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Abstract
Understanding the cavity formation and cavity growth mechanisms in solids has fundamental
and applied importance for the correct determination of their exploitation capabilities and
mechanical characteristics. In this work, we present the molecular dynamics simulation results
for the process of homogeneous formation of nanosized cavities in a single-component
amorphous metallic alloy. To identify cavities of various shapes and sizes, an original method
has been developed, which is based on filling cavities by virtual particles (balls) of the same
diameter. By means of the mean first-passage time analysis, it was shown that the cavity
formation in an amorphous metallic melt is the activation-type process. This process can be
described in terms of the classical nucleation theory, which is usually applied to the case of first
order phase transitions. Activation energy, critical size and nucleation rate of cavities are
calculated, the values of which are comparable with those for the case of crystal nucleation in
amorphous systems.

Keywords: cavity formation, bulk metallic glasses, classical nucleation theory,
molecular dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Study of initial stages of the amorphous solids destruction
under external deformations is of great importance for the
modern materials science as well as for engineering of func-
tional materials [1–3]. As known from experimental and sim-
ulation studies, the process of cavity nucleation can proceed
according to homogeneous and heterogeneous scenarios. In
the case of the homogeneous scenario, it means such a situ-
ation when a fracture center can occur with the same prob-
ability in any part of material. Due to the presence of for-
eign impurities in the samples and sample preparation defects,
which serve as foci for the cavity formation in heterogeneous

∗
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scenario of nucleation, this scenario can be studied experi-
mentally [4–6]. However, certain difficulties arise in the study
of the homogeneous scenario by experimental methods [7]. On
the other hand, both scenarios of the cavity nucleation can be
studied using molecular dynamics simulations.

To estimate the cavity nucleation characteristics in solids,
the classical nucleation theory developed by Volmer and
Weber [8] for the case of crystal nucleation and droplet nuc-
leation in condensed matter was applied in 1975 by Raj and
Ashby [9]. According to their cavity nucleation model, the
total free energy ∆G of the system is determined by the fol-
lowing equation:

∆G(R) = Gc(R)−Gs(R)−Gf(R). (1)
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Equation (1) contains three contributions [10]: (a) the pos-
itive surface energy of a cavity Gc; (b) the negative energy Gs

of a bulk part of the system replaced by a cavity; (c) the negat-
ive relaxation energy Gf(R) of elastic deformations caused by
a formed cavity. Here, the parameter R is the reaction coordin-
ate characterizing the cavity size. As a rule, the average radius
of a cavity is taken as the reaction coordinate assuming that the
cavity shape is close to spherical [11]. In this case, the basic
equations of the classical theory of nucleation designed, for
example, to calculate the free energy and the nucleation rate,
can be adapted to the case of cavity nucleation without any
significant changes [11]. Nevertheless, the results of recent
studies show that the classical nucleation theory can have lim-
ited applicability when the size and the distribution of cavit-
ies within the material are weakly dependent on its thermody-
namic state [7, 12, 13]. Such conditions can be realized, for
example, at testing metals for creep [14]. Also, for the cor-
rect description of the early stage of the cavity formation in
the framework of the classical theory, it is great importance to
identify correctly stable ‘viable’ cavities and to determine the
dynamics of changes in their size.

The cavity identification procedure is non-trivial task due
to the absence of atoms or molecules recognizing voids within
the system. Therefore, the ordinary known cluster analysis cri-
teria and methods used to identify emerging crystalline and/or
liquid structures, such as the Voronoi polyhedra method [15],
the Delaunay triangulation method [16], the method of bond
orientational order analysis [17, 18], the Stillinger’s cri-
terion [19, 20], are not applicable in the case of analysis of
the cavity formation. To identify the cavities, we can use
algorithms, which allows us to reconstruct the geometric shape
and to do measurements of the area, volume and curvature
gradients of the cavity surface. One of such the algorithms
was proposed by Stukowski for 3D-reconstruction of cavities
in solids and liquids [21]. According to this algorithm, the bulk
system is scanned by a virtual spherical probe with the radius
Rα (here, Rα is the position of the main maximum in the radial
distribution function). As a result, we can find all the cavities
and all the atoms that form the surface of these cavities. Des-
pite the universality and high accuracy, this algorithm does not
track the growth of individual cavities.

