
Nilpotent elements in the Jacobson-Witt algebra

over a finite field

Serge Skryabin

Let Fq be the finite field with q elements where q is a power of a prime p. In [4]
Kaplansky asked whether the number of elements in the nilpotent cone N (L) of
any simple finite dimensional Lie algebra L over Fq is given by the formula

#N (L) = qdimL− rankL.

Its validity had been known already for the Lie algebras of semisimple algebraic
groups in good characteristics [9, III.3.28]. Kaplansky observed that the formula
holds also when L is the Witt algebra W1.

Indirect evidence in favour of a formula of this kind can be seen from general facts
about the nilpotent cone. Indeed, in [6, Th. 4.2] Premet proved that for an arbitrary
finite dimensional p-Lie algebra L over an algebraically closed field of characteristic
p the variety of [p]-nilpotent elements is always a set-theoretic complete intersection
of codimension s in L where s stands for the maximum dimension of toral subalge-
bras of L. This result seems to suggest that the rank of L in the formula for #N (L)
should probably be replaced by some other quantity.
In this paper we consider the Jacobson-Witt algebra Wn for an arbitrary n. The

main result is stated as follows:

Theorem. The algebra Wn over Fq has precisely qnp
n−n nilpotent elements.

Note that dimWn = npn, while the rank of Wn and the maximum dimension
of tori in Wn are both equal to n. Elements of Wn are derivations of the reduced
polynomial algebra Bn in n generators. With D ∈ Wn one associates the maximal
D-invariant ideal I of Bn. The factor algebra Bn/I is isomorphic with Bk for some

k ≤ n. If D is nilpotent, then Dpk

induces a nilpotent linear transformation A of
the vector space I/mI where m denotes the maximal ideal of Bn. This leads to a
stratification of the nilpotent cone N (Wn) by the pairs (I, A). Theorem 3.4 deter-
mines the cardinalities of all strata. The total number of nilpotents in Wn is then
obtained by summation.

1. Preliminaries

In sections 1 and 2 we work over an arbitrary ground field F of characteristic
p > 0. Let Bn be the commutative associative unital algebra defined by a set of
generators x1, . . . , xn and a set of relations xp

i = 0, i = 1, . . . , n. It has a basis over
F consisting of all monomials

∏n
i=1 x

ai

i with 0 ≤ ai < p. Let m denote the ideal of
Bn generated by x1, . . . , xn. Then Bn/m ∼= F and fp = 0 for all f ∈ m. So m is the
unique maximal ideal of Bn.



The Jacobson-Witt algebra Wn is the Lie algebra of all derivations of Bn. It is a
free Bn-module with a basis ∂1, . . . , ∂n where

∂ixj = δij for 1 ≤ i, j ≤ n.

We denote by G the group of all automorphisms of Bn. Each σ ∈ G is determined
uniquely by its values on x1, . . . , xn. More precisely, the assignment

σ 7→ (σx1, . . . , σxn)

gives a bijection between G and the set of n-tuples of elements of m whose cosets
modulo m2 form a basis for the vector space m/m2 over F. Each σ ∈ G induces an
automorphism σ∗ of Wn by the rule

σ∗(D) = σ ◦D ◦ σ−1, D ∈ Wn.

Clearly, σ∗(D
p) = σ∗(D)p, that is, σ∗ commutes with the p-power map on Wn. In

fact all automorphisms of Wn are of the form σ∗ for σ ∈ G, with the only exceptions
for p = 2, n ≤ 2 and p = 3, n = 1. For p > 3 this was investigated by Jacobson [3].
A general result on isomorphisms of Cartan type Lie algebras which includes also
cases of small characteristic is presented in [8, Th. 6.4].
For a proper ideal I of Bn put

N(I) = {D ∈ Wn | D(I) ⊂ I}.

There is a canonical homomorphism of p-Lie algebras π : N(I) → DerBn/I. Note
that

Kerπ = IWn.

Indeed, Kerπ = {D ∈ Wn | D(Bn) ⊂ I}. Writing D =
∑n

i=1 fi∂i with fi = Dxi,
we see that D(Bn) ⊂ I if and only if fi ∈ I for all i. Both N(I) and IWn are p-Lie
subalgebras of Wn. If D ∈ IWn, then

D(fg) ≡ fD(g) (mod I2) for all f ∈ Bn and g ∈ I;

since I ⊂ m, it follows that D(mI) ⊂ mI. Hence we get a canonical homomorphism
of p-Lie algebras

λ : IWn → gl(I/mI).

Lemma 1.1. Given D ∈ Wn, let I be the maximal D-invariant ideal of Bn.

(i) I is G-conjugate to the ideal generated by xk+1, . . . , xn for some k, 0 ≤ k ≤ n.

