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Abstract—The structural and dynamic properties of the three-component Zr47Cu46Al7 system are subjected
to a molecular dynamics simulation in the temperature range T = 250–3000 K at a pressure p = 1.0 bar. The
temperature dependences of the Wendt–Abraham parameter and the translation order parameter are used to
determine the glass transition temperature in the Zr47Cu46Al7 system, which is found to be Tc ≈ 750 K. It is found
that the bulk amorphous Zr47Cu46Al7 alloy contains localized regions with an ordered atomic structures.
Cluster analysis of configuration simulation data reveals the existence of quasi-icosahedral clusters in amor-
phous metallic Zr–Cu–Al alloys. The spectral densities of time radial distribution functions of the longitu-
dinal ( (k, ω)) and transverse ( (k, ω)) f luxes are calculated in a wide wavenumber range in order to study
the mechanisms of formation of atomic collective excitations in the Zr47Cu46Al7 system. It was found that a
linear combination of three Gaussian functions is sufficient to reproduce the (k, ω) spectra, whereas at
least four Gaussian contributions are necessary to exactly describe the (k, ω) spectra of the supercooled
melt and the amorphous metallic alloy. It is shown that the collective atomic excitations in the equilibrium
melt at T = 3000 K and in the amorphous metallic alloy at T = 250 K are characterized by two dispersion
acoustic-like branches related with longitudinal and transverse polarizations.

DOI: 10.1134/S1063776116060042

1. INTRODUCTION
Amorphous metallic alloys represent a new class of

structural and functional materials with extraordinary
properties, which differ from the properties of their
crystalline analogs [1–3]. For example, amorphous
metallic alloys have a high strength and elasticity and
good plasticity during strong deformation [4, 5]. On
the whole, this class of materials is characterized by a
wide spectrum of unique physicochemical and
mechanical properties, which attracts deep interest
from a standpoint of both fundamental investigations
and technological applications [4–6]. As a rule, amor-
phous metallic alloys are multicomponent systems
having a high glass-forming ability, and their disor-

dered phase can be formed by cooling of an equilib-
rium melt at a cooling rate γ = 104–107 K/s [7, 8]. The
empirical rules that can be used to determine the melts
that can form bulk metallic glasses were formulated for
the first time in [1]. The authors of [9] showed that
binary Cu–Zr melts have the highest glass-forming
ability as compared to other binary metallic systems.
Moreover, it was found that the glass-forming ability
of binary Cu–Zr melts was significantly improved
upon addition of a low aluminum content (usually less
than 10 at % [10, 11]) and that the addition of 5–7 at %
Al significantly increased the plasticity of an amor-
phous metallic Cu–Zr alloy [12]. Note that the Cu–
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Zr–Al system is now represents the base of many bulk
metallic glasses with interesting physical and mechan-
ical properties [13].

It is assumed that, in contrast to equilibrium melts,
the structure of metallic glasses is characterized by
short- and medium-range orders caused by the exis-
tence of so-called quasi-icosahedral clusters [14, 15],
which was experimentally supported recently [16].
According to Frank’s hypothesis [17], icosahedra in a
multiparticle system stabilize an amorphous phase and
prevent its crystallization. To reveal the presence of
icosahedral clusters in amorphous metallic alloys,
researchers performed numerous experimental and
molecular dynamics studies of the structural features
of the Zr46Cu46Al8, Zr48Cu45Al7, Zr45Cu50Al5, and
ZrxCu90  – xAl10 systems [18–24]. The formation of a
microstructure and its influence on the mechanical
properties of an amorphous metallic ZrxCu90 – xAl10
alloy was considered in [25]. The authors of [26] stud-
ied the effect of alloying with aluminum atoms on the
structure and the glass-forming ability of Zr–Cu
melts. The electronic properties of amorphous metal-
lic Zr–Cu–Al alloys were comprehensively analyzed
in [27]. However, despite a large number of experi-
mental and theoretical investigations, the mechanisms
of formation of structural heterogeneities and their
influence on the dynamic properties of metallic
glasses are still poorly understood.

