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Abstract—We consider an infinite planar four-phase heterogeneous medium with three con-
centric circles as a boundary between isotropic medium’s components of distinct resistivi-
ties/conductivities. It is supposed that the velocity field in this structure is generated by a finite set of
arbitrary multipoles. We distinguish two cases when multipoles are inside of medium’s components
or at the interface. An exact analytical solution of the corresponding R-linear conjugation boundary
value problem is derived for both cases. Examples of flow nets (isobars and streamlines) are
presented.
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1. INTRODUCTION

One of the most common heterogeneous structures encountered in nature are circular and annulus-
shaped structures. Because of their simplicity, these structures are studied in many applications ([1, 7–9,
15]). Such media are the most easiest for investigations in both analytical and numerical ways and also
they are a good starting point to apply different methods and algorithms.

A remarkable fact of the theory of function of complex variables is that every analytical (holomorphic)
function in its analyticity domain can be interpreted as a complex potential of some steady two-
dimensional flow [5].

It is well known that for the case of one circular inclusion the corresponding complex potential of
a flow generated by a single dipole at infinity is, up to a multiplicative constant, Zhukovsky’s function
(the Miln-Thomson theorem [6], p. 153). For this structure a more general problem of determination
of a complex potential for a flow generated by a set of arbitrary multipoles can be solved. In the
monography [11], pp. 90–97 the solution is given in terms of Cauchy type integrals. The generalization
of Miln-Thomson theorem was obtained in the monograph [14], pp. 26–34. Also a solution for a three-
phase structure with two concentric circles as an interface was given there. The solution method, used
in this monograph , can be applied for investigation of multiphase circular structures.

It is well known that for an arbitrary heterogeneous medium corresponding R-linear conjugation
boundary-value problem ([3], p. 53) can not be solved analytically. Only for some specific structures it
is possible to do. For example, the problem of the perturbation of a given complex potential by inserting
distinct inclusions into an isotropic medium was solved for circular [12], elliptical [17], parabolic [13],
hyperbolic [10], circular and elliptical annuli inclusions [16] and [4]. Much more progress can be made if
all inclusions are perfectly resisting [2].

The objective of the present work is to determine a complex potential generated by a set of arbitrary
multipoles in a four-phase structure consisting of two adjoined concentric annuli, theirs interior and
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exterior. From mathematical point of view, we have to solve a boundary-value problem of R-linear
conjugation in the class of piece-wise meromorphic functions with principal parts fixed in advance. We
divide our solution into two parts. At first we consider the case when there are no multipoles at the
structures interface and boundary singularities are admitted in the second part.

Let us turn to a strict statement of the problem.

2. STATEMENT OF THE PROBLEM

We consider a four–phase continuous isotropic linear medium consisting of the exterior of the circle
S1 = {z : |z| > r1}, the circle S4 = {z : |z| < r3} and two annuli S2 = {z : r2 < |z| < r1}, S3 = {z :
r3 < |z| < r2}.

It is required to define a stationary power field v(x, y) = (vx, vy) = vk(x, y), (x, y) ∈ Sk, k = 1, 4,
such that

div vk = 0, curl vk = 0 (1)

in all uniform components Sk. It is supposed that the principal part f(z) of the corresponding complex
potential

w(z) = (ϕ(x, y), ψ(x, y)), ϕ′
x = ψ′

y = vx, ϕ′
y = −ψ′

x = vy,

has a finite set of singular points T = T1 ∪ T2 ∪ T3 ∪ T4, Tk ⊂ Sk.

Along the interface lines lk = {t : |t| = rk} usual boundary conditions hold: continuity of the stream
functions and linear proportionality of the potential functions, i.e.

ψk(t) = ψk+1(t), ρkϕk(t) = ρk+1ϕk+1(t), k = 1, 3, (2)

where constant coefficient ρk characterizes physical properties of the phase Sk.

