Казанцев Андрей Витальевич

ЛЕКЦИИ ПО ФИНАНСОВОЙ МАТЕМАТИКЕ (фото)

II семестр 2016-2017 учебного года

Шифр направления / специальности: 38.03.05

Наименование направления / специальности: Бизнес-информатика

Количество занятий: 9 пар (18 часов)

СОДЕРЖАНИЕ

- Лекция 1. Вводная часть. Наращивание капитала по сложным процентам. Традиционный денежный поток. Свойства функции чистой приведенной стоимости. Критерий *NPV* и его связь с критерием *PI*.
- Лекция 2. Критерий IRR, вычисление IRR. Конструкции для критерия MIRR. Вычисление значения MIRR. Пример. Критерий MIRR.
- Лекция 3. Обоснование критерия MIRR. Пример потока с двумя IRR: вычисление IRR, вычисление MIRR. Непрерывное наращивание капитала: постановка проблемы обоснования. «Фигуранты» финансового менеджмента в основе страхования пенсий: $i, v, d, i^{(m)}, d^{(m)}$.
- Лекция 4. Окончание темы «фигурантов». Эстетика связи между i и $i^{(m)}$ эквивалентность ставке $i^{*(m)}$. Выражения ставок $i^{(m)}$ и i друг через друга. Величина $i^{(m)}$ как математический объект. Финансовые аннуитеты.
- Лекция 5. Коллоквиум.
- Лекция 6. Облигации введение, определения, проблемы. Формулы-омонимы. Проблема иммунизации. Дюрация. Свойство иммунизации.
- Лекция 7. Структурное уравнение облигации. Действия со степенными рядами. Доходность к погашению линейное приближение. Упражнения для «креативной» контрольной. Пять теорем об оценке облигаций. Теорема первая.
- Лекция 8. Теоремы 2 5: «словами», «в формулах», ШАБ-переформулировка.
- Лекция 9. Экзамен.

PUHAH COBA 9 MATEMATUKA.

NEKTOP: KASAHUER AH, APEN BUTANGEBUZ

l'illane xorelocs on npurep*ubarral yréstoro nocosrul:

MUCCAPOL M. A. Bledenue 6 phylorolyo MATEMATURY. - KAZano, 2010. - 72 C.

Тема лекучи: Элементы Бизнес-Экспертизы: Опыт математизации.

Depeparn.

когда то все нагиналось с книжки;

Eyzoba N.A., Maxoburoba T.A., Tepexoba B.B. Konneprecial Oyunka Unbecruyin : CMS, 2003

Фото 1-2: Наращивание капитала по сложным процентам

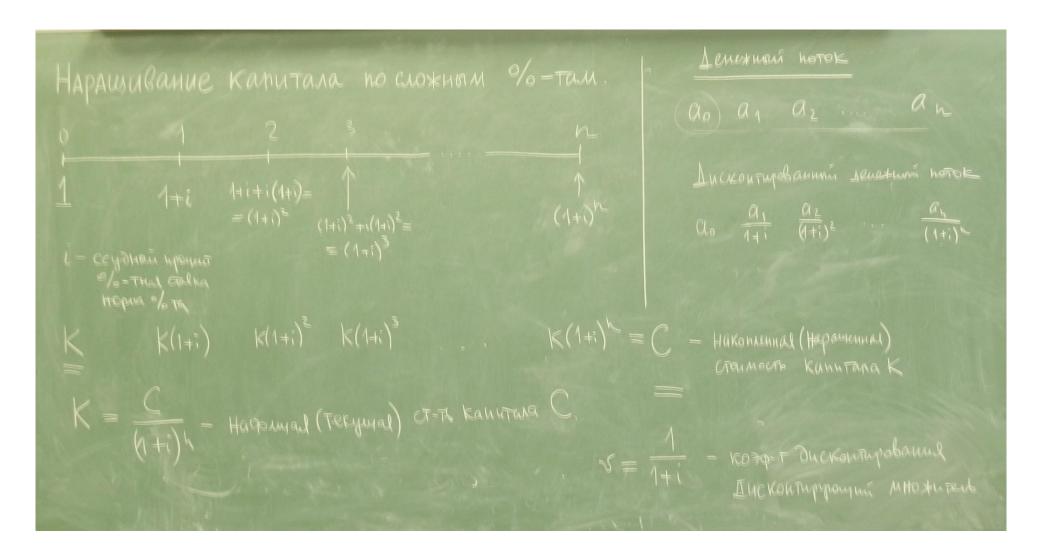


Фото 1-3: Традиционный денежный поток

- Co C1 C2 Ch	Bee C _k ≥	0	Co > (Q2 >0
1 punep	$\frac{C_k}{(1+i)^k}$	NPV = -	2000 + -	1000 1+0,4	1500 (1+0,4) ² + 2000 (1+0,4) ³
0 1 2 3 1=40%		0	1	2	3
$\frac{-2000}{-6}$ 1000 1500 2000 ($n-3$)	Ynetal 10x01	-2000	1000	1500	2090
$\frac{-2000}{-6}$ 1000 1500 2000 $(n-3)$	Auck-Mun MH-Nb	1	1 = 0,71 Y	1 = 0,510	1 (1+i) 3 = 0,364
	THETER LOXOL	- 7000	STREET, SQUARE,	The second secon	778,863
	TOXOT CANPTO MICLO THE CONTRACT	-2000			208,459

Фото 1-4: Свойства функции чистой приведенной стоимости

Cb-ba pyricyum $NPV = f(i)$ $y = f(x)$
$NPV = -C_0 + \sum_{k=1}^{n} \frac{C_k}{(1+i)^k} = f(i) = -C_0 + \frac{C_1}{1+i} + \frac{C_2}{(1+i)^2} + \dots + \frac{C_n}{(1+i)^n}$
Hauru u dokasars; 1) Obracio oupe qui $f(i)$; $D_c = (-1, +\infty)$ IRR = Internal Rate of Return
1) Obració onpr que $f(i)$: $D_f = (-1, +\infty)$ IRR = Internal Rate of Return 2) $f(i)$ 'ena b D_f ; $f(i)$ 2x00 'en b D_f ;
3) $f(i)$ youlder; upolepuro, up $f'(i) < 0$ upu $i \in D_{f}$; -1 0 $VPV = f(i)$ 4) $f(i)$ bruyena Brus; upolepuro $f''(i) > 0$;
4) \$1(1) sorryers 8 + 12 (1) > 0; 5) lim f(i) = - (0) lim f(i) = - (0 + \(\frac{1}{2}\) (k = NP), lim f(i) = +> 1 > -1+
(1) Henp, (t.k. otta enc) => f(i) hypothemical lie year 3 Hazether in by + 20 m = Co

