УДК 612.17

ДОЗОЗАВИСИМОЕ ДЕЙСТВИЕ КАРБАХОЛИНА НА СИЛУ СОКРАЩЕНИЯ МИОКАРДА КРЫС В ПОСТНАТАЛЬНОМ ОНТОГЕНЕЗЕ

© А.М.Сергеева, Н.И.Зиятдинова, Л.И.Хисамиева, Т.Л.Зефиров

В статье изучено in vitro дозозависимое действие карбахолина 10^{-5} - 10^{-9} моль на сократимость миокарда крыс у 1-, 3-, 6-, 8- и 20-недельного возраста. Отрицательный инотропный эффект карбахолина крыс выявлен в концентрации 10^{-5} моль. Исключением является миокард предсердий новорожденных животных, у которых карбахолин в концентрации 10^{-5} моль не приводил к достоверным изменениям. У 8-недельных животных карбахолин в низких концентрациях вызывал увеличение силы сокращения миокарда.

Ключевые слова: сердце, сократимость, карбахолин, крыса, постнатальный онтогенез.

В основе нервной регуляции деятельности сердца лежит взаимодействие между симпатическим и парасимпатическим отделами вегетативной нервной системы, которые реализуют свои влияния через адренорецепторы и холинорецепторы клеток сердца [1; 2; 3; 4].

Окончания этих нейронов выделяют ацетилхолин (АХ), который взаимодействует с мускариновыми холинорецепторами постганглионарных парасимпатических нейронов. Ацетилхолин может влиять на другие структуры и механизмы помимо ингибирования сердечной деятельности. Механизмы действия парасимпатических нейронов на сердце изучаются и развиваются интенсивно [3; 5; 6; 7; 8; 9]. АХ может уменьшить воздействие изопреналина путем фосфорелирования регуляторных белков в сердце млекопитающих. В человеческом сердце АХ или карбахолин снижают базальную силу сокращения, а также силу сокращения, заранее активируемую изопреналином, НА, прокатеролом и форскалином [10; 11]. Эти результаты получены на изолированных препаратах правого предсердия человека в условиях электрической стимуляции. В препаратах желудочков, однако АХ или карбахолин снизали силу сокращений миокарда только в случае ее предварительной стимуляции изоперналином или форскалином [11]. На протяжении достаточно долгого времени известно, что стимуляция М-ХР повышает уровень цГМФ, что в свою очередь может ингибировать кальциевые токи L-типа через активацию цГМФ зависимых протеинкиназ [12], или через стимуляцию цГМФ зависимых цАМФ фосфодиэстераз [13], или через стимуляцию цГМФ зависимых цАМФ фосфодиэстераз [13]. Аналоги цГМФ могут имитировать эффекты АХ в сердце. Было постулировано, что уровни цАМФ и цГМФ в сердце изменяются в противоположном направлении, тем не менее преобладающая роль цГМФ в отрицательном хронотропном и инотропном эффектах при стимуляции М-ХР не получила дальнейшего развития [14]. Не менее актуален вопрос о формировании механизмов парасимпатической регуляции сердечной деятельности и в онтогенезе [14].

Целью работы явилось изучение in vitro дозозависимого действия карбахолина на сократимость миокарда крыс у 1-, 3-, 6-ти, 8- и 20недельного возраста.

Методика исследования

Работа выполнена на 40 крысах 1-, 3-, 6-, 8- и 20-недельного возраста. Для наркоза использовали 25 % раствор уретана, который вводили интраперитониально в дозе 1000 мг/кг массы животного. Изолированное сердце помещалось в ванночку с рабочим раствором, к которой подсоединялись два электрода — стимулятора и в соответствии с анатомическим строением сердца вырезались полоски миокарда из правого предсердия и правого желудочка длиной 2-3 мм и диаметром 0,8-1,0 мм. Препарат помещали вертикально в резервуар V=20 мл, оксигенированный карбогеном (97% O₂ и 3% CO₂) рабочий раствор при комнатной температуре.

