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Abstract. The coefficient of the electron–ion energy exchange in liquid aluminum is calculated
within the framework of Ziman approach for electron kinetic coefficients. Calculations are
made to study dependence of the electron–ion heat transfer coefficient on the electron and ion
temperatures.

1. Introduction

The heat transfer coefficient between electrons and ions in a nonequilibrium electron–ion system
of a metal, arising under the influence of ultrashort laser pulses, is an important kinetic coefficient
along with the coefficient of electronic heat conduction, which determines the dynamics of target
heating using a laser pulse [1, 2]. At the same time, the intensity of laser pulses can be so large
that the target material undergoes a phase transition from solid to liquid [1, 3–5]. An effective
approach to calculating the electronic kinetic coefficients in the liquid state is Ziman approach,
which uses the relaxation time approximation with allowance for the ionic structure factor for
electron–ion scattering. With this approach, it is possible to obtain both single-temperature
and two-temperature (at unequal temperatures of electrons and ions) values of resistivity and
electronic thermal conductivity of liquid metals [6,7]. However, Ziman approach was not applied
to the coefficient of electron–ion heat transfer. This paper shows that the Ziman approximation
can also be used to calculate the energy exchange between electrons and ions in a liquid metal.

2. Ziman approach for the electron–ion energy exchange in liquid metals

We consider nonequlibrium two-temperature situation arising under the action of ultrashort
femtosecond laser irradiation on the metal, when electrons can be characterized by their own
temperature Te different from the temperature of ions Ti [1, 8–12].

We are interesting in the rate of energy transfer from heated electrons to ions as the ion
internal energy growth rate dE/dt. When the electron–ion energy exchange takes place in a
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solid metal, the ion internal energy growth rate can be presented as [13]

dE

dt
= G(Te)(Te − Ti), (1)

and this linear relationship occurs not only for small differences between the electron and ion
temperatures. Similar linear dependence on the difference between electron and ion temperatures
is carried out at the electron–ion energy exchange in gaseous plasma [14].

Electron–ion coupling (in solid state electron–phonon coupling) is intensively investigated
both experimentally [15–21] and theoretically [11, 13, 22–29] because it is an important kinetic
coefficient, along with the electronic thermal conductivity coefficient determining the dynamics
of heating a target by a laser pulse. For metals under consideration when we study the
laser ablation, the threshold value of laser fluence for the ablation onset exceeds the melting
threshold, at that the melting takes place at nonequilibrium two-temperature situation with
unequal temperatures of electrons and ions. Thus it is important to calculate the electron–ion
energy exchange in a liquid state of metal.

The ion internal energy E can be represented as the sum of kinetic Ek and potential Ep.
We will consider a simple metal aluminum, in which the electrons of the filled valence energy
bands are separated from the conduction electrons by a gap of about 70 eV and therefore are
not excited at the electron temperatures under consideration. In these conditions ion internal
energy slightly depends on the electron temperature and can be considered as depending on the
ion temperature only [30]. Wherein we have

dE/dt

dEk/dt
=

Cv(Ti)dTi/dt

Cvk(Ti)dTi/dt
= 1 +

Cvp(Ti)

Cvk(Ti)
= γ(Ti). (2)

Here, Cvk and Cvp are the contributions of kinetic energy and potential energy to the total
isochoric heat capacity of ions Cv. Kinetic energy contribution per atom is Cvk = 3/2kB, where
kB is the Boltzmann constant). Then the change of the internal energy of ions dE/dt can be
obtained through the change of the kinetic energy of ions dEk/dt and a function γ(Ti):

dE

dt
= γ(Ti)

dEk

dt
. (3)

To calculate the rate of change of the kinetic energy of ions per unit volume, we write it in
the form

dEk

dt
=

∫

ε(p)
∂N

∂t
(p)dp. (4)

Here ∂N/∂t(p)dp gives the rate of increase of the number of ions in the unit volume with the
energy ε(p) = p2/(2M) in the momentum interval dp and M is the mass of atom. Supposing
two-temperature situation with the electron temperature Te and ion temperature Ti we introduce
the Boltzmann distribution function of ions with their concentration ni and the density of
distribution function

N(p) =
ni

(2πMkBTi)3/2
exp

(

−
p2

2MkBTi

)

and Fermi function of electrons with the energy ε′ and chemical potential µ

f(ε′) =
1

exp( ε
′−µ

kBTe
) + 1

.

