EPR of V⁴⁺ and Cu²⁺ ions in single crystals of pyrovanadates: β-Mg₂V₂O₇, α-Zn₂V₂O₇ ## Sushil K. Misra¹, Sergey Andronenko^{1,2} - 1) Concordia University, Physics Department, Montreal, QC, H3G 1M8, Canada - 2) Kazan Federal University, Physics Institute, Kazan, Russian Federation, 420008 The EPR spectra for the V⁴⁺ and Cu²⁺ ions were recorded in single crystals of β-Mg₂V₂O₇ and α-Zn₂V₂O₇ at X-band (9.6 GHz) at 120 and 295 K. Vanadium-mixed oxides (V-Mg-O, V-Zn-O) are important in catalytic processes, such as oxidative dehydrogenation of hydrocarbons and selective catalytic reduction of NO by ammonia, synthesis of supported V2O7 catalyst, insulin-mimetic agents and rechargeable Li batteries. The electrical conductivity of Mg and Zn pyrovanadates strongly depends on the impurity ions and thermal treatment, which governs the formation of V4+ defects. [V.A. loffe, V.S. Grunin, Z.N. Zonn, S.E. Ivanov, I.S. Yanchevskaya, Izv. Akad Nauk SSSR, Neorg. Mater., 1977, 13, 1484.] Therefore, investigation of defect centers in these compounds is a very important topic. The point symmetry of both Mg and V ions is C_i in triclinic β-Mg₂V₂O₇ crystals, and there exist two magnetically inequivalent sites for Mg and V ions. The EPR spectra of the V⁴⁺ and Cu²⁺ ions are observed in only one of the two magnetically inequivalent positions in β-Mg₂V₂O₇. One V ion is 4-fold tetrahedrally coordinated, while the VO₄ tetrahedron of the second V ion is distorted due to bonding with the fifth oxygen ion. There is only one magnetically inequivalent site for V^{4+} ions in monoclinic α -Zn₂V₂O₇, with the point symmetry being C_i, in trigonally bipyramidal fashion. The Cu²⁺ ion is 6-fold octahedrally coordinated in β-Mg₂V₂O₇, while it is 5-fold tetrahedrally coordinated in α-Zn₂V₂O₇ in a trigonally bipyramidal fashion. A rigorous least-squares fitting of EPR line positions in three mutually perpendicular planes to spin-Hamiltonian (SH) parameters, enabled determination of the orientations of the principal axes of the Zeeman and HF interaction matrices. The SH parameters of V^{4+} ions in β -Mg₂V₂O₇ and α -Zn₂V₂O₇ at 295 K are: | | gz | g _x | gу | A _z (GHz) | A _x (GHz) | A _y (GHz) | |---|-------|----------------|-------|----------------------|----------------------|----------------------| | Mg ₂ V ₂ O ₇ | 1.930 | 1.977 | 1.996 | 0.480 | 0.185 | 0.147 | | $Zn_2V_2O_7$ | 1.928 | 1.971 | 2.014 | 0.504 | 0.189 | 0.170 | In β -Mg₂V₂O₇ and α -Zn₂V₂O₇ the SH parameters of V⁴⁺ ions are similar. The Mg and Zn ions are differently coordinated in these host crystals, therefore the Cu²⁺ ion, substituted for these ions, has quite different from each other SP parameters: g_z = 2.000 < g_x = 2.283, g_y = 2.355, A_z = 0.25 GHz > A_x, A_y ≈ 0.05 GHz (unresolved EPR lines) in β -Mg₂V₂O₇ and g_z = 2.388 > g_x = 2.123, g_y = 2.050, A_z = 0.24 GHz > A_x, A_y ≈ 0.05 GHz (unresolved EPR lines) in α -Zn₂V₂O₇. Formation of defect centers V⁴⁺ is related to local distortion of stoichiometry and impurity ions.