Magnetic properties of the chain antiferromagnet RbFeSe₂ <u>Seidov Z.</u>^{1,2}, Krug von Nidda H.-A.¹, Tsurkan V.^{1,3}, Filipova I.³, Günther A.¹, Aliyev M.⁴, Vagizov F.⁵, Kiiamov A.⁵, Tagirov L.^{5,6}, Gavrilova T.⁶ and Loidl A.¹ ¹Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, Augsburg (Germany) ²Institute of Physics, Azerbaijan Academy of Sciences, Baku (Azerbaijan) ³Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova) ⁴Baku State University, Chair of the Solid State Physics, Baku (Azerbaijan) ⁵Institute of Physics, Kazan Federal University, Kazan (Russia) ⁶E.K. Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russia) zsyu@rambler.ru Single crystals of the ternary iron selenide RbFeSe₂ (with linear chains of FeSe₄ tetrahedra) have been investigated by means of X-ray diffraction, Mössbauer, magnetic susceptibility and specific heat measurements. Our Mössbauer experiments performed from room temperature (RT) down to 4.2 K have shown that the compound undergoes a magnetic phase transition near 248 K. Mössbauer parameters determined in the entire temperature range indicate that iron in RbFeSe₂ is in ferric (trivalent) state having strong covalent bonding to selenium ligands. The measured hyperfine field of 216 kOe at 4.2 K is quite reduced compared with that in high-spin ferric compounds. The SQUID susceptibility and specific heat measurements confirm that RbFeSe₂ exhibits 3D collinear antiferromagnetic order below $T_N = 248$ K with magnetic moments oriented perpendicular to the chain direction. The strict linear increase of the susceptibility to high temperatures strongly suggests a one-dimensional metallic character of RbFeSe₂ along the chains. Fig. 1. Mössbauer spectra at RT and 80 K (top), hyperfine field *vs* temperature (bottom) Fig. 2. Magnetic susceptibility *vs* temperature (top), specific heat *vs* temperature (bottom)