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1. INTRODUCTION

Establishing the mechanism of propagation of the
collective excitations associated with the motion of
atoms/molecules in liquids is one of the important
problems of condensed matter physics [1–4]. It is
known that the collective dynamics of particles in liq�
uid metals is characterized by a series of specific fea�
tures [5]. In particular, the frequency spectrum of the
dynamic structure factor S(k, ω) containing informa�
tion about the dynamics of the density fluctuations has
a pronounced three�peak structure, which is observed
in experiments on neutron and inelastic X�ray scatter�
ing in liquid metals [1, 5]. The analysis of the disper�
sion curves characterizing the dependence ωc(k) of the
position of the high�frequency peak on the wavenum�
ber revealed the presence of the so�called “positive
dispersion” of the speed of sound [1, 3, 5]. Another
important feature found in the experiments on neu�
tron and X�ray spectroscopy in liquids is the fact that
the three�peak shape S(k, ω) is not reproduced by a
combination of three Lorentzian functions (over the
frequency ω at the fixed k value) [6]. These and other
features characterizing the collective atomic (molecu�
lar) dynamics in liquids stimulate additional experi�
ments [7–9] and the development of the correspond�
ing theoretical interpretations [5].

The first experimental results on the neutron
inelastic scattering in liquid lead were obtained in the
middle of the 1950s by the research groups headed by
Egelstaff and Brockhouse. A detailed discussion of
these results can be found in [1, 5, 7–14]. The pres�
ence of the high�frequency collective excitations in
the spectra S(k, ω) of liquid lead was indicated there.
Later on the basis of the experimental data obtained
independently by two research groups [15, 16], it was
supposed that there are two inelastic peaks in S(k, ω)

forming two pronounced dispersion curves, the physi�
cal nature of which was presumably associated with
the longitudinal and transverse acoustics�like excita�
tions. However, the subsequent experiments could not
give any confirmation of this hypothesis [17–21]. The
features observed in the low�frequency region of the
spectra S(k, ω) were associated with the effects of mul�
tiple scattering [7–9].

The molecular dynamics computer simulations
make it possible to establish the physical factors
responsible for the collective correlated dynamics of
particles in liquids [22, 23]. Similar numerical studies
were performed for water [22, 23], liquid gallium [24–
26], tin [27], silica [9], germanium oxide [28], and dif�
ferent metal alloys and compounds [29–31]. At the
same time, the first results on the simulation of the
atomic dynamics of liquid lead near the melting tem�
perature (T = 613 K) showed the presence of a single
dispersion branch [32, 33] manifested in the spectra
S(k, ω) that was confirmed in the subsequent molecu�
lar�dynamics calculations [34–36]. Thus, a clear
understanding of the physical mechanisms of the
propagation of the atomic collective excitations in liq�
uids is absent to date, even for the case of simple one�
component systems [9].

2. SIMULATION DETAILS

The system considered in this work consisted of
N = 13500 atoms in a cubic cell with periodic bound�
ary conditions. The particles interacted via the
embedded atom model potential adapted for lead [37].
In this model, the corrections taking into account the
influence of the environment are introduced in addi�
tion to the pair interatomic interactions [38, 39]. The
potential energy for metals described by the embedded
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atom model potentials can be written in the general
form as

. (1)

Here, ϕ(rij) is the pair potential of the interatomic
interaction, and Φ(ρi) is the “embedded” function
characterizing effectively the many�particle interac�
tions in terms of the electron density of the ith atom ρi.
The simulation was performed in the canonical (NVT)
ensemble. To maintain the system in the state of ther�
modynamic equilibrium, we used a Nosé–Hoover
thermostat with the interaction parameter τ =
100.0 ps. The equations of motion of atoms were inte�
grated on the basis of the velocity Verlet algorithm with
the time step dt = 10–15 s [40]. Liquid lead was pre�
pared by melting a crystal with the fcc structure and
making the temperature of the system T = 3000 K with
the subsequent cooling to the temperature T = 600 K.
The cooling rate was γ = 1010 K/s. To transfer the sys�
tem to the state of the thermodynamic equilibrium,
106 time steps were performed. The time characteris�
tics were calculated over the time scale t = 1.2 ns.1

3. EXPERIMENTAL RESULTS

The dynamic structure factor S(k, ω) is related to
the coherent scattering function

(2)

as follows:

