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Summary. The eigenvalue problem for guided modes of integrated optical guides
is formulated as a problem for the set of time-harmonic Maxwell’s equations. The
original problem is reduced to a strongly-singular domain integral equation, which
is often used in practice for computation, and it is proved that the operator of the
domain integral equation is a Fredholm operator with zero index. It is also proved
that the spectrum of the original problem can only be a set of isolated points.

1 Introduction

In this work we study the natural modes of an optical fiber integrated into
a three-layer planar medium, which is representative of typical optical cir-
cuits. In the absence of a planar background, the basic properties of optical
fibers are described in [1], [2]. More recently, the methods of the theory of
unbounded self-adjoint operators have been applied to the analysis of the
guided modes of optical fibers [3]. For the guided modes of integrated optical
guides, a rigorous mathematical analysis for the scalar case has been pre-
sented in [4]-[6]. In [3]-[6] the authors, by using the min-max principle for
unbounded self-adjoint operators, proved the existence of guided modes, the
number of which is finite and depends on frequency. In [7]-[8] the method of
boundary integral equations was applied to the mathematical and numerical
study of the guided modes of homogeneous optical fibers.

Due to the complexity of the integrated optical structure, domain integral
equations utilizing appropriate Green’s functions (to account for the back-
ground media) are a popular practical approach for computing the natural
fiber modes [9]-[11]. A problem with domain integral equations is that they
are strongly-singular, which previously prevented their use in a mathemati-
cal study of the spectrum of the eigenvalues, with the exception of [12] for
the guided modes of optical fibers in a homogencous background medium.
It was proven in [12] that the operator of the domain integral equation is
semi-Fredholm.

In this work a rigorous mathematical analysis of the guided modes of an
integrated optical guide is presented based upon a strongly-singular domain
integral equation which is useful for practical computation. It is proved that
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the operator of the domain integral equation is a Fredholm operator witl.
zero index, which, in turn, enables the extensive use of the spectral theo:
of linear nonselfadjoint operators [13]. By using this result we prove that 1.
spectrum of the operator can only be a set of isolated points. Our results a:
important for future theoretical investigation of convergence of the know:
numerical methods [9]-[11].

2 Statement of the problem

We consider the guided modes of the integrated optical guide. Let the three-
dimensional space {(x1,22,23) : —00 < 21,12, 23 < 00} be occupied by a1
isotropic source-free medium, and let the refractive index be prescribed as
positive real-valued function n = n(xy,z2) independent of the longitudin:
coordinate x3. We assume that there exists a bounded domain {2 on th:
plane R? = {(z1,22) : —00 < 1,22 < oo} such that n(z) = ns(rs
z = (21,22) € 2o = R?\ 12, where Noo(22) depends only on the xo variabl
It is a piecewise-constant function representing the refractive index of th
so-called associated planar waveguide. For simplicity, we take

ny if ao >d,
Noo(2) =< no  if 0 <y <d, 1

n3 if 2o < 0.
We can assume without loss of generality that ns > ng > ny. Denote by 7
the maximum of the function n in the domain {2, and suppose that n, > -
We assume that 2 C 25 = {(21,22) : —00 < 21 < 00, 0 < 22 < d} and als
that n(x) is a continuous function in (2 that is the guide does not have
sharp boundary. Denote by Iy and I the boundaries of the domain 2:

I ={(z1,22) : —o0o <21 < 00, z2=d}, (2
Iy = {(.’1'1.;1'2) oo < T <00, X2 = 0} {5

The modal problem can be formulated as a vector eigenvalue problem fo:
the set of differential equations (we use notations [3] for differential operators

RotsE = iwugH, (4
RotgH = —iwegn?E. (5

Here ¢, j1o are the free-space dielectric and magnetic constants, respectivelv
We consider the propagation constant 3 as an unknown complex paramete:
and radian frequency w > 0 as a given parameter. We seek non-zero solutions
[E, H] of set (4), (5) in the space [Lg(le)](l . Physically this condition means=
that we are looking for surface modes. In any neighborhood of the boundary
I';, 7 = 1.2, that does not include the domain 2 the vector-functions E and
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H are analytic and have to satisfy the usual continuity conditions for their
tangential components (see, for example, [14]):

(WxE)” =(vxE)". (vxH) =(@wxH)", vely, j=1,2 (6)

Here v is the unit normal vector on I, - x - is the vector product, and I
is the limit of the function f from above (from below) the line I, 5 =1,2.

By Aél) denote the principal (physical) sheet of the Riemann surface of the
function In x (), where y(3) = Vk2n3 — 82, k? = w2egpg, which is specified
by the conditions —7/2 < arg x(8) <37/2, Im (x(B)) > 0, B € /1((]”.