The purpose of this work is to simulate the atomic
dynamics of the Zr47Cu46Al7 system in a wide tempera-
ture range in order to study the changes in the atomic
structure and dynamics caused by the amorphization
of the three-component metallic melt.

2. SIMULATION PROCEDURE
The atomic dynamics simulation of the Zr47Cu46Al7

system was carried out in the temperature range T =
250–3000 K at an external pressure p = 1.0 bar. This
temperature range for this system covers the equilib-
rium liquid phase and the phases that correspond to a
supercooled melt and an amorphous alloy. The system
under study consisted of N = 32 000 atoms arranged in
the cubic cell with periodic boundary conditions. The
interatomic interaction was performed using the
embedded-atom method (EAM) potential1 [18],
where the potential energy of the ith is expressed as
[28]

(1)

Here, φαβ(rij) is the short-range pair potential of the
interatomic interaction, and F(ρ) is the EAM poten-

1As was shown in [18], this potential model correctly reproduces 
the structural features and a number of thermomechanical char-
acteristics of equilibrium and supercooled Zr–Cu–Al melts.
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tial, which takes into account multiparticle interac-
tions in terms of the effective electron density ρi of the
ith atom. Subscripts α and β designate the types of ele-
ments entering in the composition of the metallic
melt, α, β ∈ {Zr, Cu, Al}. The equations of motion for
atoms were integrated using the Verlet algorithm in the
velocity form at a time step Δt = 1.0 fs [29].

A supercooled melt and an amorphous Zr47Cu46Al7
alloy were prepared by rapid cooling of the equilibrium
melt (at a temperature T = 3000 K) at a cooling rate
γ = 1012 K/s [30]. To bring the system to the state of
thermodynamic equilibrium, we performed 5 ×
105 time steps in an NpT ensemble and then 106 steps
in an NVT ensemble to calculate the time and spectral
characteristics.

3. SIMULATION RESULTS
3.1. Structural Features of the Zr47Cu46Al7 System
3.1.1. Radial distribution functions. To analyze the

structural features of the system, we calculated the
partial components of the atomic radial distribution
function (RDF) [31, 32]

(2)

for each temperature. Here, njβ(r) is the number of
atoms of kind β within a spherical layer of thickness Δr
at distance r from the jth atom; L is the edge length of
the cell to be simulated; and Nα and Nβ are the num-
bers of atoms of kind α and β, respectively.

Full RDF g(r) is related to partial components
gα, β(r) as follows [33]:

(3)

where Wα, β = cacβfαfβ/( fi)2 is the weight factor
and ci and fi are the concentration and the atomic form
factor of atoms of kind i, respectively [34].

Figure 1 shows the partial components of RDF
gα, β(r) at various temperatures T from the range 250–
3000 K (the interval 250 K was taken for the tempera-
ture range T ≤ 1500 K, and the interval 500 K was
used for the temperature range T > 1500 K). It is seen
that, as the temperature decreases, the peaks in
RDFs become more pronounced and the second
peak in the gα, β(r) curves is split. This splitting is usu-
ally related to the transition into a glass phase. Such
features on the behavior of g(r) are known to indicate
the formation of local structures, which are charac-
teristic of amorphous materials (see, e.g., [35]).
Based on atomic dynamics simulation, the authors of
[34] showed that (Zr0.5Cu0.5)100 – xAlx melts have the
best glass-forming ability at 7–8 at % Al.
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Note that shoulder-like structures appear in the full
g(r) function at T near the first maximum. These
structures are likely to be associated with the forma-
tion of a chemical short-range order in the system
under study (similar effect was observed in liquid gal-
lium [36]). Figure 1d also shows the behavior of the

cumulative function N(r) ≡ πx2g(x)dx, which gives
the average number of particles in a sphere of radius r.
It is clearly visible that close atomic packing takes
place in this temperature range: 12 atoms are located
in the first coordination shell. This important circum-
stance will be used to determine the properties of the
orientational short-range order in the system under
study.

