УДК 546.03

Изучение гомо- и гетероядерного комплексообразования в системах 1-гидроксиэтилиден-1,1-дифосфоновая кислота (HEDP)—эрбий(III) и HEDP—эрбий(III)—кальций(II) в водном растворе*

Ф. В. Девятов, * Д. Р. Мусин

Казанский (Приволжский) федеральный университет, Российская Федерация, 420008 Казань, ул. Кремлевская, 18. Факс: (843) 233 7796. E-mail: Fedor.Devyatov@kpfu.ru

Методом pH-потенциометрии в сочетании с методом математического моделирования изучены системы эрбий(III)—HEDP и эрбий(III)—кальций(II)—HEDP (HEDP — 1-гидроксиэтилиден-1,1-дифосфоновая кислота). В системе эрбий(III)—HEDP показано образование комплексных форм с разной степенью депротонизации лиганда, монои биядерных комплексов состава 1 : 1 и 2 : 1, а также моноядерных бискомплексов. Установлено, что гетероядерные комплексы, формирующиеся в системе эрбий(III) кальций(II)—HEDP, по составу не совпадают ни с кальциевыми, ни с эрбиевыми формами.

Ключевые слова: дифосфонаты, 1-гидроксиэтилиден-1,1-дифосфоновая кислота, комплексообразование, редкоземельные элементы.

Благодаря схожести молекул пирофосфорной кислоты и дифосфонатов последние избирательно связываются с кальцием и концентрируются в костных тканях. Дифосфонаты замедляют процесс разрушения костей остеокластами, препятствуя их апоптозу¹. Поэтому они нашли широкое применение в онкологической практике, особенно при лечении метастатических поражений костей².

1-Гидроксиэтилиден-1,1-дифосфоновая кислота (HEDP) — дифосфонат — применяется в медицине в виде калиево-натривой соли (ксидифон) и двунатриевой соли (этидронат), является ингибитором костной резорбции³, предупреждает чрезмерный выход кальция из костей, патологическую кальцификацию мягких тканей, кристаллообразование, рост и агрегацию кристаллов оксалата кальция и фосфата кальция в моче⁴.

Медицинское применение HEDP предусматривает изучение кислотно-основных свойств, а также комплексообразования HEDP с различными катионами металлов, прежде всего с ионами кальция и магния.

Согласно данным литературы⁵ ионы лантаноидов подавляют развитие клеток (остеокластов), отвечающих за резорбцию костной ткани. Способность ионов лантаноидов подражать функциям ионов кальция^{6,7} позволяет не только моделировать поведение последних с помощью ионов лантаноидов (редкоземельное зондирование), но и реально использовать лантанои-

* По материалам XXVI Международной Чугаевской конференции по координационной химии (6—10 октября 2014 г., Казань). ды в качестве компонентов для терапии заболеваний костной ткани⁸.

С физико-химической точки зрения схожесть поведения ионов кальция и эрбия соотносится с введенным в работе⁹, а затем развитым^{10,11} представлением о комбинированном параметре $P\alpha$ (P — сила поляризации, α — поляризуемость) как мере силы взаимодействия катионов с окружением при преимущественно ионном типе связи. Рассчитанные нами значения $P\alpha$ (в эВ·Å^{5/2}) для координационных чисел (KЧ) 6, 7, 8, 9 составляют соответственно 2.75, 3.13, 3.52, 3.96 для Ca^{II} и 2.52, 2.93, 3.42, 3.92 для Er^{III} (величины r_{ion} взяты из работ^{7,12}, ионизационные потенциалы — см. лит.¹²). Таким образом, при равных КЧ в одинаковом лигандном окружении энергии химического связывания для Er^{III} и Ca^{II} должны быть близки.

Ранее нами были получены константы, относящиеся к протолитическим равновесиям HEDP (см. лит.¹³) и комплексообразованию Ca^{II} с HEDP.¹⁴ Полученные константы предполагалось использовать для описания систем Er^{III}—HEDP и Er^{III}—Ca^{II}— HEDP в интервале концентраций (1—5)•10⁻² моль•л⁻¹.

При таких концентрациях для корректного сведения всех данных воедино требуется создание ионной силы ≥ 2 моль \cdot n^{-1} , что неминуемо приводит к дополнительным ион-ионным взаимодействиям. В качестве альтернативы при обработке данных применяли программу CPESSP третьего поколения¹⁵, позволяющую рассчитывать ионную силу по уравнению Девис—Васильева¹⁶ и коэффициенты активности каждой формы в каждой точке титрования. Таким обра-

^{© 2015 «}Известия Академии наук. Серия химическая», Российская академия наук, Отделение химии и наук о материалах Российской академии наук, Институт органической химии им. Н. Д. Зелинского Российской академии наук

зом, в ходе математического моделирования использовали активности форм, а полученные константы следует считать термодинамическими.