Верхний конец препарата прикреплялся к нержавеющему стержню, соединенному с измерителем напряжения, нижний конец к резиновому блоку. Препарат стимулировался электрическим сигналом через 2 серебряных электрода (с помощью стимулятора ЭСЛ-2 (Россия) с частотой 6 и 10 стимулов в минуту для 7-, 21- и 42-, 56-, 100-суточных животных, соответственно, амплитудой сигнала 10 mV, продолжительность стимула 5 мс). После погружения препарата в резервуар следовал период проработки в течение 40-60 минут, в ходе которого мышечным волокнам постепенно придавалось оптимальное напряжение. Оптимальным напряжением считалась такая точ-

ка растяжения препарата, после преодоления которой начиналось снижение силы сокращения препарата. По окончании проработки 5 минут регистрировались исходные параметры сокращения, затем 21 минуту с добавлением в рабочий раствор агониста холинорецепторов (АХ) карбахолина концентрацией 10^{-5} , 10^{-6} , 10^{-7} , 10^{-8} , -10^{-9} моль. Силу сокращения (F) выражали в граммах (g). Обработка полученных результатов проводилась с помощью программы Chart 5, на установке Power Lab (AD Instruments, Австралия), с применением пакета программ Statgraphics.

Статистическая обработка и определение достоверности различий, результатов исследований по критерию Стьюдента и Вулькоксона осуществлялись в редакторе Microsoft Excel.

Результаты исследования

В экспериментальной группе взрослых 20недельных животных исходная сила сокращения изолированного миокарда правого предсердия составляла 0,280757±0,069024 g. После добавления в раствор агониста холинорецепторов (ХР) карбахолина в концентрации 10⁻⁵ М с 1-й по 14-ю минуты значения силы сокращения миокарда достоверно уменьшились до 0,226664±0,060598 g (p<0.01)21-й минуте И на составили 0,222947±0,055694 g (p<0,01) (табл.1). Введение агониста XP в остальные концентрации не приводило к достоверному снижению силы сокращения изолированных полосок миокарда предсердий взрослых крыс. Исходная сила сокращения изолированных полосок миокарда желудочков до введения карбахолина в концентрации 10-5 М имела значение 0,276514±0,058016 g. К 7-й минуте сила сокращения достоверно уменьшилась до 0,222493±0,048771 g (p<0,001), и на 21-й исследования 0,195407±0,048672 g (p<0,001) (табл.2). Добавление карбахолина в концентрациях 10^{-6} , 10^{-7} , 10^{-8} , 10⁻⁹ М не приводила к достоверным изменениям силы сокращения изолированных полосок миокарда желудочков (рис.1).

У животных 8-недельного возраста реакция сократимости полосок миокарда предсердий и желудочков зависела от концентрации. Карбахолин в концентрациях 10⁻⁶ и 10⁻⁹ М не вызывал достоверных изменений сократимости миокарда предсердий. Карбахолин в концентрации 10⁻⁵ М уменьшал силу сокращений миокарда предсердий с 0,233642±0,112475 g до 0,161583±0,085385 g (р<0,05) (табл.1), в концентрации 10⁻⁸ М с 1,055127±0,164174 g до 1,018986±0,163328 g (р<0,01). Карбахолин в концентрации 10⁻⁷ М, напротив, увеличил силу сокращения изолированных полосок миокарда правого предсердия с

1,09567±0,174225 g до 1,131399±0,179095 g (p<0,05).

Сила сокращения изолированных полосок миокарда правого желудочка уменьшалась при введении карбахолина в концентрации 10^{-5} М с 0,122236±0,036964 g до 0,076398±0,026005 g (p<0,01). Карбахолин в концентрации 10^{-9} М достоверно увеличивал силу сокращения изолированных полосок миокарда с 0,220650±0,03779 g до 0,232768±0,039811 g (p<0,05).