Фото 1-4-1: Свойства функции чистой приведенной стоимости

Cb-ba pynagun NPV = f(i)	4 = f(x)
$NPV = -C_0 + \sum_{k=1}^{n} \frac{C_k}{(1+i)^k} = f(i) = -C_0 + \frac{C_1}{1+i} + \frac{C_2}{(1+i)^2} + + \frac{C_n}{(1+i)^n}$	
Hauru u dokasars:	
+	rhal Rate of Return
2) f(i) 'ena 6 Df; f(i) 2x00 'en lDf;	
3) f(i) yenlaer: neolepuro, no f'(i) < 0 hou i EDp; -1 0/ 4) f(i) langua laus: no depure f''(i) > 0;	Mev-fa)
5) $\lim_{i \to +\infty} f(i) = -c_0 \lim_{i \to 0} f(i) = -c_0 + \sum_{k=1}^{\infty} c_k = NP \lim_{i \to -1+} f(i) = +\infty$	3/4/11/31
) 1-1+ m + 1 1	
6) f(i) Herp (7.K, otto emc) => f(i) lopenhances be your streamed to by to m-Co	

Фото 1-5: Критерий NPV и его связь с критерием PI

Kpurepuń PI Kpurepuń NPV	Задание: Сформируйте критерий NPV
PI<1 >NPV < 0 > Npoent otherwich	в применении к сравнению двух проектов. Обоснуйте получивымийся критерий.
PI=1 > NPV = 0 > crutaitel, yo hputhitul mocketa He npullecet hu npubniu, thi yourka	Chomal M OH & coopyympolenneus acels
PI>1 WPV>0	
PI = Profitability Index = undexc pensalens 40 con (npulsus war, do xonto con)	
The transmitted $PI = \frac{1}{C_0} \sum_{k=1}^{n} \frac{C_k}{(1+i)^k} = 1 + \frac{1}{C_0} NPV$	

