Nilpotent elements in the Jacobson-Witt algebra over a finite field

Serge Skryabin

Let \mathbb{F}_q be the finite field with q elements where q is a power of a prime p. In [4] Kaplansky asked whether the number of elements in the nilpotent cone $\mathcal{N}(L)$ of any simple finite dimensional Lie algebra L over \mathbb{F}_q is given by the formula

$$\#\mathcal{N}(L) = q^{\dim L - \operatorname{rank} L}$$

Its validity had been known already for the Lie algebras of semisimple algebraic groups in good characteristics [9, III.3.28]. Kaplansky observed that the formula holds also when L is the Witt algebra W_1 .

Indirect evidence in favour of a formula of this kind can be seen from general facts about the nilpotent cone. Indeed, in [6, Th. 4.2] Premet proved that for an arbitrary finite dimensional *p*-Lie algebra \mathcal{L} over an algebraically closed field of characteristic *p* the variety of [*p*]-nilpotent elements is always a set-theoretic complete intersection of codimension *s* in \mathcal{L} where *s* stands for the maximum dimension of toral subalgebras of \mathcal{L} . This result seems to suggest that the rank of *L* in the formula for $\# \mathcal{N}(L)$ should probably be replaced by some other quantity.

In this paper we consider the Jacobson-Witt algebra W_n for an arbitrary n. The main result is stated as follows:

Theorem. The algebra W_n over \mathbb{F}_q has precisely q^{np^n-n} nilpotent elements.

Note that dim $W_n = np^n$, while the rank of W_n and the maximum dimension of tori in W_n are both equal to n. Elements of W_n are derivations of the reduced polynomial algebra B_n in n generators. With $D \in W_n$ one associates the maximal D-invariant ideal I of B_n . The factor algebra B_n/I is isomorphic with B_k for some $k \leq n$. If D is nilpotent, then D^{p^k} induces a nilpotent linear transformation A of the vector space $I/\mathfrak{m}I$ where \mathfrak{m} denotes the maximal ideal of B_n . This leads to a stratification of the nilpotent cone $\mathcal{N}(W_n)$ by the pairs (I, A). Theorem 3.4 determines the cardinalities of all strata. The total number of nilpotents in W_n is then obtained by summation.

1. Preliminaries

In sections 1 and 2 we work over an arbitrary ground field \mathbb{F} of characteristic p > 0. Let B_n be the commutative associative unital algebra defined by a set of generators x_1, \ldots, x_n and a set of relations $x_i^p = 0$, $i = 1, \ldots, n$. It has a basis over \mathbb{F} consisting of all monomials $\prod_{i=1}^n x_i^{a_i}$ with $0 \le a_i < p$. Let \mathfrak{m} denote the ideal of B_n generated by x_1, \ldots, x_n . Then $B_n/\mathfrak{m} \cong \mathbb{F}$ and $f^p = 0$ for all $f \in \mathfrak{m}$. So \mathfrak{m} is the unique maximal ideal of B_n .

The Jacobson-Witt algebra W_n is the Lie algebra of all derivations of B_n . It is a free B_n -module with a basis $\partial_1, \ldots, \partial_n$ where

$$\partial_i x_j = \delta_{ij} \quad \text{for } 1 \le i, j \le n.$$

We denote by G the group of all automorphisms of B_n . Each $\sigma \in G$ is determined uniquely by its values on x_1, \ldots, x_n . More precisely, the assignment

$$\sigma \mapsto (\sigma x_1, \ldots, \sigma x_n)$$

gives a bijection between G and the set of n-tuples of elements of \mathfrak{m} whose cosets modulo \mathfrak{m}^2 form a basis for the vector space $\mathfrak{m}/\mathfrak{m}^2$ over \mathbb{F} . Each $\sigma \in G$ induces an automorphism σ_* of W_n by the rule

$$\sigma_*(D) = \sigma \circ D \circ \sigma^{-1}, \qquad D \in W_n$$

Clearly, $\sigma_*(D^p) = \sigma_*(D)^p$, that is, σ_* commutes with the *p*-power map on W_n . In fact all automorphisms of W_n are of the form σ_* for $\sigma \in G$, with the only exceptions for p = 2, $n \leq 2$ and p = 3, n = 1. For p > 3 this was investigated by Jacobson [3]. A general result on isomorphisms of Cartan type Lie algebras which includes also cases of small characteristic is presented in [8, Th. 6.4].

For a proper ideal I of B_n put

$$N(I) = \{ D \in W_n \mid D(I) \subset I \}.$$

There is a canonical homomorphism of p-Lie algebras $\pi: N(I) \to \text{Der} B_n/I$. Note that

$$\operatorname{Ker} \pi = IW_n.$$

Indeed, Ker $\pi = \{D \in W_n \mid D(B_n) \subset I\}$. Writing $D = \sum_{i=1}^n f_i \partial_i$ with $f_i = Dx_i$, we see that $D(B_n) \subset I$ if and only if $f_i \in I$ for all *i*. Both N(I) and IW_n are *p*-Lie subalgebras of W_n . If $D \in IW_n$, then

$$D(fg) \equiv fD(g) \pmod{I^2}$$
 for all $f \in B_n$ and $g \in I$;

since $I \subset \mathfrak{m}$, it follows that $D(\mathfrak{m}I) \subset \mathfrak{m}I$. Hence we get a canonical homomorphism of *p*-Lie algebras

$$\lambda: IW_n \to \mathfrak{gl}(I/\mathfrak{m}I).$$

Lemma 1.1. Given $D \in W_n$, let I be the maximal D-invariant ideal of B_n .

(i) I is G-conjugate to the ideal generated by x_{k+1}, \ldots, x_n for some $k, 0 \le k \le n$.

(ii) D is nilpotent if and only if $D^{p^k} \in IW_n$ and $\lambda(D^{p^k})$ is nilpotent.

