
Mon. Not. R. Astron. Soc. 369, 2036–2048 (2006) doi:10.1111/j.1365-2966.2006.10454.x

Spectra of the spreading layers on the neutron star surface
and constraints on the neutron star equation of state

Valery Suleimanov1,2,3 and Juri Poutanen1⋆
1Astronomy Division, PO Box 3000, FIN-90014 University of Oulu, Finland
2Institut für Astronomie und Astrophysik, Abteilung Astronomie, Sand 1, D-72076 Tübingen, Germany
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ABSTRACT

Spectra of the spreading layers on the neutron star surface are calculated on the basis of the

Inogamov–Sunyaev model taking into account general relativity correction to the surface grav-

ity and considering various chemical composition of the accreting matter. Local (at a given

latitude) spectra are similar to the X-ray burst spectra and are described by a diluted blackbody.

Total spreading layer spectra are integrated accounting for the light bending, gravitational red-

shift and the relativistic Doppler effect and aberration. They depend slightly on the inclination

angle and on the luminosity. These spectra also can be fitted by a diluted blackbody with the

colour temperature depending mainly on a neutron star compactness. Owing to the fact that

the flux from the spreading layer is close to the critical Eddington, we can put constraints on a

neutron star radius without the need to know precisely the emitting region area or the distance

to the source. The boundary layer spectra observed in the luminous low-mass X-ray binaries,

and described by a blackbody of colour temperature T c = 2.4 ± 0.1 keV, restrict the neutron

star radii to R = 14.8 ± 1.5 km (for a 1.4-M⊙ star and solar composition of the accreting

matter), which corresponds to the hard equation of state.
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1 I N T RO D U C T I O N

Matter accreting on to a weakly magnetized neutron star (NS) in low-

mass X-ray binaries (LMXRBs) can form an accretion disc which

extend down to the NS surface. A boundary layer (BL) is formed

between the accretion disc and the NS surface, where a rapidly

rotating matter of the disc is decelerated down to the NS angular

velocity. The amount of the energy, which is generated during this

process, is comparable with the energy generated in the accretion

disc (Sunyaev & Shakura 1986; Sibgatullin & Sunyaev 1998).

There is no generally accepted theory of the BL. Two different

approaches to the BL description are considered. First of them,

which we will call a ‘classical model’, considers the BL between a

central star (a white dwarf or a NS) as a part of the accretion disc

(Pringle 1977; Pringle & Savonije 1979; Tylenda 1981; Shakura &

Sunyaev 1988; Bisnovatyi-Kogan 1994; Popham & Narayan 1995;

Popham & Sunyaev 2001). In this model the component of velocity

normal to the accretion disc plane is zero. The half thickness of the

BL is determined by the same relation, as for the accretion disc:

HBL ∼
cs

vK

R, (1)

⋆E-mail: juri.poutanen@oulu.fi

where cs is a sound speed in the BL and vK is the Keplerian velocity

close to the NS surface of radius R. The radial extension of the BL

is determined by the relation (Pringle 1977)

hBL ∼
c2

s

v2
K

R ∼ HBL

HBL

R
. (2)

In this classical model the accreting matter in the BL is decelerated

in the accretion disc plane, along radial coordinate only, due to the

viscosity operating within the differentially rotating BL, similarly to

the accretion disc. From the observational point of view, the classical

BL is a bright equatorial belt close to the NS surface. The effective

temperature of the BL is higher than the maximum accretion disc

effective temperature, because the BL is smaller than the accretion

disc, while their luminosities are comparable.

Another approach was suggested by Inogamov & Sunyaev (1999,

hereafter IS99). The BL is considered as a spreading layer (SL)

on the NS surface. The accreting matter diffusing along the radial

direction in the accretion disc and reaching the NS surface gains the

velocity component normal to the accretion disc plane due to the ram

pressure from the accretion disc. Then the matter spirals along the

NS surface towards the poles. Rotating at the NS surface, the matter

is decelerated due to a turbulent friction between the rapidly rotating

matter and a slowly rotating NS surface. The kinetic energy of the

accreting gas is mostly deposited in two bright belts at some latitude
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above and below the NS equator. The width and the latitude of the

belts depend on the mass accretion rate. The larger the accretion

rate, the wider the belts are and the closer they are to the NS poles.

At the accretion rate close to the Eddington limit (L BL ∼ L Edd) the

bright belts expand all over the NS surface.

The observational difference between two BL models is not sig-

nificant. At low accretion rates (L BL ∼ 0.01L Edd), the latitude of

bright belts of the SL is small (∼few degrees) and the vertical ex-

tension of the SL is comparable to the classical BL thickness. At

high accretion rates (L BL ∼ L Edd), the classical BL thickness is com-

parable to the NS radius (see Popham & Sunyaev 2001). Therefore,

the effective temperatures of these BL models are of the same order.

In the approach by IS99, the NS radius is assumed to be larger

than 3RS (where RS = 2GM/c2 is the Schwarzschild radius of a

NS of mass M), but the accretion disc structure is not significantly

changed up to the NS surface, and the radial velocity is always

subsonic. If the radial velocity of accreting gas is supersonic at the

surface (see e.g. Popham & Narayan 1992, for a possibility of the

supersonic radial velocity in classical BL, and Kluźniak & Wilson

1991, for the ‘gap accretion’ when the NS is within the innermost

stable circular orbit), some fraction of the kinetic energy (associated

with a small radial velocity component) should be dissipated in an

oblique shock, but most of it still remains stored in the kinetic energy

of the gas rotating at the surface to be dissipated later in the SL. The

gap accretion model of Kluźniak & Wilson (1991) is rather similar

to the SL, but they did not consider the fate of the accreting material

and its spread over the surface. At very low accretion rate, both

models should produce hard Comptonization spectra extending to

∼100 keV.

The aim of this work is the calculation of the radiation spectra of

the SLs and their comparison to the observed X-ray spectra of the

BLs in the luminous LMXRBs.

2 S P R E A D I N G L AY E R M O D E L

The theory of the SL was developed by IS99 under the assump-

tion of Newtonian gravity. They considered accretion of the pure

hydrogen plasma. Here we repeat the IS99 theory for plasmas of

arbitrary chemical composition taking into account general relativ-

ity (GR) corrections using the pseudo-Newtonian potential. These

corrections may be important, because the maximum effective tem-

perature of the SL, which should be smaller than the local Eddington

effective temperature T Edd, depends on the opacity and the gravity.