In the present work, we propose an original method for
detecting cavities inside solids. The method is based on the
idea of filling cavities by virtual particles of the same size.
Individual cavities are identified and the main parameters of
the cavity nucleation such as the activation energy, the critical
cavity size, the nucleation waiting time and the nucleation rate
are determined on the basis of information about the number of
such virtual particles and known coordinates of these particles.
In this study, we consider the homogeneous cavity formation
in the amorphous metal system at comprehensive expansion.
We find that the cavity formation is the process of an activa-
tion type and this process can be characterized by means of the
mean first-passage time method (MFPT). The applicability of
some expressions of the classical nucleation theory to calcu-
lation of the activation energy of the critically-sized cavities
will also be demonstrated.

2. Parameters of the system and applied methods

2.1. Computational details

Single-component homogeneous amorphous materials
belongs to a family of isotropic solids [1, 22]. The isotropy
of such materials and the homogeneity of the amorphous
structure minimize the emergence of defects. There are no
more obvious preferred areas in amorphous materials, where
the emergence of a cavity is more probably. In addition, the
growth of a cavity occurs in any direction in a same man-
ner. Therefore, the cavity formation process in these systems
occurs according to the homogeneous scenario.

In the present work, we consider the cavity formation in
the model amorphous system, where the interatomic inter-
action is given by the short-range isotropic Dzugutov poten-
tial [23–25]. This potential mimics the well-known features of
ion–ion interaction influenced by the electron screening effects
as well as the Friedel oscillations in the metals such as Fe,
Ni, Cu, Zr, Nb, Pb etc. The system consists 16384 atoms and
has the linear size 26.8σ, which in the case of metals cor-
responds to ∼7.2 nm (here, σ is the effective atom diameter).
We apply the method of classical molecular dynamics simula-
tion, where the temperature and the pressure of the system are
controlled by thermostat and barostat according to the Nose–
Hoover scheme. Samples of the system were prepared at the
temperatures T= 0.1ϵ/kB and T= 0.2ϵ/kB corresponding to
deep supercooling levels (here, ϵ is the energy unit, kB is the
Boltzmann constant). Such low temperatures were chosen to
obtain a stable amorphous structure without crystalline inclu-
sions. Amorphous samples were prepared through rapid cool-
ing of an equilibrium liquid at the fixed pressure p= 7ϵ/σ3.
The melting temperature of the system at this pressure is Tm =
1.4ϵ/kB [26]. The temperature of the initial liquid sample is
T= 2.5ϵ/kB. The applied cooling rate is 1× 1011 Ks−1. At
this cooling rate, the glass transition temperature of the sys-
tem is Tg = 0.6ϵ/kB.

The simplest way to initialize the cavity nucleation pro-
cess is the uniaxial tension of the system along some chosen
direction. In this case, the cavities will form and grow with
increasing deformation of the system. In the present work, the
comprehensive stretching is applied to realize the scenario of
homogeneous cavity nucleation. According to this method, a
constant external negative pressure impacts on the amorphous
solid. This leads to emergence of the internal stress that des-
troys the system. At the same time, the isotropy of the system
is kept, which makes the cavity formation equally probable
over all the volume of the system.

For the considered system, negative pressures are given by
the Nose–Hoover barostat with the optimal value of the dump-
ing parameter 1000∆t (∆t= 0.005τ is the simulation time
step) [27]. Before applying negative pressures, the energy of
the initial amorphous samples is minimized during the time
2τ . Additional calculations are carried out to determine the
lowest negative pressure. Namely, calculations are performed
at various negative pressures during the time 5τ , where the
pressure is changed with increment 0.05ϵ/σ3 in the range
from p= 0 to ϵ/σ3. The pressure at which the formation of
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Figure 1. Temperature dependence of the lowest external pressure required to initiate the cavity formation process in Dzugutov system on
simulation time scales.

Figure 2. Main stages of the method of filling cavities by virtual particles (balls).

cavities is initiated at times up to 5τ is considered as the low-
est. Calculations are performed in the Lammps package [28].
We find that the breaking stress is realized for two different
conditions: first, when the constant external pressure is p=
−0.6ϵ/σ3 and the temperature is T= 0.1ϵ/kB; and, second,
when the pressure is p=−0.3ϵ/σ3 and the temperature is
T= 0.2ϵ/kB. As can be seen from figure 1, the larger the sys-
tem temperature, the easier the system is destroyed and the
less negative pressure is required. The taken pressure values at
the considered temperatures are the lowest required to initiate
the cavity formation process on the time scales available for
molecular dynamics studies.