Proof. The factor algebra B_n/I has a maximal ideal $\mathfrak{n} = \mathfrak{m}/I$ whose residue field is isomorphic with \mathbb{F} . Since this algebra is *D*-simple in the sense that it has no nontrivial ideals stable under its derivation induced by *D*, we get $B_n/I \cong B_k$ for some *k* by Block's description of differentiably simple algebras [1] (see also [11, Ch. 3]). Note that dim $\mathfrak{m}/\mathfrak{m}^2 = n$, while dim $\mathfrak{n}/\mathfrak{n}^2 = k$. There is an exact sequence of vector spaces

$$I/\mathfrak{m}I \to \mathfrak{m}/\mathfrak{m}^2 \to \mathfrak{n}/\mathfrak{n}^2 \to 0.$$

Let e_1, \ldots, e_n be any basis for $\mathfrak{m}/\mathfrak{m}^2$ such that e_{k+1}, \ldots, e_n span the image of $I/\mathfrak{m}I$. Pick representatives $y_1, \ldots, y_n \in \mathfrak{m}$ of these n cosets, taking y_{k+1}, \ldots, y_n in I. There exists $\sigma \in G$ such that $\sigma(x_i) = y_i$ for all $i = 1, \ldots, n$. Hence the monomials $\prod_{i=1}^n y_i^{a_i}$ with $0 \leq a_i < p$ form a basis for B_n over \mathbb{F} . It follows that the ideal I' of B_n generated by y_{k+1}, \ldots, y_n has codimension p^k . Since $I' \subset I$, and I also has codimension p^k in B_n , we get I' = I. Now it is clear that the ideal $\sigma^{-1}(I)$ is generated by the elements x_{k+1}, \ldots, x_n .

Suppose that D is nilpotent. Then $\pi(D)$ is a nilpotent derivation of B_n/I . Since $\dim B_n/I = p^k$, we must have $\pi(D)^{p^k} = 0$, whence $D^{p^k} \in \operatorname{Ker} \pi = IW_n$. The linear transformation of $I/\mathfrak{m}I$ induced by a nilpotent derivation D^{p^k} must be nilpotent.

Conversely, suppose that $D^{p^k} \in IW_n$ and $\lambda(D^{p^k})$ is nilpotent. We can find an integer $s \geq k$ such that $\lambda(D^{p^s}) = 0$. The derivation $D^{p^s} \in IW_n$ induces a B_n/I -linear endomorphism φ of the B_n/I -module $M = I/I^2$. By our choice of s we have $\varphi(M) \subset \mathfrak{m} M$. Hence $\varphi^j(M) \subset \mathfrak{m}^j M$ for all $j \geq 0$. Since \mathfrak{m} is a nilpotent ideal, there exists an integer $t \geq 0$ such that $\varphi^{p^t} = 0$. Then the derivation $D^{p^{s+t}} \in IW_n$ maps I into I^2 . It follows that $D^{p^{s+t}}(I^a) \subset I^{a+1}$ for all integers $a \geq 0$ by induction. But $I^a = 0$ for sufficiently large a. Hence $D^{p^{s+t}}$ is nilpotent, and so is D.

We will need partial information about powers of certain derivations. Their computation is based on Jacobson's formula for $(a + b)^p$ in any restricted Lie algebra (see [10, Ch. 2]).

Lemma 1.2. Let J be any ideal of B_n . Suppose that $D_1 \in W_n$ and $D_2 \in J^m W_n$ where $m \ge p-1$. Then

$$(D_1 + D_2)^p \equiv D_1^p + \operatorname{ad}(D_1)^{p-1} D_2 \pmod{J^{m-p+2} W_n}$$

Hence $(D_1 + D_2)^p \equiv D_1^p \pmod{J^{m-p+1}W_n}$.

Proof. Note that $[W_n, J^a W_n] \subset J^{a-1} W_n$ and $[JW_n, J^a W_n] \subset J^a W_n$ for all integers a > 0. Since $J^m W_n$ is a *p*-Lie subalgebra of W_n , we have $D_2^p \in J^m W_n$, and the conclusion follows from Jacobson's formula.

In the next lemma and later in the paper we adopt the convention that any product over the empty set of indices is considered to be 1. So $\prod_{i=1}^{0} x_i^{p-1} = 1$.

Lemma 1.3. For some fixed integer k, $1 \le k \le n$, let J be the ideal of B_n generated by x_1, \ldots, x_k , and let L be the B_n -submodule of W_n generated by $\partial_{k+1}, \ldots, \partial_n$. If

$$D = D_1 + D_2 + \left(\prod_{i=1}^k x_i^{p-1}\right) D_3$$

where $D_1 = \sum_{j=1}^k \left(\prod_{i=1}^{j-1} x_i^{p-1}\right) \partial_j, \quad D_2 \in L, \quad D_3 \in W_n, \text{ then }$

$$D^{p^{\kappa}} \equiv (D_1 + D_2)^{p^{\kappa}} + (-1)^k D_3 \pmod{JW_n}.$$

Proof. By Lemma 1.2

$$D^{p} \equiv (D_{1} + D_{2})^{p} + \operatorname{ad}(D_{1} + D_{2})^{p-1} \left(\left(\prod_{i=1}^{k} x_{i}^{p-1} \right) D_{3} \right) \pmod{J^{(k-1)(p-1)+1} W_{n}}.$$

From the equality $L = \{D' \in W_n \mid D'x_i = 0 \text{ for all } i = 1, ..., k\}$ it is clear that L is a p-Lie subalgebra of W_n . Since $[D_1, \partial_i] = 0$ for all i = k + 1, ..., n, we have $[D_1, L] \subset L$. Now Jacobson's formula yields

$$(D_1 + D_2)^p = D_1^p - D_2'$$
 for some $D_2' \in L$.

Since $D_2 x_i = 0$ for all $i = 1, \ldots, k$, we have

$$\operatorname{ad}(D_1 + D_2)^{p-1} \left(\left(\prod_{i=1}^k x_i^{p-1} \right) D_3 \right) \equiv \operatorname{ad}(\partial_1)^{p-1} \left(\left(\prod_{i=1}^k x_i^{p-1} \right) D_3 \right)$$
$$\equiv - \left(\prod_{i=2}^k x_i^{p-1} \right) D_3 \pmod{J^{(k-1)(p-1)+1} W_n}.$$

Hence

$$D^{p} \equiv D_{1}^{p} - D_{2}^{\prime} - \left(\prod_{i=2}^{k} x_{i}^{p-1}\right) D_{3} \pmod{J^{(k-1)(p-1)+1}W_{n}}.$$

Applying Lemma 1.2 again, we get $D^{p^k} \equiv -E^{p^{k-1}} \pmod{JW_n}$ where

$$E = -D_1^p + D_2' + \left(\prod_{i=2}^k x_i^{p-1}\right) D_3.$$

By a computation in [5, Lemma 3]

$$D_1^p = -\sum_{j=2}^k \left(\prod_{i=2}^{j-1} x_i^{p-1}\right) \partial_j.$$

Thus E has a similar structure as D, but with respect to the k-1 elements x_2, \ldots, x_k instead of k elements x_1, x_2, \ldots, x_k . Proceeding by induction on k, we may assume that

$$E^{p^{k-1}} \equiv -(D_1^p - D_2')^{p^{k-1}} + (-1)^{k-1}D_3 \pmod{JW_n}.$$

Then the required formula follows.