Henceforth, the plane (x, y) is understood as a plane of the complex variable z = x + iy. A vector-
function v(x, y) is interpreted as an anti-holomorphic, due to the conditions (1), complex-valued
function v(z) = vx(z) + ivy(z), which is complex conjugated with the derivative of the complex potential
function w′(z) = v(z) = vx(z) − ivy(z).

As is well known ([3], p. 53), the real boundary conditions (2) are equivalent to complex ones, which
in our case take the form:

⎧
⎪⎨

⎪⎩

v1(t) = A1v2(t) + B1r
2
1t

−2v2(t), t ∈ l1 = {t : |t| = r1},
v2(t) = A2v3(t) + B2r

2
2t

−2v3(t), t ∈ l2 = {t : |t| = r2},
v3(t) = A3v4(t) + B3r

2
3t

−2v4(t), t ∈ l3 = {t : |t| = r3}.
(3)

The coefficients Ak, Bk are determined via the formulae:

Ak = (ρk + ρk+1)/2ρk, Bk = (ρk − ρk+1)/2ρk, k = 1, 2, 3.

We introduce also the notations

Δk =
Bk

Ak
=

ρk − ρk+1

ρk + ρk+1
, Ak =

1
1 + Δk

, Bk =
Δk

1 + Δk
, k = 1, 2, 3,

which will be used below.

Thus, it is required to find a piecewise meromorphic solution v(z) of the boundary value problem (3).
The principal part F (z) = f ′(z) of v(z) is a fixed rational function with a finite number of poles. We start
with the case when poles of F (z) do not belong to the interface components lines lk.
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3. SOLUTION OF THE BOUNDARY VALUE PROBLEM (3)
IN THE CASE OF INNER MULTIPOLES

Piecewise meromorphic solution v(z) of the problem (3) with a given principal part F (z) = f ′(z) can
be written as:

v(z) = vk(z) = Fk(z) + Vk(z), z ∈ Sk, p = 1, 4, (4)

where Fk(z) is the sum of all simple fractions, the summands of rational function F (z), with their poles in
the domain Sk and Vk(z) is an unknown holomorphic in Sk function. For a function F1(z) is admissible
a polynomial term and holomorphic summand V1(z) vanishes at infinity.

Let S+
k and S−

k are the interior and the exterior of the circle lk respectively. Due to the Laurent theorem
analytic functions in the annuli S2, S3 can be represented as a sum:

Vk(z) = V +
k (z) + V −

k (z), V −
k (∞) = 0, (5)

where V +
k (z) and V −

k (z) are holomorphic functions in the domains S+
k−1 and S−

k correspondingly.

Let us introduce now the following functions:

Φ1 =

{
−V1(z) + A1[F2(z) + V −

2 (z)] + B1r
2
1z

−2V +
2 (z∗1), z ∈ S−

1 ,

F1(z) − A1V
+
2 (z) − B1r

2
1z

−2[F2(z∗1) + V −
2 (z∗1)], z ∈ S+

1 ,

Φ2 =

{
−V −

2 (z) + A2[F3(z) + V −
3 (z)] + B2r

2
2z

−2V +
3 (z∗2), z ∈ S−

2 ,

F2(z) + V +
2 (z) − A2V

+
3 (z) − B2r

2
2z

−2[F3(z∗2) + V −
3 (z∗2)], z ∈ S+

2 ,

Φ3 =

{
−V −

3 (z) + A3F4(z) + B3r
2
3z

−2V4(z∗3), z ∈ S−
3 ,

F3(z) + V +
3 (z) − A3V4(z) − B3r

2
3z

−2F4(z∗3), z ∈ S+
3 ,

where z∗k = r2
k/z is the point symmetrical with z about the circle lk.