Поскольку считается, что катионы лантаноидов(III) иттриевой группы являются «парамагнитными зондами», моделирующими поведение кальция в биосистемах вообще и в присутствии HEDP в частности, то представляло несомненный интерес сопоставить поведение этих ионов, выявить общее и особенное в химизме (стехиометрии и устойчивости) комплексообразования с HEDP.

Экспериментальная часть

Активность протонов измеряли на потенциометре «Эксперт-001» с точностью 0.005 ед. pH; pH-метр калибровали по стандартизованным водным буферным растворам. Все измерения проводили при температуре 25±0.1 °C.

Концентрацию полученного раствора HEDP находили рН-метрическим титрованием раствором КОН, концентрацию которого определяли титрованием раствором фиксанала (0.1 *M* HCl) в присутствии кислотно-основного индикатора фенолфталеина в среде аргона.

В качестве комплексообразующего иона металла применяли эрбий(III) в виде 8-водного нитрата эрбия («х.ч.»). Для определения точной концентрации раствора нитрат эрбия титровали раствором ЭДТА при рН 5.6 (ацетатный буфер¹⁷) с ксиленоловым оранжевым, а точной концентрации Ca^{II} — раствор хлорида кальция («ч.д.а.») титровали раствором ЭДТА при рН 10 в аммиачно-хлоридном буфере¹⁸. Точку эквивалентности находили с использованием индикатора эриохром черный.

Система Er^{III}—HEDP. В работе проведено pH-метрическое титрование системы Er^{III}—HEDP (рис. 1) при различных концентрациях, указанных в таблице 1. Время установления состояния равновесия в зоне осадков практически во всем исследованном интервале pH 1.5—11 обычно не превышало 5—10 мин.

Моделирование данных (см. рис. 1) только на базе протолитических равновесий для HEDP дает значение критерия Фишера $F_{\rm cr} = 120$ (модель считается адекватной, если $F_{\rm cr} \le 1$)¹⁶. Дальнейшее приближение к адекватному описанию системы базировалось на фиксации констант, полученных для HEDP, и введении растворимых комплексных форм различного состава и протонированности лиганда с ионами эрбия(III). В матрицу вводили комплексные формы с соотношением металл : лиганд 1 : 1, 2 : 2, 2 : 1 и 1 : 2 различной степени протонизации. Это позволило снизить

Рис. 1. Зависимости от pH функций Бьеррума (*n*) для системы Er^{III}—HEDP при соотношениях, указанных в таблице 1.

Таблица 1. Условия титрования системы Er^{III} —HEDP ($V_0 = 25 \text{ мл}, T = 25 \text{ °C}$)

Конц	ентрация/м	Условное обозначение	
HEDP (KOH)	Er ^{III}	Титрант	системы Er ^{III} —HEDP
0.01219 0.02194 0.0355 0.01219	0.0213 0.01988 0.02164 0.00994	0.0489 0.1100 0.2201 0.0489	2-1 2-2 2-4 1-1

 $F_{\rm cr}$ до значения 3.4. Затем в матрицу включали осадковые формы комплексов эрбия с HEDP, что дало возможность снизить критерий Фишера до 0.84. Окончательная матрица приведена в таблице 2. Распределение форм в зависимости от кислотности среды и концентрационных условий показано на рисунках 2—5.

Таблица 2. Матрица стехиометрии для равновесия *m* $\mathrm{Er}^{\mathrm{III}} + l \operatorname{H}_{4L} \Longrightarrow [\mathrm{Er}_{m} \operatorname{H}_{4l-h} L_{l}]^{3m-h} + h \operatorname{H}^{+}$ и константы образования различных форм в системе $\mathrm{Er}^{\mathrm{III}}$ —HEDP