(ii) D is nilpotent if and only if Dpk

∈ IWn and λ(Dpk

) is nilpotent.

Proof. The factor algebra Bn/I has a maximal ideal n = m/I whose residue field is
isomorphic with F. Since this algebra is D-simple in the sense that it has no non-
trivial ideals stable under its derivation induced by D, we get Bn/I ∼= Bk for some
k by Block’s description of differentiably simple algebras [1] (see also [11, Ch. 3]).
Note that dimm/m2 = n, while dim n/n2 = k. There is an exact sequence of vector
spaces
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I/mI → m/m2 → n/n2 → 0.

Let e1, . . . , en be any basis for m/m2 such that ek+1, . . . , en span the image of I/mI.
Pick representatives y1, . . . , yn ∈ m of these n cosets, taking yk+1, . . . , yn in I. There
exists σ ∈ G such that σ(xi) = yi for all i = 1, . . . , n. Hence the monomials

∏n
i=1 y

ai

i

with 0 ≤ ai < p form a basis for Bn over F. It follows that the ideal I ′ of Bn gener-
ated by yk+1, . . . , yn has codimension pk. Since I ′ ⊂ I, and I also has codimension
pk in Bn, we get I ′ = I. Now it is clear that the ideal σ−1(I) is generated by the
elements xk+1, . . . , xn.
Suppose that D is nilpotent. Then π(D) is a nilpotent derivation of Bn/I. Since

dimBn/I = pk, we must have π(D)p
k

= 0, whence Dpk

∈ Kerπ = IWn. The linear

transformation of I/mI induced by a nilpotent derivation Dpk

must be nilpotent.

Conversely, suppose that Dpk

∈ IWn and λ(Dpk

) is nilpotent. We can find an
integer s ≥ k such that λ(Dps

) = 0. The derivation Dps

∈ IWn induces a Bn/I-
linear endomorphism ϕ of the Bn/I-module M = I/I2. By our choice of s we have
ϕ(M) ⊂ mM . Hence ϕj(M) ⊂ mjM for all j ≥ 0. Since m is a nilpotent ideal, there

exists an integer t ≥ 0 such that ϕpt

= 0. Then the derivation Dps+t

∈ IWn maps
I into I2. It follows that Dps+t

(Ia) ⊂ Ia+1 for all integers a ≥ 0 by induction. But

Ia = 0 for sufficiently large a. Hence Dps+t

is nilpotent, and so is D. �

We will need partial information about powers of certain derivations. Their com-
putation is based on Jacobson’s formula for (a + b)p in any restricted Lie algebra
(see [10, Ch. 2]).

Lemma 1.2. Let J be any ideal of Bn. Suppose that D1 ∈ Wn and D2 ∈ JmWn

where m ≥ p− 1. Then

(D1 +D2)
p ≡ Dp

1 + ad(D1)
p−1D2 (mod Jm−p+2Wn).

Hence (D1 +D2)
p ≡ Dp

1 (mod Jm−p+1Wn).

Proof. Note that [Wn, J
aWn] ⊂ Ja−1Wn and [JWn, J

aWn] ⊂ JaWn for all integers
a > 0. Since JmWn is a p-Lie subalgebra of Wn, we have Dp

2 ∈ JmWn, and the
conclusion follows from Jacobson’s formula. �

In the next lemma and later in the paper we adopt the convention that any prod-
uct over the empty set of indices is considered to be 1. So

∏0
i=1 x

p−1
i = 1.

Lemma 1.3. For some fixed integer k, 1 ≤ k ≤ n, let J be the ideal of Bn generated

by x1, . . . , xk, and let L be the Bn-submodule of Wn generated by ∂k+1, . . . , ∂n. If

D = D1 +D2 +
(

k
∏

i=1

xp−1
i

)

D3

where D1 =
k
∑

j=1

(

j−1
∏

i=1

xp−1
i

)

∂j, D2 ∈ L, D3 ∈ Wn, then

Dpk

≡ (D1 +D2)
pk

+ (−1)kD3 (mod JWn).

Proof. By Lemma 1.2
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Dp ≡ (D1 +D2)
p + ad(D1 +D2)

p−1
(

(

k
∏

i=1

xp−1
i

)

D3

)

(mod J (k−1)(p−1)+1Wn).

From the equality L = {D′ ∈ Wn | D′xi = 0 for all i = 1, . . . , k} it is clear that
L is a p-Lie subalgebra of Wn. Since [D1, ∂i] = 0 for all i = k + 1, . . . , n, we have
[D1, L] ⊂ L. Now Jacobson’s formula yields

(D1 +D2)
p = Dp

1 −D′
2 for some D′

2 ∈ L.

