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Summary. The eigertvalue problem fbl guidctl rlo<les of integrated optical guides
is formulated as a ploblent fol the set of tinrc-halmonic \Iaxwell's cqrratiotrs. The
,rliginal problem is rcdrrced to a strongly-singulnr.domain integral equation. which
is often used in placticc for cornputatiorr. :rucl it is proved that the operator of the
rlotrrain integrtrl equation is a Fredholm operntor '"vith zero index. It is also proved
that the spectnrm ofthe origirral problem carr orrly be a set of isolatcd points.

1 Introduction

ht this wolk we study the uatural rnodes of ari optical fibel integ-r'ated irrto
a three-layer- planar rncdiunr. which is lcll'eserrtative of typical optictrl cir--
criits. In the abscnce of a planal background. the basic propelties of optical
fibels ale desclibcd in [1]. [2]. I\Iole leccntlr,. the rnethods of the theor-y of
unbounded self-tr"d.joiut operatols htrve bccrr trpplied to the tr,ntr,lysis of the
guided modes of optical fibers l3l . Fol the guirlc<l nrocles of ititeglatccl oltticnl
grrides, a ligolous rrrathematical nnzrlysis lbl the scalar case has bocn ple-
scnted ln l+] 16]. Iu 13] [6] the author.s. lry rrsirrg the rnln-max 1>r.inciple fbr
urrbounded self-aclioilt operators, plove<l tlrc cxistelce of guidccl nrorles, the
urtrnber of which is finite aud deperrds ou fi'crpcrrcy. In 17] [8] tlic rnetltorl of
ltoundary integral cqttatious was appliecl to the rnathenratical alcl nntrrclical
study of the guiclecl rnodes of ltomogeneous optical fibers.

Due to thc cotrtplexity of the integlated optical stmcture, doruzrin integlal
ecluations utilizing appropriate GLeen's firrrctions (to accourrt fol the back-
glound media) are tr popular practical approach for courputitrg the natural
fiber modes [9] 111]. A problem witli donrtrirr integral equations is that they
ale strongly-siugtrlar, whicli previously plcvcritcd their use in a urtrthernati-
cal study of the spectmm of the eigenvahres, with the exception of 112] for
tlte guided rnodes of optical fibers in a horuogeneons backglouncl rrrccliunr.
It was provel in [12] that the operatol of thc ciomain integral cquatiorr is
serni-Fredholrn.

In this work a rigolous mathernatical trrrnlysis of the guidecl rrocies clf an
integrated optical guide is presented bzrscd u1>on a stronglv-siugultrr domtrin
irrtegral equatiott wliicli is useful for practica,l computatiol. It is ploved that
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the operator of the domain integral equation is a Fredholm operatol n'ir:.
zero index, which, in turn, enables the extensive use of the spectral theor',
of linear nonselfadjoint operators lt3]. By using this result we prove that tl,,
spectrum of the operator can only be a set of isolated points. Our results a:,
important for future theoretical investigation of convergence of the knor'.':.
nurnerical methods 19] 111].

2 Statement of the problem

We consider the guided modes of the integrated optical guide. Let the thle'.-
dimensional space {(r1, rz,rs): -oo ( xir,T2,r3 ( oo} be occupied br-a:-
isotropic source-free medium, and let the refractive index be prescribed as ..

positive real-valued function n : n(rt,r2) independent of the longitudina.-
coordinate 13. We assume that there exists a bounded domain J-/ on tli.,
plane IR2 : {(rr, z2) : -x I ny,r2 < m} such that n(r) : n-(.r':
r : (rr,12) € 9*: R2 \D, where n-(22) depends only on the 12 variabl,,.
It is a piecewise-constant function representing the refractive index of tli..
so-called associated planar waveguide. For simplicity, we take