l	т	k	h	n	Форма	$lgK \\ (\delta \le 0.12)$
1	1	0	2	2.0	ErH ₂ L ⁺	10.06
2	1	0	1	0.5	$ErH_{7}L_{2}^{2+}$	23.86
2	1	0	3	1.5	$\mathrm{ErH}_{5}\mathrm{L}_{2}^{2-}$	19.47
2	1	0	4	2.0	$Er(H_2L)^{2-}$	15.43
2	1	0	5	2.5	$ErH_{3}L_{2}^{2-}$	8.64
2	2	0	8	4.0	$Er_{2}L_{2}^{2-}$	7.30
2	2	0	9	4.5	$Er_{2}L_{2}(OH)^{3-}$	-13.24
1	2	0	2	2.0	$Er_2H_2L^{4+}$	12.85
1	2	0	3	3.0	Er_2HL^{3+}	11.08
1	2	0	4	4.0	Er_2L^{2+}	10.04
1	2	0	5	5.0	$Er_2L(OH)^+$	6.41
1	2	0	6	6.0	$Er_2L(OH)_2\downarrow$	-2.42*
2	2	0	6	3.0	$Er_2(HL)_2\downarrow$	-23.96*
3	2	0	6	2.0	$Er_2(H_2L)_3\downarrow$	-4.99*
2	2	1	7	3.5	KĒr ₂ HL ₂ ↓	-4.00*
2	2	3	9	4.5	$K_3 Er_2 L_2 (OH) \downarrow$	-18.03*

* Константа растворения осадка: $K_k Er_m H_{4l-h} L_l \downarrow + h H^+ \Longrightarrow k K^+ + m Er^{III} + l H_4 L.$

Рис. 2. Зависимости от pH долей накопления различных форм для системы Er^{III}—HEDP (1:1).

Рис. 3. Зависимости от pH долей накопления различных форм для системы Er^{III}—HEDP (2:1).

Рис. 4. Зависимости от pH долей накопления различных ϕ орм для системы Er^{III} —HEDP (2 : 2).

Рис. 5. Зависимости от pH долей накопления различных форм для системы Er^{III}—HEDP (2:4).

Элементный анализ осадков проводили на атомноэмиссионном спектрометре микроволновой плазмы «Agilent 4100» с предварительным растворением осадка в 1 M азотной кислоте. Осадки были выделены при постоянном значений pH в области максимального накопления форм (см., например, рис. 3: pH 8—11 для $Er_2L(OH)_2$; рис. 4: pH 2—6 для $Er_2(H_2L)_3$). Анализ осадков показал их соответствие формам, приведенным в матрице стехиометрии (см. табл. 2).

Таблица 3. Условия титрования системы Er^{III} — Ca^{II} —HEDP ($V_0 = 25 \text{ мл}, T = 25 \text{ °C}$)

Кон	центраци	ия/моль•л	I ⁻¹	Условное обозначени		
HEDP	Er ^{III}	Ca ^{II}	КОН	системы Er ^{III} —Ca ^{II} —HEDP		
0.02527	0.01447	0.01038	0.044	1-1-2		
0.2246	0.02172	0.02076	0.704	2-2-22		
0.0449	0.02172	0.02076	0.1716	2-2-4		

Таблица 4. Итоговая матрица стехиометрии для равновесия *m* $Er^{III} + m' Ca^{II} + l H_4L$ \implies [$Er_mCa_m'H_{4l-h}L_l$]^{3m'+2m'-h} + h H⁺ и констант образования различных форм в системе Er^{III} — Ca^{II} —HEDP

1	т	т́	h	n	Форма	$lgK \\ (\delta \le 0.16)$
2	1	0	1	0.5	${\rm ErH_7L_2^{2+}}$	23.86
2	1	0	3	1.5	$ErH_5L_2^{-}$	19.47
2	1	0	4	2.0	$\text{ErH}_{4}\text{L}_{2}^{-}$	15.43
2	1	0	5	2.5	$\text{ErH}_{3}\text{L}_{2}^{2-}$	8.64
1	1	1	2	2.0	$ErCaH_2L^{3+}$	26.10
1	1	1	4	4.0	ErCaL [∓]	23.08
1	1	1	5	5.0	ErCaL(OH)↓	16.37
2	1	1	5	2.5	ErCaH ₃ L ₂ ↓	-27.46*
2	2	1	8	4.0	$\mathrm{Er}_{2}\mathrm{CaL}_{2}\downarrow$	-35.01*

*Константа растворения осадка: $K_k Er_m Ca_m H_{4l-h} L_l \downarrow + h H^+ = k K^+ + m' Er^{3+} + m' Ca^{2+} + l H_4 L.$

Система Er^{III}—Ca^{II}—HEDP. Нами проведено pH-метрическое титрование системы Er^{III}—Ca^{II}—HEDP при различных концентрациях, указанных в таблице 3. Время установления состояния равновесия в зоне осадков практически во всем исследованном интервале pH 1.5—11 обычно не превышало 5—10 мин.