Since D2xi = 0 for all i = 1, . . . , k, we have

ad(D1 +D2)
p−1

(

(

k
∏

i=1

xp−1
i

)

D3

)

≡ ad(∂1)
p−1

(

(

k
∏

i=1

xp−1
i

)

D3

)

≡ −
(

k
∏

i=2

xp−1
i

)

D3 (mod J (k−1)(p−1)+1Wn).

Hence

Dp ≡ Dp
1 −D′

2 −
(

k
∏

i=2

xp−1
i

)

D3 (mod J (k−1)(p−1)+1Wn).

Applying Lemma 1.2 again, we get Dpk

≡ −Epk−1

(mod JWn) where

E = −Dp
1 +D′

2 +
(

k
∏

i=2

xp−1
i

)

D3.

By a computation in [5, Lemma 3]

Dp
1 = −

k
∑

j=2

(

j−1
∏

i=2

xp−1
i

)

∂j .

Thus E has a similar structure asD, but with respect to the k−1 elements x2, . . . , xk

instead of k elements x1, x2, . . . , xk. Proceeding by induction on k, we may assume
that

Epk−1

≡ −(Dp
1 −D′

2)
pk−1

+ (−1)k−1D3 (mod JWn).

Then the required formula follows. �

In the case k = n of Lemma 1.3 we have L = 0, and the derivation D is a sum
of two terms. Lemma 1.4 below describes properties of D. In a slightly different
realization such derivations appeared in [5, Lemma 12]. These derivations are char-
acterized by the property that they have trivial stabilizer in G.

Lemma 1.4. Let D = D1 +
(

n
∏

i=1

xp−1
i

)

D2 where D1 =
n
∑

j=1

(

j−1
∏

i=1

xp−1
i

)

∂j,

D2 =
n
∑

j=1

αj∂j with αj ∈ F . Then:

(i) The derivations Dpi−1

with i = 1, . . . , n form a basis for Wn over Bn.

(ii) Bn has no nontrivial D-invariant ideals (in other words, Bn is D-simple).
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(iii) Dpn

=
n
∑

i=1

(−1)n−i+1αiD
pi−1

.

(iv) D is nilpotent if and only if αi = 0 for all i.

Proof. Proceeding as in Lemma 1.3, we get

Dpr

≡ Dpr

1 + (−1)r
(

n
∏

i=r+1

xp−1
i

)

D2 (modm(n−r)(p−1)+1Wn),

Dpr

1 = (−1)r
n
∑

j=r+1

(

j−1
∏

i=r+1

xp−1
i

)

∂j

for all r = 0, . . . , n. Hence Dpr

≡ (−1)r∂r+1 (modmWn) for all r = 0, . . . , n−1 and

Dpn

≡ (−1)nD2 (modmWn). We see that the cosets Dpi−1

+mWn with i = 1, . . . , n

form a basis for the vector space Wn/mWn over F. Then {Dpi−1

| i = 1, . . . , n} is a
generating set for the Bn-module Wn by Nakayama’s Lemma; since this module is
free, this set is its basis. Thus (i) is proved.
It follows from (i) that each D-invariant ideal of Bn is stable under all derivations;

but there are only trivial ideals with this property. Also by (i) we can write

Dpn

=
n
∑

i=1

fiD
pi−1

with fi ∈ Bn.

Since D centralizers all powers of D, we get
∑n

i=1 D(fi)D
pi−1

= [D,Dpn

] = 0,
whence D(fi) = 0 for all i. Then f1, . . . , fn are annihilated by all derivations of Bn,
and it follows that fi ∈ F for all i. Looking at the cosets modulo mWn, we deduce
from the earlier congruences that fi = (−1)n−i+1αi. Since dimBn = pn, we have
Dpn

= 0 whenever D is nilpotent. Hence (iv) follows from (i) and (iii). �

Lemma 1.5. Let D ∈ Wn be any derivation such that Bn is D-simple. Then:

(i) The derivations Dpi−1

with i = 1, . . . , n form a basis for Wn over Bn.

(ii) The n by n matrix
[

Dpi−1

xj

]

1≤i,j≤n
with entries in Bn is invertible.

Proof. Denote by a the p-Lie subalgebra of Wn generated by D. If D′ ∈ a ∩ mWn

then the ideal Bn ·D′(Bn) of Bn is D-invariant since [D,D′] = 0. As this ideal is
contained in m and Bn is D-simple, we conclude that D′ = 0. Thus a ∩ mWn = 0.
Let u(a) denote the restricted universal enveloping algebra of a. The dual space
u(a)∗ has a canonical algebra structure, and a operates on u(a)∗ via derivations.
The natural action of a on Bn gives rise to an a-equivariant homomorphism of al-
gebras ϕ : Bn → u(a)∗ (see [11, Th. 3.3.1]), which is an isomorphism by [7, Th.
3.2]. For our purposes it suffices to know that ϕ is injective, but this follows from
the facts that Kerϕ is a proper D-invariant ideal of Bn and Bn is D-simple. Since
dimBn = pn and dimu(a)∗ = pdim a, injectivity of ϕ entails dim a ≥ n. Then we
must have

dim a = n and Wn = a⊕mWn.

