REFINED INEQUALITIES FOR EUCLIDEAN MOMENTS OF A DOMAIN WITH RESPECT TO ITS BOUNDARY*

R. G. SALAKHUDINOV ${ }^{\dagger}$

Abstract

Euclidean moments of simply connected plane domains are investigated. The moments are defined as the p th power of the L^{p}-norms of the distance function to the boundary of the domain. As was shown by Avkhadiev (1998) the Euclidean moment of inertia ($p=2$) gives two-sided estimates for the torsional rigidity of the domain. The estimate of the torsional rigidity connected with the domain area is the famous Saint-Venant-Pólya inequality, which was refined by Payne (1962). In this paper we obtain Payne-type inequalities for the Euclidean moments. A surprising fact is that new extremal domains, different from a disk, are found.

Key words. isoperimetric inequality, Bonnesen's inequality, Euclidean moments of a domain with respect to its boundary, torsional rigidity

AMS subject classifications. 30A10, 30C75

DOI. 10.1137/09075812X

1. Introduction. In this paper we are concerned with the torsional problem of mathematical physics. Let G be a simply connected plane domain, and let $\mathrm{A}(G)$ be the area of G. Denote by $\mathrm{P}(G)$ the torsional rigidity,

$$
\mathrm{P}(G):=2 \int_{G} u(z, G) \mathrm{dA}
$$

where $u(z, G)$ is the solution to the boundary value problem $\triangle u=-2$ in $G, u=$ 0 on ∂G. In 1948 Pólya proved the important property of the torsional rigidity [5]

$$
\mathrm{P}(G) \leq \frac{\mathrm{A}(G)^{2}}{2 \pi}
$$

which had been known as the Saint-Venant hypothesis. In 1963 Payne proved that, in fact, the Saint-Venant-Pólya inequality follows from the sharper result [4]

$$
\begin{equation*}
\mathrm{A}(G)^{2}-2 \pi \mathrm{P}(G) \geq(\mathrm{A}(G)-2 \pi u(G))^{2} \tag{1}
\end{equation*}
$$

where $u(G):=\sup \{u(z, G): z \in G\}$. In both cases a disk is the unique extremal domain.

The Saint-Venant-Pólya and Payne inequalities give only the upper bounds for the torsional rigidity. In 1995 Avkhadiev [1] proved the two-sided estimates for $\mathrm{P}(G)$ of simply connected domains in terms of the Euclidean moment of inertia $\mathrm{I}_{2}(G)$,

$$
\mathrm{I}_{2}(G) \leq \mathrm{P}(G) \leq 64 \mathrm{I}_{2}(G), \quad \mathrm{I}_{2}(G):=\int_{G} \rho(z, G)^{2} \mathrm{dA}
$$

[^0]
[^0]: *Received by the editors May 5, 2009; accepted for publication (in revised form) May 10, 2012; published electronically August 16, 2012. This work was partially supported by Russian Foundation of Basic Research grant 11-01-00762-a.
 http://www.siam.org/journals/sima/44-4/75812.html
 ${ }^{\dagger}$ Mathematical Analysis Department, Kazan Federal University, Prof. Nuzhin str. 1/37, Kazan 420008, Russia (Rustem.Salahudinov@ksu.ru).