∫0 4
r

3.1.2. Padé analysis of full RDF. As follows from
definition (2), partial RDFs gα, β(r) contain informa-
tion on the atomic distribution in a multiparticle sys-
tem: for example, the maxima in the first peak in
gα, β(r) curves correspond to the most probable dis-
tances between particles of kinds α and β within the
first coordination shell (see Fig. 1). Unfortunately, no
reliable method exists to measure gα, β(r) experimen-
tally and only full RDF g(r) can be experimentally
measured (see Eq. (3)). This function is usually deter-
mined from static structure factor S(k), which is mea-
sured in experiments on neutron or X-ray diffraction
[31].

Since function g(r) is the superposition of gα, β(r)
functions (see Eq. (3)), information on the probable

Fig. 1. (Color online) Zr47Cu46Al7 system at various temperatures T: partial RDF components gα, α(r) for (a) Zr, (b) Cu, and (c)
Al and full RDF g(r). The color of the curve depends on temperature, which increases from blue to red. The splitting of the second
peak in the gα, α(r), which is usually attributed to the transition into a glass phase, is detected at all partial distribution functions
at low T. Shoulders, which characterize the formation of a chemical short-range order, appear near the first maximum in the full

g(r) function when T decreases. (d) Cumulative function N(r) ≡ x2g(x)dx, which characterizes the number of particles in a
sphere of radius r. At the temperatures under study, close atomic packing takes place, N(rm) ≈ 12 (rm is the position of the first
nonzero minimum in the g(r) curve).
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distance between two arbitrary particles of kinds α and

β is averaged here. In [36], we proposed a method to

process g(r) using a numerical analytic continuation of

RDF by a Padé approximation distribution. This

method can be used to restore data on the distribution

of particles in a multiparticle system.

Padé approximants can be used to interpolate and

extrapolate a function set by a table of N points and,

which is very important, to perform an analytic con-

tinuation into the complex plane of the argument of

the function to be approximated. A Padé approximant

is specified through a rational function determined as

a ratio of two polynomials. On the other hand, a ratio-

nal function is known to be represented by a continued

fraction, which approximates a function much more

accurately as compared to the representation of the

function in the form of a series. To construct an
approximant, we use the multipoint algorithm [37].
Let the values of function f(xi) = ui be known at points

xi, where i = 1, 2, 3, …, N. Then, Padé approximant

CN(x) is constructed as follows:

(4)

where quantities ai are determined from the condition
CN(xi) = ui, which is met if ai satisfies the relations

(5)

(6)

Equation (5) plays the role of a boundary condition

for recursive Eq. (6). For example, for x = , we find

g1( ) from Eq. (5) and gj( ), j = 2, 3, …, i, from

Eq. (6).

Thus, we performed an analytic continuation of the
g(r) RDF calculated from simulation data into the
complex plane of r using a Padé approximant. As an
example, Fig. 2 shows an analytic continuation of g(r)
for the system at a temperature T = 250 K. As will be
shown below, the real and imaginary parts of the pole
coordinates contain information on the characteristic
correlation lengths in a multiparticle system.

The static structure factor is related to g(r) as [2]

(7)

where k is the wavenumber. Thus, if function g(r) has
a pole at point rp, this pole gives an oscillating contri-
bution of the type cos(kRerp) or sin(kRerp) to the
structure factor. The oscillation amplitude decreases
with increasing wavevector k as exp(–kImrp). There-
fore, the poles of function g(r) determine the charac-
teristic spatial scales of the system of interacting parti-
cles. g(r) turned out to be well approximated by a ratio-
nal function with several poles. A Padé approximant
can also be used to show that structure factor S(k) has
nonanalytical behavior (contains cuts) in the complex
plane of k. This is associated with contributions of the
type exp(–kImrp) to S(k).

The simulation data have a certain accuracy. Nev-
ertheless, it can be shown that the numerical analytic
continuation is stable despite the limited data accu-
racy.