The critical temperature is determined by the balance between the

surface gravity and the radiative acceleration:

G M

R2
√

1 − RS/R
=

σSBT 4
Edd

c
σe, (3)

where σ e = 0.2 (1 + X ) cm2 g−1 is the electron scattering opacity,

X is the hydrogen mass fraction and σ SB is the Stefan–Boltzmann

constant. It is clear, that solar (or larger) helium abundance together

with the GR correction will lead to higher T Edd, and, therefore, to a

higher maximum effective temperature of the SL. This could have

important consequences for the determination of the NS parameters

from observations.

We use the pseudo-Newtonian potential in the form

�(r ) = −c2

(

1 −
√

1 − RS/r

)

. (4)

This potential gives the correct GR surface gravity,

g0(R) =
G M

R2
√

1 − RS/R
, (5)

Figure 1. Geometry of the problem.

but gives the Keplerian velocity at the NS surface,

v2
K(R) =

G M

R
√

1 − RS/R
, (6)

which is smaller than the correct GR value.

2.1 Main equations

Below we rewrite the IS99 equations for the SL for the pseudo-

Newtonian potential (4) and considering arbitrary abundances. We

consider the dynamics of the SL on the NS surface (see Fig. 1). The

full hydrodynamic equations, which describe this process are as

follows (see for example Mihalas 1978). The continuity equation is

∂ρ

∂t
+ ∇ · (ρv) = 0, (7)

where ρ is the plasma density, v is the vector of the gas velocity in

the SL with components vϕ , vθ and vr, which are velocities of the SL

along longitude, latitude and radius correspondingly. Conservation

of momentum for each gas element is described by the vector Euler

equation

ρ
∂v

∂t
+ ρv · ∇v = −∇ P + f , (8)

where P = P rad + P g is the total pressure which is a sum of the

radiation and gas pressures, and f is a force density. The energy

equation for the gas in the SL is

∂

∂t

(

1

2
ρv2 + ε

)

+ ∇ ·
[(

1

2
ρv2 + ε + P

)

v

]

= f · v− ∇ · q + Q+. (9)

Here ε = ε rad + εg is the total density of internal energy, where

ε rad = aT 4 is the radiation energy density and εg = (3/2)P g is the

density of the internal gas energy. The first term on the right-hand

side is the power produces by the force density, the second is the

energy, which is lost by radiation (q is a vector of the radiation flux)

and the third is the heat, which is generated within a unit volume of

the SL.

Following IS99 we consider the steady state SL model in the

spherical coordinate system (r , θ , ϕ), where θ is the latitude and ϕ

is the azimuthal angle (see Fig. 1). We also assume that the SL has a

small thickness (in comparison with the NS radius R, therefore, the

radial coordinate r = R), the radial velocity component is zero vr =
0, and it is axially symmetric (therefore, all of the derivatives ∂/∂ϕ

equal to zero). In this case equations (7)–(9) take the following form.
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The continuity equation is

1

R cos θ

∂

∂θ
(cos θ ρvθ ) = 0, (10)

the three components of the Euler equation are

−ρ

(

v2
θ + v2

ϕ

R

)

= −
∂P

∂r
+ fr , (11)

ρ
vθ

R

∂vθ

∂θ
+ ρ

v2
ϕ

R
tan θ = −

1

R

∂P

∂θ
+ fθ , (12)

ρ
vθ

R

∂vϕ

∂θ
− ρ

vϕvθ

R
tan θ = fϕ, (13)

and the energy equation is

1

R cos θ

∂

∂θ

[

cos θ vθ

(

1

2
ρv2

0 + ε + P

)]

= fθvθ + fϕvϕ −
∂q

∂r
+ Q+, (14)

where

v2
0 = v2

ϕ + v2
θ . (15)

Here the radiation flux has only one (radial) non-zero component

and its divergence is computed in the plane-parallel approximation

which is a consequence of our assumption of small height of the SL.

A small azimuthal component of the radiation flux arises due to the

aberration, which we neglect here.

It is clear that equation (11) can be solved independently on equa-

tions (12)–(13) and we can consider some averaging over the layer’s

height. Therefore, we arrive at a one-dimensional problem. In this

case instead of equations (10)–(14) we obtain

1

R cos θ

∂

∂θ

(

cos θ

∫

ρvθ dr

)

= 0, (16)

∫

ρvθ

∂vθ

∂θ
dr + tan θ

∫

ρv2
ϕ dr = −

∂

∂θ

∫

P dr + R

∫

fθ dr ,

(17)

∫

ρvθ

∂vϕ

∂θ
dr − tan θ

∫

ρvϕvθ dr = R

∫

fϕ dr , (18)

1

R cos θ

∂

∂θ

[

cos θ

∫

vθ

(

1

2
ρv2

0 + ε + P

)

dr

]

=
∫

fθvθ dr +
∫

fϕvϕ dr − q +
∫

Q+ dr . (19)

Here the integration over radius is from R to R + hS, where hS is

the local SL thickness. We define the corresponding force densities

in the next section.

2.2 Vertical averaging

The one-dimensional equations for the SL structure are derived us-

ing the averaging along the height at a given latitude. It means that

we have to calculate all the integrals in equations (16)–(19) for

some model of the SL vertical structure. The simplest way is just to

consider the variables averaged over the height.

IS99 used a more complicated model of averaging. They con-

structed a simple model of the SL using assumptions that velocities

vθ , vϕ and the radiation flux do not depend on the height q(r ) =
const = σ SBT 4

eff. The latter suggestion means that all of the thermal

energy in the SL is generated at the bottom. This model is described

by the hydrostatic equilibrium equation (11) taken in the form

dP

dm
= geff ≡ g0 −

v2
ϕ + v2

θ

R
, (20)

and the radiation transfer equation (RTE) in the diffusion approxi-

mation,

dεrad

dm
=

3q

c
σe. (21)

Here and below we use a new independent variable: a column mass

m and a new geometrical coordinate z, which are defined as

dm = ρ dz = −ρ dr . (22)

Coordinate z has an opposite direction relative to r and z = 0 at r =
R + hS. We also defined the r component of the force density

fr = −g0ρ. (23)

Equations (20)–(21) have to be supplemented by the equation of

state

P =
ρkT

µmp

+
εrad

3
, (24)

where µ = 4/(3 + 5X ) is the mean molecular weight and mp is the

proton mass.