It follows that the set {Dpi−1

| i = 1, . . . , n} is a basis for a over F and also a basis
for Wn over Bn by Nakayama’s Lemma.
Since Dpi−1

=
∑n

j=1(D
pi−1

xj) ∂j , the matrix in (ii) is the transition matrix from

one basis (∂i)i=1,...,n of the Bn-module Wn to another basis (Dpi−1

)i=1,...,n. The
invertibility of this matrix is immediate. �
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2. The normal form of elements

Lemma 2.1. Let D ∈ Wn. Suppose that for some k, 1 ≤ k ≤ n, the k by k matrix

[

Dpi−1

xj

]

1≤i,j≤k

is invertible. Denote by J the ideal of Bn generated by x1, . . . , xk. Then there is a

unique k-tuple (y1, . . . , yk) such that the set {y1, . . . , yk} generates the ideal J and

Dy1 ≡ 1 (mod Jk(p−1)),

Dyj ≡
j−1
∏

i=1

yp−1
i (mod Jk(p−1)) for all j = 2, . . . , k.

Proof. Put V = J/mJ . This vector space has a basis consisting of the cosets of

x1, . . . , xk. Let U be the vector subspace in Wn spanned by {Dpi−1

| i = 1, . . . , k}.
There is a bilinear pairing U × V → Bn/m ∼= F given by the rule

〈D′, f +mJ〉 = D′(f) +m for D′ ∈ U and f ∈ J.

The invertibility of the matrix in the statement of the Lemma can be rephrased
in terms of the nondegeneracy of this pairing. Indeed, since m is a nilpotent ideal
of Bn and the matrix of the pairing coincides with the reduction modulo m of the
former matrix, one matrix is invertible if and only if so is the other. Note that the
vector space V and the pairing U × V → F depend only on the ideal J , but not on
the particular set of its generators x1, . . . , xk.

By Nakayama’s lemma arbitrary k elements t1, . . . , tk ∈ J generate the ideal J if
and only if their cosets modulo mJ span V , in which case these cosets give another
basis for V . If this condition is satisfied, then the n elements t1, . . . , tk, xk+1, . . . , xn

generate the algebra Bn. Indeed, since V embeds in m/m2, the cosets of those el-
ements modulo m2 form a basis for m/m2. Moreover, all the assumptions of the
lemma remain intact if the original n-tuple of generators (x1, . . . , xn) is replaced
with (t1, . . . , tk, xk+1, . . . , xn).

Passing to new generators, we may assume from the very beginning that the basis
{Dpi−1

| i = 1, . . . , k} for U and the basis {xi +mJ | i = 1, . . . , k} for V are dual to
each other. Thus

Dpi−1

xj ≡ δij (modm), 1 ≤ i, j ≤ k.

Now look at the following statements:

(i) There exist elements y1, . . . , yk generating the ideal J and invertible elements

u1, . . . , uk of Bn such that

Dy1 = u1, Dyj = uj

j−1
∏

i=1

yp−1
i for all j = 2, . . . , k.

(ii) Bn = D(J)⊕ Jk(p−1) and J ∩KerD = 0.
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We claim that (i) implies (ii). Suppose that (i) holds. For each integer r such that
0 ≤ r < pk let ri be the coefficients in the p-adic expansion

r =
k−1
∑

i=0

rip
i, 0 ≤ ri < p,

and put y(r) =
k
∏

i=1

y
ri−1

i

ri−1!
.

Denote by Jr the ideal of Bn generated by {y(s) | r ≤ s < pk}. Then we get a
chain of ideals J0 ⊃ J1 ⊃ · · · ⊃ Jpk−1 with J0 = Bn, J1 = J . The last ideal Jpk−1

is generated by a single element

y(p
k−1) = (−1)k

k
∏

i=1

yp−1
i .

Since J is generated by y1, . . . , yk and ypi = 0 for all i, we have Jk(p−1) = Jpk−1.
Put Jpk = 0 for later use.

Let us evaluate the derivation D at y(r) for r > 0. Since ypi = 0 for all i, we have

Dy(r) = (Dym)
y
rm−1−1
m

(rm−1 − 1)!

k
∏

i=m+1

y
ri−1

i

ri−1!
= (−1)m−1umy(r−1)

where m = min{i | ri−1 6= 0}. It follows that D(Jr) ⊂ Jr−1, and therefore for each
r, 0 < r < pk, there is a well-defined map

ϕr : Jr/Jr+1 → Jr−1/Jr

induced by D. Since D(fg) ≡ f(Dg) (mod Jr) for all f ∈ Bn and g ∈ Jr, the
above map is Bn-linear. Note that Jr/Jr+1 and Jr−1/Jr are cyclic free Bn-modules
generated by the respective cosets of y(r) and y(r−1). The earlier computation shows
that ϕr takes the coset of y(r) to the coset of (−1)m−1umy(r−1). Since um is an
invertible element of Bn, we deduce that ϕr is an isomorphism of Bn-modules.