In this work, the stability of the analytic continua-
tion was tested by random sampling. 5% of the data
were randomly removed from a table of the values of
g(r) and the remaining data were randomly permuted.
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Rotational invariants ql and wl (l = 4, 6) calculated for a
number of crystal structures at a fixed number of nearest
neighbors Nnn

Type of lattice q4 Q6 w4 W6

HCP (Nnn = 12) 0.097 0.485 0.134 –0.012

FCC (Nnn = 12) 0.19 0.575 –0.159 –0.013

Icosahedral (Nnn = 12) 1.4 × 10–4 0.663 –0.159 –0.169

BCC (Nnn = 8) 0.5 0.628 –0.159 0.013

BCC (Nnn = 14) 0.036 0.51 0.159 0.013

Fig. 2. (Color online) Analytic continuation of RDF g(r)
into the complex plane of t at T = 250 K (three-dimen-
sional surface). (pink heavy curve) Full g(r) function at
real r and (peaks) poles of function g(r) in the complex
plane of r.
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A Padé approximant was then constructed using a
continued fraction [36, 38]. An analytic continuation
of function g(r) was constructed as a result of 100000
iterations. Figure 3 shows g(r) RDF in the complex
plane. The insufficient accuracy of the numerical cal-
culations of function g(r) manifests itself in the fact
that a random sample can shift the pole positions. If a
pole is stable, this shift is insignificant and a sharp
peak rather than a singularity is observed in a picture
after averaging. The position of the peak maximum in
the complex plane is taken to be the coordinate of the
pole. The real parts of the pole positions turned out to
correspond to the most probable distances between
particles of kinds α and β at a high accuracy (see
Fig. 3). A structural crossover takes place at a tem-
perature of about 750 K: the pole corresponding to
Cu–Cu and Cu–Al correlations disappears. As will be
shown below, this crossover also manifests itself in the
temperature dependences of other quantities.

3.1.3. Wendt–Abraham parameters: temperature
crossover. The melt–glass transition temperature was
determined using the Wendt–Abraham parameter
[39–41]

(8)

and the translation order parameter [42, 43]

(9)

Here,  and  are the first maximum and

the first nonzero minimum in g(r) RDF. Note that the
authors of [39] used this parameter as an indicator of
the crystal–liquid transition in the Lennard-Jones
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system, and this indicator is now widely applied to
determine the phase states and structural transitions in
various systems (see, e.g., [44–47]).

Figure 4 shows the temperature dependences of the
Wendt–Abraham parameter for the Zr–Zr, Cu–Cu,
and Al–Al atomic pairs. From the intersections of the
Wendt–Abraham parameter interpolation lines, we
determined the critical glass transition temperature of
the Zr47Cu46Al7 system (Tc ≈ 750 K). Note that this

temperature agrees well with the simulation data for
the Zr45Cu50Al5 system (Tc = 757.1 K) [21]. The inset

to Fig. 4 shows the temperature T dependences of the
partial components of translation order parameter tα, β.

It is seen that, as the temperature dependence of the

Wendt–Abraham parameter (T), the temperature

dependence of parameter tα, β(T) in the semilogarith-

mic coordinates has two linear segments with an inter-
section point at T ≈ 750 K. In addition, note that
parameter tα, β increases with decreasing temperature,

which can be caused by the existence of local ordered
regions in the system [48].

3.2. Orientational Short-Range Order
in the Zr47Cu46Al7 System

3.2.1. Bond order distribution function. To analyze
the orientational short-range order in the Zr47Cu46Al7

system, we first consider the behavior of the bond
order distribution function (BADF) [49, 50]

