Alternative OS — Lecture 8

Plan:

1. Using grep with regular expressions
2. sed — the Stream EDitor

Using grep with regular expressions

The grep utility is used to search Unix files for General Regular
Expression Patterns (G.R.E.P.).

Syntax:

Options:

grep [options] regexp [file(s)]

—i ignore case (ABC=abc)

—C count occurrences and report only the number of
occurrences, do not print the lines themselves

-V invert the search, display only the lines that do not
match the search pattern

-n display line numbers, normally only lines
without their numbers are displayed

- work silently, report only final status:

= (), if a match was found
=], if no matches were found
= 2, if an error occurred

-1 list only names of the files where matches were
found

This command takes a regular expression “regexp” and a set of file
names (may be just one file name) “file(s)” as parameters. The grep
utility prints all lines matching the regular expression “regexp”, it also
shows which file the matching was found in.

For example:

%%grep ‘foo’ bar.txt bar2.txt

If you issue this command, all lines from “bar.txt* and
“bar2.txt” containing “foo” will be displayed.

% grep -c 'foo' bar.txt

The —c option will make grep output how many times the
line ‘foo’ was found in the file ‘bar.txt’.

% grep 'f[ou]' bar.txt

This way we search for all lines containing the character
f followed by either of o, u.

Now we’ll search for all lines that begin with ‘f’:
% grep 'M' bar.txt
And now, for all lines that don’t begin with ‘f’:

% grep 'MAM]' bar.txt

This alsocould also be done by using the -v option:

% grep -v '’ bar.txt

Next we search for all lines that begin with the characters
a through e:

% grep 'Ma-e]' bar.txt

The next example demonstrates how to search for any
instances of b followed by zero or more occurrences of
e:

% grep 'be*' bar.txt

Following command will search for any instances of b
followed by one or more occurrences of e:

% grep 'bee*' bar.txt

Next we show how grep utility can be used to search in the output of
another utility rather than in a file.

Here we report on any lines output by the who program that begin with the
letter s.

% who | grep '\s'
student ttypl Oct 12 11:41

sed — the Stream Editor
When a shell script is being executed the shell works in the so-called
non-interactive mode. That means the user is limited in interacting
with the shell. He receives the control over the course of actions only
when the script allows it, and only as much as the script permits.
Editing task, however, is commonly attributed as an interactive one. Is
it possible to edit a file from a shell script? It turns out the answer is
positive!
The non-interactive, stream editor called sed edits the input stream
line by line, making the specified changes and sends the result to
standard output.
Syntax:

sed [options] edit_commands [file]

where edit_commands syntax is:

[address1[,address2]][function][arguments]

The address entries are optional. They can be separated from the
commands with tabs or spaces.

* If both the address1 and the address2 are given, then the
address1 specifies the first line and the address2 specifies the

last line to apply the commands.

* If only the address1 is given then the commands are applied to
the lines matching the address.

* If no address is specified then the commands are applied to the
whole text.

The address can be given in two forms:

* Line-number is a decimal number. The last line number can be
specified by the $ character.
* Context address is a regular expression enclosed in slashes /.

The most often command used is the substitution command. We shall
learn it next.

Syntax:

s/regular_expression_pattern/replacement_stringlflag

This function tells the sed to find all strings matching the
regular_expression_pattern and replace them with the
replacement_string. This function must be quoted with single quotes
(°) if additional options are specified or functions.

Example:
#! /bin/sh
converts arg[1].* files to arg[2].*
if [$#-1t2]
then
echo 'Usage: rename_base basel base2';
exit 1;
fi
echo "Processing basenames $1 and $2"
for f in $1.*
do
newfile="echo $f | sed s/$1/$2/°
echo "renaming $f to $newfile"
myv $f $newfile
done

Conclusions

So far we learnt usage of two different kinds of patterns: wildcards and
regular expressions.

* We use wildcards to match characters and sets of characters in
filenames,

* We use regular expressions to match characters and sets of
characters in files.

The wildcards help us

* Manipulate many files at once,

* Select only those files we would like to be affected by the
commands we submit,

* Perform other great deeds.

The regular expressions help us

* Finding lines even in very big texts,

* Finding files containing something since long lost in the piles
of files,

* Counting lines that match a pattern,

* Also do great Unix deeds .

Next we learnt how to work with sed — the Stream EDitor. This tool let
us perform editing tasks from within a script! The most useful function of
sed is substitution. It is also noteworthy that sed supports regular
expressions. Thus making it a very powerful text processing utility.

Acknowledgement

The grep examples using the num.list file were taken with minor

corrections from the “Introduction to Unix” by Frank G. Fiamingo,
Linda DeBula and Linda Condron.