Equations (20)–(24) can be solved with the simple boundary con-

ditions P(m = 0) = 0, T (m = 0) = 0:

P = geffm, (25)

εrad =
3q

c
mσe, (26)

ρ = µmp

gcor

k

(

ac

3qσe

m3

)1/4

, (27)

T =
(

3q

ac
mσe

)1/4

= Teff

(

3

4
τe

)1/4

, (28)

where τ e = mσ e is the electron scattering optical depth of the layer,

and

gcor ≡ geff − grad = geff −
q

c
σe. (29)

The column density m is related to the geometrical depth z,

m =
(µmpgcor)

4

44σek4

ac

3q
z4, (30)

which gives the following dependence of temperature on height:

T =
µmpgcor

4k
z. (31)

Following IS99, we consider the values of temperature and den-

sity at the bottom of the SL T S and ρS as parameters. In this case

the local SL thickness hS is

hS =
4kTS

µmpgcor

. (32)

We can also calculate all of the integrals in equations (16)–(19): the

total surface density
∫ hS

0

ρ dz = m(z = hS) = 
S, (33)
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the pressure surface density

∫ hS

0

P dz =
1

5
geffhS
S =

4

5

geff

µmpgcor


SkTS, (34)

the surface density of the internal energy

Eint =
∫ hS

0

(

εrad +
3

2
Pg

)

dz =
3

2
(geff + grad)


ShS

5
, (35)

the local flux

q = σSBT 4
eff =

ac

3σe

T 4
S


S

(36)

and the enthalpy flux

H = Eint +
∫ hS

0

P dz =
(

5

2
geff +

3

2
grad

)


ShS

5
. (37)

If we take X = 1, all these relations will be the same, as derived

by IS99 with one exception: there is no potential energy of the SL

in our energy equation. Thus our expression for H contains a factor

5/2 instead of 7/2 as in IS99. Below we will show that this produces

only a small quantitative differences between our and IS99 models.

In the IS99 model there are two forces, which give contribution

to the force density in equations (16)–(19). These are the gravity

force, which has only the radial component (see above) and the

force arising due to the friction between the NS surface and the

SL. This force is directed along the NS surface and is expressed in

the IS99 model through stress τ and its azimuthal and meridional

components τ ϕ and τ θ . IS99 have parametrized it in the form

τϕ = −
∫ hS

0

fϕ dz = αbρSvϕv0,

τθ = −
∫ hS

0

fθ dz = αbρSvθv0,

(38)

where αb =v2
∗/v

2
0 is the parameter of the stress parametrization,v∗ is

the velocity of turbulent pulsations. We should note that αb is not the

same α that is used in the accretion disc theory. In accretion discs, α

(in the first approximation) is the square of the ratio of the turbulent

velocity to the sound speed α = v2
∗/c2

s and can be quite high, up to

0.1–1. In the SL, the plasma velocity v0 is close to the Keplerian

velocity at the NS surface and is orders of magnitude larger than the

sound speed. The velocity of turbulent pulsation is also limited by

the radiation viscosity at the SL bottom. IS99 carefully investigated

this matter and estimated αb ∼ 10−3. We used this value in most of

the paper.

IS99 have ignored the mechanical work between the SL and the

NS (which accelerates the stellar rotation). In our work we use

the same approximation. A fraction of the kinetic energy of the

accreting gas that goes to increase the rotational energy of the NS

is approximately 2 �∗/�K, where �∗ is the NS angular velocity

and �K is the Keplerian angular velocity at the NS surface. As we

consider a non-rotating NS and the characteristic time to increase its

angular velocity is orders of magnitude larger than the characteristic

time of the SL t = R/vθ = 10 km−1/103 km s −1 = 0.01 s, ignoring

the mechanical work on the NS is a reasonable approximation. In

this approximation, therefore, all the work due to friction between

the SL and the NS transforms to heat:
∫ hS

0

Q+ dz = −(τϕvϕ + τθvθ ) = −τv0. (39)

2.3 One-dimensional model of the spreading layer

Using relations (32)–(39), we can rewrite equations, which describe

the one-dimensional SL structure. The continuity equation can be

rewritten via the accretion rate as

Ṁ = 4πR cos θ vθ
S. (40)

Therefore, the product cos θ vθ
S = const. The Euler equations are

cos θ vθ
Sv
′
θ +

4

5
cos θ

(

geff

gcor

kTS

µmp


S

)′

= −R cos θ τθ − sin θ 
Sv
2
ϕ, (41)


Svθ (cos θ vϕ)′ = −R cos θτϕ . (42)

Here the prime means the derivative over θ . The second term in

the left-hand side of equation (41) is the lateral force gradient, and

the terms in the right-hand side are the components of the stress

force and the centrifugal force. We see from equation (42) that the

momentum along ϕ coordinate is changed due to the friction with

the NS surface only. The system of equations is closed by the energy

equation


Svθ

(

v2
0

2
+

2

5

kTS

µmp

5geff + 3grad

gcor

)′

= −Rq. (43)

The system of equations (40)–(43) can be transformed to the three

dimensionless equations for vϕ(θ ), vθ (θ ) and T S(θ ) as was done by

IS99. These equations are solved with the boundary conditions at

the transition zone between the accretion disc and the SL: the initial

latitude, where the SL starts, is close to the NS equator θ 0 ∼ 10−2;

the initial relative deviation δ of vϕ from the Keplerian velocity vϕ =
vK(1 − δ); and the initial ratio of the kinetic energy of the SL along

θ coordinate and its thermal energy � ≡ (µmpv
2
θ0

)/kT S.

As was demonstrated by IS99, the solution of equations (40)–(43)

depends very little on θ 0 (if θ 0 sufficiently small < 0.1, see below)

and δ, but strongly depend on parameter �. We choose the solutions

which are closest to the critical solution (in this solution vθ is equal

to the sound speed at the maximum latitude of the SL), but slightly

subsonic. The necessary critical value of parameter � is found by

the bisection method.

The distributions of vθ , the effective temperature T eff and the

surface density 
S along the latitude θ for four models with the same

accretion rate, corresponding to first model luminosity are shown

in Fig. 2. The first model (shown by the solid curves) is our model

with the pseudo-Newtonian potential and solar hydrogen abundance

X = 0.7. The dashed curves are for our model with GR correction,

but with pure hydrogen X = 1; the dotted curves correspond to

our model without GR corrections (RS = 0 in the equations) with

solar hydrogen abundance (X = 0.7), while the dot–dashed curves

are for the IS99 model with GR corrections and solar hydrogen

abundance. It is clear that the solar abundance lead to a narrower SL

with a smaller surface density. A higher helium abundance as well

as the the GR corrections lead to a higher effective temperature and a

larger latitudinal velocity. Our model gives a slightly wider SL with

slightly smaller latitudinal velocity but same effective temperature

and surface density. Most calculations below were performed for

our model with the GR correction and solar abundances. The surface

density and the effective temperature distributions along the latitude

for models with 0.1, 0.2, 0.4 and 0.8 of the Eddington luminosity are

presented in Fig. 3. Variations of parameter αb lead to some changes

in the SL structure. The SL column density is inversely proportional
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Figure 2. The distributions of (a) vθ , (b) the surface density 
S and (c) the

effective temperature T eff along latitude θ for four models. Solid and dashed

curves are for our model corrected for the GR using pseudo-Newtonian

potential and X = 0.7 and 1, respectively. The dotted curves is our model

for the Newtonian gravity and X = 0.7, while the dot–dashed curves are for

the IS99 model corrected to GR and X = 0.7. In all cases M = 1.4 M⊙ and

R = 12 km. The accretion rate of all models is the same, corresponding to

0.2 L Edd of the first model.

to αb, while the resulting effective temperature decreases only by

about 1 per cent with decreasing of αb by an order of magnitude.