In the case k = n of Lemma 1.3 we have L = 0, and the derivation D is a sum of two terms. Lemma 1.4 below describes properties of D. In a slightly different realization such derivations appeared in [5, Lemma 12]. These derivations are characterized by the property that they have trivial stabilizer in G.

Lemma 1.4. Let
$$D = D_1 + \left(\prod_{i=1}^n x_i^{p-1}\right) D_2$$
 where $D_1 = \sum_{j=1}^n \left(\prod_{i=1}^{j-1} x_i^{p-1}\right) \partial_j$,
 $D_2 = \sum_{j=1}^n \alpha_j \partial_j$ with $\alpha_j \in F$. Then:

- (i) The derivations $D^{p^{i-1}}$ with i = 1, ..., n form a basis for W_n over B_n .
- (ii) B_n has no nontrivial D-invariant ideals (in other words, B_n is D-simple).
 - 4

(iii) $D^{p^n} = \sum_{i=1}^n (-1)^{n-i+1} \alpha_i D^{p^{i-1}}$. (iv) *D* is nilpotent if and only if $\alpha_i = 0$ for all *i*. *Proof.* Proceeding as in Lemma 1.3, we get

$$D^{p^{r}} \equiv D_{1}^{p^{r}} + (-1)^{r} \Big(\prod_{i=r+1}^{n} x_{i}^{p-1}\Big) D_{2} \pmod{\mathfrak{m}^{(n-r)(p-1)+1}W_{n}},$$
$$D_{1}^{p^{r}} = (-1)^{r} \sum_{j=r+1}^{n} \Big(\prod_{i=r+1}^{j-1} x_{i}^{p-1}\Big) \partial_{j}$$

for all r = 0, ..., n. Hence $D^{p^r} \equiv (-1)^r \partial_{r+1} \pmod{\mathfrak{m} W_n}$ for all r = 0, ..., n-1 and $D^{p^n} \equiv (-1)^n D_2 \pmod{\mathfrak{m} W_n}$. We see that the cosets $D^{p^{i-1}} + \mathfrak{m} W_n$ with i = 1, ..., n form a basis for the vector space $W_n/\mathfrak{m} W_n$ over \mathbb{F} . Then $\{D^{p^{i-1}} \mid i = 1, ..., n\}$ is a generating set for the B_n -module W_n by Nakayama's Lemma; since this module is free, this set is its basis. Thus (i) is proved.

It follows from (i) that each *D*-invariant ideal of B_n is stable under all derivations; but there are only trivial ideals with this property. Also by (i) we can write

$$D^{p^n} = \sum_{i=1}^n f_i D^{p^{i-1}} \quad \text{with } f_i \in B_n.$$

Since D centralizers all powers of D, we get $\sum_{i=1}^{n} D(f_i) D^{p^{i-1}} = [D, D^{p^n}] = 0$, whence $D(f_i) = 0$ for all i. Then f_1, \ldots, f_n are annihilated by all derivations of B_n , and it follows that $f_i \in \mathbb{F}$ for all i. Looking at the cosets modulo $\mathfrak{m}W_n$, we deduce from the earlier congruences that $f_i = (-1)^{n-i+1}\alpha_i$. Since dim $B_n = p^n$, we have $D^{p^n} = 0$ whenever D is nilpotent. Hence (iv) follows from (i) and (iii). \Box

Lemma 1.5. Let $D \in W_n$ be any derivation such that B_n is D-simple. Then: (i) The derivations $D^{p^{i-1}}$ with i = 1, ..., n form a basis for W_n over B_n .

(ii) The *n* by *n* matrix $\left[D^{p^{i-1}}x_j\right]_{1\leq i,j\leq n}$ with entries in B_n is invertible.

Proof. Denote by \mathfrak{a} the *p*-Lie subalgebra of W_n generated by *D*. If $D' \in \mathfrak{a} \cap \mathfrak{m} W_n$ then the ideal $B_n \cdot D'(B_n)$ of B_n is *D*-invariant since [D, D'] = 0. As this ideal is contained in \mathfrak{m} and B_n is *D*-simple, we conclude that D' = 0. Thus $\mathfrak{a} \cap \mathfrak{m} W_n = 0$. Let $u(\mathfrak{a})$ denote the restricted universal enveloping algebra of \mathfrak{a} . The dual space $u(\mathfrak{a})^*$ has a canonical algebra structure, and \mathfrak{a} operates on $u(\mathfrak{a})^*$ via derivations. The natural action of \mathfrak{a} on B_n gives rise to an \mathfrak{a} -equivariant homomorphism of algebras $\varphi : B_n \to u(\mathfrak{a})^*$ (see [11, Th. 3.3.1]), which is an isomorphism by [7, Th. 3.2]. For our purposes it suffices to know that φ is injective, but this follows from the facts that Ker φ is a proper *D*-invariant ideal of B_n and B_n is *D*-simple. Since dim $B_n = p^n$ and dim $u(\mathfrak{a})^* = p^{\dim \mathfrak{a}}$, injectivity of φ entails dim $\mathfrak{a} \ge n$. Then we must have

dim
$$\mathfrak{a} = n$$
 and $W_n = \mathfrak{a} \oplus \mathfrak{m} W_n$.

It follows that the set $\{D^{p^{i-1}} | i = 1, ..., n\}$ is a basis for \mathfrak{a} over \mathbb{F} and also a basis for W_n over B_n by Nakayama's Lemma. Since $D^{p^{i-1}} = \sum_{j=1}^n (D^{p^{i-1}} x_j) \partial_j$, the matrix in (ii) is the transition matrix from

Since $D^{p^{i-1}} = \sum_{j=1}^{n} (D^{p^{i-1}}x_j) \partial_j$, the matrix in (ii) is the transition matrix from one basis $(\partial_i)_{i=1,...,n}$ of the B_n -module W_n to another basis $(D^{p^{i-1}})_{i=1,...,n}$. The invertibility of this matrix is immediate.