Electron states are marked with a stroke. Then considering p + q → p,p′
− q → p′ and

p → p + q,p′
→ p′

− q scattering of electron and ion with the transmitted momentum q, we
can write

∂N

∂t
(p) =

∫

Φ(p,p′,q)W (p,p′,q)
2V dp′

(2π~)3
V dq

(2π~)3
, (5)
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where W (p,p′,q) is the probability per unit time of specified processes with the transmitted
momentum q. Using the golden rule, this probability can be presented as

W (p,p′,q) =
2π

~
wδ(α − β),

where w(q) = w(q) is the squared matrix element of electron–ion scattering with the transmitted
momentum q and

α =
(p+ q)2

2M
−

p2

2M
,

β =
p′2

2m
−

(p′
− q)2

2m

(m is the electron effective mass). Squared matrix element w(q) can be presented as

w(q) =
S(q)

V 2
u2q .

Here S(q) is the structure factor of liquid metal and

uq =

∫

exp
(

−i
qr

~

)

u(r)dr

is a Fourier transform of the pseudopotential u(r) of electron–ion interaction. Statistical factor
in (5)

Φ(p,p′,q) = N(p+ q)f(p′
− q)(1− f(p′))−N(p)f(p′)(1− f(p′

− q))

takes into account Pauli principle in the filling of the electron states [31] and when introducing
designations

ε =
p2

2M
, ε =

p′2

2m
, z = exp

(

ε′ − µ

kBTe

)

,

can be written as

Φ(α, β, ε, ε′) = N(p)
(

e−α/(kBTi)f(ε′ − β)[1− f(ε′)]− f(ε′)[1− f(ε′ − β)]
)

= N(p)
z

z + 1

e−α/(kBTi) − e−β/(kBTe)

ze−β/(kBTe) + 1
. (6)

Then the energy transmitted from the electrons to ions per unit time and unit volume is

dEk

dt
=

∫

p2

2M

N(p)z

z + 1

e−α/(kBTi) − e−β/(kBTe)

ze−β/(kBTe) + 1

2π

~
wδ(α − β)

2V dp′

(2π~)3
V dq

(2π~)3
dp. (7)

First we integarete over p′ in (7). Using spherical coordinates (p′, θ′, φ′) with z-axes directed
along q and denoting τ ′ = − cos θ′ we obtain

β = −
2p′qτ ′ + q2

2m

and after integration over φ′,

dp′ = 2πp′2dp′dτ ′ = −2πm
p′

q
dp′dβ. (8)

Analogously introducing sperical coordinates (p, θ, φ) for p with designation τ = − cos θ, we
have

α =
−2pqτ + q2

2M
.
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Then dp can be written as

dp = 2πp2dpdt = −2πM
p

q
dαdp.

So dp′dp in (7) can be written as

dp′dp = (2π)2Mm
p′p

q2
dp′dpdαdβ.

Thus, integration with respect to p′ implies integration with respect to β. Selecting the
factors depending on β in (7), we obtain at 0 6 θ′ 6 π the integral over β:

−

∫
2p′q−q2

2m

−2p′q−q2

2m

e−α/(kBTi) − e−β/(kBTe)

ze−β/(kBTe) + 1
δ(β − α)dβ, (9)

which changes β onto α and reduces the statistical factor (6) to

Φ(α, ε, ε′) = N(p)
z

z + 1

e−α/(kBTi) − e−α/(kBTe)

ze−α/(kBTe) + 1
. (10)

Taking into account α/(kBTe) ≪ 1 and α/(kBTi) ≪ 1 inequalities (α/(kBTi) < εFm/(MkBTi) ≪
1 at the ion temperatures under consideration not smaller than the melting temperature), this
expression can be reduced to

Φ(α, ε, ε′) = N(p)
z

(z + 1)2
α

(

1

kBTe
−

1

kBTi

)

. (11)