It follows that Jr−1 ⊂ D(Jr)+Jr and Jr∩KerD ⊂ Jr+1. These inclusions enable
us to prove by induction that J0 ⊂ D(J) + Jr and J ∩KerD ⊂ Jr+1 for all r such
that 0 < r < pk. Taking r = pk − 1, we get

Bn = D(J) + Jk(p−1) and J ∩KerD = 0.

The second equality entails dimD(J) = dim J . On the other hand, Jk(p−1) coincides

with the annihilator of J in Bn. Therefore the multiplication by y(p
k−1) induces a

vector space isomorphism of Bn/J onto Jk(p−1). Hence

dimBn = dim J + dim Jk(p−1) = dimD(J) + dim Jk(p−1).

We see that the sum of D(J) and Jk(p−1) must be direct. Thus (ii) follows from (i),
as claimed.
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Now note that (ii) implies the conclusion of the lemma. Indeed, by (ii) there exists
a unique y1 ∈ J such that Dy1 ≡ 1 (mod Jk(p−1)). Once y1 is known, we deduce
that there exists a unique y2 ∈ J such that Dy2 ≡ yp−1

1 (mod Jk(p−1)), and so on.

Since the derivations D, Dp, Dp2

, . . . map Ja to Ja−1 for all a > 0, it follows by
induction on j and i that

Dpi−1

yj ≡
j−1
∏

s=i

yp−1
s (mod J (k−i+1)(p−1)), 1 ≤ i ≤ j ≤ k.

In particular, Dpj−1

yj ≡ 1 (mod J (k−j+1)(p−1)), but then Dpi−1

yj ∈ J (k−i+1)(p−1)

whenever j < i ≤ k. Hence Dpi−1

yj ≡ δij (modm) for all i, j ∈ {1, . . . , k}. The
nondegeneracy of the pairing U×V → F considered earlier entails yi+mJ = xi+mJ
for all i = 1, . . . , k, and we conclude that y1, . . . , yk generate the ideal J .

So it suffices to prove (i). We shall do this proceeding by induction on k. If k = 1,
property (i) means just that Dy1 /∈ m. Hence we may take y1 = x1. Suppose that
k > 1 and (i) holds for the ideal J ′ of Bn generated by k− 1 elements x1, . . . , xk−1.
Then there exist elements y1, . . . , yk−1 generating the ideal J ′ and invertible ele-
ments u1, . . . , uk−1 of Bn such that

Dy1 = u1, Dyj = uj

j−1
∏

i=1

yp−1
i for all j = 2, . . . , k − 1.

As we have seen, (i) implies that (ii) also holds for J ′. In particular,

Bn = D(J ′)⊕ J ′ (k−1)(p−1).

So we can find v ∈ J ′ such that Dxk −Dv ∈ J ′ (k−1)(p−1). Take yk = xk − v. The
ideal of Bn generated by y1, . . . , yk coincides with J since it contains J ′ as well as
xk = yk + v. The ideal J ′ (k−1)(p−1) is generated by the element

∏k−1
i=1 yp−1

i . Hence

Dyk = Dxk −Dv = uk

k−1
∏

i=1

yp−1
i

for some uk ∈ Bn. It remains only to show that uk is an invertible element of Bn.

Since Dpk−1

xj ∈ m for all j = 1, . . . , k − 1, we deduce that Dpk−1

(J ′) ⊂ m. In

particular, Dpk−1

v ∈ m. Hence

Dpk−1

yk = Dpk−1

xk −Dpk−1

v /∈ m.

On the other hand, Dpk−1−1 induces a Bn-linear map J ′ (k−1)(p−1) → Bn/J
′. In fact

this map coincides with the composite of all the maps ϕr, 0 < r < pk−1, introduced
earlier, but with J ′ in place of J . Hence

Dpk−1

yk = Dpk−1−1
(

uk

k−1
∏

i=1

yp−1
i

)

≡ uk D
pk−1−1

(

k−1
∏

i=1

yp−1
i

)

(mod J ′),

and it follows that uk /∈ m, as required. �
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Denote by Ik the ideal of Bn generated by xk+1, . . . , xn. In particular, I0 = m

and In = 0. Put

Dk =
{

n
∑

j=1

fj∂j | fj ≡
j−1
∏

i=1

xp−1
i (modBn ·

k
∏

i=1

xp−1
i ) for all j = 1, . . . , k

and fj ∈ Ik for all j = k + 1, . . . , n
}

,

D′
k =

{

n
∑

j=1

fj∂j | fj ≡
j−1
∏

i=1

xp−1
i (modm ·

k
∏

i=1

xp−1
i ) for all j = 1, . . . , k

and fj ∈ Ik for all j = k + 1, . . . , n
}

.