2. The normal form of elements

Lemma 2.1. Let $D \in W_n$. Suppose that for some $k, 1 \le k \le n$, the k by k matrix

$$\left[D^{p^{i-1}}x_j\right]_{1\leq i,j\leq k}$$

is invertible. Denote by J the ideal of B_n generated by x_1, \ldots, x_k . Then there is a unique k-tuple (y_1, \ldots, y_k) such that the set $\{y_1, \ldots, y_k\}$ generates the ideal J and

$$Dy_1 \equiv 1 \pmod{J^{k(p-1)}},$$

$$Dy_j \equiv \prod_{i=1}^{j-1} y_i^{p-1} \pmod{J^{k(p-1)}} \quad \text{for all } j = 2, \dots, k.$$

Proof. Put $V = J/\mathfrak{m}J$. This vector space has a basis consisting of the cosets of x_1, \ldots, x_k . Let U be the vector subspace in W_n spanned by $\{D^{p^{i-1}} \mid i = 1, \ldots, k\}$. There is a bilinear pairing $U \times V \to B_n/\mathfrak{m} \cong \mathbb{F}$ given by the rule

$$\langle D', f + \mathfrak{m}J \rangle = D'(f) + \mathfrak{m} \text{ for } D' \in U \text{ and } f \in J.$$

The invertibility of the matrix in the statement of the Lemma can be rephrased in terms of the nondegeneracy of this pairing. Indeed, since \mathfrak{m} is a nilpotent ideal of B_n and the matrix of the pairing coincides with the reduction modulo \mathfrak{m} of the former matrix, one matrix is invertible if and only if so is the other. Note that the vector space V and the pairing $U \times V \to \mathbb{F}$ depend only on the ideal J, but not on the particular set of its generators x_1, \ldots, x_k .

By Nakayama's lemma arbitrary k elements $t_1, \ldots, t_k \in J$ generate the ideal J if and only if their cosets modulo $\mathfrak{m}J$ span V, in which case these cosets give another basis for V. If this condition is satisfied, then the n elements $t_1, \ldots, t_k, x_{k+1}, \ldots, x_n$ generate the algebra B_n . Indeed, since V embeds in $\mathfrak{m}/\mathfrak{m}^2$, the cosets of those elements modulo \mathfrak{m}^2 form a basis for $\mathfrak{m}/\mathfrak{m}^2$. Moreover, all the assumptions of the lemma remain intact if the original n-tuple of generators (x_1, \ldots, x_n) is replaced with $(t_1, \ldots, t_k, x_{k+1}, \ldots, x_n)$.

Passing to new generators, we may assume from the very beginning that the basis $\{D^{p^{i-1}} \mid i = 1, ..., k\}$ for U and the basis $\{x_i + \mathfrak{m}J \mid i = 1, ..., k\}$ for V are dual to each other. Thus

$$D^{p^{i-1}}x_j \equiv \delta_{ij} \pmod{\mathfrak{m}}, \qquad 1 \le i, j \le k.$$

Now look at the following statements:

(i) There exist elements y₁,..., y_k generating the ideal J and invertible elements u₁,..., u_k of B_n such that

$$Dy_1 = u_1,$$
 $Dy_j = u_j \prod_{i=1}^{j-1} y_i^{p-1}$ for all $j = 2, ..., k$

(ii) $B_n = D(J) \oplus J^{k(p-1)}$ and $J \cap \text{Ker} D = 0$.

We claim that (i) implies (ii). Suppose that (i) holds. For each integer r such that $0 \le r < p^k$ let r_i be the coefficients in the *p*-adic expansion

$$r = \sum_{i=0}^{k-1} r_i p^i, \qquad 0 \le r_i < p,$$

and put $y^{(r)} = \prod_{i=1}^{k} \frac{y_i^{r_{i-1}}}{r_{i-1}!}$.

Denote by J_r the ideal of B_n generated by $\{y^{(s)} \mid r \leq s < p^k\}$. Then we get a chain of ideals $J_0 \supset J_1 \supset \cdots \supset J_{p^k-1}$ with $J_0 = B_n$, $J_1 = J$. The last ideal J_{p^k-1} is generated by a single element

$$y^{(p^k-1)} = (-1)^k \prod_{i=1}^k y_i^{p-1}.$$

Since J is generated by y_1, \ldots, y_k and $y_i^p = 0$ for all i, we have $J^{k(p-1)} = J_{p^k-1}$. Put $J_{p^k} = 0$ for later use.

Let us evaluate the derivation D at $y^{(r)}$ for r > 0. Since $y_i^p = 0$ for all i, we have

$$Dy^{(r)} = (Dy_m) \frac{y_m^{r_{m-1}-1}}{(r_{m-1}-1)!} \prod_{i=m+1}^k \frac{y_i^{r_{i-1}}}{r_{i-1}!} = (-1)^{m-1} u_m y^{(r-1)}$$

where $m = \min\{i \mid r_{i-1} \neq 0\}$. It follows that $D(J_r) \subset J_{r-1}$, and therefore for each $r, 0 < r < p^k$, there is a well-defined map

$$\varphi_r: J_r/J_{r+1} \to J_{r-1}/J_r$$

induced by D. Since $D(fg) \equiv f(Dg) \pmod{J_r}$ for all $f \in B_n$ and $g \in J_r$, the above map is B_n -linear. Note that J_r/J_{r+1} and J_{r-1}/J_r are cyclic free B_n -modules generated by the respective cosets of $y^{(r)}$ and $y^{(r-1)}$. The earlier computation shows that φ_r takes the coset of $y^{(r)}$ to the coset of $(-1)^{m-1}u_m y^{(r-1)}$. Since u_m is an invertible element of B_n , we deduce that φ_r is an isomorphism of B_n -modules.

It follows that $J_{r-1} \subset D(J_r) + J_r$ and $J_r \cap \text{Ker } D \subset J_{r+1}$. These inclusions enable us to prove by induction that $J_0 \subset D(J) + J_r$ and $J \cap \text{Ker } D \subset J_{r+1}$ for all r such that $0 < r < p^k$. Taking $r = p^k - 1$, we get

$$B_n = D(J) + J^{k(p-1)}$$
 and $J \cap \operatorname{Ker} D = 0.$

The second equality entails dim $D(J) = \dim J$. On the other hand, $J^{k(p-1)}$ coincides with the annihilator of J in B_n . Therefore the multiplication by $y^{(p^k-1)}$ induces a vector space isomorphism of B_n/J onto $J^{k(p-1)}$. Hence

$$\dim B_n = \dim J + \dim J^{k(p-1)} = \dim D(J) + \dim J^{k(p-1)}$$

We see that the sum of D(J) and $J^{k(p-1)}$ must be direct. Thus (ii) follows from (i), as claimed.