Each function Φk(z) (k = 1, 3) is holomorphic in the domains S+
k /{0} and S−

k and due to the
corresponding boundary condition (3) continuous across the line lk. At the origin this function has a
simple pole and it vanishes at infinity as V −

k (∞) = Fk(∞) = 0. By the generalized Liouville theorem
Φk(z) = Ck/z, where Ck is a constant to be determined. Thus, we get the following system for definition
of unknown functions V1(z), V ±

2 (z), V ±
3 (z), V4(z):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−V1(z) + A1[F2(z) + V −
2 (z)] + B1r

2
1z

−2V +
2 (z∗1) = C1/z, z ∈ S−

1 ,

F1(z) − A1V
+
2 (z) − B1r

2
1z

−2[F2(z∗1) + V −
2 (z∗1)] = C1/z, z ∈ S+

1 ,

−V −
2 (z) + A2[F3(z) + V −

3 (z)] + B2r
2
2z

−2V +
3 (z∗2) = C2/z, z ∈ S−

2 ,

F2(z) + V +
2 (z) − A2V

+
3 (z) − B2r

2
2z

−2[F3(z∗2) + V −
3 (z∗2)] = C2/z, z ∈ S+

2 ,

−V −
3 (z) + A3F4(z) + B3r

2
3z

−2V4(z∗3) = C3/z, z ∈ S−
3 ,

F3(z) + V +
3 (z) − A3V4(z) − B3r

2
3z

−2F4(z∗3) = C3/z, z ∈ S+
3 .

(6)

We rewrite the last equality of the system (6) as follows

F3(z) + V +
3 (z) − A3V4(z) =

1
z

(
B3r

2
3F4(z∗3)/z + C3

)
, z ∈ S+

3 .

All summands on the left hand-side of the last equality are holomorphic everywhere in the circle S+
3 and,

in particular, at the point z = 0, consequently at the origin should vanish coefficient at the factor 1/z on
the right-hand side. It is not difficult to prove that the last demand takes place if

C3 = −B3 lim
z→0

r2
3F4(z∗3)/z = B3a4, a4 = res∞F4(z). (7)

Indeed, every vanishing at infinity rational function P (z), and F4(z) in particular, can be represented
as a finite sum of summands of view Pk(z) = ck/(z − z0)k. Obviously that limz→0 r2z−1Pk(r2/z) =
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{c1, k = 1; 0, k > 1}, and c1 = resz0P (z). Wherefrom follows our assertion due to the Cauchy’s theorem
about the total sum of residues.

Next, we find C2 from the fourth equation (6)

C2 = −res0

(
B2r

2
2z

−2
[
F3(z∗2) + V −

3 (z∗2)
])

= B2

(
a3 − lim

z→0
r2
2z

−1V −
3 (z∗2)

)
,

where a3 = res∞F3(z). The last limit equals −C3 − C3/Δ3, as from the fifth equation (6) follows
res∞V −

3 (z) = C3 + C3/Δ3. So,

C2 = B2

(
a3 + C3 + C3/Δ3

)
. (8)

Analogously, from the second and the third equations (6) we find

C1 = B1

(
a2 + C2 + C2/Δ2

)
, a2 = res∞F2(z). (9)

We start to solve the system (6) by excluding V4(z) from its two last equations

V −
3 (z) = (1 − Δ3)F4(z) + Δ3r

2
3z

−2[F3(z∗3) + V +
3 (z∗3)] − (C3 + Δ3C3)/z.

Substitution of this result into the third equation (6) gives

V −
2 (z) = A2F3(z) + A2(1 − Δ3)F4(z) + B2r

2
2z

−2V +
3 (z∗2)

+ A2Δ3r
2
3z

−2
[
F3(z∗3) + V +

3 (z∗3)
]
−

[
A2(C3 + Δ3C3) + C2

]
/z.