Clearly Ik is stable under every derivation in Dk. Hence D′
k ⊂ Dk ⊂ N(Ik).

Lemma 2.2. For any D ∈ Dk we have:

(i) Ik is the maximal D-invariant ideal of Bn.

(ii) Dpk

∈ IkWn if and only if D ∈ D′
k.

(iii) D is nilpotent if and only if D ∈ D′
k and λ(Dpk

) is nilpotent.

Proof. Let D =
∑n

j=1 fj∂j with f1, . . . , fn ∈ Bn. For each j = 1, . . . , k we can write

fj =
j−1
∏

i=1

xp−1
i + gj

k
∏

i=1

xp−1
i

where gj lies in the subalgebra of Bn generated by xk+1, . . . , xn. Let αj ∈ F be such
that gj − αj ∈ m. Then gj − αj ∈ Ik as well. Let π : N(Ik) → DerBn/Ik be the
canonical map. Recall that Kerπ = IkWn. Identifying Bn/Ik with Bk, we get

π(D) =
k
∑

j=1

(

j−1
∏

i=1

xp−1
i

)

∂j +
(

k
∏

i=1

xp−1
i

)

k
∑

j=1

αj∂j .

Thus π(D), regarded as an element of Wk = DerBk, satisfies the hypotheses of
Lemma 1.4. By that lemma the algebra Bn/Ik is π(D)-simple, but this is equivalent
to statement (i) of Lemma 2.2.
By Lemma 1.4 π(D) is nilpotent if and only if αj = 0 for all j = 1, . . . , k. Fur-

thermore, π(D) is nilpotent if and only if π(D)p
k

= 0 or, equivalently, Dpk

∈ Kerπ.
On the other hand, vanishing of α1, . . . , αk means that gj ∈ m for all j = 1, . . . , k,
that is, D ∈ D′

k. This yields (ii). Now (iii) follows from Lemma 1.1. �

We will denote by Gk the subgroup of G consisting of all automorphisms σ of Bn

which satisfy the following two conditions:

(1) the ideal of Bn generated by x1, . . . , xk is stable under σ,

(2) σ(xi) = xi for all i = k + 1, . . . , n.

Proposition 2.3. Let D ∈ Wn be any derivation with the maximal D-invariant

ideal of Bn equal to Ik. There exists a unique σ ∈ Gk such that D ∈ σ∗(Dk).

Proof. Let us check that D satisfies the hypothesis of Lemma 2.1. Consider the
algebra Bn/Ik ∼= Bk and its derivation π(D) induced by D. By the assumption

9



about D this algebra is π(D)-simple. Put xi = xi + Ik for i = 1, . . . , k. Lemma

1.5, applied to π(D), shows that
[

π(D)p
i−1

xj

]

1≤i,j≤k
is an invertible matrix with

entries in Bn/Ik. But

π(D)p
i−1

xj = Dpi−1

xj + Ik.

Since Ik is a nilpotent ideal of Bn, it follows that the matrix
[

Dpi−1

xj

]

1≤i,j≤k
with

entries in Bn is also invertible.
Thus Lemma 2.1 applies. Let (y1, . . . , yk) be the k-tuple given by the conclusion

of that lemma. Note that D ∈ Dk if and only if yi = xi for all i = 1, . . . , k. In fact,
writing D =

∑n
j=1 fj∂j with fj = Dxj , we have fj ∈ Ik for all j = k + 1, . . . , n

since D(Ik) ⊂ Ik. At the same time the condition on f1, . . . , fk in the definition of
Dk amounts to the conclusion of Lemma 2.1 for the k-tuple (x1, . . . , xk).
If σ ∈ Gk, then σ(Ik) = Ik. Therefore the maximal σ−1

∗ (D)-invariant ideal of Bn

coincides with Ik as well, but the k-tuple of Lemma 2.1 defined with respect to the
derivation σ−1

∗ (D) changes to (σ−1y1, . . . , σ
−1yk). It follows that σ−1

∗ (D) ∈ Dk if
and only if σ(xi) = yi for all i = 1, . . . , k. So it remains to observe that there exists
a unique σ ∈ Gk with this property. �

Corollary 2.4. Suppose that D ∈ Wn is such that Bn is D-simple. Then there is a

unique σ ∈ G such that D ∈ σ∗(Dn). In particular, D has trivial stabilizer in G.