21.02.2017: Лекция 2

Фото 2-1: Критерий IRR, вычисление IRR

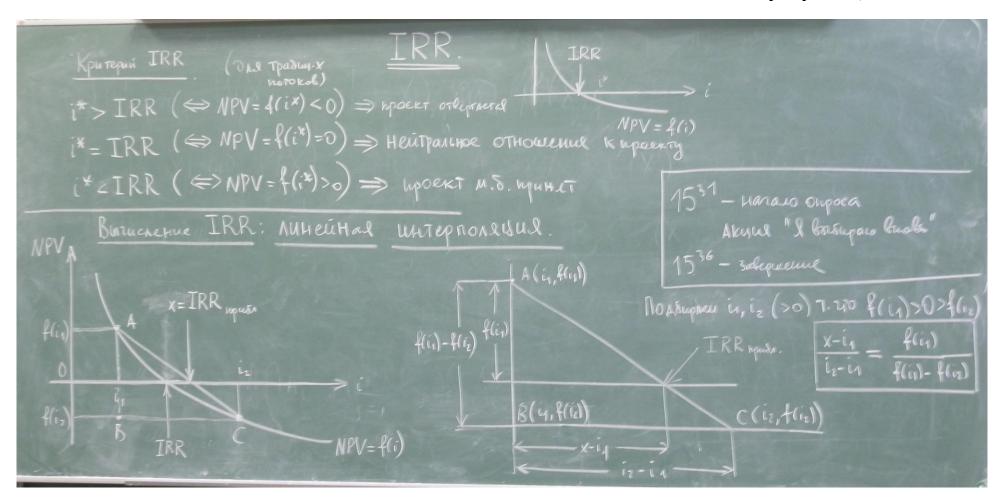


Фото 2-1-2: Критерий IRR, вычисление IRR

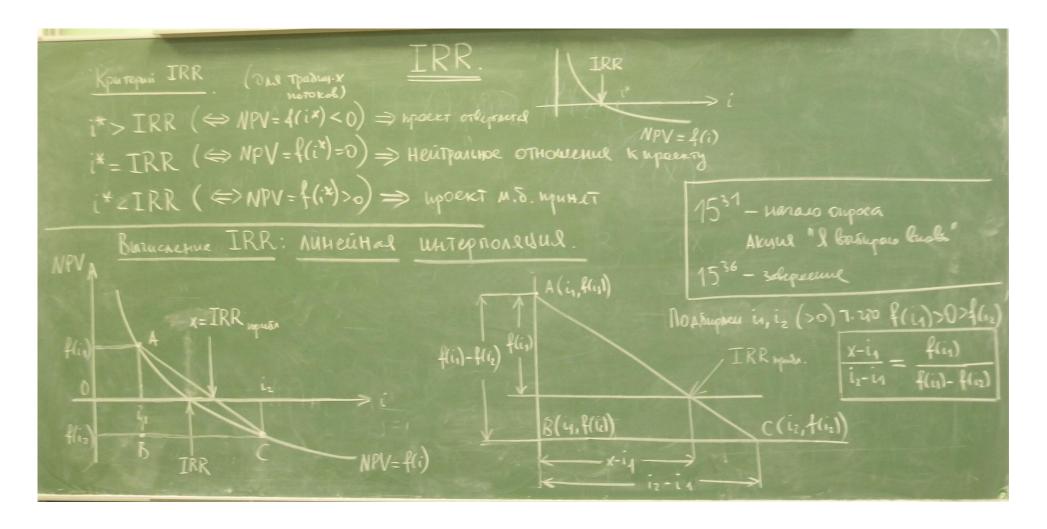


Фото 2-2: Конструкции для критерия MIRR

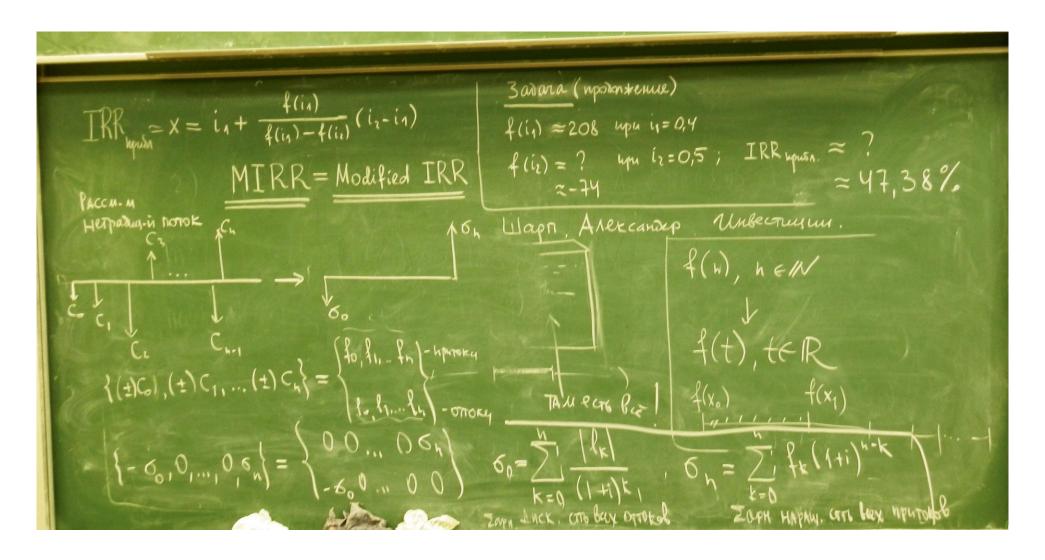


Фото 2-2-1: Конструкции для критерия MIRR

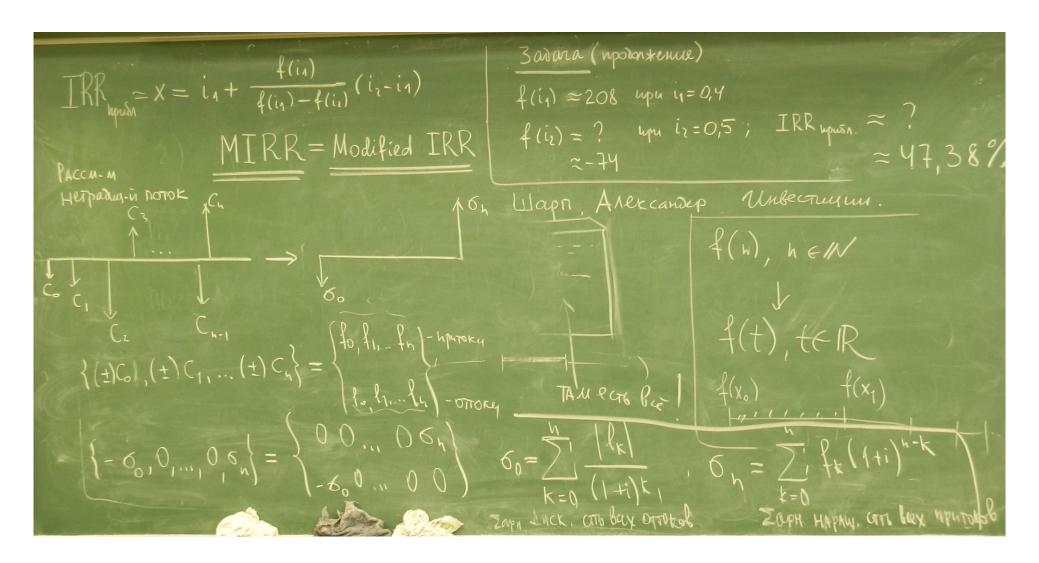


Фото 2-3: Вычисление значения MIRR



Фото 2-4: Вычисление значения MIRR. Пример

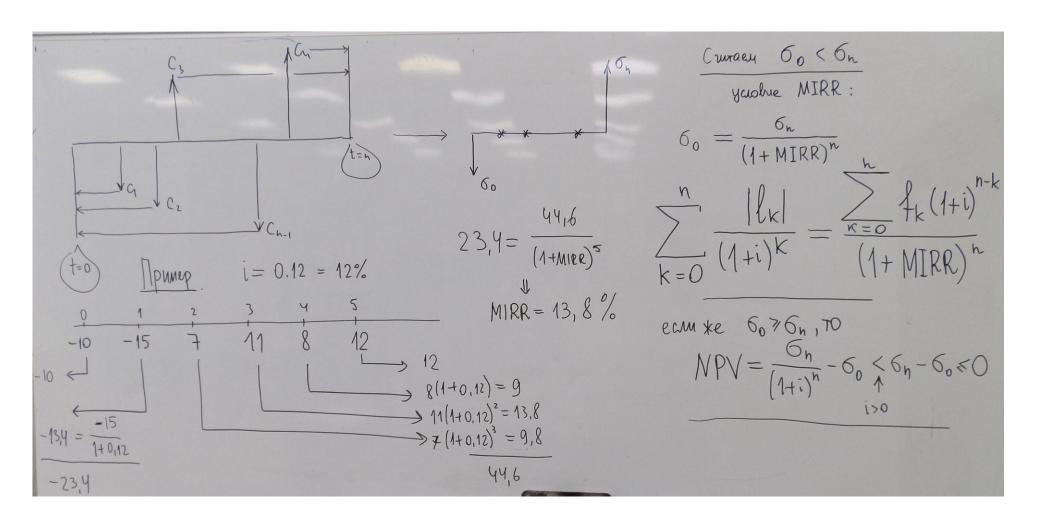


Фото 2-5: Критерий MIRR

$$\frac{28 \operatorname{pelpang}}{\operatorname{MIRR}} = g(i) \qquad G_{o}(i) = \frac{G_{n}(i)}{(1+g(i))^{n}} \implies g(i) = \sqrt[n]{\frac{G_{n}(i)}{G_{o}(i)}} - 1 \stackrel{\text{pro}}{=} (1+i)\sqrt{1+\frac{f(i)}{G_{o}(i)}} - 1$$