2.2. Identification of cavities

We propose the original method, which makes it possible to
identify the emerging cavities and their growth dynamics. The
proposed method is based on an original procedure for filling
cavities by the virtual particles. Obviously, the number of the

particles changes, when the cavity evolves with time. The real-
ization of this method takes place in three stages (see figure 2):

(a) It is constructed the three-dimensional grid, which divides
the simulation cell into the cubic segments with the equal
edge length σ/2. In the case of the considered system con-
sisting of 16384 atoms, the number of such segments is
154000. All the coordinates of the grid nodes are known
(see stage I in figure 2).

(b) In each node of this grid, a virtual particle of the diameter
σ is placed. If this particle does not cross with the real
atoms of the system and with other virtual particles, then
the position of this virtual particle is fixed at the selected
grid node. Otherwise, the virtual particle is removed. This
procedure continues until all the cavities are filled by the
virtual particles (see stage II in figure 2).

(c) The individual cavities are identified and taken into
account at the last stage (see stage III in figure 2). The num-
ber of the virtual particles ñ located inside each the cavity
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Figure 3. Snapshots of the amorphous system at the comprehensive tension under the negative pressure p=−0.6ϵ/σ3 at various time
moments t. The results obtained by filling the cavities by the virtual particles are compared with the results of the Stukowski’s method
obtained using the OVITO visualization program [21]. Both methods correctly identify the location of the cavities. The system atoms are
marked in green. The blue area shows the location of the cavities identified by the Stukowski’s method (upper snapshots). The result of the
proposed method is shown by the virtual particles of different colors (lower snapshots).

at different time is determined. As a result, identification
of the individual cavities, determination of their sizes and
shapes turns into a trivial task.

In the present study, we apply the original clustering
algorithm that allows one to identify individual cavities in
the system. The input parameters of this algorithm are the
coordinates of the virtual particles and its unique identific-
ation numbers. Based on these coordinates and identifica-
tion numbers, the clustering algorithm determines the nearest
environment of each particle. Information about neighboring
particles makes it possible to determine the particles belong-
ing to different clusters. As a result, individual clusters of
virtual particles are identified and the sizes of these clusters
are calculated. Each cluster is assigned a unique identification
number to track changes in its size over time. This cluster-
ing method is easy to implement and it has a high accuracy
in relation to the analysis of molecular dynamics simulation
data.

As seen from figure 3, the proposed method and the
Stukowski’s cavity identification method [21] produce the
same results and correctly display all the emerging cavit-
ies inside the considered system. Note that the Stukowski’s
method allows one to determine the fraction of voids in the
system and this method does not identify the individual cav-
ities. In comparison with the Stukowski’s method, the filling
virtual balls method proposed in the present study allows one
to determine individual cavities and to track the change in
the size of each of them. The alpha-shape method proposed

by Edelsbrunner and Mücke [29] underlies Stukowski’s cav-
ity algorithm, in which a probe sphere with the radius Rα is
applied to detect voids inside a solid. The probe sphere scans
a solid and detects regions of space without any atoms. The
cavity texture depends on the radius Rα: the smaller the radius,
the small cavities are better identified. The optimal value of
the radius Rα is equal to the distance between the nearest
neighbors of atoms. The atoms that form the surface of a solid
are also detected by the probe sphere. Delaunay triangulation
of the input point set (i.e. positions of the surface atoms) is
applied to construct the surface mesh of a solid. The resulting
triangles are connected and form a closed surface mesh that
separates the solid from the empty regions.

3. Cavity formation and coordination analysis

An important condition for the formation of the ‘viable’ cav-
ity is the reaching the certain critical size ñc, which determines
the number of the virtual particles located inside this cavity. If
the size of the cavity is less than ñc, then the attraction forces
between the separated atoms can lead to cavity collapse. In the
case of formation of the cavity larger than ñc, the interatomic
attraction forces are not sufficient to hold ‘the surface atoms’.
This leads to further increase of the cavity size. Thus, the cav-
ity formation can be compared with the process of homogen-
eous crystal nucleation in supercooled liquids and amorphous
solids, where crystallization is also initiated after the appear-
ance of critically sized nucleus [30–33].
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Figure 4. Distribution function P(nb) over the coordination number nb calculated at different time moments and at two different
temperatures: (a) T= 0.1ϵ/kB; (b) T= 0.2ϵ/kB. Insets: correspondence between the maximum of the distribution Pm(nb) and the time t,
where the arrows show different regimes.