We can assume without loss of generality that n2 ) n3 ) n1. Denote b1'n-
the maximum of the function n in the domain f/, and suppose that n1 ) rr;.
We assume that I C 92: {(*r,*z): -oo ( iD1 ( oo, 0<-rz < d} and als,,
that n(r) is a continuous function in J-l2 that is the guide does not har-e a

sharp boundary. Denote by 11 and l-z the boundaries of the domain Q2:

fr : {(zr, 12) : -x { zr ( oo, nz : d), (2

fz : {(rt,r2) : -x { ,rr ( oo, 12 :0}. (3

The modal problem can be formulated as a vector eigenvalue problem frrr
the set ofdifferential equations (we use notations 13] for differential operatols

RotpB : iwp"sll ,

RotBIf : -iueon2E.

Here es, LLo are the free-space dielectric and magnetic constants, respectiveh'.
We consider the propagation constant B as an unknown complex parameter
and radian frequency c^.r ) 0 as a given parameter. We seek non-zero solution:

lE , II) of set (4), (5) in the space ftr2 (IR2;] 
6 

. enysically this condition mean>
that we are looking for surface modes. In any neighborhood of the boundalr-
fi, i:1,2, that does not include the domain J2 the vector-functions.E ancl

(l
(n, if 12)d.

n*(rz):1nz if 0<12<d,
[ ". if 12 10.

(l
(;
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FI a.e analytic and have to satisfy the us.ar continuity conditions fbr their
tangential components (see, for example, 114]):

(ux E)- :(u x E)+, (ux H)- :(ux II)+, r €li, j :1,2. (6)

He.e v is the *nit normal vector on 4, .x' is the vector product, and /+(/-)is tlre limit of the firnction / fi'or'above (from below) the line fi, i:1.2.gy ,15t) denote the principal (physicar) srreet of the Riemann surface of the
firriction 1"x(d).where 1(p) : J?2E-F, k2 : a2e(rll,s, which is specified
lrr-the conditions -7T12 < arcX,j) <3nf2,Ini(x(6)) >0, p e ,{S1).

Denote by 131 the propagation constants of rtr a'd rl\,I modes of thc
associated planar waveg'ide 11]. It is well k'.wn il] that there exist no more
tlran a fi.ite nnrnber of values 0 j, and tliat all ,rul.i"r 03 belong to the dornai'

{g e l[tt:ImB: 0. kn3 <l0l < krr]. (T)

\\'e define D : {p 1,15t) .,!.p:0}U{/, € /51) : rmp:0, lgl S t},ri'lrere 7 : rraxl0rl. t, a similar *uy [o-li] *" ..i,r see that the domain D
corlesponds to the contirruu' of propt-igation constants of radiatiol modes
that do'ot belong to (rr(R2))6. Th"'"for" we do'ot investigate the varuesJeD.

Definition L. A non,z,ero uector [E,II) e (f,, 1nr;)o is ,efe,red. to as un
eig.enuector of the problem (1,) (6) corre,sponding to'an eigenualue g e ,1, :
-{il1a i'J the relat'iors of probrem (1r) (6) a,re,uarid,. The set of ail eigenuarues
of problern (/,) (6) 'is called the speci.trum of this proble,m.

3 Main results

Theorem I. The set B. . !0 e l[tl : hnB : 0, lBl > krtl] ,i,s Jree of th,e
eigenualues of problern (/) (6)

Tliis theorern for the ca,s€ ?21 : n2: ?13 w&s pr.ovecl in i3]. For tlie general
case the proof is analogous.

rf IE ' 
rr] € ('2 (IR2))6 is an eigenvector of problem (4) (6) cor-respondi'g

to an eige'val.e p e ,4, the' (we 
'se 

notatio's l:] fot affi'erential operators)

II(r) : -io;egRot,; ,f furUl - ,r*) GQ:r.y)E(ilrta, (9)
I

whe.e r : R'\ (nu f2). furrction G([];:r,g) is the well knorv. tensor Gr.ee'
firrrction 115]. Passing tlte opelatol GraclpDivl3 undel tlie irrtegral irr relatio.