Исходная амплитуда сокращения полосок миокарда правого предсердия крыс 6-недельного возраста до добавления в перфузируемый раствор карбахолина в концентрации 10⁻⁵ M имела значение 0,23992±0,072524 g. На 7-й минуте эксперимента сила сокращения уменьшилась до 0,194845±0,070196 g (p<0,001), на 14-й и 21-й минутах уменьшение достоверно составило 0.181727 ± 0.069004 (p < 0.001)и 0,17086±0,066585 g (р<0,001) (табл.1). Карбахолин в концентрации 10^{-6} , 10^{-7} , 10^{-8} М вызывал незначительное уменьшение силы сокращения полосок миокарда предсердий. Исходная величина силы сокращения изолированных полосок миокарда правого желудочка до добавления карба- 10^{-5} В концентрации 0,154928±0,024818 g. На 1-й минуте сила сокращения полосок миокарда уменьшилась до 0,150114±0,025178 g (p<0,05). В дальнейшем сила сокращения продолжала уменьшаться и на 21минуте составила 0,103097±0,016064 (р<0,001) (табл.2). Карбахолин в концентрации 10-8 М вызывал уменьшение силы сокращения полосок миокарда желудочков. Исходное значение составило 0,375943±0,002084 g. Сила сокраснизилась до 0,368161±0,000464 (p<0.01) на 14-й минуте и до 0.367106 ± 0.000807 g (p<0,01) на 21-й минуте. Карбахолин в концентрации 10^{-6} , 10^{-7} , 10^{-9} М не вызывал достоверных изменений силы сокращения изолированных полосок миокарда желудочков.

Исходная сила сокращения полосок миокарда правого предсердия 3-недельных крысят до добавления в перфузируемый раствор карбахолина 10^{-5} концентрации M составляла $0.184734\pm0,05854$ g. На 7-й и 14-й минутах уменьшилась до 0.15011 ± 0.052016 (p<0.01) g и 0,139117±0,049869 g (p<0,01). В течение 21-й минуты сила сокращения достоверно уменьшилась до 0.121994 ± 0.041111 g (p<0.01) (табл.1). Карбахолин в концентрации 10-6 М достоверно уменьшал силу сокращения полосок миокарда правого предсердия. В ходе 1-й минуты сила сокращения снижалась с 0,154557±0,047939 g уменьшилась до 0,149791±0,048718 g (p<0,05) на 21-й минуте (рис.4). Концентрации карбахолина 10^{-7} , 10^{-8} , 10^{-9} М не вызывал изменения силы сокращения изолированных полосок миокарда правого предсердия (рис.4). Сила сокращения изолированных полосок миокарда правого желудочка 3-недельных животных до введения карбахолина в концентрации 10^{-5} М равнялась 0,121646±0,024323 g. На 7-й минуте эксперимента сила сокращения уменьшалась до 0,096634±0,02109 g (p<0,01), а на 21-й минуте уменьшение составило 0,07615±0,016482 g (p<0,01) (табл.2).

У крыс 1-недельного возраста не наблюдалось изменение сократимости миокарда предсердий при введении всех изученных концентраций карбахолина. Сила сокращения миокарда желудочков уменьшалась с $0,126922\pm0,038668$ g до $0,111338\pm0,034314$ g (p <0,01) при введении агониста XP в концентрации 10^{-5} М.

Более детальное знакомство с современными данными позволяют сделать заключение, что ацетилхолин в покое не оказывает влияние на сократимость миокарда, а ингибирует ее лишь после усиления силы сокращений при применении фармакологических агентов, активирующих систему вторичных посредников аделатциклазуцАМФ. В качестве таковых наиболее логично предположить действие катехоловых аминов, в частности норадреналина, который высвобожда-

ется из нервных терминалей постганглионарных симпатических нейронов. Только после их воздействия, на фоне усиления сократительной активности агонисты холинорецепторов ингибируют сократительную активность. В наших экспериментах карбахолин оказывал достоверный отрицательный эффект лишь в применении его в дозе 10-5 моля, что существенно превышает его физиологическую концентрацию. Можно сделать предположение, что у крыс в покое ацетилхолин из парасимпатических преганглионаров выделяется в небольших количествах и его секреция резко увеличивается лишь в особых случаях, например при электрической стимуляции вагуса. Следует отметить, что по аналогии с гипотезой профессора М.Г.Удельного, который сделал предположение о возможности разнонаправленного влияния парасимпатического отдела на сердечную деятельность. Ацетилхолин способен оказывать не только отрицательный, но и положительный инотропный эффект. Данное предположение основано на результатах ряда исследователей, которые считают, что разнонаправленный эффект ацетилхолина может быть связан с активацией разных подтипов мускариновых холинорецепторов и, как следствие, модуляцией активности различных систем вторичных посредников и различных эффекторов.