(10)

where nθ is the number of the angles in the system that
are formed by an arbitrary kth atom and its (any) two
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Fig. 3. (Color online) Padé analysis of RDF. (red curves) Full g(r) function at real r. Each plot is a three-dimensional picture
(which is similar to that in Fig. 2) for a certain temperature (axis Imr is normal to the picture plane). The peaks correspond to the
poles of the g(r) function in the complex plane of r. The g(r) plots thus constructed make it possible to unambiguously reveal the
correlation between the real part of the pole positions and the behavior of g(r) at real r.
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neighboring atoms and nc is the number of all neigh-
boring atoms for the kth atom. The neighboring atoms
are taken to be the atoms that form the first coordina-
tion shell. nc was determined from the condition of
minimum in the partial components of RDF gα, α(r),
where α ∈ {Zr, Cu}. Figure 5 shows BADFs P(θ) for
zirconium and copper atoms and for the full system in
the temperature range under study.2 Note that these
pair angular distributions suggest the presence of hcp-
like and icosahedral (ico-like) crystals at low tempera-
tures. The existence of ordered clusters in the system
can be determined much more exactly using rotational
invariants to be discussed below.

As is seen from Fig. 5, the shape of BADF P(θ)
changes significantly when temperature decreases: the
peaks in the P(θ) function become more pronounced
during the amorphization of the system, and an addi-
tional peak appears in the distribution at θ ≈ 150°.
When studying a binary amorphous Cu64Zr36 alloy, the

authors of [51] detected similar features in angular dis-
tribution P(θ) and explained them by the existence of
regions with quasi-icosahedral symmetry. Note that
the P(θ) function for the Zr47Cu46Al7 melt almost

coincides with the P(θ) function for the Lennard-
Jones system, which is likely to indicate that this dis-
tribution is quasi-universal for other melts.

3.2.2. Behavior of rotational invariants. It is conve-
nient to apply the rotational invariant method pro-
posed in [52, 53] and widely used in the condensed-

2BADF P(θ) for aluminum atoms is not shown because of the 
high signal-to-noise ratio of aluminum.

Fig. 4. (Color online) Temperature dependences of the
Wendt–Abraham parameter calculated for the Zr47-
Cu46Al7 system. (inset) Temperature dependence of the
translation order parameter: (I) liquid and (II) super-
cooled liquid.
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matter physics [54–64] in order to determine the
parameters that characterize a short-range order and
contain angular correlations with a higher order than
BADF P(θ).

In terms of this approach, the number of nearest
neighbors Nb(i) is first determined for every ith parti-

cle. Vectors rij connecting particle i to the nearest

neighbors (j = 1, Nb) can be used to determine bond

order parameter qlm(i) for every atom/particle,

(11)

where Ylm(θ, φ) are spherical harmonics and θ and φ are
the angular coordinates of the jth particle that are deter-
mined by vector rij. Note that the local short-range
order thus determined depends only on two parameters,
namely, angular nearest-neighbor distributions θi and
φi. Here, the neighbors are considered to be all particles
in the first coordination shell. Using parameter qlm(i),

=

= θ φ∑
( )

1

1
( ) ( , ),

( )

bN i

lm lm j j
b j

q i Y
N i

we calculate the rotational invariants of second (ql(i))
and third (wl(i)) kind for every particle,

(12)

(13)

where  are the Wigner 3j symbols. The

sum in the latter equation is taken over all indices mi =

–l, …, l that meet the condition m1 + m2 + m3 = 0.

It is important that each type of crystal lattice has a
unique set of rotational invariants ql and wl. This spe-

cific feature makes it possible to determine an ordered
structure detected experimentally or simulated by
comparing ql and wl calculated for every particle with

 and  for ideal lattices. To identify a crystal struc-
ture, researchers usually apply rotational invariants of
the second (q4, q6) and third (w4, w6) kinds, which can

easily be calculated for ideal crystals. These invariants
are given in the table for various lattices.

Figure 6 shows distributions P(q6) and P(w6) over

rotational invariants q6(i) and w6(i) at various tem-

peratures. It is clearly visible that a decrease in the
temperature leads to the appearance of particles with
q6 > 0.6 and w6 < –0.15 in the system, which is char-

acteristic of icosahedral symmetry (also see table).