Now note that (ii) implies the conclusion of the lemma. Indeed, by (ii) there exists a unique $y_1 \in J$ such that $Dy_1 \equiv 1 \pmod{J^{k(p-1)}}$. Once y_1 is known, we deduce that there exists a unique $y_2 \in J$ such that $Dy_2 \equiv y_1^{p-1} \pmod{J^{k(p-1)}}$, and so on. Since the derivations D, D^p , D^{p^2} ,... map J^a to J^{a-1} for all a > 0, it follows by induction on j and i that

$$D^{p^{i-1}}y_j \equiv \prod_{s=i}^{j-1} y_s^{p-1} \pmod{J^{(k-i+1)(p-1)}}, \qquad 1 \le i \le j \le k.$$

In particular, $D^{p^{j-1}}y_j \equiv 1 \pmod{J^{(k-j+1)(p-1)}}$, but then $D^{p^{i-1}}y_j \in J^{(k-i+1)(p-1)}$ whenever $j < i \leq k$. Hence $D^{p^{i-1}}y_j \equiv \delta_{ij} \pmod{\mathfrak{m}}$ for all $i, j \in \{1, \ldots, k\}$. The nondegeneracy of the pairing $U \times V \to \mathbb{F}$ considered earlier entails $y_i + \mathfrak{m}J = x_i + \mathfrak{m}J$ for all $i = 1, \ldots, k$, and we conclude that y_1, \ldots, y_k generate the ideal J.

So it suffices to prove (i). We shall do this proceeding by induction on k. If k = 1, property (i) means just that $Dy_1 \notin \mathfrak{m}$. Hence we may take $y_1 = x_1$. Suppose that k > 1 and (i) holds for the ideal J' of B_n generated by k - 1 elements x_1, \ldots, x_{k-1} . Then there exist elements y_1, \ldots, y_{k-1} generating the ideal J' and invertible elements u_1, \ldots, u_{k-1} of B_n such that

$$Dy_1 = u_1,$$
 $Dy_j = u_j \prod_{i=1}^{j-1} y_i^{p-1}$ for all $j = 2, \dots, k-1.$

As we have seen, (i) implies that (ii) also holds for J'. In particular,

$$B_n = D(J') \oplus J'^{(k-1)(p-1)}.$$

So we can find $v \in J'$ such that $Dx_k - Dv \in J'^{(k-1)(p-1)}$. Take $y_k = x_k - v$. The ideal of B_n generated by y_1, \ldots, y_k coincides with J since it contains J' as well as $x_k = y_k + v$. The ideal $J'^{(k-1)(p-1)}$ is generated by the element $\prod_{i=1}^{k-1} y_i^{p-1}$. Hence

$$Dy_k = Dx_k - Dv = u_k \prod_{i=1}^{k-1} y_i^{p-1}$$

for some $u_k \in B_n$. It remains only to show that u_k is an invertible element of B_n . Since $D^{p^{k-1}}x_j \in \mathfrak{m}$ for all $j = 1, \ldots, k-1$, we deduce that $D^{p^{k-1}}(J') \subset \mathfrak{m}$. In particular, $D^{p^{k-1}}v \in \mathfrak{m}$. Hence

$$D^{p^{k-1}}y_k = D^{p^{k-1}}x_k - D^{p^{k-1}}v \notin \mathfrak{m}.$$

On the other hand, $D^{p^{k-1}-1}$ induces a B_n -linear map $J'^{(k-1)(p-1)} \to B_n/J'$. In fact this map coincides with the composite of all the maps φ_r , $0 < r < p^{k-1}$, introduced earlier, but with J' in place of J. Hence

$$D^{p^{k-1}}y_k = D^{p^{k-1}-1} \left(u_k \prod_{i=1}^{k-1} y_i^{p-1} \right) \equiv u_k D^{p^{k-1}-1} \left(\prod_{i=1}^{k-1} y_i^{p-1} \right) \pmod{J'},$$

and it follows that $u_k \notin \mathfrak{m}$, as required.

Denote by I_k the ideal of B_n generated by x_{k+1}, \ldots, x_n . In particular, $I_0 = \mathfrak{m}$ and $I_n = 0$. Put

$$\mathcal{D}_k = \left\{ \sum_{j=1}^n f_j \partial_j \mid f_j \equiv \prod_{i=1}^{j-1} x_i^{p-1} \pmod{B_n \cdot \prod_{i=1}^k x_i^{p-1}} \text{ for all } j = 1, \dots, k \text{ and } f_j \in I_k \text{ for all } j = k+1, \dots, n \right\}$$

$$\mathcal{D}'_{k} = \left\{ \sum_{j=1}^{n} f_{j} \partial_{j} \mid f_{j} \equiv \prod_{i=1}^{j-1} x_{i}^{p-1} \pmod{\mathfrak{m} \cdot \prod_{i=1}^{k} x_{i}^{p-1}} \text{ for all } j = 1, \dots, k \\ \text{and } f_{j} \in I_{k} \text{ for all } j = k+1, \dots, n \right\}$$

Clearly I_k is stable under every derivation in \mathcal{D}_k . Hence $\mathcal{D}'_k \subset \mathcal{D}_k \subset N(I_k)$.

Lemma 2.2. For any $D \in \mathcal{D}_k$ we have:

- (i) I_k is the maximal D-invariant ideal of B_n .
- (ii) $D^{p^k} \in I_k W_n$ if and only if $D \in \mathcal{D}'_k$.
- (iii) D is nilpotent if and only if $D \in \mathcal{D}'_k$ and $\lambda(D^{p^k})$ is nilpotent.

Proof. Let $D = \sum_{j=1}^{n} f_j \partial_j$ with $f_1, \ldots, f_n \in B_n$. For each $j = 1, \ldots, k$ we can write

$$f_j = \prod_{i=1}^{j-1} x_i^{p-1} + g_j \prod_{i=1}^k x_i^{p-1}$$

where g_j lies in the subalgebra of B_n generated by x_{k+1}, \ldots, x_n . Let $\alpha_j \in \mathbb{F}$ be such that $g_j - \alpha_j \in \mathfrak{m}$. Then $g_j - \alpha_j \in I_k$ as well. Let $\pi : N(I_k) \to \text{Der } B_n/I_k$ be the canonical map. Recall that Ker $\pi = I_k W_n$. Identifying B_n/I_k with B_k , we get

$$\pi(D) = \sum_{j=1}^{k} \left(\prod_{i=1}^{j-1} x_i^{p-1} \right) \partial_j + \left(\prod_{i=1}^{k} x_i^{p-1} \right) \sum_{j=1}^{k} \alpha_j \partial_j.$$

Thus $\pi(D)$, regarded as an element of $W_k = \text{Der } B_k$, satisfies the hypotheses of Lemma 1.4. By that lemma the algebra B_n/I_k is $\pi(D)$ -simple, but this is equivalent to statement (i) of Lemma 2.2.