Таблица 1. Влияние карбахолина (10^{-5} M) на силу сокращения (g) полосок миокарда предсердий крыс

Возраст (нед)	Исходная	1 мин	7 мин	14 мин	21 мин			
1 (n=10)	$0,067249\pm0,024253$	$0,067248\pm0,02445$	0,068674±0,025204	$0,067581\pm0,024835$	0,065602±0,024059			
3 (n=10)	0,184734±0,05854	0,174185±0,05641	0,15011±0,052016 **	0,139117±0,049869 **	0,121994±0,041111 **			
6 (n=10)	0,23992±0,072524	0,233968±0,076819	0,194845±0,070196 ***	0,181727±0,069004 **	0,17086±0,066585 ***			
8 (n=10)	0,233642±0,112475	0,220874±0,108752 *	0,193678±0,096452 *	0,176226±0,089392 *	0,161583±0,085385			
20 (n=10)	0,280757±0,069024	0,264817±0,070905	0,226664±0,060598 **	0,222947±0,055694 **	0,218338±0,053804 *			

Таблица 2. Влияние карбахолина (10^{-5} M) на силу сокращения (g) полосок миокарда желудочков крыс

Возраст (неделя)	Исходная	1 мин	7 мин	14 мин	21 мин			
1 (n=10)	0,126922±0,038668	0,124476±0,037722	0,118778±0,035925 **	0,114709±0,035047 **	0,111338±0,034314 **			
3 (n=10)	0,121646±0,024323	0,110932±0,022875	0,096634±0,02109 **	0,084288±0,018526 **	0,07615±0,016482 **			
6 (n=10)	0,154928±0,024818	0,150114±0,025178 *	0,120197±0,020471 ***	0,10996±0,018651 ***	0,103097±0,016064 ***			
8 (n=10)	0,122236±0,036964	0,118003±0,03512	0,107229±0,032826	0,090343±0,029463 **	0,076398±0,026005 **			
20 (n=10)	0,276514±0,058016	0,269531±0,055655	0,222493±0,048771 ***	0,202729±0,047518 ***	0,195407±0,048672 ***			
Hamseyever D<0.05(*) D<0.01(***) D<0.001(***)								

Примечание: $P \le 0.05(*)$, $P \le 0.01(**)$, $P \le 0.001(***)$.

* * * * * * * * *

- Зефиров Т.Л., Зиятдинова Н.И., Сайфутдинова Л.Р., Зефиров А.Л. Влияние селективной блокады разных подтипов М-холинорецепторов на сердечную деятельность и артериальное давление крыс // Бюлл. эксп. биол. и мед. 2006. №6. С.565.
- Зефиров Т.Л., Гибина А.Е., Салман М.А.Х., Зиятдинова Н.И., Сайфутдинова Л.Р., Зефиров А.Л. МЗ-холинорецепторы участвуют в постнатальном развитии холинергической регуляции работы сердца крыс // Бюлл. эксп. биол. и мед. – 2007. – №8. – С.135.
- 3. *Choate J.K.* Neuronal control of heart rate in isolated mouse atria // Am J Physiol Heart Circ Physiol 285. 2003. H.1340-1346.
- 4. Robinson R.B., Baruscotti M., DiFrancesco D. Autonomic modulation of heart rate: pitfalls of nonselective channel dlockade // Am. J Physiol Heart Circ Phosiol 285. 2003. P.2865.
- Зиятдинова Н.И., Зефиров А.Л., Ситдиков Ф.Г., Зефиров Т.Л. Вегетативный контроль сердечной деятельности включает модуляцию каналов, активируемых при гипероляризации in vivo // Российский физиологический ж. им.Сеченова. 2003. №2(89). С.154-160.
- 6. *Habuchi Y.* Muscarinic inhibition of basal l-type calcium current in pacemaker cells from the rabbit atrioventricullar node // Can. J. Cardiol. 1997. Vol.13. P.118-1190.
- 7. Ito H., Hosoya Y., Inanobe A., Tomoike H., Endoh M. Acetylcholine and adenosine activate the G proteingated muscarinic K+ channel in ferret ventriculfr