From now on, for the sake of brevity, we denote δj = Δjr
2
j , δij = ΔiΔj(rj/ri)2, and z∗ij = (rj/ri)2z, i.e.

z∗ij is the successive symmetry z about li and lj . Excluding V −
2 (z) from the second equation (6) and

using (7)–(9) we get

V +
2 (z) =

F1(z)
A1

− δ1

z2

(
F2(z∗1) +

F3(z∗1)
1 + Δ2

+
(1 − Δ3)
1 + Δ2

F4(z∗1)
)
− δ13

1 + Δ2
F3(z∗13)

− δ13

1 + Δ2
V +

3 (z∗13) −
δ12

1 + Δ2
V +

3 (z∗12) +
(

(1 − Δ3)
1 + Δ2

a4 +
a3

1 + Δ2
− Δ1a2

)

/z.

Finally, substitution of the last three representations and (7)–(9) into the fourth equation (6) leads to the
following functional equation about V +

3 (z)

V +
3 (z) = −(K12 + K13 + K23)V +

3 (z) + F0(z), (10)

where the operator Kij is defined as KijV (z) = δijV (z∗ij), and

F0(z) = (1 + Δ1)(1 + Δ2)F1(z) + (1 + Δ2)F2(z) − δ13F3(z∗13) − δ23F3(z∗23)

−
[
(1 + Δ2)δ1F2(z∗1) + δ1F3(z∗1) + δ2F3(z∗2) + (1 − Δ3)

(
δ1F4(z∗1) + δ2F4(z∗2)

)]
z−2 (11)

− [Δ1(1 + Δ2)a2 + (Δ1 + Δ2) (a3 + (1 − Δ3)a4)] /z = G1(z) − G2(z)/z2 − c0/z.

The function (11) is holomorphic in the circle S+
2 , as G2(z)/z2 has a simple pole at z = 0 and

c0 = Δ1(1 + Δ2)a2 + (Δ1 + Δ2) (a3 + (1 − Δ3)a4) = −res0[G2(z)/z2].

Exactlier, according to the assumptions of this section F (z) is holomorphic at the interface, hence F0(z)
is holomorphic into the closed circle S+

2 .

Let the equation (10) is solvable and V +
3 (z) is its solution holomorphic in the circle S+

2 , then each
function KijV

+
3 (z) is holomorphic in the circle of radius r2(ri/rj)2 > r2 if i < j. It means that the right-

hand side of the equality (10) is holomorphic into the closed circle S+
2 . Hence the same is true for a

required solution V +
3 (z).
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So, all terms of the equation (10) are holomorphic in the closed circle S+
2 and they can be represented

there as a converging absolutely and uniformly Taylor series:

V +
3 (z) =

∞∑

l=0

clz
l, KijV

+
3 (z) =

∞∑

l=0

δij(rj/ri)2lclz
l, F0(z) =

∞∑

l=0

F
(l)
0 (0)
l!

zl.

We find all unknown coefficients cl by equating coefficients at the same powers z on the left- and right-
hand sides of the equation (10). Thus, we get

V +
3 (z) =

∞∑

l=0

F
(l)
0 (0)/l!zl

1 + δ12(r2/r1)2l + δ13(r3/r1)2l + δ23(r3/r2)2l
. (12)

It is clear that the denominator of cl tends to one when l tends to infinity as |δij | < 1 and rj/ri < 1 if

i < j. Hence the series (12) converges absolutely and uniformly in S+
2 .

Now we can find consequentially the required solution of the problem (3) from the system (6) and in
accordance with the definitions (4), (5).

v4(z) = F4(z) + (1 + Δ3)(F3(z) + V +
3 (z)) − δ3z

−2F4(z∗3) − C3(1 + Δ3)/z,

v3(z) = F3(z) + V +
3 (z) + (1 − Δ3)F4(z) +

δ3

z2
[F3(z∗3) + V +

3 (z∗3)] − C3 + Δ3C3

z
,

v2(z) = (1 + Δ1)F1(z) + F2(z) + A2F3(z) + A2(1 − Δ3)F4(z) − A2δ13F3(z∗13)