To give nonzero result because of the δ-function, the inequality

−2p′q − q2

2m
6 α 6

2p′q − q2

2m
(12)

must be carried out. From (12) we obtain

−2p′q − q2

2m
6

−2pqτ + q2

2M
6

2p′q − q2

2m

and

−2p′ + q

2pξ
6 τ 6

2p′ + q

2pξ
. (13)

The enequality (13) together with the restriction −1 6 τ 6 1 selects the following areas of the
variables p′, α, p (here we introduced designation ξ = m/M ≪ 1):

p 6
q

2ξ
,

q2 − 2pq

2M
6 α 6

q2 + 2pq

2M
, p′ >

q

2
(1− ξ) +

mα

q
;

p >
q

2ξ
,

q2

2M
(1−

1

ξ
) 6 α 6

q2 + 2pq

2M
, p′ >

q

2
(1− ξ) +

mα

q
;

p >
q

2ξ
,

q2 − 2pq

2M
6 α 6

q2

2M
(1−

1

ξ
), p′ >

q

2
(1 + ξ)−

mα

q
.

Taking into account that ξ ≪ 1 these areas can be simpler written as

p 6
q

2ξ
,

q2 − 2pq

2M
6 α 6

q2 + 2pq

2M
, p′ >

q

2
+

mα

q
;

p >
q

2ξ
, −

q

2m
6 α 6

q2 + 2pq

2M
, p′ >

q

2
+

mα

q
;

p >
q

2ξ

q2 − 2pq

2M
6 α 6 −

q

2m
, p′ >

q

2
−

mα

q
.
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With α ∼ q2/(2M) ≪ q2/(2m) contribution of small values of q is small, so the restriction
on p′ reduces simply to p′ > q/2. Then the range of integration in the (p, α)-plane is

0 6 p < ∞,
q2 − 2pq

2M
6 α 6

q2 + 2pq

2M
, (14)

wherein p′ > q/2. Within the range (14) integration over α in (11) gives

∫
q2+2pq

2M

q2−2pq

2M

αdα =
pq3

M2
. (15)

Then the right-hand side in the equality (7) reduces to a three-fold integral

dE

dt
=

∫

∞

0
dq

∫

∞

q2/(8m)
dε′

∫

∞

0
dp

p2

2M
N(p)

z(ε′)

(z(ε′) + 1)2
pq3

M2

2π

~
w

2V

(2π~)3
V

(2π~)3
4πq2

(2π)2Mm2p

q2

×

(

1

kBTi
−

1

kBTe

)

. (16)

Calculating the integral over p, we get
∫

∞

0

p2

2M

p

M2
MpN(p)dp =

3

8π

nikBTi

M
.

Calculating the integral over ε′ gives
∫

∞

q2/(8m)

z(ε′)

(z(ε′) + 1)2
dε′ =

kBTe

exp
(

q2/(8m)−µ
kBTe

)

+ 1
.

Then the calculation of dEk/dt reduces to a single integration:

dEk

dt
=

3

8π

ni

M

2π

~

2V

(2π~)3
V

(2π~)3
(2πm)24πkB(Te − Ti)

∫

∞

0

q3w(q, Te, Ti)

exp
(

q2/(8m)−µ
kBTe

)

+ 1
dq. (17)

With the use of (3) it gives

G(Te, Ti) =
3γ(Ti)kB
(2π)3

nim
2

M~3

∫

∞

0

k3S(k)u2q

exp
(

~2k2/(8m)−µ
kBTe

)

+ 1
dk (18)

as a coefficient in the expression

dE

dt
= G(Te, Ti)(Te − Ti).

Here k = q/~ is a wave number. As seen from (18), unlike the case of electron–ion heat transfer in
solid metals, the electron–ion coupling in liquids depends on both electron and ion temperatures.

3. Structure factor, electron–ion pseudopotential

So to calculate the electron–ion coupling we need to know the structure factor S(k) and γ(Ti)
parameter that characterizes the relative contribution of potential and kinetic energies into
the internal energy of ions. Both quantities has been calculated by using the classical molecular
dynamics method for modeling the motion of aluminum atoms. Interatomic potential was chosen
in the framework of “embedded atom” model, taking into account many particle forces in metals.
Model “embedded atom” potential for aluminum was taken from [32,33].