- myocytes // Naunyn-Schmiedebergs Arch Pharmacol 350. 1995. P.610-617.
- Mangoni M., Nargeot J. You might find this additional information useful // Physiok Rev 88. 2008. P.919-982.
- 9. Renaudon B., Bois P., Bescond J., Lenfant J. Acetylcholine modulates I(f) and IK(ACh) via different pathways in rabbit sino-atrial node cells // J. Mol. Cell. Cardial. 1997. Vol.29(3). P.969-975.
- Du X.Y., Schoemaker R.G., Bos E., Saxena P.R. Characterization of the positive and negative inotropic effects of acetylcholine in the human myocardium. – 1995. – P.119-127.
- 11. Giessler C., Wangemann T., Zerkowski H.R., Brodd O.E. Age-dependent decrease in the negative inotropic effects of carbachol on isolated human right atrium // Eur J Pharmacol. 1998. P.199-202.
- 12. Lohmfnn S.M., Vaanbrager A.B., Smolenski A., Walter U., Jonge H.R. De Distinct and specific functional of cGMP-dependent protein kinases // Trends Biochem Sci 22. 1997. P.307-312.
- 13. Mery P.F., Abi-Gerges N., Vandecasteele G., Jurevicius J., Eschenhagen T., Fischmeister R. Muscarinic regulation of L-type calcium current in isolated cardiac myocytes // Life Sci 60. 1997. P.1113-1120.
- 14. Zefirov T.L., Ziyatdinova N., Zefirov A.L. Effects of blockade of hyperpolarizition-activated ion currents (Ih) on autonomic control of the heart in rats: agerelated peculiarities // Neurophysiology. 2003, 35 (b). P.415-421.

DOSE DEPENDENT EFFECTS OF CARBOCHOLINE ON MYOCARDIAL CANTRACTILITY OF RATS IN POSTNATAL PERIOD

A.M.Sergeeva, N.I.Ziyatdinova, L.I.Hisamieva, T.L.Zefirov

The dose dependent effects of carbocholine 10^{-5} to 10^{-9} mole on myocardial contractility of rats of one, three, six, eight and twenty-week-old were investigated. The negative inotropic effect of carbocholine was evoked in concentration 10^{-5} mole, except the myocardium of the atria of newborn animals where carbocholine in a concentration of 10^{-5} did not lead to significant changes. In eight-week-old animals carbocholine in low concentrations increased contractility of myocardium.

Key words: heart, myocardial contractility, carbocholine, rat, postnatal period.

* * * * * * * * * *

Сергеева Анна Михайловна — кандидат биологических наук, специалист по учебнометодической работе Татарского государственного гуманитарно-педагогического университета.

E-mail: zefirovtl@mail.ru

Зиятдинова Нафиса Ильгизовна — кандидат биологических наук, доцент кафедры анатомии, физиологии и охраны здоровья человека Татарского государственного гуманитарнопедагогического университета.

E-mail: zefirovtl@mail.ru

А.М.СЕРГЕЕВА, Н.И.ЗИЯТДИНОВА, Л.И.ХИСАМИЕВА, Т.Л.ЗЕФИРОВ

Хисамиева Луиза Ирековна — соискатель кафедры анатомии, физиологии и охраны здоровья человека Татарского государственного гуманитарно-педагогического университета.

E-mail: zefirovtl@mail.ru

Зефиров Тимур Львович — доктор медицинских наук, профессор, заведующий кафедрой анатомии, физиологии и охраны здоровья человека Татарского государственного гуманитарно-педагогического университета.

E-mail: zefirovtl@mail.ru

Поступила в редакцию 15.12.2010