It follows from the above that the intensive cavity forma-
tion must be accompanied by significant change of the number
of the nearest neighbors nb for atoms. Figure 4 shows the
distribution function P(nb) of the coordination number nb cal-
culated at two different temperatures and at different time
moments. Panels (a) and (b) of figure 4 show that the shape
of these distributions weakly depends on the system temper-
ature. The maximum value of the coordination number nb in
the calculated distributions P(nb) decreases from 14 atoms to
12 atoms. The value nb = 14 atoms corresponds to the homo-
geneous system without cavities, whereas the value nb = 12
atoms corresponds to the system destroyed due to the forma-
tion and subsequent coalescence of large cavities. In this case,
the coordination number starts to decrease only after the wait-
ing time τ̃c, which is necessary to formation of the cavities of
the critical size ñc.

As can be seen from the insets to figure 4, the time depend-
ence of the maximum of the distribution function, Pm(nb), has
two regimes. The first regime characterizes the systemwithout
cavities, where the quantity Pm(nb) decreases linearly with
time t and is reproduced by a straight line. The larger the sys-
tem temperature, the smaller the negative slope of this line due
to the thermal expansion of the system. The second regime is
accompanied by the rapid decrease in the value of the quantity
Pm(nb) due to the intensive growth of cavities and due to the
increase of the number of atoms that form the surface of the
cavity.

4. MFPT-analysis and classical nucleation theory

Estimation of the average value of the critical size ñc and the
waiting time τ̃c for the first critically-sized cavity was carried
out through observing the change in the size of the largest cav-
ity. Based on the results of 20 independent molecular dynam-
ics iterations, the most probable (averaged) growth trajectories

Figure 5. (a) MFPT-curves computed at different temperatures.
(b) Derivatives ∂τ̄(ñ)/∂ñ of the MFPT-curves. The arrows show the
inflection points and positions of extrema in the obtained
dependences τ̄(ñ) and ∂τ̄(ñ)/∂ñ corresponding to the critical size
ñc and the waiting time τ̃c. Insert: growth trajectories ñ(t) of the
largest cavity at various temperatures.

ñ(t) of the large cavity were determined at various temperat-
ures (see inset in figure 5(b)). The parameter ñ(t) character-
izes the time dependence of the number of virtual particles
placed inside the cavity. At the considered thermodynamic
conditions, the time dependence of the size ñ is typical for
activation-type processes: the cavity size fluctuates around
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zero for some time and starts to grow only after formation of
a stable cavity.

The MFPT-curves τ̄(ñ) [34, 35] were computed using the
method of inverted averaging of growth trajectories described
in detail in [20, 36]:

τ̄(ñ) =
1
M

M∑
α=1

tα(ñ). (2)

Here, tα(ñ) is the inverted growth trajectory of the largest
cavity in αth molecular dynamics iteration and M= 20.
Figure 5(a) shows that the MFPT-curves have the sigmoidal
shape, where the position of the inflection point determines the
average critical size ñc at the waiting time τ̃c ≡ τ̄(ñ= ñc). The
exact values of the parameters ñc and τ̃c were determined by
differentiate these MFPT-curves [37]. To properly derive the
derivative from the MFPT data presented on figure 5(a), we
approximate this data by the 8th degree polynomial function

τ̄(ñ) = a0 +
8∑
i=1

aiñ
i. (3)

Here, the values of the parameters ai are determined during
the fitting process. The value of the parameter a0 is zero. It
should be noted that the 8th degree polynomial is sufficient to
correctly reproduce the inflection region in obtained MFPT-
curves and to determine the cavity nucleation characteristics.

As can be seen fromfigure 5(b), the quantity ∂τ̄(ñ)/∂ñ con-
tains a single extremum (maximum), whose position determ-
ines the value of the critical size ñc. We find that the critical
size is ñc = (25± 2) virtual particles for the case of the sys-
tem with the temperature T= 0.1ϵ/kB and ñc = (30± 3) vir-
tual particles for system with the temperature T= 0.2ϵ/kB.
At these temperatures, the values of the waiting time for
the critically-sized cavities are τ̃c = (0.37± 0.02)τ and τ̃c =
(1.15± 0.05)τ respectively. The increase of the critical size ñc
and the waiting time τ̃c with temperature is because of form-
ation of the larger cavities becomes energetically favorable at
the high temperatures: the faster the thermal motion of atoms,
the larger must be the critical size ñc so that the cavity cannot
collapse.