Proof. In the special case k = n we have Ik = 0 and Gk = G since the ideal m
generated by x1, . . . , xn is stable under G. �

Corollary 2.5. The set Nreg = {D ∈ N (Wn) | Bn is D-simple} is a single G-orbit.

Proof. By Lemma 2.2 a derivation in Dn is nilpotent if and only if it lies in D′
n.

Hence, by Corollary 2.4, any G-orbit in Nreg intersects D′
n. However, D

′
n contains

only one element. �

In [5] Premet proved, assuming F to be algebraically closed, that the G-orbit of
the derivation in D′

n is dense in N (Wn).

3. Counting arguments

In this section we assume that F = Fq where q is a power of a prime p. We will
denote by #X the cardinality of a finite set X.

Lemma 3.1. Let g = gl(Ik/mIk), and let ϕ : D′
k → g be the map defined by the

rule ϕ(D) = λ(Dpk

) for D ∈ D′
k. Then

#ϕ−1(A) = qk(p
n−k−1)+(n−k)(pn−pk)−(n−k)2 for each A ∈ g.

Proof. Note that each D ∈ D′
k can be written as in Lemma 1.3 with

D2 ∈
n
∑

j=k+1

Ik∂j and D3 ∈ IkWn.

Then D1+D2 ∈ D′
k as well, whence both Dpk

and (D1+D2)
pk

lie in IkWn. Denote
by J the ideal of Bn generated by x1, . . . , xk. Applying Lemma 1.3, we get
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Dpk

− (D1 +D2)
pk

− (−1)kD3 ∈ IkWn ∩ JWn = (Ik ∩ J)Wn ⊂ mIkWn ⊂ Kerλ.

It follows that

ϕ(D) = λ(Dpk

) = λ
(

(D1 +D2)
pk)

+ (−1)kλ(D3) = ϕ(D1 +D2) + (−1)kλ(D3).

If D′ ∈ IkWn, then

D +
(

k
∏

i=1

xp−1
i

)

D′ = D1 +D2 +
(

k
∏

i=1

xp−1
i

)

(D3 +D′) ∈ D′
k, and

ϕ
(

D +
(

k
∏

i=1

xp−1
i

)

D′
)

= ϕ(D1 +D2) + (−1)kλ(D3 +D′) = ϕ(D) + (−1)kλ(D′).

The map λ : IkWn → g is surjective since {λ(xi∂j) | k < i, j ≤ n} is a basis for
g. Given A1, A2 ∈ g, we can find D′ ∈ IkWn such that λ(D′) = (−1)k(A2 − A1).

We see that ϕ(D) = A1 if and only if ϕ
(

D + (
∏k

i=1 x
p−1
i )D′

)

= A2, and so there is
a bijection between ϕ−1(A1) and ϕ−1(A2). Thus any two fibres of ϕ have the same
cardinality. Since D′

k is an affine translation of the vector subspace

V =
k
∑

j=1

mt∂j +
n
∑

j=k+1

Ik∂j ⊂ Wn where t =
k
∏

i=1

xp−1
i ,

it follows that

#ϕ−1(A) = #D′
k /# g = qdimV−dim g = qk(dimmt)+(n−k)(dim Ik)−(n−k)2 .

The isomorphism Bn/Ik ∼= Bk shows that Ik has codimension pk in Bn. Therefore
dim Ik = pn − pk. Denote by J the ideal of Bn generated by x1, . . . , xk. The mul-
tiplication by t induces a vector space isomorphism between Bn/J and Bnt. Since
Bn/J ∼= Bn−k, we get dimBnt = pn−k. Since Bnt/mt is spanned by the coset of t,
we deduce that dimmt = pn−k − 1. �

Lemma 3.2. The group Gk has order qk(p
n−pn−k−k)

k
∏

i=1

(qk − qi−1).

Proof. Denote by J the ideal of Bn generated by x1, . . . , xk. Each automorphism
σ ∈ Gk is determined uniquely by its values on x1, . . . , xk. The condition σ(J) = J
in the definition of Gk means precisely that σ(x1), . . . , σ(xk) generate the ideal J .
Hence the assignment σ 7→

(

σ(x1), . . . , σ(xk)
)

gives a bijection between Gk and the
set of k-tuples of elements generating J as an ideal. By Nakayama’s lemma arbitrary
k elements t1, . . . , tk ∈ J generate the ideal J if and only if their cosets modulo mJ
form a basis for the vector space J/mJ . As is well known, the number of different

bases for a k-dimensional vector space over Fq equals
∏k

i=1(q
k−qi−1). Furthermore,

qdimmJ is the number of elements in each coset modulo mJ . Hence qk(dimmJ) is the
number of possible ways to choose representatives of k cosets modulo mJ , and it
follows that

#Gk = qk(dimmJ)
k
∏

i=1

(qk − qi−1).
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Since Bn/J ∼= Bn−k, we have dim J = pn − pn−k. Then dimmJ = pn − pn−k − k,
and we are done. �

Lemma 3.3. Denote by Ik the set of all ideals I of Bn such that Bn/I ∼= Bk. Then

# Ik = q(n−k)(pk−1−k)
k
∏

i=1

qn − qi−1

qk − qi−1
.

