDFs calcu-
lated at real-ql axis (Figs. 4a and 4b) reveal no interest-
ing features of liquid gallium structure. We see broad
dome-shaped distributions, which are similar to those
for LJ liquids [25]. But analytic continuation in the
complex-q plane reveals that P(ql) are in fact com-
posed of two Lorenzian-like peaks with similar values
of both the maximum location (Re(q)) and peak width
(Im(q)).

This fact suggests the structure of liquid gallium
consists of two types of local order that is in agreement
with the earlier obtained results [5, 11].

Table

Lattice type q4 q6 w4 w6

hcp (12 NN) 0.097 0.485 0.134 –0.012
fcc (12 NN) 0.19 0.575 –0.159 –0.013
ico (12 NN) 1.4 × 10–4 0.663 –0.159 –0.169
bcc (8 NN) 0.5 0.628 –0.159 0.013
bcc (14 NN) 0.036 0.51 0.159 0.013
LJ melt (12 NN) ≈0.155 ≈0.37 ≈–0.023 ≈–0.04

Fig. 4. (Color online) Pade spectroscopy of probability distribution functions (PDFs). (a, b) Orientational local order of liquid
gallium: PDFs of the bond order parameters ql (l = 4, 6) at two temperatures T = (blue line) 313 and (red line) 1073 K. Green
solid lines represent the same PDFs for the LJ melt taken on the melting line (it can be shown that along the melting line these
PDFs are practically universal). (c, d) Absolute value of PDF (l = 6) of gallium for T = 500 K in complex q6-plane. (e) Probability
distribution function of gallium for T = 500 K plotted for comparison with poles of the Pade approximant in panel d. The poles
are situated at Re q6 = 0.32, 0.42.
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CONCLUSIONS
We have proposed the new method of fluid struc-

ture investigation based on numerical analytic contin-
uation of structural data obtained from both experi-
ment and computer simulations. The method particu-
larly allows extracting hidden structural features of
disordered condensed matter systems from experimen-
tal diffraction data. The method has been applied to
investigate the local order of liquid gallium, which is
supposed to have complex structure. We show that
analytic continuation of structural correlation func-
tions such as radial distribution function, bond angle
distribution function and bond orientational order
parameters reveals non-trivial structural features of liq-
uid. Firstly, we show that, processing the liquid RDF,
our method allows easily obtaining the spectrum of
length-scales, which are in close agreement with those
for crystal state. Secondly, we show for the first time
that correlation functions of orientational order also
have non-trivial features probably caused by the exis-
tence of different types of local clusters in the liquid.
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