The lower boundary of the SL was taken very close to the equator,

θ 0 ≈ 0.01–0.001, in IS99. Formally, the accretion disc thickness is

close to zero at the inner boundary, if we take the usual inner bound-

ary condition for the component of the stress tensor W rϕ(R in) = 0.

In the case of the accretion disc around a NS this condition is not

correct, and the disc thickness at the NS surface is considerable.

The luminous accretion disc half thickness can be evaluated from

the balance of the radiation force and z component of gravity:

z0 =
3σe

8πc
Ṁ . (44)

We calculated the SL models with the initial latitudes θ 01 =
arcsin(z0/R) and θ 02 = arcsin(0.5z0/R). The surface density and

the effective temperature distributions along the latitude for the sec-

ond case are shown in Fig. 4. The qualitative behaviour of these

distributions is close to the case of small θ 0 with some shift along

the latitude. The main difference is the maximum possible luminos-

ity of the SL. At this luminosity the SL reaches the NS poles. For

Figure 3. The distributions of the surface density 
S and the effective tem-

perature T eff over the latitude θ for the SL models with different luminosities.

Initial SL latitude is θ 0 = 10−2.

θ 02, the maximum possible luminosity is about 0.4LEdd, while for

θ 01 it is about 0.25LEdd.

2.4 Vertical structure of the spreading layer

The IS99 SL model was constructed under an assumption that the

local layer velocity and the radiation flux along height is constant.

It means that the SL is decelerated and energy is liberated in the

infinitely thin layer at the NS surface. This is an approximation

only and the velocity distribution should not be uniform and the

energy should be generated at all heights. Therefore, we need a

more detailed vertical model of the SL for calculating its radiation

spectrum.

For evaluation of the viscosity parameter αb, IS99 used classical

theory of hydrodynamic BLs (Landau & Lifshitz 1959) with the

logarithmic velocity and the energy generation distribution along

the height. In this case, both the energy generation rate and the

velocity gradient are inversely proportional to the distance from the

NS surface z,

dq

dz
∝

dv

dz
∝

1

z
. (45)

It is clear that these dependencies cannot be correct in a SL. The SL

has a finite thickness with a low density at the surface. However, ac-

cording to equation (45) some amount of energy has to be generated

in the surface layers.

At present time, a theory of the radiation-dominated turbulent

BL does not exist. Thus we here can only make similar assumptions

about the energy generation and velocity gradient along the height.

We assume that these values are inversely proportional to the surface
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Figure 4. The distributions of the surface density 
S and the effective

temperature T eff along latitude θ for SL models with different luminosities.

Initial SL latitude θ 0 = arcsin (0.5z0/R).

density measured from the NS surface:

dq

dm
= −A

q0


S − m
, (46)

dv

dm
= −A

v0


S − m
, (47)

where A = 2.5α
1/2

b , q 0 and v0 are the local radiation flux and the

average layer velocity at a given latitude obtained from the one-

dimensional model. Equations (46) and (47) are very close to the

IS99 SL model assumptions (the layer is decelerated and the energy

is generated at the bottom of the layer). Integration of these equations

yields

q(m) = q0

[

1 + A ln

(

1 −
m


S

)]

, (48)

v(m) = v0

[

1 + A ln

(

1 −
m


S

)]

. (49)

These equations can be used up to some critical column density

m∗ = 
S

(

1 − exp[−A−1]
)

, (50)

which is very close to the local surface density.

The hydrostatic equilibrium equation then reads

dPg

dm
= g0 −

v2(m)

R
−

q(m)

c
σe, (51)

and the RTE is

1

3

dε

dm
=

q(m)

c
σe. (52)

The temperature and the gas pressure distributions along the height

are

T (m) = Teff

[

3

4
mσe

(

1 − A

[

1 +

S − m

m

× ln

(

1 −
m


S

)])

+
1

2

]1/4

, (53)

Pg(m) = g0m −
v2

0

R
m(1 − 2A + 2A2)

+
v2

0

R
A (
S − m) ln

(

1 −
m


S

)

×
[

A ln

(

1 −
m


S

)

− 2A + 2

]

−
q0σe

c

[

m − A

(

m + (
S − m) ln

(

1 −
m


S

))]

. (54)

These solutions are obtained using the boundary conditions at the

surface ε(m = 0) = 2q 0/c and P g(m = 0) = 0.

At the same time, there is a disagreement between this vertically

explicit model and one-dimensional model, because the velocity and

the flux vertical profiles are different. We suggest that the model can

be made self-consistent, if we find a new value of the surface density


′
S at a given latitude, which conserves the mass flux

v0
S =
∫ 
′

S

0

v(m) dm = v0(1 − A)
′
S. (55)

Therefore, the new value of the surface density 
′
S = 
S/(1 − A).

For αb = 10−3, this gives 
′
S = 1.086
S and we take these values

below for our calculations. There are similar disagreements for other

integrals over the height in equations (16)–(19). For example,

v2
0
S =

∫ 
′
S

0

v2(m) dm = v0(1 − 2A + A2)
′
S. (56)

In this case, we have to take a new value of the surface density 
′
S =


S/(1 − 2A + A2), which gives 
′
S = 1.171
S if αb = 10−3. Our

vertically explicit models disagree with the one-dimensional ones

by about 10 per cent. Fortunately, the emitted local spectra depend

very little on the surface density of the SL.

3 S P E C T RU M O F T H E S P R E A D I N G L AY E R

For calculation of the SL spectra, we divide it into a number of rings

over the latitude which have different effective temperatures T eff,

matter velocities v0 and surface densities 
S. We then calculate the

vertically explicit model for each ring, solve the radiative transfer

equation and obtain the local SL spectrum. Then we integrate local

spectra from the SL surface accounting for the general and special

relativity effects.

3.1 Local spectra

To calculate a vertically explicit hydrodynamical model with the

radiation transfer, we use standard methods for stellar atmospheres

modelling (Mihalas 1978). Our models are obtained in the hydro-

static and the plane-parallel approximations. The effective temper-

atures of the considered SL models are rather high (∼2 keV) and

these models are similar to the atmospheres of bursting NSs, where

Compton scattering have to be taken into account.