Denote by 3; the propagation constants of TE and TM modes of the
associated planar waveguide [1]. It is well known [1] that there exist no more
than a finite number of values 3 j» and that all values 3; belong to the domain

{BeAl) :Imp =0, kns < |B] < kn). (7)

We define D = {5 € A" : Reg = 0bU{B e AV - tmp = 0, 18] < v},
where v = max|3;|. In a similar way to [4] we can see that the domain D
corresponds to the continuum of propagation constants of radiation modes

6 . .
that do not belong to (Lg(IRQ)) ", Therefore we do not mvestigate the values
e D.

Definition 1. A nonzero vector [E.H] € (LZ(IR,Q))() is referred to as an
eigenvector of the problem (4)-(6) corresponding to an eigenvalue 3 € A =
Al((Jl) \ D if the relations of problem (4)-(6) are valid. The set of all eigenvalues
of problem (4)-(6) is called the spectrum. of this problem.

3 Main results

Theorem 1. The set B = {3 Aél) 2ImB =0, 8] > kny} is free of the
cigenvalues of problem (4)-(6).

This theorem for the case n, = n2 = ng was proved in [3]. For the general
case the proof is analogous.

If[E, H| e (LZ(IR,Q))G is an eigenvector of problem (4)(6) corresponding
to an eigenvalue 3 € A, then (we use notations [3] for differential operators)

E(z) = (k*n% + GradDivj) % / (n*(y) — n,;) G(B;x.y)E(y)dy, (8)
nZ |
Q

H(z) = —iwsgRoty / (n*(y) — uic) G(G:x.y)E(y)dy. (9)

Q
where z € IR? \ (I'1 U Iy); function G(3;2,y) is the well known tensor Green
function [15]. Passing the operator GradsDiv under the integral in relation
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(8). and using the differentiation rule [16] for weakly singular integrals we
obtain a nonlinear spectral problem for a strongly-singular domain integral

equation

where

K(f;x, U)IA’(g) = A'Q'I'I,icﬁ’(;l/)fp(ﬂ; z,y) + (f‘(y).gm(lQ) grad,®o (5 2,y

(QB)E) (x) =0, =z € 12,

(KF), +iBF300/0x,
([\'F)z + lﬂF;O@/an
i/’fF10@/8.1'1 + 1/3F20¢/012 + (117271:; ~ /32) Fs®

T\F = { (F(y), gra(12) grad, @ (x, ;1/)} ‘
0

TF

(ﬁ“(y) gra‘(lz) = 0F,/0y1 + OF»/0ya,

n2(z)/n2, —1 0 0
n(x) = 0 n?(x)/n2, —-10
0 0 0

(10)

y

)
(

19)
» i

G(Bix,y) =2 (Biv,y) + G (Bray), P(Gix,y) = IH(()I) (x(B) |z —yl).

(20)
1

Dy (2, y) = ~o Inje—yl, Po(B;x.y) =D(Bia,y) — P1(v,y), (21)

L(B;x,y)F(y) = (k*n2, + GradgDivg) G*(B;2,y)F(y). F = [F1, Fo)T.
(22)

Note here that for any € A and any y € 2 the functions G*(3;x,y) and
Do(B;x,y) are twice continuously differentiable for 2z € IR? \ (I U I). For
all 3 € A the operator Q(/3) that is determined by (10) will be considered as
an operator in the space of complex-valued functions [La(£2)]3. For all 5 € A
the operator Q(/3) has a highly singular kernel.

Theorem 2. For all § € A the operator Q([3) is Fredholm with zero index.
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This theorem is proved by general results of the theory of singular integral
operators [16].

Definition 2. A nonzero vector F € [Ly (£2)]? is called an eigenvector of the
operator-valued function Q(f3) corresponding to an eigenvalue 3 € A if the
relation

Q(B)F = 0. (23)

is valid.

Theorem 3. Suppose [E, H| € [LQ(IRQ)]6 s an eigenvector of the problem
4)-(6) corresponding to an eigenvalue 3y € A. Then F = E € [L2(02)]?,
r € £2,1s an eigenvector of the operator-valued function Q(f3) corresponding
fo the same eigenvalue (y. Suppose F € [La(£2)]? is an eigenvector of the
operator-valued function Q(f3) corresponding to an eigenvalue By € A, and

also let

’ 1 ]
E(x) = (k*nZ, + GradsDivp) = / (n*(y) —nZ) G(B;x.y)F(y)dy(24)
%/
H(x) = —iwegRotg / (772(;1/) - 'n,zo) G(f;x,y)F(y)dy, (25)

n

for x € R?\ (I1 UIy). Then [E,H] € [LQ(IRQ)}G and [E, H] is an eigen-
vector of the problem (4)-(6) corresponding to the same eigenvalue (.

This theorem is proved by direct calculations.

Theorem 4. The spectrum of the problem (4)-(6) can be only a set of iso-
lated points on A.

This theorem is followed from Theorems 1-3 and general results of the
theory of operator-valued functions [13].
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