The activation energy ∆G̃ for the critically-sized cavity
was estimated based on the MFPT data. Here, we assume that
the shape of the cavities nucleating in the isotropic amorph-
ous system is close to spherical at the considered thermody-
namic conditions, and the activation barrier∆G̃c/kBT is sym-
metrical. Then, the value of the quantity∆G̃ can be estimated
by the following expression (see ‘appendix’):

∆G̃c

kBT
= 3π(ñcZ̃)

2, (4)

known in the classical nucleation theory [30, 38]. It should
be noted that, the quantity ∆G̃c in equation (4) will charac-
terize the energy required to break of the interatomic attrac-
tion forces and to form the cavity with the critical size ñc.

The parameter Z̃ known as the Zeldovich factor determines
the curvature of the activation barrier. In [39], it was shown
that the curvature around the top of the energy barrier ∆G(n)
is related to the shape of the MFPT-curve τ̄(ñ). Namely, the
MFPT-curve has the inflection, the slope of which determ-
ines the curvature of the nucleation barrier∆G(n): the greater
the slope, the greater the curvature ∆G(n). Then the first
derivative of the MFPT-curve ∂τ̄(ñ)/∂ñ will characterize the
curvature of the nucleation barrier and will be related to the
Zeldovich factor Z̃ through the expression [20, 40]

Z̃=
1
τs

∂τ̄(ñ)
∂ñ

∣∣∣∣∣̃
n=ñc

. (5)

Here, the parameter τs is the nucleation time scale, which can
be defined from the MFPT-curve as τs ≃ 2τ̃c. In this case, the
parameter τs will be related with the nucleation rate J̃st of cav-
ities via the expression

J̃st =
1
τsV

≃ 1
2τ̃cV

, (6)

where V is the volume of the system. Equation (6) makes it
possible to determine the nucleation rate of the first critically-
sized nucleus. However, in the case of a system whose energy
has been minimized, this rate J̃st corresponds to the steady-
state nucleation rate.

The obtained results reveal that the nucleation time
scales are τs = (0.74± 0.02)τ at the temperature T=
0.1ϵ/kB and τs = (2.3± 0.05)τ at the temperature T=
0.2ϵ/kB. The maxima in the derivatives of the MFPT-
curves are ∂τ̄(ñ)/∂ñ|̃n=ñc ≃ 0.053τ and ∂τ̄(ñ)/∂ñ|̃n=ñc ≃
0.126τ respectively. Then, at the considered temperatures,
equation (5) gives the values Z̃= (0.0716± 0.004) and
Z̃= (0.0547± 0.007), respectively. The parameter Z̃ takes
the values in the interval [0.01; 1] that is reasonable in the
framework of the classical nucleation theory [41]. Then,
from equation (4) we find the following values for the
activation barrier: ∆G̃c/kBT= (30.2± 2.1) (at T= 0.1ϵ/kB)
and ∆G̃c/kBT= (34.5± 2.5) (at T= 0.2ϵ/kB). At the con-
sidered temperatures, the energies required to form of the
critically-sized cavity are ∆G̃c ≃ 3.02ϵ and ∆G̃c ≃ 6.9ϵ. It
is noteworthy that the found values of the quantity ∆G̃c are
approximately two times larger than the activation energies
calculated for the case of crystal nucleation in the amorphous
Dzugutov system. For example, to the formation of critically-
sized crystalline nuclei in the amorphous Dzugutov system, it
is required energies equal to ∆Gc ≃ 1.5ϵ and ∆Gc ≃ 2.9ϵ
at the temperatures T= 0.1ϵ/kB and T= 0.2ϵ/kB but at
the pressure p= 14ϵ/kB [42]. Moreover, from equation (6)
we find that the steady-state nucleation rate takes the val-
ues J̃st ≃ 6.61× 10−5τ−1σ−3 (at T= 0.1ϵ/kB) and J̃st ≃
2.04× 10−5τ−1σ−3 (at T= 0.2ϵ/kB), which are also com-
parable with the crystal nucleation rate in supercooled liquids
and amorphous systems [43–45].
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5. Conclusions