The vertically explicit local SL model is described by the fol-

lowing equations: the equation of hydrostatic equilibrium (51), the
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energy generation law (48), the velocity law (49), the RTE account-

ing for the Compton effect using the Kompaneets (1957) operator:

∂2( fν Jν)

∂τ 2
ν

=
kν

kν + σe

(Jν − Bν) −
σe

kν + σe

kT

mec2

× x
∂

∂x

(

x
∂Jν

∂x
− 3Jν +

Teff

T
x Jν

[

1 +
C Jν

x3

])

, (57)

where x = hν/kT eff is dimensionless frequency, f ν(τ ν) ≈ 1/3 is

the variable Eddington factor, J ν is the mean intensity of radiation,

B ν is the blackbody (Planck) intensity, k ν is the opacity due to the

free–free and bound–free transitions, σ e is the electron (Thomson)

opacity, T is the local electron temperature, T eff is the effective

temperature of SL at a given latitude and C = c2h2/2(kT eff)
3. The

optical depth τ ν is defined as

dτν = (kν + σe) dm. (58)

These equations have to be completed by the energy balance

equation
∫ ∞

0

kν(Jν − Bν) dν −
1

4π

dq

dm
− σe

kT

mec2

×
[

4

∫ ∞

0

Jν dν −
Teff

T

∫ ∞

0

x Jν

(

1 +
C Jν

x3

)

dν

]

= 0

(59)

and by the ideal gas law

Pg = NtotkT , (60)

where N tot is the number density of all particles, as well as by the

particle and charge conservation laws. We assume local thermo-

dynamical equilibrium (LTE) in our calculations, so the number

densities of all ionization and excitation states of all elements have

been calculated using Boltzmann and Saha equations.

For solving these equations and computing the local SL model,

we used the Kurucz’s code ATLAS (Kurucz 1970, 1993) modified

for high temperature. All ionization states of the 15 most abundant

elements are taken into consideration. The photoionization cross-

sections from the ground states of all ions are calculated using PHFIT2

code (Verner et al. 1996). For details, see Swartz et al. (2002) and

Ibragimov et al. (2003). The code was also modified to account for

Compton scattering.

The scheme of calculation is the following. First, the input pa-

rameters of the local SL model are defined from the total one-

dimensional SL model (see Section 2.3): the effective temperature

T eff, the surface gravity g0, the surface density 
S and the local av-

erage layer velocity v0. Then the analytical vertically explicit model

(53–55) are calculated together with the new value of surface den-

sity 
′
S = 
S/(1 − A). The calculations are performed for the set of

98 column densities m, distributed logarithmically with equal steps

from m = 10−5 g cm−2 to 0.99m∗. The gas pressure, which is found

from equation (54), is not varied during the iterations.

For this starting model, all number densities and the opacities at

all depth points and all the frequencies (we use 300 logarithmically

equidistant frequency points) are calculated. The RTE (57) is solved

by the Feautrier method (Mihalas 1978; Pavlov, Shibanov & Zavlin

1991; Zavlin & Shibanov 1991; Grebenev & Sunyaev 2002) itera-

tively, because it is non-linear. Between the iterations we calculate

the variable Eddington factors f ν and h ν , using the formal solution

of the RTE for three angles. Usually five–six iterations are sufficient

to achieve convergence.

We used the usual condition at the outer boundary,

∂( fν Jν)

∂τν

= hν Jν, (61)

where h ν is the surface variable Eddington factor, and the inner

boundary condition

∂Jν

∂τν

=
∂Bν

∂τν

. (62)

The outer boundary condition is found from the lack of the incom-

ing radiation at the SL surface, and the inner boundary condition

is obtained from the diffusion approximation J ν ≈ B ν and q ν ≈
(4π/3) (∂B ν/∂τ ν). This condition is satisfied for any SL optical

thickness, because the SL bottom is the NS surface. The boundary

conditions along the frequency axis are

Jν = Bν (63)

at the lower frequency boundary, ν = νmin = 1014 Hz (hνmin ≈
0.03 eV ≪ kT eff) and

x
∂Jν

∂x
− 3Jν +

Teff

T
x Jν

(

1 +
C Jν

x3

)

= 0 (64)

at the higher frequency boundary ν = νmax = 3 × 1019 Hz (hνmax ≈
100 keV ≫ kT eff). Condition (63) means that at the lowest energies

the true opacity dominates the scattering k ν ≫ σ e, and therefore

J ν ≈ B ν . Condition (64) means that there is no photon flux along

the frequency axis at the highest energy.

The solution of the RTE (57) should also satisfy the energy bal-

ance equation (59) and the surface flux condition
∫ ∞

0

qν(m = 0) dν = σSBT 4
eff. (65)

We calculated the relative flux error along the depth,

εq (m) = 1 −
q(m)

∫ ∞
0

qν(m) dν
, (66)

where q(m) is found from the energy generation law (48), and q ν(m)

is radiation flux at a given depth obtained from the first moment of

the RTE,

4π
∂( fν Jν)

∂τν

= qν . (67)

Then the temperature corrections were evaluated using three differ-

ent procedures. The first procedure is the integral�-iteration method

based on the energy balance equation (59) which was modified to

account for Compton scattering. It works well in the upper layers.

The second one is the modified Avrett–Krook flux correction, which

uses the relative flux error and is good in deep layers. And the third

one is the surface correction, which is based on the emergent flux

error. See Kurucz (1970) for the detailed description of the methods.

The iteration procedure is repeated until the relative flux error

is smaller than 1 per cent, and the relative flux derivative error is

smaller than 0.01 per cent. As a result we obtain the self-consistent

local SL model together with the emergent spectrum of radiation.

Our method of calculation was checked on the atmosphere model

of bursting NS. The equations which describe the bursting atmo-

sphere are simpler, because there is no velocity field along the sur-

face (v0 = 0) and the integral flux is constant along depth (dq/dm =
0). We compared our model atmospheres with the most recent mod-

els of Madej, Joss & Różańska (2004). The radiation spectra and the

temperature structure for some models with T eff = 2 × 107 K, solar

H/He abundances and various surface gravities are shown in Fig. 5.

These results are in a perfect agreement with the results of Madej

et al. (2004). The emergent spectra and the temperature structure for

the models with the solar abundance of heavy elements are shown

in Fig. 6.
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Figure 5. (a) The spectra of the bursting NS model atmospheres with the

effective temperature T eff = 2 × 107 K, solar hydrogen/helium abundances

without heavy elements and log g = 14.2 and 15. The blackbody spectrum

corresponding to the effective temperature is shown by the dotted curve.

(b) The corresponding temperature structure as a function of the Thomson

optical depth. The dashed curves show the spectrum and the temperature

structure for one model computed not accounting for Compton scattering.