, (3)

where S(k) =  is the static structure factor
[41], the quantity

(4)

determines the density fluctuations in the spatial
region with the size of 2π/|k|, |k| is the wavenumber,
and rj(t) is the radius vector characterizing the position
of the jth particle at the time t. Thus, the dynamic
structure factor contains information about the den�
sity redistribution over a certain spatial scale along the
direction given by the wave vector k. On the other
hand, the propagation of the collective excitations in

1 The frequency characteristics are given in units of ωE =

, which estimates the so�called Ein�
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the multiparticle system can be characterized by the
current variables

, (5)

. (6)

Here, jL(k, t) determines the value of the longitudinal
current, i.e., the motion of particles along the direc�
tion k. The quantity jT(k, t) characterizes the trans�
verse current, i.e., the motion (vibrations) of the par�
ticles in the plane orthogonal to the direction k. The
time correlation functions of these (current) variables
[42]

, (7)

will determine the features of the propagation of the
waves owing to the redistribution of the number den�
sity of particles with the longitudinal (α ≡ L) and
transverse (α ≡ T) polarizations. Analogous to expres�
sion (3), we determine the spectral densities:

(8)

where tM is the observation time scale. The last equality
in Eq. (8) follows from the Wiener–Khinchin theorem

[43]. The spectral features in (k, ω) and (k, ω)
determine the characteristic frequencies of the vibra�
tional processes of the longitudinal and transverse
polarizations, respectively, and the positions of the
high�frequency peaks in these spectra at different
wavenumbers, i.e., the dispersion dependences

 and .

It should also be noted that the high�frequency fea�
tures of the spectra of the dynamic structure factor will
be more vividly manifested in the spectral density of
time correlation functions of the longitudinal current

(k, ω). This follows directly from the expression
[44]

. (9)
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Therefore,

. (10)

Expression (10) determines the relation between the
dispersion curve determined via the positions of the
peaks in S(k, ω) at different k values and the dispersion

curve .

Figure 1 shows the spectra of the dynamic structure
factor S(k, ω) and the spectral density of the time cor�
relation functions of the longitudinal and transverse
currents of liquid lead at different wavenumbers (0.58
Å–1 ≤ k ≤ 2.01 Å–1). These spectral characteristics were
calculated on the basis of the results of the molecular
dynamics simulation. The dynamic structure factor
S(k, ω) was determined from Eqs. (2) and (3). The

quantities (k, ω) and (k, ω) were calculated via
expression (8). The correspondence between the high�

frequency peaks in S(k, ω) and (k, ω) is vividly
traced. The presence of the pronounced inelastic
component indicates the vibrational processes of the
longitudinal polarization (L mode). The correspond�

ing characteristic frequency (k) increases with k

in the interval from k  0 to k � km/2 = 1.1 Å–1,
where km is the position of the main maximum in the
static structure factor S(k) [31].The high�frequency
peak is also observed in the spectral density of the time
correlation functions of the transverse current (see
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Fig. 1a), the shape and position of which differ con�
siderably from those of the high�frequency peak in

(k, ω).

Figure 2 shows the dispersion curves  and

 obtained from the analysis of the correspond�
ing spectral densities. Both curves are characterized by
the linear increase in the region of low wavenumbers
and reach the maximum at k � km/2. Such a character
of the dispersion law corresponds to the “acoustic�
like” vibrational processes [13, 45]. The slopes of the
interpolation lines in the region of the extremely low
wavenumbers (the hydrodynamic limit) will charac�
terize the corresponding velocities of the propagation
of the “acoustic�like” vibrations of the longitudinal
and transverse polarizations. The velocities obtained
were ϑL = 1816 ± 5.4 m/s and ϑT = 874 ± 3.3 m/s. The
results shown in Fig. 2 indicate the absence of the
“optic�like” branch in the dispersion law for liquid
lead in contrast to the hydrogen�containing liquids,
where such features in the dispersion law were revealed
[46]. The presence of the lower branch in the disper�
sion law in Fig. 2, which was also observed in experi�
ments on inelastic scattering [15, 16] in the vicinity of
the wavenumbers k � km/2, can be considered as a
reflex of the acoustic�like vibrations of the transverse
polarization. The appearance of the latter in the
experimental spectra S(k, ω) is due to the quasielastic
properties of the medium at the microscopic spatial
scales.

C̃L
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L( ) k( )

ωc
T( ) k( )

Fig. 1. (Color online) (a) Dynamic structure factor for liquid lead at the temperature T = 600 K for the wavenumbers 0.58 Å–1 ≤
k ≤ 2.01 Å–1. (b) Spectrum of the density of the time correlation functions of the (L) longitudinal and (T) transverse currents.
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