The ideal icosahedron has  ≈ 0.66 and  ≈
‒0.17, so that the detected icosahedra are strongly
distorted (but retaining five-ray structure). Note that
the authors of [16] experimentally studied a metallic
Zr80Pt20 glass and observed distorted icosahedral

clusters with similar values of rotational invariants.
The appearance of such clusters in the system under
study is more obvious when two-dimensional atom
distributions are plotted on the q4–q6 pane for vari-

ous temperatures (Fig. 7). It is seen that atoms in the
liquid phase (at high temperatures T ≥ 2000 K) are
disordered. As the temperature decreases, hcp-like
clusters based on zirconium and aluminum atoms
first form, and a distorted icosahedral (ico-like)
phase with zirconium and aluminum atoms located
in the base of icosahedral clusters then forms. It is
interesting that copper atoms are disordered at all
temperatures. Note that similar structural behavior
upon cooling the melt is also observed in the absence
of aluminum, for the binary Cu–Zr system.

It should be noted that atomic groups with icosahe-
dral symmetry exist in the case of the supercooled melt
and the amorphous alloy and that such local ordered
groups are absent in the case of the equilibrium melt.
As a rule, the appearing ordered atomic groups are

=

=−

⎛ ⎞π= ⎜ ⎟
⎜ ⎟+⎝ ⎠

∑
1/2

24
( ) | ( )| ,

2 1

m l

l lm

m l

q i q i
l

+ + =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ 1 2 3

1 2 3

1 2 3

1 2 3
, ,

0

( ) ( ) ( ) ( ),l lm lm lm

m m m
m m m

l l l
w i q i q i q i

m m m

⎛ ⎞
⎜ ⎟
⎝ ⎠1 2 3

l l l
m m m

id
lq id

lw

6

icoq 6

icow

Fig. 6. (Color online) Orientational short-range order in
the Zr47Cu46Al7 system. Distributions of all atoms (a)
P(q6) and (b) P(w6) over their rotational invariants q6 and
w6, respectively, are presented for a number of tempera-
tures. (inset) Partial P(q6) distributions for each atom ((red
line) Al, (blue curve) Zr, and (green curve) Cu) for the
glass phase at T = 250 K. It is seen that icosahedral clusters
form only on the basis of zirconium and aluminum and
copper is retained in the disordered phase.
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represented by incomplete icosahedra and small frag-

ments of icosahedra uniformly distributed over the

entire system. Figure 8 shows the atoms that form the

amorphous Zr47Cu46Al7 alloy at T = 250 K and are

involved in structural aggregates with pronounced ico-

sahedral symmetry. The structure shown as an exam-

ple in Fig. 8 consists of 1894 atoms and the fractions of

Zr, Cu, and Al atoms are 49, 43, and 8 at %, respec-

tively.

3.3. Microscopic Dynamics of the Zr47Cu46Al7 System

Information on collective atomic dynamics is in the

spectral densities [65–67]

(14)

of the normalized time correlation functions of the
longitudinal,

(15)

and the transverse,

(16)

fluxes [68, 69]. Here, the angle parentheses mean
averaging over an ensemble of particles, and j(k, t) is
the microscopic f lux

(17)

where vl(t) is the velocity of the lth particle at time t
and ek = k/|k| is the unit vector along vector k.

Figure 9 shows the calculated frequency spectra of
the longitudinal and transverse f luxes for the equilib-
rium melt at T = 3000 K, the supercooled melt (T =
1000 K), and the amorphous metallic Zr47Cu46Al7

melt (T = 250 K) at a wavenumber k = km/2 ≈ 1.30 Å–1,

which corresponds to the boundary of the first Brill-
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Fig. 7. (Color online) Orientational short-range order in
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(red) aluminum atoms in the plane of rotational invariants
q4–q6 calculated for a fixed number of nearest neighbors
for each particle (Nnn = 12). The positions of ico, hcp, and
fcc rectangles correspond to ideal crystals with icosahe-
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ouin pseudozone (km is the position of the principal

maximum in static structure factor S(k)), in compari-
son with the results of fitting with a linear combination
of Gaussian functions,

(18)