In the surface layers, local cooling is small because of the low

density, and the temperature equals the Compton temperature of ra-

diation which is slightly higher than the effective temperature. In

dipper layers, at τ e ∼ 0.1, the cooling due to thermal emission (free–

free and bound–free) becomes important (as thermal emissivity per

gram is proportional to density) and the temperature decreases. At

large optical depth the temperature rises again and follows the τ 1/4
e

relation, typical for a grey atmosphere. At higher surface gravity (at

fixed T eff), the plasma density is higher, resulting in a more signifi-

cant temperature dip. We see that heavy elements have rather mini-

mal influence on the models close to the Eddington limit (lower g).

The comparison between the bursting NS models and different

local SL models for the same T eff and effective log g is shown in

Fig. 7. For this SL model, we use the vertical structure model, which

is described in Section 2.4. We also investigated, whether the model

for the vertical structure is important for the emergent spectra of

local SL models. We also calculated the SL model with the constant

velocity and flux derivatives:

dv

dm
= −

v0


S

(68)

and

dq

dm
= −

q0


S

. (69)

Figure 6. Dependence of the bursting NS model atmospheres on metal

abundance. Dashed curves correspond to the solar abundance of metals

and solid curves to the zero-metal abundance. Examples are for solar H/He

abundances, the same effective temperature T eff = 2 × 107 K and two values

of log g = 14.2 and 15. Blackbody spectrum corresponding to the effective

temperature is shown by dotted curve.

In this case the mass flux conservation requirement (55) leads to


′
S = 2
S. The spectrum and the temperature structure of this

model are shown in Fig. 7 by squares. The surface temperatures of

the local SL models are higher than the bursting NS model surface

temperature. The reason is the non-zero flux derivative in the energy

conservation equation (59). This means that a part of the energy is

released in the upper atmosphere and is heating it additionally. The

smaller the surface density (i.e. the larger the flux derivative), the

higher the surface temperature. But the differences in the temper-

ature structure have very small influence on the emergent spectra.

Therefore, we conclude, that details of the vertical structure have

negligible influence on the emergent spectrum for the optically thick

models (
S � 100 g cm−2).

It is well known that the model spectra of bursting NS close to

the Eddington limit are well described by a diluted Planck spec-

trum with the colour temperature T c = f cT eff with the hardness

factor f c varying in the interval 1.6–1.9 and the dilution factor D =
f −4

c . Pavlov et al. (1991) have derived an analytical formula for the

hardness factor, which successfully describes high luminosity (L ≈
L Edd) burst spectra:

fc = (0.15 ln C1 + 0.59)−4/5 C
2/15

1 ℓ3/20, (70)

where C 1 = (3 + 5X )/(1 − ℓ) and ℓ = L/L Edd = g rad/geff. Equa-

tion (70) works well also for models with heavy elements.

The local spectra of the optically thick SL (with L > 0.2 L Edd)

are very similar to the burst spectra with corresponding parameters
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Figure 7. Comparison of the bursting NS model (dashed curves) and dif-

ferent local SL models for the same T eff and effective gravity log g. Solid

curves correspond to the local SL model (with the vertical structure model

described in Section 2.4) with surface density 
S = 630 g cm−2. The spec-

trum and the temperature structure of the local SL model with the constant

velocity and flux derivatives are shown by squares. Dotted curves correspond

to local SL model (Section 2.4) with 
S = 63 g cm−2.

(see Fig. 7). The local SL are very close to the Eddington limit

grad =
q0

c
σe ≈ g0 −

v2
0

R
= geff. (71)

For example, the distributions of the ratios g rad/g0 and g rad/geff

along the latitude for SL models with three different luminosities

are shown in Fig. 8(a). Corresponding hardness factor distributions

are shown in Fig. 8(b). The comparison of the two local SL spectra

(close to equator and at higher latitude) with the diluted Planck

spectra and hardness factors given by equation (70) are shown in

Fig. 9(a). Closer to the equator, effective gravity is low as centrifugal

force is large. The gas is levitating above the NS and ℓ is close to

unity. The energy dissipation and the effective temperature are low.

Thus, f c is large and the spectrum is close to the diluted Planck. At

higher latitude, the layer is decelerated, while the energy dissipation

and T eff grow. However, the effective gravity grows faster reducing

ℓ and the colour correction f c. The spectrum shows deviations from

the diluted Planck spectrum at low energies. At high energies, the

Wien part of both spectra can well be described by the diluted Planck.

3.2 Integral spectra

Now we can compute the integral total model spectrum of the SL,

which is seen by a distant observer accounting for the relativis-

Figure 8. (a) Radiative and effective accelerations and (b) the hardness

factor f c as functions of latitude for the SL models of different luminosities

L/L Edd.

tic effects such as gravitational redshift, light bending, relativistic

Doppler effect and aberration. We take into account only half of the

SL because another half is hidden by the accretion disc and divide

the SL surface on 10 latitude rings and on 100 angles in azimuth. In a

spherical coordinate system, where the accretion disc coincides with

the θ = 0◦ plane, the spectrum of the SL is (Poutanen & Gierliński

2003)

FE =
R2

D2

∫ θSL

0

∫ 2π

0

η3δ3 I (E ′, cos α′, θ ) cos α′ cos θ dθ dϕ. (72)

Here the observed and the emitted photon energies are connected

by the relation E = E ′ η δ, where η =
√

1 − RS/R, the Doppler

factor δ = 1/γ (1 − β cos ξ ), β = vϕ(θ )/c (here we neglected

low latitudinal velocity), the Lorentz factor γ = 1/
√

1 − β2 and

cos ξ = −sin α sin i sin ϕ/sin ψ . The light bending is accounted for

by the relation (Beloborodov 2002)

cos α =
RS

R
+ η2 cos ψ, (73)

where cos ψ = cos i sin θ + sin i cos θ cos ϕ, and the relativistic

aberration gives cos α′ = δ cos α (Poutanen & Gierliński 2003).

Here i is the inclination angle of the NS polar axis to the line of

sight, D is the distance to the observer and θ SL is the SL boundary.

Only visible surface elements with cos α > 0 give contribution to

the total spectrum.

The emitted specific intensity I (E ′, cos α′, θ ) is taken from the

computed local SL flux assuming angular dependence for the elec-

tron scattering atmosphere:

I (E ′, cos α′, θ ) =
qE′ (θ )

π
(0.4215 + 0.86775 cos α′). (74)
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Figure 9. (a) Local SL model spectra with high and low effective temper-

atures (solid curves) compared to the diluted Planck spectra with f c given

by equation (70). (b) Integral spectra (isotropic luminosities) of the same

SL model (solid curves) for different inclination angles i = 0◦ (softer spec-

trum) and 90◦ (harder spectrum) compared to the total spectra obtained by

integration of the diluted Planck spectra (dashed curves).