$$q(i) < i \iff f(i) < 0$$

$$q(i) = i \iff f(i) = 0$$

$$q(i) > i \iff f(i) > 0$$
MATERIATIVECKUÚ
npototum

ADCKE SIMO OSOCHOBAHUEM

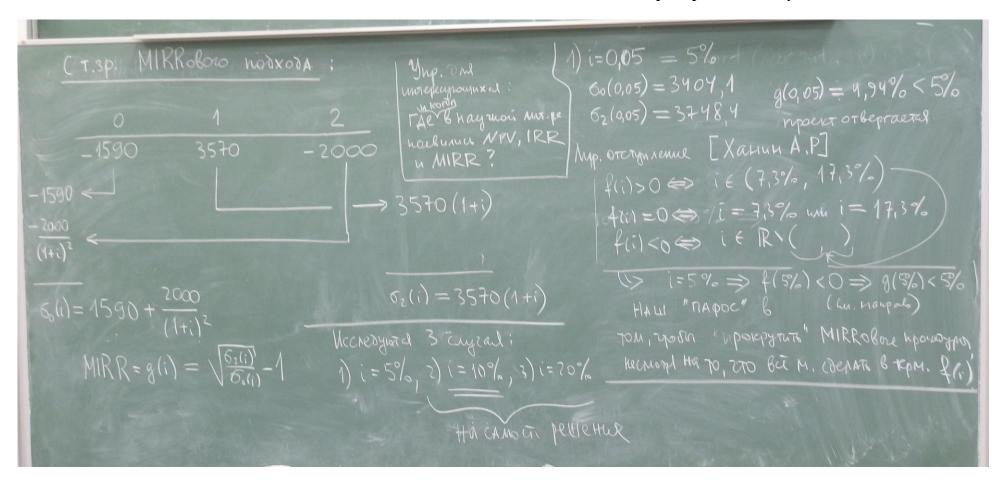
KPUTEPUR

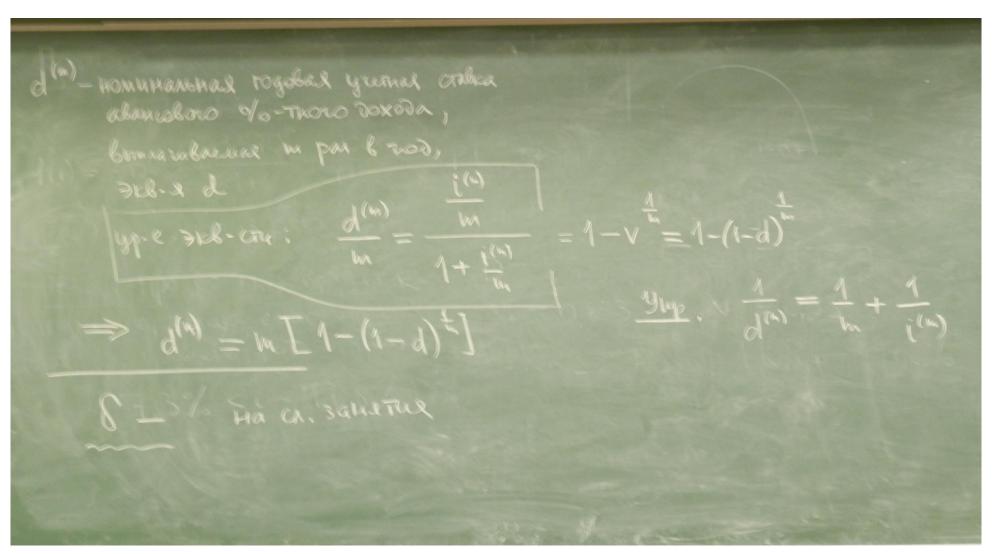
MIRR

KPUTEPUR MIRR.

Фото 3-2: Пример потока с двумя IRR: вычисление IRR

Фото 3-3: Пример потока с двумя IRR: вычисление MIRR



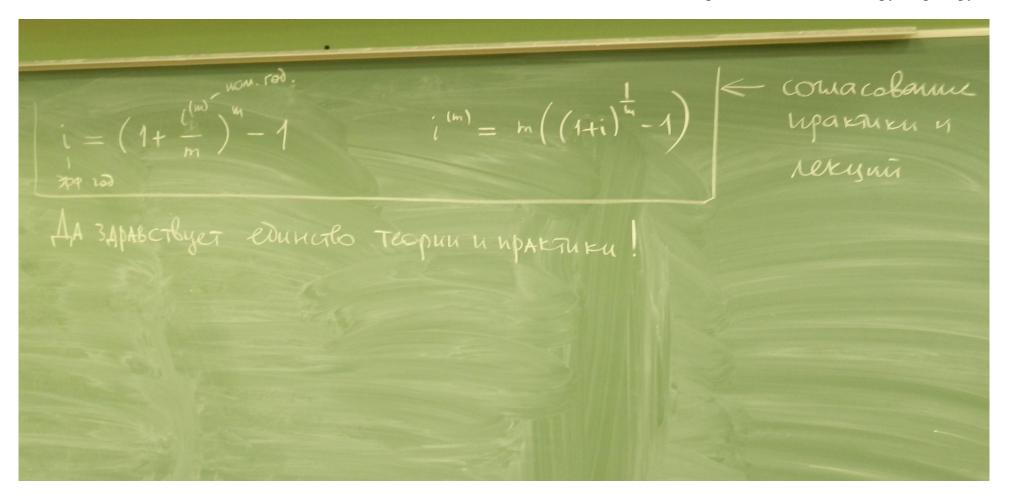

Фото 3-4: Непрерывное наращивание капитала: постановка проблемы обоснования

Проблема. Как мы теперь Знаем, имеет место некий феномен, который в состании спищего $C(1+i)^n = C(n)$	CO3HAHUL
$t=0$ $t=h$ будил сознание: $\forall t \in (0,n)$ в момент времени t в банке на рассматриваемом стёте намичествует сумма, равная $C(t)$.	
$1/3$ вышеукаханной картинки , на которой $\frac{C(n)=C(1+i)^n}{C(t)=C(1+i)^t}$, $n\in\mathbb{Z}_+=1NU10$ 5 , принято делать вывод, 20	7/ .
Προδιμια cocrons b τομ, γροδία δοκολασε, 270 W $C(t)=[(1+i)^t, t\in 7L_+, cueλψει, γρο C(t)=C(1+i)^t, t\in R_+,$	/2+
Mrp. Och morepenganuxa. 10 CMorpero, Kak pennaered sta hpothena 6 governmen mir-pe.	