By Lemma 1.4 $\pi(D)$ is nilpotent if and only if $\alpha_j = 0$ for all $j = 1, \ldots, k$. Furthermore, $\pi(D)$ is nilpotent if and only if $\pi(D)^{p^k} = 0$ or, equivalently, $D^{p^k} \in \text{Ker } \pi$. On the other hand, vanishing of $\alpha_1, \ldots, \alpha_k$ means that $g_j \in \mathfrak{m}$ for all $j = 1, \ldots, k$, that is, $D \in \mathcal{D}'_k$. This yields (ii). Now (iii) follows from Lemma 1.1.

We will denote by G_k the subgroup of G consisting of all automorphisms σ of B_n which satisfy the following two conditions:

(1) the ideal of B_n generated by x_1, \ldots, x_k is stable under σ ,

(2) $\sigma(x_i) = x_i$ for all i = k + 1, ..., n.

Proposition 2.3. Let $D \in W_n$ be any derivation with the maximal D-invariant ideal of B_n equal to I_k . There exists a unique $\sigma \in G_k$ such that $D \in \sigma_*(\mathcal{D}_k)$.

Proof. Let us check that D satisfies the hypothesis of Lemma 2.1. Consider the algebra $B_n/I_k \cong B_k$ and its derivation $\pi(D)$ induced by D. By the assumption

about D this algebra is $\pi(D)$ -simple. Put $\overline{x}_i = x_i + I_k$ for $i = 1, \ldots, k$. Lemma 1.5, applied to $\pi(D)$, shows that $\left[\pi(D)^{p^{i-1}}\overline{x}_j\right]_{1 \le i,j \le k}$ is an invertible matrix with entries in B_n/I_k . But

$$\pi(D)^{p^{i-1}}\overline{x}_j = D^{p^{i-1}}x_j + I_k.$$

Since I_k is a nilpotent ideal of B_n , it follows that the matrix $\left[D^{p^{i-1}}x_j\right]_{1\leq i,j\leq k}$ with entries in B_n is also invertible.

Thus Lemma 2.1 applies. Let (y_1, \ldots, y_k) be the k-tuple given by the conclusion of that lemma. Note that $D \in \mathcal{D}_k$ if and only if $y_i = x_i$ for all $i = 1, \ldots, k$. In fact, writing $D = \sum_{j=1}^n f_j \partial_j$ with $f_j = Dx_j$, we have $f_j \in I_k$ for all $j = k + 1, \ldots, n$ since $D(I_k) \subset I_k$. At the same time the condition on f_1, \ldots, f_k in the definition of \mathcal{D}_k amounts to the conclusion of Lemma 2.1 for the k-tuple (x_1, \ldots, x_k) .

If $\sigma \in G_k$, then $\sigma(I_k) = I_k$. Therefore the maximal $\sigma_*^{-1}(D)$ -invariant ideal of B_n coincides with I_k as well, but the k-tuple of Lemma 2.1 defined with respect to the derivation $\sigma_*^{-1}(D)$ changes to $(\sigma^{-1}y_1, \ldots, \sigma^{-1}y_k)$. It follows that $\sigma_*^{-1}(D) \in \mathcal{D}_k$ if and only if $\sigma(x_i) = y_i$ for all $i = 1, \ldots, k$. So it remains to observe that there exists a unique $\sigma \in G_k$ with this property.

Corollary 2.4. Suppose that $D \in W_n$ is such that B_n is D-simple. Then there is a unique $\sigma \in G$ such that $D \in \sigma_*(\mathcal{D}_n)$. In particular, D has trivial stabilizer in G.

Proof. In the special case k = n we have $I_k = 0$ and $G_k = G$ since the ideal \mathfrak{m} generated by x_1, \ldots, x_n is stable under G.

Corollary 2.5. The set $\mathcal{N}_{reg} = \{D \in \mathcal{N}(W_n) \mid B_n \text{ is } D\text{-simple}\}\$ is a single G-orbit.

Proof. By Lemma 2.2 a derivation in \mathcal{D}_n is nilpotent if and only if it lies in \mathcal{D}'_n . Hence, by Corollary 2.4, any *G*-orbit in \mathcal{N}_{reg} intersects \mathcal{D}'_n . However, \mathcal{D}'_n contains only one element.

In [5] Premet proved, assuming \mathbb{F} to be algebraically closed, that the *G*-orbit of the derivation in \mathcal{D}'_n is dense in $\mathcal{N}(W_n)$.

3. Counting arguments

In this section we assume that $\mathbb{F} = \mathbb{F}_q$ where q is a power of a prime p. We will denote by # X the cardinality of a finite set X.

Lemma 3.1. Let $\mathfrak{g} = \mathfrak{gl}(I_k/\mathfrak{m}I_k)$, and let $\varphi : \mathcal{D}'_k \to \mathfrak{g}$ be the map defined by the rule $\varphi(D) = \lambda(D^{p^k})$ for $D \in \mathcal{D}'_k$. Then

$$\# \varphi^{-1}(A) = q^{k(p^{n-k}-1) + (n-k)(p^n - p^k) - (n-k)^2} \quad for \ each \ A \in \mathfrak{g}.$$

Proof. Note that each $D \in \mathcal{D}'_k$ can be written as in Lemma 1.3 with

$$D_2 \in \sum_{j=k+1}^n I_k \partial_j$$
 and $D_3 \in I_k W_n$.