Figure 10. Specific intensities of the emerging radiation of the local SL

model (here µ = cos α′) with the same parameters as in Fig. 7 computed

exactly (solid curves) and using formula (74).

This formula gives a good approximation to the specific intensity of

the emergent radiation (see Fig. 10).

The total spectra of the SL model for two inclination angles, i =
0 ◦ and 90 ◦, are shown in Fig. 9(b). The spectra computed using

the local diluted Planck spectra are shown also for comparison. The

Figure 11. Dependence of the SL integral spectra on the inclination angle i

to the line of sight (a) LBL = 0.2 LEdd and on the luminosity (b) for i = 60◦.

difference is very small in the high energy part (E > 10 keV) and

more significant at lower energies (E < 7 keV).

Dependence of spectral shape on the inclination angle is not sig-

nificant (see also Fig. 11a). Differences between the SL spectra,

which are seen at different inclinations are comparable to the dif-

ferences due to change in the SL luminosities (see Fig. 11b). It is

interesting that the total spectra can also be well described by the

diluted Planck spectrum.

The colour temperature depends slightly on the assumed turbu-

lence parameter αb. Decreasing αb by an order of magnitude in-

creases T c by 0.1 keV.

4 C O M PA R I S O N W I T H O B S E RVAT I O N S

In LMXRBs a weakly magnetized NS is surrounded by the accretion

disc which transforms to the boundary/SL close to the NS surface.

At present, about 100 LMXRBs are known. They can be divided

into two different classes. The Z sources are very luminous (L ∼
0.1–1L Edd) and have relatively soft, two-component spectra. Both

components are close to the blackbody with colour temperatures of

about 1 and 2–2.5 keV. The atoll sources are less luminous (L ∼
0.01–0.05L Edd) and are observed in two states, the high/soft and

the low/hard. In the soft state, the radiation spectra are similar to

those of the Z sources, while in the hard state they are close to the

spectra of the Galactic black hole sources in the hard states (e.g.

Cyg X-1, see e.g. Poutanen 1998; Barret et al. 2000). These hard

spectra are well described by unsaturated Comptonization of soft

photons in the hot (kT ∼ 30–100 keV) optically thin (τ e ∼ 1) plasma.

The soft component can be associated with the radiation from

the accretion disc, while the hard one with the boundary/SL
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Figure 12. Comparison of the observed spectra of the BLs of LMXRBs ob-

tained by the Fourier-frequency resolved spectroscopy and the model spectra

of the SL at two inclination angles to the line of sight. Filled circles give the

spectrum of GX 340+0 in the normal branch (see fig. 12 in Gilfanov et al.

2003), open circles correspond to the spectra of five Z- and atoll sources

(from Revnivtsev & Gilfanov 2006).

(Mitsuda et al. 1984) or possibly with a corona or hot optically thin

inner accretion flow (see discussion in Done & Gierliński 2003) in

case of low-luminosity atoll sources. At high luminosities, the BL

is optically thick and its effective temperature is higher than that

of the accretion disc, because the BL is smaller than the accretion

disc, while their luminosities are comparable. The hard component

is also more variable than the soft component at the time-scales

from millisecond to 1000 s (Mitsuda et al. 1984; Gilfanov, Revnivt-

sev & Molkov 2003). The Fourier-frequency resolved spectroscopy

confirms that a component variable at high frequencies (and some-

times showing quasi-periodic oscillations, see van der Klis 2000)

has a blackbody-like spectrum with the colour temperature T c =
2.4 ± 0.1 keV (Gilfanov et al. 2003; Revnivtsev & Gilfanov 2006)

which is very similar for the five investigated sources. On the other

hand, the variability of the soft component is very similar to the

variability of the soft component of black hole sources in their soft

states, which is associated with the accretion disc. Based on these

arguments, we associate the hard blackbody-like component with

the BL and compare our theoretical SL spectra with it.

Spectra computed for one SL model together with the observed

BL spectra obtained by the Fourier-frequency resolved spectroscopy

(Gilfanov et al. 2003; Revnivtsev & Gilfanov 2006) are shown in

Fig. 12. We see a very good agreement between theoretical spectra

and the spectrum of GX 340+0 at the normal branch (at high accre-

tion rates). The spectra of five Z- and atoll-sources (open circles)

are similar to our SL spectra at high energies, but have a soft ex-

cess. This excess may be related to the emission of the classical BL,

the inner part of the accretion disc. The observed spectral similarity

gives us a confidence to try to determine NS parameters from the

observed spectra.

As we have shown above the spectrum of the SL can be repre-

sented by a diluted blackbody. The effective temperature of radia-

tion is determined by the critical temperature from equation (3),

where the left-hand side is multiplied by ℓ, the ratio of the lo-

cal flux to the critical Eddington one (reduced due to the ac-

tion of the centrifugal force). The observed colour temperature is

Tc = fc

√
1 − RS/R TEdd, where corrections are made for spectral

hardening and gravitational redshift. For the known colour correc-

tion and ℓ, the NS radius as a function of compactness M/R can then

Figure 13. Permitted region (shaded) for the NS mass and radii, which can

have SLs with colour temperatures 2.4 ± 0.1 keV (Gilfanov et al. 2003;

Revnivtsev & Gilfanov 2006) at luminosities similar to those observed in

the Z sources. The left-hand shaded region (with boundaries and the centre

marked by circles) is for the accreting matter containing hydrogen only,

the middle one (boundaries and centre marked by squares) is for the solar

composition and the right one (marked by triangles) is for pure helium.

The left-hand boundary of each region corresponds to T c = 2.5 keV, while

the right-hand boundary gives 2.3 keV. Dotted curves correspond to a simple

estimation of M–R relation given by equation (75) with f c = 1.7, ℓ = 0.8 for

the three chemical compositions. Various theoretical mass–radius relations

for neutron and strange stars are shown for comparison (Haensel, Potekhin

& Yakovlev 2006). Dotted horizontal line corresponds to the NS mass of

1.4 M⊙. The almost vertical dashed curve corresponds to the thermally

emitting NS with the apparent radius of R∞ = 16.5 km (see equation 77

and Trümper 2005). The lower limit on the NS mass as a function of radius

for a given rotational period P (in ms) as derived from the NS stability

M/M⊙ > 0.865 (R/10 km)3 P2
ms (Lattimer & Prakash 2004) is presented

for P = 1.6 ms.

be found from

R =
ℓ f 4

c c3

2σSBT 4
c σe

RS

R

(

1 −
RS

R

)3/2

. (75)