 ${\it \Phiomo}$ 3-5: « ${\it \Phiurypahtu}$ » финансового менеджмента в основе страхования пенсий: $i,v,d,i^{(m)}$

i-partuuckas woobas		C(1+i)"	
mpowerman crabka			
V-Anckontupylogynin MH-16	= 1 1+i v ⁿ S	$\frac{S}{i} = \frac{1-S}{\sqrt{s}}$	
= KOTO-T ANCKOHTUP-R	1=0	+= 101=05007	
d-PAKTURECKAS POSOBAS d= Grethal CTABRA = CTABRA SUCKOHTA	= \frac{i}{1+i} = 1-\sigma C \\ Ci\sigma \	C(1+1) > Ci	
i (m) - HOMUMANENAR TODOBAR	1 + = 01 - 1	The maps	1+i
Yo-Har CTABLA C	1 1+ -(m	$\left(1+\frac{1}{u_1}\right)^3$	(4+ i(m)) M
Vo-ная СТАВКА С выплатой Vo-тов и раз Вг Эквивалентная С	00) 3K6-CM;	$1+\frac{i^{(m)}}{m}+\frac{i^{(m)}}{m}(1+\frac{i^{(m)}}{m})=$	ln /
141	$m[(1+i)^{\frac{1}{2}}-1]=m\frac{1-v^{m}}{v^{\frac{1}{2}}}$	1 - (1 16)/5	

 Φ ото 3-6: «Фигуранты» финансового менеджмента в основе страхования пенсий: $d^{(m)}$



7.03.2017: Лекция 4

Фото 4-1: Окончание темы «фигурантов». Эстетика связи между i и $i^{(m)}$ – эквивалентность ставке $i^{*(m)}$

The solution of the individual department bruse (inc. hope of the left)
$$t$$
 and the point action of the individual department of the point action t and t

 Φ ото 4-2: Выражения ставок $i^{(m)}$ и i друг через друга

Это – ответ на вопрос студента Ханина: **Как согласуются определения номинальной и эффективной годовых ставок на лекциях и на практике?** Слева – формула, которая была дана на практике, справа – только что выведенная формула с предыдущего фото, т.е. на лекции. Очевидно, эти формулы являются обращениями друг друга, следовательно, *согласуются*. Вопрос «*как* согласуются» – это уже эмоции...

 Φ ото 4-3: Величина $i^{(m)}$ как математический объект

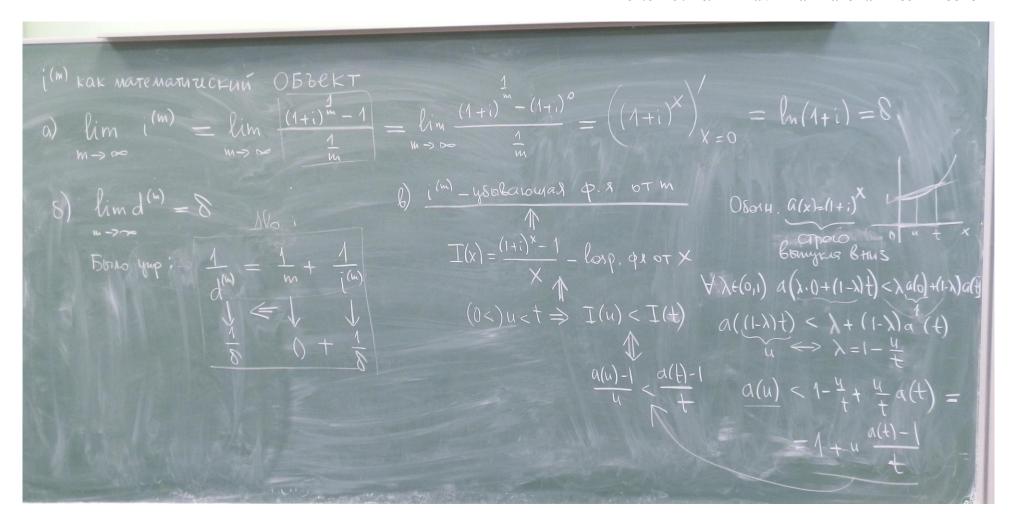
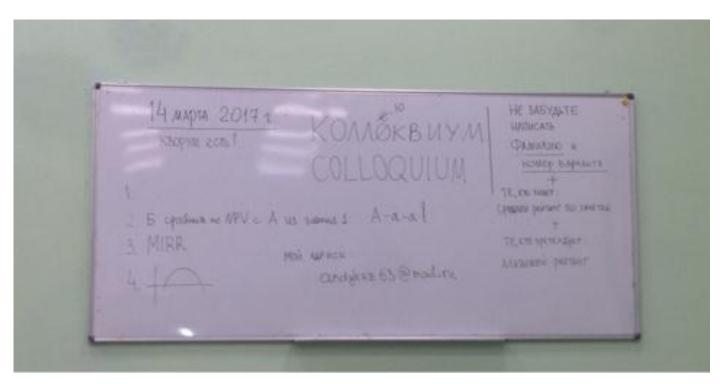



Фото 4-4: Финансовые аннуитеты

TO3. 2017
$$\Gamma$$
, by Phiancologic anhymeteric (penish). Hecroanologic analyses are nearly obtained from the comparison of the composition of the com

14.03.2017: Лекция 5 – Коллоквиум

Фото 5-1: Комментарии к коллоквиуму

© Данное фото по моей просьбе прислала мне по е-mail студентка группы 09-301 Шакирова Рената Ирековна