Here, !i(k) are weight coefficients, @i(k) are qua-

dratic time scales, and frequencies ωi(k) determine the

positions of the peaks in the (k, ω) spectrum. It is
seen from Fig. 9 that, as temperature decreases, the
spectra are complicated and specific features appear at

high frequencies ω ≥ 50 ps–1. A linear combination of
three Gaussian contributions is sufficient to take into

account all specific features in the (k, ω) spectra of
the longitudinal f lux for the equilibrium melt, the
supercooled melt, and the amorphous alloy, whereas
at least four Gaussian functions are necessary to

describe the (k, ω) spectra of the transverse f lux for
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the supercooled melt and the amorphous alloy. The

corresponding peaks in the spectral densities of the

time correlation functions of the longitudinal and

transverse f luxes point to the existence of propagating

collective longitudinal- and transverse-polarization

excitations in the Zr47Cu46Al7 system. Using the max-

ima of the spectral densities of the time correlation

functions of the longitudinal ( (k, ω)) and transverse

( (k, ω)) f luxes, we plotted dispersion curves for the

longitudinal ( (k)) and transverse ( (k)) polar-

izations in the temperature range under study.

Figure 10 depicts the obtained dispersion laws

(k) and (k) for the Zr47Cu46Al7 system at tem-

peratures T = 3000 and 250 K. The dispersion curve

related to the transverse-polarization oscillation pro-

cesses in the melt at T = 3000 K is found to have a

“window” of width , where (k) begins to grow

from a nonzero value of wavevector k and a shift by 

is detected along axis k. This window in the dispersion
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fluxes for the equilibrium melt (T = 3000 K), the supercooled melt (T = 1000 K), and the amorphous metallic Zr47Cu46Al7 alloy

(T = 250 K) at k ≈ 1.30 Å–1: (points) atomic dynamics simulation, (solid curves) fitting with a linear combination of Gaussian

functions, and (dashed curves) individual contributions (see Eq. (18)). 
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(k) curve is associated with the absence of macro-
elastic properties of the melt [65]. The temperature

dependence of the window width ( (T)) in the dis-

persion curve of transverse polarization (k) is
shown in the inset to Fig. 10b. It is seen that, as the

temperature decreases, window width  in the

(k) dispersion curve decreases and the window in
the transverse-polarization dispersion curve disap-
pears at a temperature below the critical glass tran-
sition temperature (Tc ≈ 750 K), which is caused by

the elastic properties of the amorphous metallic
Zr47Cu46Al7 alloy. The inset to Fig. 10a presents the

values of sound velocity v obtained at several tempera-
tures from the dispersion curves in the range of
extremely low values of the wavevector. The tempera-
ture dependence of sound velocity in the medium
(v(T)) is seen to grow monotonically when the equi-
librium melt transforms into the supercooled liquid.

4. CONCLUSIONS

A large-scale simulation of the atomic dynamics of
the Zr47Cu46Al7 system was performed over a wide

temperature range (T = 250–3000 K) at a pressure p =
1.0 bar. When analyzing the calculated structural char-
acteristics and the order parameters, we determined

ω( )T
c

0

Tk
ω( )T

c

0

Tk
ω( )T

c

the critical glass transition temperature (Tc ≈ 750 K).

The supercooled Zr47Cu46Al7 melt was found to have

local ordered regions. Cluster analysis supports the
hypothesis of existence of quasi-icosahedral clusters
in amorphous metallic Zr–Cu–Al alloys. The calcu-
lated spectral densities of the time correlation func-

tions of the longitudinal ( (k, ω)) and transverse

( (k, ω)) f luxes revealed propagating collective lon-
gitudinal- and transverse-polarization excitations in a
wide wavenumber range for the equilibrium liquid, the
supercooled melt, and the amorphous metallic alloy in
the system under study. It was shown that a linear
combination of three Gaussian functions is sufficient
to reproduce the spectra of the longitudinal f lux,
whereas at least four Gaussian contributions are nec-
essary to exactly reproduce the spectra of the trans-
verse f lux.
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