[We-P-55] Spin dynamics and low symmetry effects in Gd³⁺ EPR spectra of single crystal of EuAlO₃ ## R.R. Andronenko, S.I. Andronenko Institute of Silicate Chemistry RAN, nab. Makarova 2, St-Petersburg, 199034, Russia *Kazan State University, Kremlevskaya 18, Kazan, 420008, Russia RAlO₃ (R = rare earth) single crystals, characterized by perovskite structure at and below room temperature, are interesting due to their phosphorescence and luminescence properties as well as for their use as laser materials. They also have the potential to provide high capacitance replacement for silicon dioxide gate dielectrics. A relevant detailed EPR study of the Gd^{3+} ion in a LaNbO₄ crystal was reported by Misra and Andronenko [1], which is also characterized by a low (C₂) point symmetry of the Gd^{3+} ion, similar to that in La₂Si₂O₇ [2]. Europium aluminate (EuAlO₃) is dielectric Van Vleck paramagnetic and its paramagnetism is due to the admixture, to the ground state, of levels of the $^{7}F_{1}$ term split by the orthorhombic field into three singlets (281,359, and 479 cm⁻¹). The influence of this term $^{7}F_{1}$ on Gd^{3+} EPR linewidth was investigated [3], however, low symmetry effects were not considered that time. Electron paramagnetic resonance (EPR) studies on a single crystal of Van Vleck compound EuAlO₃ with the Gd³⁺ ion substituting for the Eu³⁺ ion, were carried out at X-band (9.4 GHz) over the 77 – 400 K temperature range. At these temperatures the single crystals of EuAlO₃ had the space symmetry group D_{4h}^{16} and rare-earth ions located at the Gd³⁺ sites had the point symmetry group C_S. The asymmetry exhibited by the Gd³⁺ EPR line positions for the orientations of the external magnetic field about the Z and Y magnetic axes in the ZY plane was ascribed to the existence of monoclinic site symmetry at the site of the Gd³⁺ ion, as confirmed by the significant values of the spin-Hamiltonian (SH) parameters g_{yz} , b_2^{-1} , b_4^{-m} (m = 1, 3), b_6^{-m} (m = 1, 3, 5), estimated by fitting all EPR line positions observed at room temperature for the orientation of the magnetic field in the magnetic ZX and ZY planes using a rigorous least-square fitting procedure. The novel features of the EPR study of the Gd³⁺ ion in EuAlO₃ crystal presented in this paper are as follows: - (i) The SH parameters (b_n^m) for the Gd^{3+} ion situated at a Eu^{3+} site have been estimated accurately at 77 and 295 K. Additional set of EPR lines was observed, most likely from Eu^{2+} ions. - (ii) Temperature dependence of Gd³⁺ linewidth was investigated and interpreted in the terms of "life-time" broadening. - (iii) It was found, that dynamical dipolar and exchange interactions of impurity Gd^{3+} ions and host Eu^{3+} ions are responsible for EPR Gd^{3+} linewidth broadening. - [1]. Misra. S.K., Andronenko S.I., and Chemekova T. Yu., Variable temperature X-band EPR of Gd³⁺ in LaNbO₄ and PrNbO₄ crystals: Low-symmetry effect, influence of host and impurity paramagnetic ions on linewidth, and onset of antiferromagnetism, Phys. Rev. B, 2003, 67(21), 214411 (1-7). - [2] Misra S. K. and Andronenko S. I., A variable temperature X-band EPR study of the Gd³⁺ ion in a La₂Si₂O₇ crystal characterized by monoclinic site symmetry, Applied Magnetic Resonance, 2007, 32(3), 377-384. - [3]. Andronenko S.I., Koroleva L.N., Bondar' I.A., and Ioffe V.A., Influence of levels of the ⁷F₁ term of Eu³⁺ on the ESR spectra of Gd²⁺ in EuAlO₃, Sov. Phys. Solid State, 1982, 24(5), 881 882.