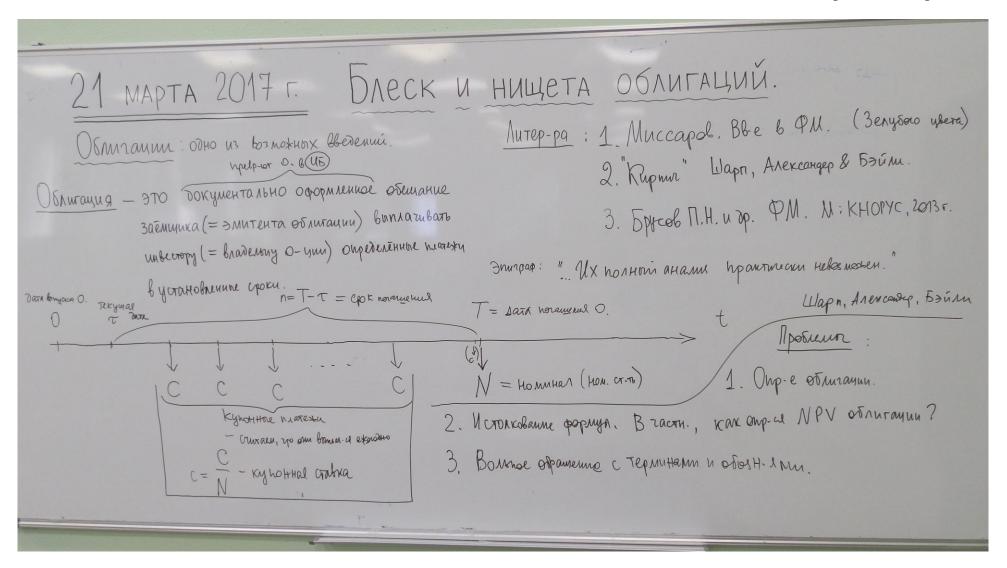


Фото 6-2: Формулы-омонимы

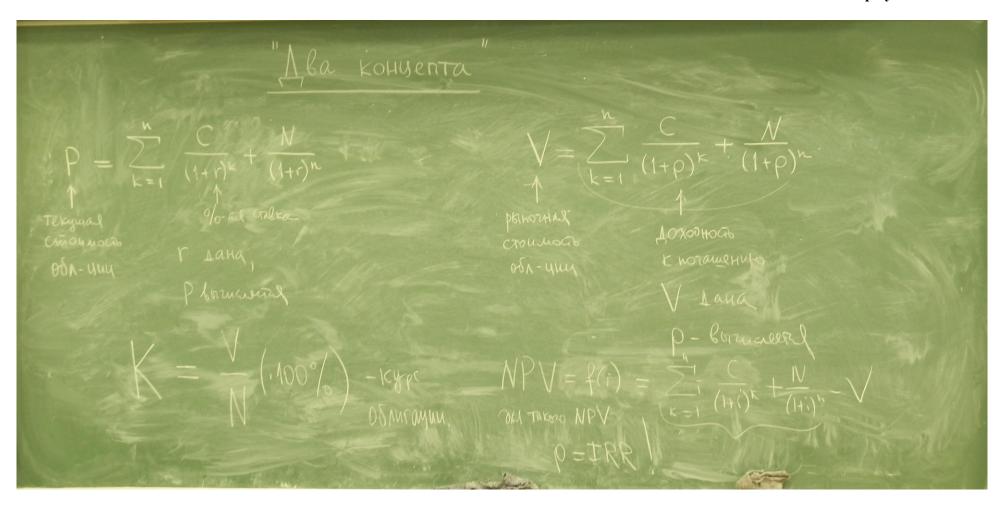


Фото 6-3: Проблема иммунизации

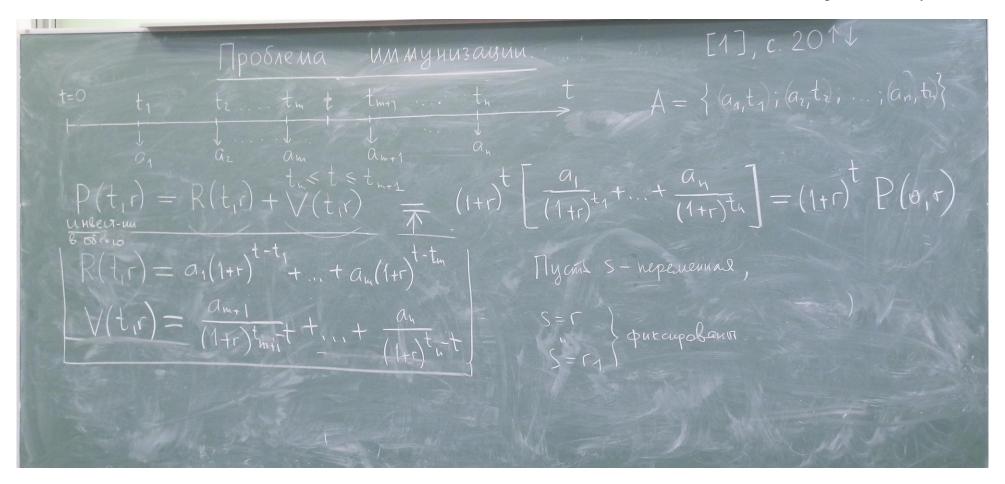
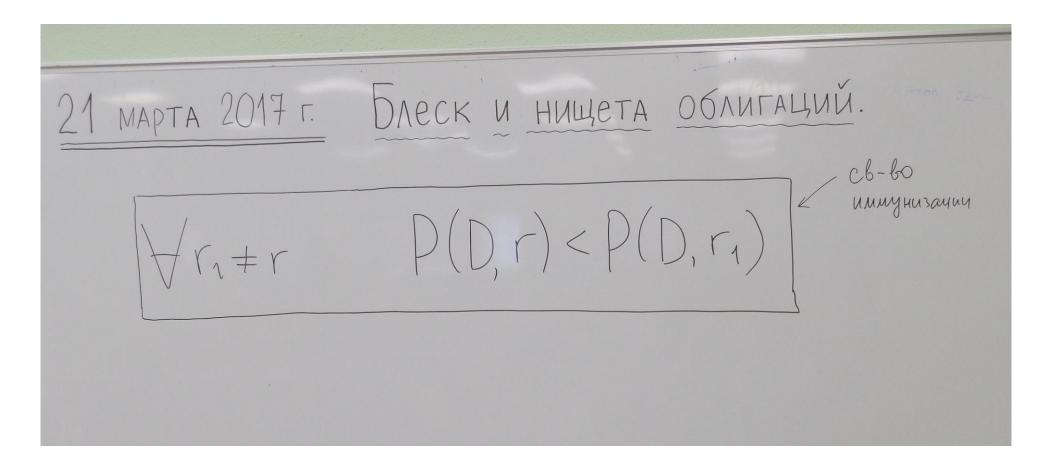