В результате математического моделирования получена итоговая матрица стехиометрии (табл. 4), в которой приведены лишь реально (≥5%) накапливающиеся формы, которых оказалось всего девять, причем пять из них — гетероядерные, а остальные — эрбиевые. Критерий Фишера со-

Рис. 6. Зависимости от pH функций Бьеррума (*n*) для системы Er^{III}—Ca^{II}—HEDP при соотношениях, указанных в таблице 3.

Рис. 7. Зависимости от рН долей накопления различных форм для системы Er^{III}—Ca^{II}—HEDP (1:1:2).

Рис. 8. Зависимости от pH долей накопления различных форм для системы Er^{III}—Ca^{II}—HEDP (2 : 2 : 22).

Рис. 9. Зависимости от pH долей накопления различных форм для для системы Er^{III} — Ca^{II} —HEDP (2 : 2 : 4).

ставил 0.92. Распределение форм в зависимости от кислотности среды показано на рисунках 7—9.

Обсуждение полученных результатов

Из анализа графиков зависимости распределения форм эрбиевых комплексов от кислотности среды

следует, что преимущественно в растворе накапливаются моно- и биядерные бискомплексы. Отметим, что во всем интервале pH (2—11) растворимым формам сопутствуют осадковые формы $Er_2L(OH)_2$, $Er_2(HL)_2$, $Er_2(H_2L)_3$, KEr_2HL_2 и $K_3Er_2L_2(OH)$.

Исследование гетероядерной системы Ca^{II}—Er^{III}— НЕDР свидетельствует о доминировании гетероядерных форм с параллельным сохранением доли некоторых эрбиевых форм и отсутствии кальциевых комплексов.

С физико-химической точки зрения различия в поведении ионов эрбия и кальция¹⁴ можно объяснить следующими факторами (табл. 5): а) разными значениями параметра $P\alpha$, отвечающего за энергию взаимодействия иона с электронодонорными группами, б) различиями в радиусах ионов при одинаковых КЧ, которые определяют координационный полиэдр и дентатность лиганда через ион-ионные, ион-дипольные и диполь-дипольные взаимодействия в первой координационной сфере.

Рассмотрение гетероядерной системы Ca^{II}—Er^{III}— HEDP, как отмечено выше, свидетельствует о доминировании гетероядерных форм с параллельным сохранением доли эрбиевых форм, но отсутствии кальциевых комплексов. Последние изначально менее прочные¹⁴, чем лантаноидные комплексы. Согласно $P\alpha$ -концепции это связано (см. табл. 5), по всей видимости, с тем, что координационная конфигурация (расположение донорных групп) лиганда требует реализации ионом кальция меньшего ионного радиуса (и, следовательно, КЧ), что приводит к меньшей величине $P\alpha$, а значит, и к меньшей энергии взаимодействия.

Отметим также, что гетероядерные комплексы по составу не совпадают ни с кальциевыми, ни с эрбиевыми формами. По-видимому, вариативность КЧ (и, следовательно, ионного радиуса) обоих ионов и достаточно гибкая конфигурация лиганда приводят к новым сочетаниям (формам), обладающим повышенной устойчивостью по сравнению с исходными комплексами.

Что касается химизма образования гетероядерных комплексных форм, то в диапазоне pH накопления

Таблица 5. Взаимосвязь КЧ, ионного радиуса (r_{ion}) и параметра $P\alpha^*$

Ион	КЧ	$r_{\rm ion}/{\rm HM}^{7,12}$	$P\alpha/$ эВ•Å ^{5/2}
Er ^{III}	6	89.0	2.52
	7	94.5	2.93
	8	100.4	3.42
	9	106.2	3.92
Ca ^{II}	6	114	2.75
	7	120	3.13
	8	126	3.52
	9	132	3.96

* $P = (z/r_{\text{ion}})/S_{\text{eff}}$, где $S_{\text{eff}} = (5z^{1.27})/(r_{\text{ion}}^{1/2}I_z);$ $\alpha(\text{Å}^3) = r_{\text{ion}}^3 (\text{см. лит.}^{9-11}).$