+
A2

z2

(
δ3F3(z∗3) − δ1F3(z∗1) − (1 + Δ2)δ1F2(z∗1) − (1 − Δ3)δ1F4(z∗1)

)

+
A2

z2

(
δ3V

+
3 (z∗3) + δ2V

+
3 (z∗2)

)
− A2

(
δ13V

+
3 (z∗13) + δ12V

+
3 (z∗12)

)

+
(
A2((Δ1 − Δ3)C3 + (Δ1Δ3 − 1)C3) + Δ1C2 − C2 − (1 + Δ1)C1

)
/z,

v1(z) = F1(z) + (1 − Δ1) [F2(z) + A2F3(z) + A2(1 − Δ3)F4(z)]

+
A2(1 − Δ1)

z2

(
δ3

[
F3(z∗3) + V +

3 (z∗3)
]

+ δ2V
+
3 (z∗2)

)
+ δ1z

−2F1(z∗1)

−
(
A2(1 − Δ1)(C3 + Δ3C3) + (1 − Δ1)C2 + Δ1C1 + C1

)
/z,

where the parameters Ck are defined in (7) through (9).
In conclusion of this section we consider the most important, in view of possible applications, case

when F (z) has only simple poles with real residues. It means that we are looking for a complex potential
generated by finite set of sinks and sources. Sufficiently to consider the case when each of four summands
F (z) has no more than one, may be none, pole, i.e.

Fk(z) = ck/(z − zk), zk ∈ Sk, ck ∈ R, k = 1, 4.

If, in particular, there is no sink, no source at infinity then a1 + a2 + a3 + a4 = 0, where ak = −ck =
res∞Fk(z).

Omitting laborious algebra based on (11), (12), (7), (8), (9) and last four presentations for vk(z), we
summarise the final results

F0(z) =
c1(1 + Δ1)(1 + Δ2)

z − z1
+

c2(1 + Δ2)
z − z2

− c3Δ1Δ3

z − z3r
2
1/r

2
3

− c3Δ2Δ3

z − z3r
2
2/r

2
3

+
c2Δ1(1 + Δ2)

z − r2
1/z2

+
c3Δ1

z − r2
1/z3

+
c3Δ2

z − r2
2/z3

+
c4Δ1(1 − Δ3)

z − r2
1/z4

+
c4Δ2(1 − Δ3)

z − r2
2/z4

,

v1(z) =
c1

z − z1
+

(1 − Δ1)c2

z − z2
+

A2(1 − Δ1)c3

z − z3
+

A2(1 − Δ3)(1 − Δ1)c4

z − z4

+
A2(1 − Δ1)

z2

[
δ3V

+
3 (z∗3) + δ2V

+
3 (z∗2)

]
+

A2(1 − Δ1)Δ3c3

z − r2
3/z3

+
Δ1c1

z − r2
1/z1

+ (Δ1(c1 + c2) + (1 − A2(1 − Δ1)(1 − Δ3))(c3 + c4)) /z,
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Fig. 1. ρ1 = 1, ρ2 = 0.2, ρ3 = 5, ρ4 = 0.5 at the left; ρ1 = 1, ρ2 = 20, ρ3 = 0.1, ρ4 = 10 at the right.

v2(z) =
(1 + Δ1)c1

z − z1
+

c2

z − z2
+

A2c3

z − z3
+

A2(1 − Δ3)c4

z − z4
− A2Δ1Δ3c3

z − (r1/r3)2z3

− A2

(
Δ3c3

z − r2
3/z3

− Δ1c3

z − r2
1/z3

− (1 + Δ2)Δ1c2

z − r2
1/z2

− (1 − Δ3)Δ1c4

z − r2
1/z4

)

(13)

+
A2

z2

(
δ3V

+
3 (z∗3) + δ2V

+
3 (z∗2)

)
− A2

(
δ13V

+
3 (z∗13) + δ12V

+
3 (z∗12)

)
+ A2(Δ2 + Δ3)(c3 + c4)/z,

v3(z) =
c3

z − z3
+

(1 − Δ3)c4

z − z4
− Δ3c3

z − r2
3/z3

+ V +
3 (z) +

δ3

z2
V +

3 (z∗3) + Δ3(c3 + c4)/z,

v4(z) =
c4

z − z4
+

(1 + Δ3)c3

z − z3
+

Δ3c4

z − r2
3/z4

+ (1 + Δ3)V +
3 (z).