E(r) : (n'"'** Gr.acli3Div d #, I t*Ol - r!) G(0;r.y)E(y)cty, (B)

I



448 Evgueni Kartchevski and George Hanson

(8), and using the differentiation rule [16] for weakly singular integrals we

obtain a nonlinear spectral problem for a strongly-singular domain integral
equation

(10)

(11)

(12 )

(13)

(14)

(15)

(16)

(17)

(18)

where 
@({3)E) (r) : o' r € o'

e@)E) (u) : E(r) + 
rrn@)e@)

- 1,, (g;,,a) (H - t) nat) au

-, o lnr, (*,a) (H - t) nst) au

- I,r' (g; r,a) (H - t) os1) au,

t tKF), +iofto@loq IrF:l 6i)r+i0Fs04_lErz I,
li7naalart + i7Fz)iDl1rz + (k2n2* - 02) rto 1

TrF : [ (at'l' g'ud2) grad2@1('' Y)'l 
,lol

(F@,g'ud2) : oilIoyt-t oF2Ioy2,

't.,) 
: ("'r"t"'- -' 

"@)f':" 
- ' 

3)
\ o o ol

K (g ; *, ilF @) : tt' n'*F @)@ (g ; r, il + (F @,grud, ) 
gr ad2e s (p ; r, y),

(1e )

G(g;*,a) : @ (g;*,y) -l G"(p;r,y), Q (g;r,u) : )u[tl Q@)lt - al),

r (20)

Ar@.a) : -Glnlr - yl, @o(0;n,a) : A(0;r,a) - Qr(r,a), Qr)

L(p ; *, a) F (a) : (t* n2* f GradBDiv d G" (P; *, a) F (a), fi : 1Fr, Frlr .

(22)
Note here that for any {3 e ,r1 and any y € l? the functions G"(0; r,y) and
iDo(g;r,y) arc twice continuously differentiable for r € R'\ (fr u&). For
all B e zl the operator Q(13) that is determined by (t0) will be considered as

an operator in the space of complex-valued functions [I2(J2)]3. For all B e ,zl

the operator Q(0) has a highly singular kernel.

Theorem 2. For all B e A the operato, Q(0) 'is Fredholm uith zero 'inder.
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This theorem is proved by general results of the theory of singular integral
operators [16].

Definition 2. A nonzero aector F e lL2 @)]" it called an e'igenuector of the
operator-ualued functi,on Q(0) correspondi,ng to an eigenualue p € A if the
relat'ion

a(p)F :0. (23)

js 'uaLi,d.

Theorem 3. Suppose lE,IIl € lrr(IR'z)]u i, on e,igenuector of the problem
t0 @ correspond'ing to an ezgenualue 0o € A. Then F : E € lLr(9)]3,
.r € Q, is an eigenuector of the operator-ualued funct'ion Q(p) correspond'ing
to the same e'igenualue Bs. Suppose F e lL2@)13 i,s an ei,genuector of the
operator-ualued functi.on Q(13) correspond'ing to an eigenualue pg € A, and
ul,so let

E(r) : (k'n'** GradBDir, t) + [ @'@) - n'*) G(g;r,y)F(fidy,Qa)'niJ
I

f
I

rr@) : -ic,.,esRotB I Qr'(il - r2*) G({J;r,ilF(ilda,
.l
a

(25)

for r € IR'\ (rt or2). ThenlE,IIl € [rr(IR'z)]6 and,lE,IIl is an ersen-
rector of the problem (/)-(6) correspond'ing to the same eigenualue 0o.

This theorem is proved by direct calculations.

Theorem 4. The spectrum of the problem (D @ can be on,ly a set of iso-
lated po'ints on A.

This theorem is followed fiom Theorems 1 3 and general results of the
theory of operator'-valued functions 1131.
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