Фото 6-4: Дюрация

Фото 6-5: Свойство иммунизации

$$\frac{2803.2017 (6n)}{(1+p)^{K+1}}, 216, DMMA \qquad \text{Along the lines of } [5pyc]...$$

$$V = \sum_{k=1}^{n} \frac{cN}{(1+p)^{k}} + \frac{N}{(1+p)^{n}} \qquad V = \frac{1}{2} \frac{cN}{(1+p)^{n}} + \frac{N}{(1+p)^{n}} \qquad V = \frac{N}{2} \frac{cN}{(1+p)^{n}} + \frac{N}{(1+p)^{n}} = \frac{C}{1+p} \frac{1}{(1+p)^{n}} + \frac{1}{(1+p)^{n}} = \frac{C}{1+p} \frac{1}{(1+p)^{n}} + \frac{1}{(1+p)^{n}} = \frac{C}{1+p} \frac{1}{(1+p)^{n}} = \frac{C}{1+p} \frac{1}{(1+p)^{n}} = \frac{C}{1+p} \frac{1}{(1+p)^{n}} = \frac{N}{1+p} - \frac{N}{1+p} = \frac{N}{1+p} - \frac{N}{1+p} + \frac{N}{1+p} = \frac{N}{1+p} + \frac{N}{1$$

Фото 7-2: Действия со степенными рядами. Доходность к погашению – линейное приближение

$$\frac{\prod_{pegagum cl} pashoxenub \ CP.}{(1+x)^{a} = 1 + d \times + \frac{d(d-1)}{2!} \times^{2} + ... + \frac{d(d-1)...(d-q+1)}{4!} \times^{q} + ... + \frac{d(d-1)}{4!} \times^{q} + ... + \frac{d(d-1)...(d-q+1)}{4!} \times^{q} + ... + \frac{d(d-1)...(d-1)}{4!} \times^{q} + ... + \frac$$

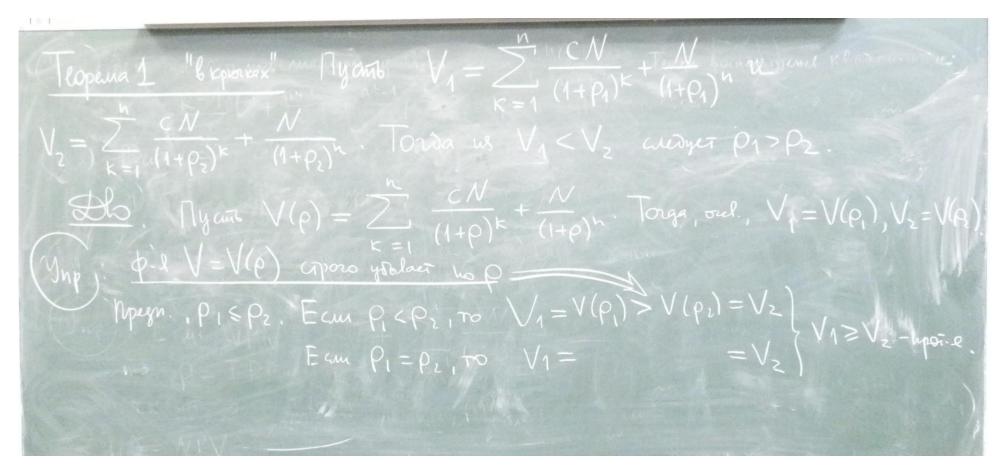
Фото 7-2-1: Действия со степенными рядами. Доходность к погашению – линейное приближение

$$\frac{\prod_{p \in gaguncl} pashoxenulo}{(1+x)^{d} = 1+d \times + \frac{d(d-1)}{2!} \times^{2} + ... + \frac{d(d-1)...(d-q+1)}{q!} \times^{q} + ... (-1 < \times < 1)}{(1+p)^{-h} = 1-np + \frac{n(n+1)}{2}p^{2} - \frac{n(n+1)(n+2)}{6}p^{3} + ...} = 1 \Rightarrow a_{2} = \frac{n+1}{2} \cdot \frac{n+1}{2} - \frac{(n+1)(n+2)}{6} = \frac{n^{2}-1}{12}$$

$$\frac{1+(q_{1}-\frac{h+1}{2})p+(a_{2}-\frac{h+1}{2}a_{1}+\frac{(n+1)(n+2)}{6})p^{2} + ... = 1}{(1+p)^{-h}} \Rightarrow \frac{1+\frac{h+1}{2}p}{1+\frac{1}{(1+p)^{h}}} \Rightarrow \frac{1+\frac{h+1}{2}p}{1+\frac{h+1}{2}p} \Rightarrow \frac{1+\frac{h+1}{2}p}{1+\frac$$

Фото 7-3: Упражнения для «креативной» контрольной

The Bowe we boen ma runcinen upulsi-ey lea-no
$$\frac{h\rho}{1-(1+\rho)^{-h}}$$
. Teneps bocnossyems relaparation:


 $\frac{K-1}{N}\left(1+\frac{N+1}{2}\rho+\frac{N^2-1}{12}\rho^2\right)=(-\rho^2)$. Πομγιστό στιοδιά θείχ- e διλε ρ μμώς.

The flycan ρ - τοιποε значения $\frac{1}{12}\rho^2$ $\frac{1}{12}\rho$

Фото 7-4: Пять теорем об оценке облигаций – Теорема первая «словами»