Here V +
3 (z) is given by equation (12) with F0(z) defined in (13).

Example 1. Let r1 = 6, r2 = 4, r3 = 2. In Fig. 1 the streamlines and equipotential lines (dashed)
are plotted for two different complex potentials f1(z) = 2 ln(z − 5) − 2 ln(z + 2 − 2i) (left panel) and
f2(z) = −0, 5z−2 (right panel).

4. SOLUTION OF THE PROBLEM (3) WITH SINGULARITIES AT THE INTERFACE

Let all poles of F (z) are at the interface components lk, k = 1, 2, 3. For the sake of simplicity we
consider the case of no more than one singular point at each component lk i.e.,

F (z) =
3∑

j=1

nj∑

k=1

bj
k

(z − τj)k
= F01(z) + F02(z) + F03(z),

We use here the same representation (4) for a required solution with principal parts Fk(z) defined as
follows:

F1(z) =
n1∑

k=1

b1
1k

(z − τ1)k
, F4(z) =

n3∑

k=1

b3
2k

(z − τ3)k
,

Fj(z) =
nj−1∑

k=1

bj−1
2k

(z − τj−1)k
+

nj∑

k=1

bj
1k

(z − τj)k
= Fj1(z) + Fj2(z), j = 2, 3. (14)

In contrast with above considered case of internal singularities, here we have to define not only
unknown holomorphic in Sk and continuous in Sk functions Vk(z), but also all coefficients of rational
functions (14).
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In accordance with conservation law should be F1(z) + F21(z) = 2F01(z), F22(z) + F31(z) =
2F02(z), F32(z) + F4(z) = 2F03(z), wherefrom we get the following set of relations

bj
1k + bj

2k = 2bj
k, k = 1, nj , j = 1, 2, 3. (15)

For to get additional relations connecting unknown coefficients we, in analogy with (3), introduce here
three functions

Φ1 =

{
−V1(z) + A1[F22(z) + V −

2 (z)] + B1r
2
1z

−2V +
2 (z∗1), z ∈ S−

1 ,

F1(z) − A1V
+
2 (z) − A1F21(z) − B1r

2
1z

−2[F2(z∗1) + V −
2 (z∗1)], z ∈ S+

1 ,

Φ2 =

{
−V −

2 (z) + A2[F32(z) + V −
3 (z)] + B2r

2
2z

−2V +
3 (z∗2), z ∈ S−

2 ,

F2(z) + V +
2 (z) − A2F31(z) − A2V

+
3 (z) − B2r

2
2z

−2[F3(z∗2) + V −
3 (z∗2)], z ∈ S+

2 ,

Φ3 =

{
−V −

3 (z) + B3r
2
3z

−2V4(z∗3), z ∈ S−
3 ,

F3(z) + V +
3 (z) − A3F4(z) − A3V4(z) − B3r

2
3z

−2F4(z∗3), z ∈ S+
3 .

It is clear, that each function Φk(z) is holomorphic in the domains S−
k , S+

k \ {0} and continuous
across lk everywhere for exception possibly the point τk. Hence, Φk(z) is holomorphic in C \ {0, τk} due
to the theorem of analytical continuation via continuity. But, evidently, limit value Φ−

k (t) is continuous
everywhere on lk including τk, hence the same should be true for Φ+

k (t). The last demand holds if
functions

Ψ1(z) = F1(z) − A1F21(z) − B1r
2
1z

−2F21(z∗1),

Ψ2(z) = F22(z) − A2F31(z) − B2r
2
2z

−2F31(z∗2), (16)