The structure factor S(k, T, ni) in the equilibrium one-temperature case was calculated within
the molecular dynamics approach with the number of aluminum atoms taken to be 13 500 and
48688. With such a change in the number of particles, the results were close. The time step for
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Figure 1. The structure factor of liquid aluminum at the temperature T = 1, 3, 10 kK and the
density 2.35 g/cm3.
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Figure 2. The structure factor of liquid aluminum at the temperature T = 2, 4, 30 kK. The
density is equal to 2.35 g/cm3.

the ion motion was taken to be 1 fs. We have done our calculations for liquid aluminum with
a density of 2.35 g/cm3. The structure factor for the temperature T = 1, 3, 10 kK is shown in
figure 1 and for the temperature T = 2, 4, 30 kK—in figure 2.

Other value needed to calculate the electron–ion coupling parameter is the pseudopotential
of the electron–ion interaction. We take the electron–ion interaction potential as the Ashcroft
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Figure 3. Change of the potential energy in liquid aluminum U(T )−U(0) in dependence on the
temperature. Circles are the results of the molecular dynamics modeling, solid line corresponds
to the analytical fit of these results.

potential [34] with the Fourier transform in the form, taking into account the screening of the
interaction

u(q, x, Te) =
U(q)

ε(q, x, Te)
. (19)

Here U(q) is the Fourier transform of Ashcroft potential U(r) consisting of the empty core of
the radius r0 and Coulomb interaction outside the core:

U(r) = 0, r < r0;

U(r) = −
ze2

r
, r > r0.

Then

U(q) =

∫

U(r)e−iqrdr = −
4πze2

q2
cos q r0. (20)

Dielectric function ε(q, x, Te) in (19), describing the electron gas screening of the Ashcroft-type
interaction, was taken in the Thomas–Fermi approach:

εTF(q) = 1 +
κ2(Te)

q2
. (21)

Here the Thomas–Fermi reverse screening length is

κ(Te) =

√

4πe2

∂µ(Te)/∂ne

with the chemical potential µ(Te) and electron concentration ne. Parameter r0 was taken to be
r0 = 1.1949 a.u. to reproduce the experimental value of the resistivity of liquid aluminum in
the melting point [7].
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Figure 4. Dependence of the parameter γ on the ion temperature.
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Figure 5. The coefficient of heat transfer between electrons and ions in dependence on the
electron temperature Te for the values of ion temperature Ti = 1000, 2000, 3000 and 4000 K.
The density is equal to 2.35 g/cm3.

4. Results

Figure 3 shows the temperature dependence of the potential energy of atoms in liquid aluminum.
The results of molecular dynamics modeling and their analytical approximations are presented.
The analytical approximation is then differentiated by temperature in order to contribute Cvp

of potential energy to the isochoric heat capacity. This allows us to calculate the dependence
γ(Ti), shown in figure 4.
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Figure 6. The electron–ion coupling in a liquid aluminum of the density of to 2.35 g/cm3 in
dependence on the electron temperature Te for two values of ion temperature Ti = 10000 and
30 000 K.

The use of the electron–ion interaction pseudopotential and a structure factor allows us to
calculate the coefficient of electron–ion energy exchange (18). This coefficient as a function
of electron temperature for values of ion temperature Ti = 1000, 2000, 3000, 4000 K and
Ti = 10000, 30 000 K is presented respectively in figures 5 and 6.

In contrast to the electron–phonon heat transfer coefficient in solid metals, the coefficient
of energy exchange between electrons and ions in the liquid metal state depends not only on
electron, but also ion temperature. The dependence on the ion temperature is not too significant.

5. Conclusion

The electron–ion heat transfer coefficient in liquid metal was calculated within the framework
of the Ziman approach to electron transfer coefficients. Aluminum, relating to the so-called
simple metals, in the spectrum of electronic excitations of which there are only s- and p-
electrons, is considered. For such a metal, the interionic interactions weakly depend on the
temperature of these electrons. This made it possible to calculate the coefficient of electron–ion
heat transfer depending on the electron temperature, using the structural factor calculated in a
single-temperature state.
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