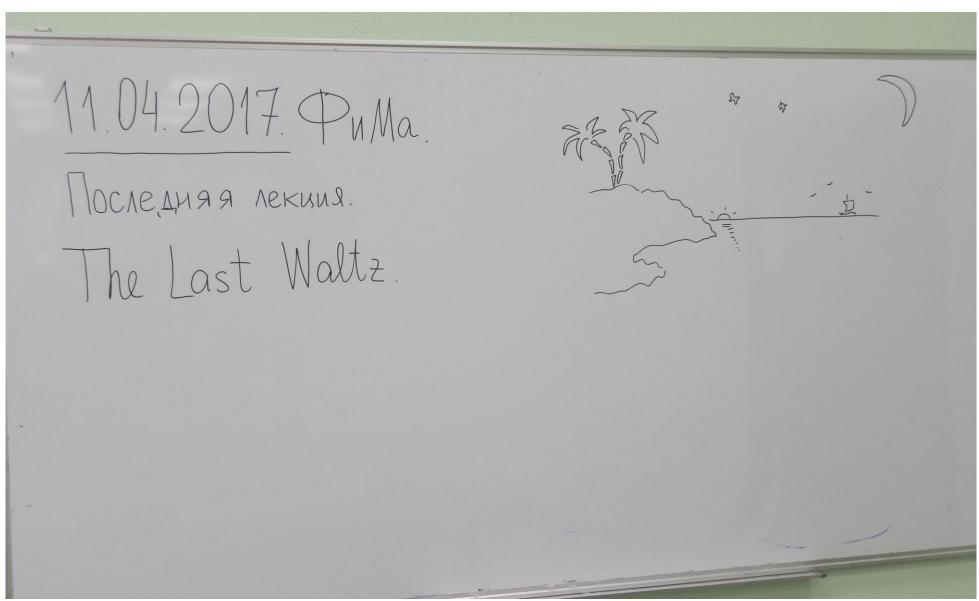
28.03.2017 (Bm), 216, DuMA / 9mb Teopen 08 Oyethre Osmuraymi.
Теорема 1. Если роногный куре обл-ции увенишвается, то доходность к ногашению должна надать; и наморот,
[ворема]. Если ротногияй куре обл-чии увеничивается, то доходность к почашению должна падать; и наморот,
если рамочний курс облигации падает, то дох-ть к пол-ю д. расти.
$\Lambda = 1000 = 1000 = 1000$
119-9. Ush. A $11-370.1$
0.4068
$V = cN - \frac{1}{(1+p)^{h}}$ $V = cN - \frac{1}{(1+p)^{h}} + \frac{1}{(1+p)$
(1) (1) (1) (2)
2) Pipal-76: p(900) win 0,1068? 4/ Pipmin (300) 10 hyman - Wolfram - He obligar-40
- He oblish the

Фото 7-4: Пять теорем об оценке облигаций – Теорема первая «в формулах»

04.2017. ФиМА Леорема 2. Если доходность облигации не менецая в течение срока её обращения, то величина дисконта или преши бутут ументогатья 1520, ayg. 216. при уменьшении срока до погашения. $\frac{\text{Tipunep}}{(\text{Wapn})} = 081-18. \quad N = 5 \text{ Net} , N = 1000, c N = 60$ cneg.pa: 11.04.17 Контра по теории (выможно...) $V = \frac{1}{60} \frac{1 - \frac{1}{(1+\rho)^4}}{\rho} + \frac{N}{(1+\rho)^4} + \frac{N}{(1+\rho)^4} = \frac{1}{(1+\rho)^4} = \frac{1}{$ 38 - 8 = 30 - op new rupobosho09-301 09-302 09-303 11 res. 13 res. 6 res. The Tpobepuis, no reper rog hom yorohm, up et noxon Hours but lune palme 9%, obsurand SucroHT = N-V, ear N-V>0 beaml = V-N, eam V-N>0 Teopena 2 "b kporkax". Ecm P= const, HOP+c, TO bernouna N-V ynensmaerd c ynensmen n. (& "honyrpunker").

Фото 8-2: Пять теорем... – Теорема вторая «в формулах»

| Lopena 2 | 6 kploceax |
$$\rho = cont$$
 | $\rho \neq c$ | $\rho \neq$


Фото 8-2: Пять теорем... – ШАБ-переформулировка теоремы 2 и связанные с ней упражнения. – Теорема третья «словами» и «в формулах»

$\Box AB$ - переформунировка Т-мы Z . Если две $\partial \delta \Lambda$ -ин имеют $\partial \delta h y$ и ту $*$ е куп. ставку, номинал и дох-ть, то та, у кот-й срок $\partial \delta \rho$ амения короле, δ , прозаваться с меньими дисконтом им премией.
(Ynp.) Pazosparo npunep na c. 457 in WAB, othocouguised & ston Teopene.
(ynp.) Banumure zry neperpopu-ky b kpirkox" u danie dok-lo.
(ynp.) Passepure, 200 davot pue. 16.1 nac. 457 WWAB u puc. 5.1 Ha
196 m Bryc 6 KOHTUCTETUM 2 1 (Sup) 1930 Spand lip p la (. 75+-950 VIIIAK
T-Ma3 Ecun DOX-TO BEN-MY HE MEHRETER & Theme yora et odpanjemul, TO 6-407 Duckouta
I-Ma3 Ecum dox-το θδλ-μη με μεμετις 6 Theme cooka ee ospanjenine, το β-μος διακουτα μη πρεμιμι δ ynenmagical τεμ δοςτρεε τεμ δοςτρεε μη-ερ cook do horamenul. (Μη) Κακ μπιοκρημεί της 3ακοτιομερτιστό ρας 16.1 Hac. 457 HAB.
T-Ma3 "b kphykax", $\rho = comt u \rho + c \Rightarrow V-N ''_{nn} < 0$. D-b-ymp)

Фото 8-4: Пять теорем... – Теорема четвертая «словами» и «в формулах». Теорема пятая «словами»

4.04.2017. Φ 15 ²⁰ , aug. 216.	MA. MA JMEHBLEMME DOX-TU OBMITAMUM housever k poury et kyper Ha ber-ty 60'nomyo, rem cooth-upe navetue kypea upu ybenirumu Doxodtoctu na ty ke benirumy.
След. рах: 11.04.17 Контра по теории (выможно) 38-8=30-оримпировогно 09-301 09-302 09-303 11-ил. 13-ил. 6-ил. Тох-ти к погащению бучет т. (Замитание: Эта ТМА Не в	T-Ma 4 "b exposeon". Tyerto $\Delta V_1 = V(\rho - \Delta \rho) - V(\rho) (>0)$, Torga $\Delta V_1 > \Delta V_2$. $\Delta V_2 = V(\rho) - V(\rho + \Delta \rho) (>0)$. Thocut: e USM-e Kypca 86n-um (6%) & pe3-te N3Mehehul em neunile, "em brule kynohhad cmabka. em neunile, "em brule kynohhad cmabka. entryntett (UB co cpokom 95panjemin 1 rog, a takke k beccepturum bynanam, neryntett.) $\Delta V_2 = V(\rho) - V(\rho + \Delta \rho) (>0)$. $\Delta V_2 = V(\rho) - V(\rho + \Delta \rho) (>0)$. $\Delta V_2 = V(\rho) - V(\rho + \Delta \rho) (>0)$. $\Delta V_2 = V(\rho) - V(\rho + \Delta \rho) (>0)$. $\Delta V_2 = V(\rho) - V(\rho + \Delta \rho) (>0)$.

11.04.2017: Лекция 9 и последняя – Экзаменационная контрольная.