Then $D_1 + D_2 \in \mathcal{D}'_k$ as well, whence both D^{p^k} and $(D_1 + D_2)^{p^k}$ lie in $I_k W_n$. Denote by J the ideal of B_n generated by x_1, \ldots, x_k . Applying Lemma 1.3, we get

$$D^{p^k} - (D_1 + D_2)^{p^k} - (-1)^k D_3 \in I_k W_n \cap J W_n = (I_k \cap J) W_n \subset \mathfrak{m} I_k W_n \subset \operatorname{Ker} \lambda.$$

It follows that

$$\varphi(D) = \lambda(D^{p^k}) = \lambda((D_1 + D_2)^{p^k}) + (-1)^k \lambda(D_3) = \varphi(D_1 + D_2) + (-1)^k \lambda(D_3).$$

If $D' \in I_k W_n$, then

$$D + \left(\prod_{i=1}^{k} x_i^{p-1}\right) D' = D_1 + D_2 + \left(\prod_{i=1}^{k} x_i^{p-1}\right) (D_3 + D') \in \mathcal{D}'_k, \quad \text{and}$$
$$\varphi \left(D + \left(\prod_{i=1}^{k} x_i^{p-1}\right) D'\right) = \varphi (D_1 + D_2) + (-1)^k \lambda (D_3 + D') = \varphi (D) + (-1)^k \lambda (D').$$

The map $\lambda : I_k W_n \to \mathfrak{g}$ is surjective since $\{\lambda(x_i\partial_j) \mid k < i, j \leq n\}$ is a basis for \mathfrak{g} . Given $A_1, A_2 \in \mathfrak{g}$, we can find $D' \in I_k W_n$ such that $\lambda(D') = (-1)^k (A_2 - A_1)$. We see that $\varphi(D) = A_1$ if and only if $\varphi(D + (\prod_{i=1}^k x_i^{p-1})D') = A_2$, and so there is a bijection between $\varphi^{-1}(A_1)$ and $\varphi^{-1}(A_2)$. Thus any two fibres of φ have the same cardinality. Since \mathcal{D}'_k is an affine translation of the vector subspace

$$V = \sum_{j=1}^{k} \mathfrak{m} t \partial_j + \sum_{j=k+1}^{n} I_k \partial_j \subset W_n \quad \text{where } t = \prod_{i=1}^{k} x_i^{p-1},$$

it follows that

$$\# \varphi^{-1}(A) = \# \mathcal{D}'_k / \# \mathfrak{g} = q^{\dim V - \dim \mathfrak{g}} = q^{k(\dim \mathfrak{m}t) + (n-k)(\dim I_k) - (n-k)^2}.$$

The isomorphism $B_n/I_k \cong B_k$ shows that I_k has codimension p^k in B_n . Therefore dim $I_k = p^n - p^k$. Denote by J the ideal of B_n generated by x_1, \ldots, x_k . The multiplication by t induces a vector space isomorphism between B_n/J and $B_n t$. Since $B_n/J \cong B_{n-k}$, we get dim $B_n t = p^{n-k}$. Since $B_n t/\mathfrak{m} t$ is spanned by the coset of t, we deduce that dim $\mathfrak{m} t = p^{n-k} - 1$.

Lemma 3.2. The group
$$G_k$$
 has order $q^{k(p^n - p^{n-k} - k)} \prod_{i=1}^k (q^k - q^{i-1}).$

Proof. Denote by J the ideal of B_n generated by x_1, \ldots, x_k . Each automorphism $\sigma \in G_k$ is determined uniquely by its values on x_1, \ldots, x_k . The condition $\sigma(J) = J$ in the definition of G_k means precisely that $\sigma(x_1), \ldots, \sigma(x_k)$ generate the ideal J. Hence the assignment $\sigma \mapsto (\sigma(x_1), \ldots, \sigma(x_k))$ gives a bijection between G_k and the set of k-tuples of elements generating J as an ideal. By Nakayama's lemma arbitrary k elements $t_1, \ldots, t_k \in J$ generate the ideal J if and only if their cosets modulo $\mathfrak{m}J$ form a basis for the vector space $J/\mathfrak{m}J$. As is well known, the number of different bases for a k-dimensional vector space over \mathbb{F}_q equals $\prod_{i=1}^k (q^k - q^{i-1})$. Furthermore, $q^{\dim \mathfrak{m}J}$ is the number of elements in each coset modulo $\mathfrak{m}J$. Hence $q^{k(\dim \mathfrak{m}J)}$ is the number of possible ways to choose representatives of k cosets modulo $\mathfrak{m}J$, and it follows that

$$\# G_k = q^{k(\dim \mathfrak{m}J)} \prod_{i=1}^k (q^k - q^{i-1})$$

1	1
L	
-	-

Since $B_n/J \cong B_{n-k}$, we have dim $J = p^n - p^{n-k}$. Then dim $\mathfrak{m}J = p^n - p^{n-k} - k$, and we are done.

Lemma 3.3. Denote by \mathcal{I}_k the set of all ideals I of B_n such that $B_n/I \cong B_k$. Then

$$\# \mathcal{I}_k = q^{(n-k)(p^k - 1 - k)} \prod_{i=1}^k \frac{q^n - q^{i-1}}{q^k - q^{i-1}}.$$

Proof. Each ideal $I \in \mathcal{I}_k$ is generated by a set of n - k elements lying in \mathfrak{m} whose cosets modulo \mathfrak{m}^2 are linearly independent over \mathbb{F}_q . There are $\prod_{i=1}^{n-k} (q^n - q^{i-1})$ possible ways to choose an (n - k)-tuple of linearly independent vectors in the *n*-dimensional vector space $\mathfrak{m}/\mathfrak{m}^2$. Hence

$$q^{(n-k)(\dim \mathfrak{m}^2)} \prod_{i=1}^{n-k} (q^n - q^{i-1})$$

is the number of (n - k)-tuples of elements generating an ideal in \mathcal{I}_k . The same ideal I can be generated in

$$q^{(n-k)(\dim \mathfrak{m}I)} \prod_{i=1}^{n-k} (q^{n-k} - q^{i-1})$$

different ways. So it follows that

$$\# \mathcal{I}_k = \frac{q^{(n-k)(\dim \mathfrak{m}^2)}}{q^{(n-k)(\dim \mathfrak{m}I)}} C_{n,n-k} \quad \text{where} \quad C_{n,r} = \prod_{i=1}^r \frac{q^n - q^{i-1}}{q^r - q^{i-1}}$$

Note that $C_{n,r}$ is the q-binomial coefficient equal to the number of r-dimensional subspaces in an n-dimensional vector space over \mathbb{F}_q . In the above formula we may replace $C_{n,n-k}$ with $C_{n,k}$ since these two numbers are equal. We also have dim $\mathfrak{m}^2 = p^n - 1 - n$ and dim $\mathfrak{m}I = p^n - p^k - (n-k)$. Hence dim $\mathfrak{m}^2 - \dim \mathfrak{m}I = p^k - 1 - k$, yielding the desired equality.