Область накопления	Er ^{III} —Ca ^{II} —HEDP	Интервал рН накопления	Er ^{III} —HEDP	Интервал рН накопления	Са ^{II} —НЕDР (см. лит. ¹⁴)	Интервал рН накопления
1	ErCaL ⁺	1.5—8	$\begin{array}{c} ErH_4L_2^-\\ Er_2H_2L_2\\ Er_2L^{2+}\end{array}$	3—8 1.5—7 1.5—5	$\begin{array}{c} Ca_2H_2L_2^{2-}\\ CaH_3L_2^{3-}\\ Ca_2L\\ Ca_2H_2L \end{array}$	4-6 4-8 6-11 5-6
2 3	$\begin{array}{l} ErCaH_{2}L^{3+}\\ ErCaH_{3}L_{2}\\ ErCaL(OH)\\ Er_{2}CaL_{2} \end{array}$	$ \begin{array}{r} 1.5-3 \\ 1.5-3 \\ 5-9 \\ 6-9 \end{array} $	$ErH_7L_2^{2+}$ $ErH_5L_2^{-}$ $Er_2L_2^{2-}$ $ErH_3L_2^{2-}$	1.5-3 1.5-3 6-11 5-9	$\begin{array}{c} \text{Ca}_{31}\text{H}_{2}\text{L}_{2}^{2} \\ \text{Ca}\text{H}_{4}\text{L}_{2}^{2-} \\ \text{Ca}_{2}\text{H}_{5}\text{L}_{2}^{+} \\ \text{Ca}\text{H}\text{L}_{2}^{5-} \\ \text{Ca}\text{L}^{2-} \\ \text{Ca}_{2}\text{H}_{2}\text{L}_{2}^{2-} \\ \text{Ca}\text{H}_{4}\text{L}_{4}^{4-} \end{array}$	2-6 2-3 5-11 7-11 6-10 5-9
					CaH_2L_2 Ca_2L	5—9 6—11

Таблица 6. Диапазоны pH долевого накопления гетероядерных комплексных форм системы Er^{III}—Ca^{II}—HEDP и гомоядерных форм систем Er^{III}—HEDP и Ca^{II}—HEDP

гетероядерных форм (табл. 6) присутствуют несколько эрбиевых и кальциевых комплексов, различные комбинации которых могут приводить к образованию тех или иных гетероядерных форм.

Список литературы

- R. S. Weinstein, P. K. Robertson, S. C. Manolagas, New Engl. J. Med, 2009, 53.
- 2. P. C. Juan, M. Pharm, R. Boccaccini, *Tissue Eng.*, 2012, 18, 324.
- 3. S. L. Silverman, E. A. Hurvitz, V. S. Nelson, A. Chiodo, I. Arch, *Phys. Med. Rehabil*, 1994, **75**, 118.
- 4. Y. Zhou, D. Beyene, R. Zhang, B. Kassa, E. Ashayeri, R. Sridhar, *Ethn. Dis.*, 2008, 18, No. 2, 87–92.
- 5. В. Ф. Золин, Л. Г. Коренева, *Редкоземельный зонд в химии и биологии*, Наука, Москва, 1980, 350 с.
- C. A. Barta, K. Sachs-Barrable, J. Jia, K. H. Thompson, K. M. Wasan, *Dalton Trans*, 2007, 43, 5019.
- 7. Rare Earth Coordination Chemistry: Fundamentals and Applications, Ed. Chunhui Huang, JohnWiley & Sons (Asia) Pte Ltd, Singapore, 2010, 588 pp.
- 8. J. Crombie, Chem. Biol., 2007, 2, No. 11, 82.

9. L. H. Ahrens, Nature, 1954, 174, 644.

- 10. H. B. Murray, A. J. Max, Chem. Phys., 1973, 58, 5319.
- 11. W. Mikenda, Monatshefte Chem., 1986, 117, 977.
- E. Huheey James, A. Ellen, L. Kaiter Richard, *Inorganic Chemistry: Principles of Structure and Reactivity*, 4th ed., Harper Collins College Publishers, New York, 1993, 1052 pp.
- 13. Д. Р. Мусин, А. В. Рубанов, Ф. В. Девятов, *Уч. зап. Казан. ун-та*, 2011, **153**, № 3, 40.
- Ф. В. Девятов, Д. Р. Мусин, *Журн. общ. химми*, 2013, 83, 1788 [F. V. Devyatov, D. R. Musin, *Russ. J. Gen. Chem. (Engl. Transl.)*, 2013, 83, 1990].
- Ю. И. Сальников, А. Н. Глебов, Ф. В. Девятов, Полиядерные комплексы в растворах, Изд-во Казан. ун-та, Казань, 1989, 288 с.
- В. П. Васильев, Журн. неорган. химии, 1962, 7, 1789—1794
 [J. Inorg. Chem. USSR (Engl. Transl.), 1962, 7, No. 8].
- Д. И. Рябчиков, В. А. Рябухин, Аналитическая химия редкоземельных элементов и иттрия, Наука, Москва, 1966, 56 с.
- В. Н. Алексеев, Количественный анализ, Высшая школа, Москва, 1972, 504 с.

Поступила в редакцию 15 декабря 2015; после доработки — 25 июля 2015