Proof. Each ideal I ∈ Ik is generated by a set of n − k elements lying in m whose
cosets modulo m2 are linearly independent over Fq. There are

∏n−k
i=1 (qn − qi−1)

possible ways to choose an (n − k)-tuple of linearly independent vectors in the n-
dimensional vector space m/m2. Hence

q(n−k)(dimm
2)

n−k
∏

i=1

(qn − qi−1)

is the number of (n − k)-tuples of elements generating an ideal in Ik. The same
ideal I can be generated in

q(n−k)(dimmI)
n−k
∏

i=1

(qn−k − qi−1)

different ways. So it follows that

# Ik =
q(n−k)(dimm

2)

q(n−k)(dimmI)
Cn, n−k where Cn,r =

r
∏

i=1

qn − qi−1

qr − qi−1
.

Note that Cn,r is the q-binomial coefficient equal to the number of r-dimensional
subspaces in an n-dimensional vector space over Fq. In the above formula we may
replace Cn, n−k with Cn,k since these two numbers are equal. We also have dimm2 =
pn − 1− n and dimmI = pn − pk − (n− k). Hence dimm2 − dimmI = pk − 1− k,
yielding the desired equality. �

For an integer k such that 0 ≤ k ≤ n, an ideal I of Bn such that Bn/I ∼= Bk, and
a nilpotent linear transformation A ∈ gl(I/mI) put

Nk = {D ∈ N (Wn) | the maximal D-invariant ideal of Bn has codimension pk},

NI = {D ∈ N (Wn) | the maximal D-invariant ideal of Bn coincides with I},

NI, A = {D ∈ NI | λ(Dpk

) = A}.

Theorem 3.4. Let 0 ≤ k ≤ n, let I be any ideal of Bn such that Bn/I ∼= Bk, and

let A be a nilpotent linear transformation of the vector space I/mI. Then

#NI, A = qnp
n−(n−k)pk−k(k+1)−(n−k)2

k
∏

i=1

(qk − qi−1),

#NI = qn(p
n−1)−(n−k)pk−k2

k
∏

i=1

(qk − qi−1),

#Nk = qn(p
n−1)−(2n−k)(k+1)/2

k
∏

i=1

(qn−i+1 − 1).
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Proof. Since I is G-conjugate to Ik, we may assume that I = Ik. By Lemma 2.3

NI =
∐

σ∈Gk

σ∗(NI ∩ Dk), a disjoint union.

Since all automorphisms in Gk induce the identity transformation of I/mI, the

derivations Dpk

and σ∗(D
pk

) induce the same transformation of I/mI for any
σ ∈ Gk and D ∈ NI ∩ Dk. Hence

NI, A =
∐

σ∈Gk

σ∗(NI, A ∩ Dk).

By Lemma 2.2 NI ∩ Dk ⊂ D′
k. So it follows that NI, A ∩ Dk = ϕ−1(A) where ϕ is

the map from Lemma 3.1. We see that there is a bijection between NI, A and the
cartesian product Gk × ϕ−1(A). Hence #NI, A = #Gk ·#ϕ−1(A).
The set NI is a disjoint union of subsets NI, A with A running over the nilpotent

cone N (g) in the Lie algebra g = gl(I/mI) ∼= gln−k(Fq). Since #NI, A does not
depend on A, we get #NI = #N (g) ·#NI, A. The first factor here is the number
of nilpotent n− k by n− k matrices with entries in Fq. It is known from [2]:

#N (g) = qdim g−rank g = q(n−k)2−(n−k) = q(n−k)(n−k−1).

Finally, #Nk = # Ik · #NI since Nk is a disjoint union of subsets NI′ with I ′

running over Ik. Lemmas 3.1, 3.2 and 3.3 provide all values needed. �

The main result stated in the introduction now follows from the next lemma:

Lemma 3.5. Let Nk = #Nk. Then
n
∑

k=0

Nk = qn(p
n−1).

Proof. From the explicit formula in Theorem 3.4 we deduce the recurrence relation

qn−k−1Nk+1 = (qn−k − 1)Nk for k = 0, . . . , n− 1.

Now a downward induction on k shows that
n
∑

i=k

Ni = qn−kNk for all k = 0, . . . , n.

Taking k = 0 and noting that N0 = qn(p
n−2), we arrive at the desired conclusion.

�
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