Assuming f c = 1.6–1.8 and ℓ = 0.8, Revnivtsev & Gilfanov (2006)

obtained constraints on the NS mass–radius relation (shown in

Fig. 13 by dotted curves). The maximum NS radius is reached for

RS/R = 2/5:

Rmax =
24.6

1 + X

ℓ

0.8

(

fc

1.7

)4 (

Tc

2.4 keV

)−4

km. (76)

Here instead we calculate exactly a grid of the SL model spectra,

where the main input parameters are the NS mass M and radius R,

and the SL luminosity. The NS mass is varied from 1 to 2 M⊙ with

a step of 0.2 M⊙, and the NS radius is varied from 10 to 24 km with

a step 1 km. Only the models with R > 3RS are considered. We

take αb = 10−3 and luminosity of 0.4L Edd, and compute spectra for

four inclination angles 0◦, 30◦, 60◦ and 90◦ and for three chemical

compositions: pure hydrogen (X = 1), solar abundance (X = 0.7)

and pure helium (X = 0, Y = 1). The spectra are fitted by the

blackbody and the corresponding colour temperatures are found.
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Models with higher He abundance have a smaller hardness factor

as can be seen from equation (70). However, the local effective tem-

perature of the SL is higher for larger He abundance (see equation 3

and Fig. 2c). The higher T eff leads to a higher colour temperature

of the integral SL spectrum. For example, at NS radius of 13 km

and mass 1.4 M⊙ pure hydrogen models give colour temperature

of about 2.5 keV, while pure helium models produce harder spectra

with T c ≈ 3 keV.

Contours corresponding to the colour temperature equal 2.3 keV

(right), 2.4 keV (central) and 2.5 keV (left) are shown on the M–R

plane (Fig. 13) together with the NS models for various equations

of state. These iso-temperature curves are shown for the inclination

angle i = 45 ◦. Comparison of the observed spectra to the theoretical

spectra of the SL constrains the NS radius at 13.5 ± 1.5 km (for pure

hydrogen X = 1 model), 14.8 ± 1.5 km (solar composition X = 0.7)

and 19 ± 1.5 km (pure helium X = 0, Y = 1) assuming the NS mass

of 1.4 M⊙. For pure hydrogen and solar abundance, the permitted

radii are consistent with the hard equation of state of the NS matter.

If the composition is solar, but the heavier elements are able to sink,

the emitted spectra would correspond to a pure hydrogen atmosphere

requiring thus smaller radii.

Increasing the inclination to 90◦ increases the deduced NS radii

by about 10 per cent, while assuming i = 0 ◦, gives a 15 per cent re-

duction on R. The uncertainty in the luminosity increases the width

of possible NS radii by about 50 per cent. Another source of uncer-

tainty comes from the turbulence parameter αb. With αb decreasing

by an order of magnitude the spectrum hardens by 0.1 keV. This re-

sults in about 15 per cent decrease of the NS radius that is required to

produce the observed spectra. Thus αb ∼ 10−5 is needed to reconcile

the derived NS radii with the soft equations of state (assuming solar

composition). Such a small αb at the same time yields a very large

column density of the SL and a rather long lifetime of the accreting

gas in the layer (of the order of 1 s, instead of 10 ms as in the model

of IS99).

Finally, we would like to emphasize that our method of deter-

mination of the NS radius from the SL spectrum is based on the

observed colour temperature of radiation alone, because the SL radi-

ates locally at almost Eddington flux. The colour temperature can be

related to the effective temperature which is a function of the stellar

compactness (and chemical composition) as given by equation (3).

This method is identical to that used for the radius-expansion X-

ray bursts which are believed to reach Eddington luminosity (see

e.g. Lewin, van Paradijs & Taam 1993). In contrast to the standard

methods based on the modelling of the thermal emission from the

NS surface (see for example van Paradijs & Lewin 1987; Trümper

2005), there is no need to know precisely either the area of the

emitting region, or the distance to the source.

As the standard method gives the apparent stellar radius at infinity,

which is related to the NS parameters through

R∞ = R

(

1 −
RS

R

)−1/2

, (77)

the allowed band of R and M is nearly orthogonal to that obtained

from the colour temperature and equation (75) (see the almost ver-

tical dashed curve in Fig. 13). Thus for a NS, where both the ther-

mal emission from the surface (e.g. during the quiescence) and the

BL emission (during the accretion phase) are observed, it would

be possible to determine R and M independently. Interestingly our

constraints on the NS radius are very similar to those obtained by

Heinke et al. (2005) for the thermally emitting quiescent NS X7

in the globular cluster 47 Tucanae R = 14.5+1.8
−1.6 km. They are also

consistent with the lower limit R > 14 km obtained by Trümper

(2005) for the isolated NS RX J1856−3754.

5 C O N C L U S I O N S

We have derived the one-dimensional equations describing the SL

model on a spherical NS surface from the usual hydrodynamic equa-

tions. The obtained equations are similar to those in IS99, except for

the energy conservation law where we neglected the surface density

of the gravitational potential energy which is of the second order

in H/R. This difference, however, leads only to small quantitative

changes. We have also implemented a pseudo-Newtonian poten-

tial to account for the main GR corrections and considered various

chemical compositions of the accreting matter.

We have studied the vertical (radial) structure of the SL with

different assumptions about the vertical distributions of the radi-

ation flux and azimuthal velocity. The temperature structure and

the emergent radiation spectra of the SL are computed account-

ing for the effect of Compton scattering. We showed that the lo-

cal (at a given latitude) emergent spectra depend very little on de-

tails of the SL vertical structure in optically thick cases with 
S �

100 g cm−2 (L � 0.1 L Edd). These spectra can be described by the

diluted Planck spectrum and are similar to the spectra of X-ray

bursts with the same effective temperature and the effective surface

gravity.

The integral SL spectra were computed accounting for relativistic

effects such as the gravitational redshift and light bending, the rela-

tivistic Doppler effect and aberration. These spectra slightly depend

on the inclination angle to the line of sight and on the SL luminos-

ity. The local effective temperature increases with latitude, while the

hardness factor f c decreases. This leads to only slight variation of

the colour temperature on latitude. As a result, the integral spectra

can also be well described by a single-temperature diluted Planck

spectrum.

We compared our theoretical integral SL spectra with the ob-

served spectra of the LMXRBs BLs. The observed colour tempera-

ture of 2.4 ± 0.1 keV (Gilfanov et al. 2003; Revnivtsev & Gilfanov

2006) can be reproduced for hard equations of state of NS material.

Our model constrains radii of NSs in LMXRBs to 13–16 km for a

1.4 M⊙. Soft equations of state (smaller NS radii) can be reconciled

with the observed spectra only for very low viscosity αb ∼ 10−5.

Calculation of αb from the first principles is a challenging problem

that deserves further attention.
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