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Abstract - The Galerkin method for numerical calculation of the nstnral modes of an integrated optical 
guide is proposed and the convergence of the Galerkin method is proved. 

I. INTRODUCTION 

The eigenvalue problems for guided modes of integrated optical guides are attracted much attention. In the 
paper [I] was proved the existence of the guided modes of integrated optical guide. In the paper [Z] was 
proposed a finite element method for computing guided modes of integrated optical guides under the weak 
guiding assumption that leads to a scalar model. Due to the complexity of the integrated optical sbucture, 
domain integral equation for electric vector field utilizing dyadic Green's function (to account for the 
background media) is a popular practical approach for computing the natural fiber modes [3]-[5]. A problem 
with this domain integral equation is that it is strongly-singular, which previously prevented its use in a 
theoretical investigation of convergence of the known numerical methods. It was recently proved 161 that the 
operator of the domain integral equation is a Fredholm operator with zero index. 

In this work we propose and analytically study the Galerkin method based on domain integral equation for 
numerical calculation of the natural modes of an optical fiber integrated into a three-layer planar medium, which 
is representative of typical integrated optical guide. Using the fredholm properly of the integral operator we 
prove the convergence of the Galerkin method. 

11. STATEMM OF THE PROBLEM 

We consider the guided modes of an optical fiber integrated into a three-laye planar medium. Let the three- 
dimensional space be occupied by an isotropic source-free medium, and let the refractive index be prescribed as 
a positive real-valued function n = n (x, , x2) independent of the longitudinal coordinate x, . We assume that 

there exists a bounded domain Cl on the plane R' ={(xI,xz):-m<x,,x2 <m} such that n = n m ( x 2 ) ,  

x = (x, ,xz ) E R, = R' \Cl , where n, (x2) depends only on the x2 variable. It is a piecewise-constant function 
represents the refractive index of so-called associated planar waveguide. For simplicity, we take 
n, ( xz ) = { n, if xi > d , n, if 0 < x2 < d , n, if x, < 0) , We assume without loss of generality that nz t n, t n, . 
Denote by n, the maximum of the function n in the domain R .  We assume that 

Cl c Cl, = {(x, ,x, ) : * < xI < m, 0 < x, < d }  , A+ > nz , and also that function n is a continuous function in C12, 

i.e., that the guide does not have a sharp boundary. 
The modal problem can be formulated as a vector eigenvalue problem for the set of differential equations (we 

use notations from [ 11 for differential operators) 

- 

Rot, E = iopoH, Rot, H = -io&,n'E. (1) 
Here so,  are the free-space dielectric abd magnetic constants, respectively. We consider the propagation 
constant f l  as an unknown complex parameter and radian frequency o > 0 as a given parameter. We seek non-' 

zerosolutions [E,H] ofset(1)inthespace (4  (R2))6  
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Denote by A"' the sheet of the Riemann surface of the function \Ik'n:-p', where k f  = oz&opo, which is 

specified by the condition Itn,/- L 0.  Denote by pi the propagation constants of TE and TM modes of 

the associated planar waveguide [7]. It is well known that there exist no more than a finite number of values p, . 
All of the values p, belong to domain ( p  E A"' :Imp = 0, kn, < lpl< kn, ) . In a similar way to [ I ]  we can see 

that the domain D = {p  E A"' : Re p = 0) U (p  E A"' : Im p = 0, IpI < 7 )  , where y = m% pi, corresponds to the 

continuum of propagation constants of radiation modes that do not belong to ( L ,  (R'))6. Therefore we do not 
investigate the values p E D .  

Definition 1. A nonzero vecfor [ E , H ] E ( ~  (R'))" is refirred to as an eigenvector of problem ( I )  

corresponding to an eigenvalue p E A = A"' \D ifrelation (1) is valid. The set of all eigenvalues of problem 
( I )  is called the spectrum of this problem. 

, 

. .  

11. GALEKIN METHOD 

If [E, H] is an eigenvector of problem ( I )  corresponding to an eigenvalue /3 E A , then 

(2) 
1 

E(x) = ( k ' d  +Grad, D i v a ) y  I(.' ( y 1 - d )  G(P;x,y)E(y)dy, 
n, D 

H(x) Rot, I ( n ' ~ ) - n ~ ) G ( P ; x , y ) E ( y ) d y ,  x&EX2,, (3) 
n 

where function G is the well known tensor Green function [4]. For any (x, y )  E Cl' the function G is analytic 
for p E A .  Passing the operator Grad, Div, under the integral in relation (Z), and using the differentiation rule 
[ 111 for weakly singular integrals we obtain a nonlinear spectral problem for a strongly-singular domain integral 
equation 

A ( P ) E = O , x s Q  A : ( L , ( n ) ) l  +(L, (Cl ) ) l .  (4) 

Definition 2. A nonzero vector E E (L, (Cl))' is called.an eigenvector of the operator-valuedflnction A ( p )  

corresponding to an eigenvalue p E A ifrelation (4) is valid. Denote by s ( A )  c L the spectrum of operator- 
valuedflncfion A ( p ) .  

Theorem 1. For all P E A  the operafor A ( P )  is Fredholm with zero index. The set 

{ p  E A"' :Imp = 0, IpI 2 kn+ ) is free of the eigenvalues of problem (I). The spectrum of problem ( I )  is 

equivalent to fhe specem of operafor-valuedflnction A ( p )  and can be only a set of isolatedpoints on A .  
This theorem was proved in [6].  The eigenvectors of problem ( I )  is equivalent to the eigenvectors of the 

operator-valued function A(!) corresponding to the same eigenvalues b in the sense of results [6]. 
Consider the Galerkin method for numerical approximation of integral equation (4). We cover W with small 

squares D, and denote by Wm the sub-domain W, = U D j  c W. We seek the approximate solution Em of 

equation (4) in the form of linear combination E, (x) = ca ,F i (x ) ,  x E W, , where F, are basis functions, 

F;(x) = 1, if x E Di , F, (x) = 0 ,  .if x d Dj  . We seek the non-zero approximate solution E, in the space 
H" =span (F, ,R , F,} . The unknown coefficients a, can be determined fiom the set of linear algebraic 
equations: 

i-, 

/-I 
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~~,(A(~)F,,F,)=O,,=~,K,~, /.I . ( 5 )  

where (.,.)denotes inner product in (& (fl)r. The singular Galerkin elements (A(b)F,,F,) are calculated 

analytically by formula [SI: 

that is hue if point x is at center of the square D, . 
Therefore, using Galerkin method for solving nonlinear spectral problem for saongly-singular domain 

integral equation (4), we obtain finite-dimensional nonlinear spectral problem (5), that we can rewrite in the 
operator form: 

A,,(P)E,=O,xsn,; A n : H , + H , ,  (7) 

where the operator-valued function A,(p) is determined by (5). 
Convergence of the presented numerical algorithm is governed by the theorem, which follows from theorem 

1 and results of paper [9]. Following 191, we denote by N' the infinite subset of the set of integers N .  Denote 
b y E , + E , n s N ' , t h e c o n v e r g e n c e E , + E f o r n + m , n e N ' .  

Theorem 2. If b , s s ( A . ) ,  A,,(pn)E,=O, IIE.II=l, and b , - + b , e L ,  E,+E,.  n e N ' G N ,  then 

bo E S ( A )  andA(P,)E, =O,llEoII=l. 
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