For an integer k such that $0 \le k \le n$, an ideal I of B_n such that $B_n/I \cong B_k$, and a nilpotent linear transformation $A \in \mathfrak{gl}(I/\mathfrak{m}I)$ put

 $\mathcal{N}_{k} = \{ D \in \mathcal{N}(W_{n}) \mid \text{the maximal } D\text{-invariant ideal of } B_{n} \text{ has codimension } p^{k} \},$ $\mathcal{N}_{I} = \{ D \in \mathcal{N}(W_{n}) \mid \text{the maximal } D\text{-invariant ideal of } B_{n} \text{ coincides with } I \},$ $\mathcal{N}_{I, A} = \{ D \in \mathcal{N}_{I} \mid \lambda(D^{p^{k}}) = A \}.$

Theorem 3.4. Let $0 \le k \le n$, let I be any ideal of B_n such that $B_n/I \cong B_k$, and let A be a nilpotent linear transformation of the vector space $I/\mathfrak{m}I$. Then

$$\# \mathcal{N}_{I,A} = q^{np^n - (n-k)p^k - k(k+1) - (n-k)^2} \prod_{i=1}^k (q^k - q^{i-1})$$
$$\# \mathcal{N}_I = q^{n(p^n - 1) - (n-k)p^k - k^2} \prod_{i=1}^k (q^k - q^{i-1}),$$
$$\# \mathcal{N}_k = q^{n(p^n - 1) - (2n-k)(k+1)/2} \prod_{i=1}^k (q^{n-i+1} - 1).$$

Proof. Since I is G-conjugate to I_k , we may assume that $I = I_k$. By Lemma 2.3

$$\mathcal{N}_I = \prod_{\sigma \in G_k} \sigma_*(\mathcal{N}_I \cap \mathcal{D}_k),$$
 a disjoint union

Since all automorphisms in G_k induce the identity transformation of $I/\mathfrak{m}I$, the derivations D^{p^k} and $\sigma_*(D^{p^k})$ induce the same transformation of $I/\mathfrak{m}I$ for any $\sigma \in G_k$ and $D \in \mathcal{N}_I \cap \mathcal{D}_k$. Hence

$$\mathcal{N}_{I, A} = \prod_{\sigma \in G_k} \sigma_*(\mathcal{N}_{I, A} \cap \mathcal{D}_k).$$

By Lemma 2.2 $\mathcal{N}_I \cap \mathcal{D}_k \subset \mathcal{D}'_k$. So it follows that $\mathcal{N}_{I,A} \cap \mathcal{D}_k = \varphi^{-1}(A)$ where φ is the map from Lemma 3.1. We see that there is a bijection between $\mathcal{N}_{I,A}$ and the cartesian product $G_k \times \varphi^{-1}(A)$. Hence $\# \mathcal{N}_{I,A} = \# G_k \cdot \# \varphi^{-1}(A)$.

The set \mathcal{N}_I is a disjoint union of subsets $\mathcal{N}_{I,A}$ with A running over the nilpotent cone $\mathcal{N}(\mathfrak{g})$ in the Lie algebra $\mathfrak{g} = \mathfrak{gl}(I/\mathfrak{m}I) \cong \mathfrak{gl}_{n-k}(\mathbb{F}_q)$. Since $\#\mathcal{N}_{I,A}$ does not depend on A, we get $\#\mathcal{N}_I = \#\mathcal{N}(\mathfrak{g}) \cdot \#\mathcal{N}_{I,A}$. The first factor here is the number of nilpotent n-k by n-k matrices with entries in \mathbb{F}_q . It is known from [2]:

$$\#\mathcal{N}(\mathfrak{g}) = q^{\dim \mathfrak{g} - \operatorname{rank} \mathfrak{g}} = q^{(n-k)^2 - (n-k)} = q^{(n-k)(n-k-1)}.$$

Finally, $\# \mathcal{N}_k = \# \mathcal{I}_k \cdot \# \mathcal{N}_I$ since \mathcal{N}_k is a disjoint union of subsets $\mathcal{N}_{I'}$ with I' running over \mathcal{I}_k . Lemmas 3.1, 3.2 and 3.3 provide all values needed.

The main result stated in the introduction now follows from the next lemma:

Lemma 3.5. Let
$$N_k = \# \mathcal{N}_k$$
. Then $\sum_{k=0}^n N_k = q^{n(p^n-1)}$

Proof. From the explicit formula in Theorem 3.4 we deduce the recurrence relation

$$q^{n-k-1}N_{k+1} = (q^{n-k} - 1)N_k$$
 for $k = 0, \dots, n-1$.

Now a downward induction on k shows that $\sum_{i=k}^{n} N_i = q^{n-k}N_k$ for all k = 0, ..., n. Taking k = 0 and noting that $N_0 = q^{n(p^n-2)}$, we arrive at the desired conclusion.

References

- R.E. Block, Determination of the differentiably simple rings with a minimal ideal, Ann. Math. 90 (1969) 433–459.
- N.J. Fine and I.N. Herstein, The probability that a matrix be nilpotent, Ill. J. Math. 2 (1958) 499–504.
- N. Jacobson, Classes of restricted Lie algebras of characteristic p II, Duke Math. J. 10 (1943) 107–121.
- 4. I. Kaplansky, Nilpotent elements in Lie algebras, J. Algebra 133 (1990) 467–471.
- 5. A.A. Premet, The theorem on restriction of invariants and nilpotent elements in W_n (in Russian), Mat. Sbornik **182** (1991) 746–773; English translation in Math. USSR Sbornik **73** (1992) 135–159.

- A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003) 653–683.
- A. Premet and S. Skryabin, Representations of restricted Lie algebras and families of associative *L*-algebras, J. Reine Angew. Math. 507 (1999) 189–218.
- S.M. Skryabin, Modular Lie algebras of Cartan type over algebraically non-closed fields. II, Comm. Algebra 23 (1995) 1403–1453.
- T.A. Springer and R. Steinberg, *Conjugacy classes*, in "Seminar on Algebraic Groups and Related Finite Groups", Lecture Notes Math., Vol. 131, Springer, 1970, pp. 167– 266.
- H. Strade and R. Farnsteiner, Modular Lie Algebras and their Representations, Marcel Dekker, 1988.
- 11. H. Strade, The Classification of the Simple Lie Algebras over Fields with Positive Characteristic, De Gruyter, 2004.