Our studies show that the process of homogeneous cavity
nucleation in single-component amorphous systems proceeds
according to the scenario that is similar to the crystal nucle-
ation in these systems and can be described in terms of the
classical nucleation theory [9, 30, 41]. For the case of homo-
geneous cavity formation in the Dzugutov’s amorphous sys-
tem, it is shown that the formation of the stable cavity is the
activation-type process. The realization of the activation-type
process is confirmed by the presence of two regimes in the
time dependences of the coordination number distributions.
The transition between these regimes occurs due to jump-like
decrease in the number of nearest neighbors from 14 to 12
atoms. By the method of the MFPT-analysis, the critical size
and the waiting time for the critically-sized cavity were cal-
culated; and the values of the parameters characterizing the
curvature of the activation barrier were also calculated. We
have shown that equations (4)–(6) as applied to the case of
cavity formation allow one to determine the activation energy
∆G̃c, the Zeldovich factor Z̃ and the steady-state nucleation
rate J̃st.

To identify emerging cavities, an original method was pro-
posed based on filling cavities by the virtual particles of the
same diameter. The proposed method correctly identifies cav-
ities of various shapes and sizes, that is confirmed by good
agreement with the results of 3D visualization by means of
the Stukowski’s method [21]. Using the proposed method,
the sizes of the cavities in terms of the number of the vir-
tual particles are determined, which made it possible to per-
form the MFPT-analysis and to interpret the results within
the classical nucleation theory. The obtained results charac-
terize the features of cavity formation and do not depend on
the compositions of a system. Therefore, these results can be
directly extended to themultiple-component amorphous solids
and it can be used to develop a unified theory of cavity nuc-
leation and growth in condensed matter with different types
of interatomic interaction. Moreover, the results of the present
study can be applied to the case of dynamic loading of amorph-
ous solids [46, 47]. In this case, it should be taken into account
that cavity formation at dynamic loading corresponds to the
case of structural transformations under non-equilibrium con-
ditions. Therefore, for this case, the theoretical description
could be done in the framework of a modified theory, which
captures these effects (e.g. effective temperature) [45].
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Appendix. Derivation of the expression for the
nucleation barrier

According to the classical nucleation theory [30, 48], the free
energy∆G required for the formation of a new phase nucleus
with the radius r is determined by the expression

∆G(r) = 4πσsr
2 − 4π

3
ρ|∆µ|r3. (7)

Here, σs is the surface tension of a nucleus; ρ is the number
density of a nucleus; |∆µ| is the difference between the chem-
ical potentials of the parent and daughter phases. Expression
(7) is valid for a spherical nucleus with the averaged radius r.
Then, using the relation r= [3n/(4πρ)]1/3, expression (7) can
be presented in terms of the nucleus size n:

∆G(n) = 4πσs

(
3n
4πρ

)2/3

− n|∆µ|. (8)

Here, n is the number of atoms in a nucleus with the radius r.
In the case of critically-sized nucleus with the size nc,

the presence of a nucleation barrier is determined by the
condition [49, 50]

∂∆G(n)
∂n

∣∣∣∣∣
n=nc

= 0. (9)

Then from (8) and (9) the expression for the critical size nc is
obtained as follows [48]:

nc =
32π
3

σ3
s

ρ2|∆µ|3
. (10)

Substituting (10) to (8), we obtain the expression for the free
energy ∆Gnc required for the formation of a critically-sized
nucleus:

∆Gnc =
16π
3

σ3
s

(ρ|∆µ|)2
. (11)

Thus, from (10) and (11) we found the relation

∆Gnc =
|∆µ|nc

2
. (12)

The flatness of the free energy profile around the critical
nucleus size is characterized by the Zeldovich factor Z. As
known [41], the factor takes values in the range Z ∈ [0.01; 1].
This factor is the function of the second derivative of the free
energy∆G(n) at the critical size nc [49]:

Z=

√√√√− 1
2πkBT

∂2∆G(n)
∂n2

∣∣∣∣∣
n=nc

. (13)

Here, T is the system temperature. Then from (8) and (13) we
find the expression

Z=

√
(36π)1/3

9πkBT
σsn

−4/3
c

ρ2/3
. (14)
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Taking into account (10), (12) and (14), the equation for the
activation barrier is found as follows:

∆Gnc

kBT
= 3π(ncZ)

2. (15)

Thus, considering that for the case of cavity formation we
apply nc ≡ ñc, Z≡ Z̃ and ∆Gnc ≡∆G̃c, expression (15) is
identical to (4).
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