Ψ3(z) = F32(z) − A3F4(z) − B3r
2
3z

−2F4(z∗3)

are holomorphic at the points τ1, τ2, and τ3 respectively. Let us consider the last summands of
functions (16). Omitting for the sake of simplicity almost all indexes, we derive

r2z−2F (r2/z) = r2
n∑

j=1

bjz
j−2

(r2 − zτ 0)j
= r2

n∑

j=1

(−1)jbj(z − τ0 + τ0)j−2

τ j
0(z − τ0)j

=
b1

z
− b1

z − τ0
+ r2

n∑

j=2

j−2∑

i=0

(−1)jbjτ
i
0C

i
j−2

τ j
0(z − τ0)i+2

=
b1

z
− b1

z − τ0
−

n∑

j=2

τ j−1
0

(z − τ0)j

n∑

i=j

biC
j−2
i−2

(−τ0)i−1
.

Equating to zero all coefficients of functions (16) at all powers of z − τk we get

Ψk(z) = −Bkb
k
21/z, k = 1, 2, 3, (17)

and

bl
1j − Alb

l
2j + Blτ

j−1
l

nl∑

i=j

Cj−2
i−2 bl

2i(−τ l)1−i = 0, j = 1, nl, l = 1, 2, 3. (18)

Relations (15), (18) give the system for determination of all unknown coefficients bl
1j , bl

2j through

the given coefficients bl
j , l = 1, 2, 3. After simple algebra we get the following recursion formula for

determination of bl
2j :

bl
2j =

(2 + Δl)bl
j

2
+

Δlτ
j−1
l (−τ l)1−jbl

j

2
+

Δl + Bl

4
τ j−1
l

nl∑

i=j+1

Cj−2
i−2

bl
2i

(−τ l)i−1

(19)
+

(−1)1−jΔlBl

4
τ j−1
l

nl∑

i=j+1

Cj−2
i−2

bl
2i

(−τl)i−1
.
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If j = nl then from (19) we find bl
2nl

bl
2nl

=
[
(2 + Δl)bl

nl
+ Δlτ

nl−1
l (−τ l)1−nlbl

nl

]
/2.

Then, using (19), we will sequentially find bl
2nl−1, bl

2nl−2,· · · , bl
21, l = 1, 2, 3. From the first equation (15)

we get bl
1j = 2bl

j − bl
2j , l = 1, 2, 3, j = 1, nl.

Thus, each function Φk (k = 1, 3), as well as in previous section, is holomorphic in the domains
S+

k /{0} and S−
k and due to the corresponding boundary condition (3) continuous everywhere, including

the point z = τk, across the line lk. At origin these functions have simple poles and they vanish at infinity.
By the generalized Liouville theorem Φk(z) = Ck/z, where C1, C2, C3 are constants to be determined.
From (14), (16), (17) follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−V1(z) + A1[F22(z) + V −
2 (z)] + B1r

2
1z

−2V +
2 (z∗1) = C1/z, z ∈ S−

1 ,

−A1V
+
2 (z) − B1r

2
1z

−2[F22(z∗1) + V −
2 (z∗1)] = (C1 + B1b1

21)/z, z ∈ S+
1 ,

−V −
2 (z) + A2[F32(z) + V −

3 (z)] + B2r
2
2z

−2V +
3 (z∗2) = C2/z, z ∈ S−

2 ,

F21(z) + V +
2 (z) − A2V

+
3 (z) − B2r

2
2z

−2[F32(z∗2) + V −
3 (z∗2)]

= (C2 + B2b
2
21)/z, z ∈ S+

2 ,

−V −
3 (z) + B3r

2
3z

−2V4(z∗3) = C3/z, z ∈ S−
3 ,

F31(z) + V +
3 (z) − A3V4(z) = (C3 + B3b3

21)/z, z ∈ S+
3 .

(20)

Similar to the case of inner multipoles we find here

C3 = −B3b
3
21, C2 = −B2(b2

21 + b3
11 − C3), (21)

C1 = −B1(b1
21 + b2

11 + A2b3
11 − C2 − A2C3).

Solution of the system (20) leads again to the functional equation (10) about V +
3 (z) with F0(z) =

G1(z) − z−2G2(z) + c0/z, where

G1(z) = (1 + Δ2)F21(z) − δ13F31(z∗13) − δ23F31(z∗23),

G2(z) = (1 + Δ2)δ1F22(z∗1) + δ1F32(z∗1) + δ2F32(z∗2), (22)

c0 = (Δ1 + Δ2)C3 − Δ2b2
21 + (1 + Δ2)

(
Δ1C2 − C2 − (1 + Δ1)C1 − Δ1b1

21

)
.

The function F0(z) with components (22), parameters (21), and coefficients of the functions (14)

defined in (19), (15) is holomorphic into the closed circle S+
2 . As well as earlier, we get V +

3 (z) as
the absolutely and uniformly convergent series (12). Then from the system (20) one can find all other
components of functions Vk(z). Finally, we get the required solution of the stated problem in accordance
with (4), (5):

v4(z) = F4(z) + (1 + Δ3)(F31(z) + V +
3 (z)),

v3(z) = F31(z) + F32(z) + V +
3 (z) + δ3z

−2[F31(z∗3) + V +
3 (z∗3)] − C3/z,

v2(z) = F21(z) + F22(z) − δ1z
−2F22(z∗1) + A2F32(z)

+ A2z
−2

(
δ3[F31(z∗3) + V +

3 (z∗3)] + δ2V
+
3 (z∗2) − δ1F32(z∗1)

)

− A2

(
δ13[F31(z∗13) + V +

3 (z∗13)] − δ12V
+
3 (z∗12)

)

+
(
A2(Δ1C3 − C3) + Δ1C2 − C2 − (1 + Δ1)(C1 + B1b2

21)
)

/z,

v1(z) = F1(z) + (1 − Δ1)(F22(z) + A2F32(z))

+ A2(1 − Δ1)z−2
(
δ2V

+
3 (z∗2) + δ3[F31(z∗3) + V +

3 (z∗3)]
)
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Fig. 2. ρ1 = 1, ρ2 = 0.1, ρ3 = 10, ρ4 = 1000 at the left; ρ1 = 1, ρ2 = 5, ρ3 = 0.1, ρ4 = 10 at the right.

−
(
(1 − Δ1)(A2C3 + C2) + Δ1(C1 + B1b

1
21) + C1

)
/z.

The case of arbitrary number of multipoles at the interface can be easily gotten as a corresponding sum
of the above derived solutions.

Example 2. Examples of the corresponding flow nets for complex potentials f1(z) = (2 + i) ln(z −
6) − ln(z − 4i) (r1 = 6, r2 = 4, r3 = 2) and f2(z) = 0.1 ln(z − 6i) − 2/(z + i), (r1 = 6, r2 = 3, r3 = 1)
are presented in Fig. 2.

5. CONCLUSION

As a continuation of investigation of two-phase [12] and three-phase ([14], p. 92) concentric circular
structures we have given a constructive explicit solution of the corresponding four-phase problem. It
was shown that the same basic idea as in the above cited papers is also working here. Namely, we have
considered a given boundary condition as a law of analytical continuation. It has allowed to reduce the
initial boundary value problem to an equivalent functional equation. Solvability of the last equation was
established by the method of undefined coefficients.

We hope that the present structure should be of value for several reasons: first, it provides a non-
trivial solution allowing to give an exact picture of the flow nets, that may be useful for solution of a
corresponding heterogeneous media problems. Second, it increases the number of not many examples
of exactly solvable problems of R-linear conjugation. Finally, the ideas used here one can apply to solve
a general n-phase concentric circular problem.
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