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1. Introduction

In the early 1960’s, Mal’cev [33] and Rabin [41] independently gave a general definition of an algorithmically presented 
algebraic structure.

Definition 1.1 (Mal’cev, Rabin). A structure with domain ω (natural numbers) is computable if its operations and relations are 
uniformly Turing computable.

If a countably infinite A is isomorphic to a computable B, then we say that B is a computable presentation, a com-
putable copy, or a constructivization of A. The notion of a computably presented structure united and extended the earlier 
definitions of an explicitly presented field [49] and of a “recursively presented” group with a solvable word problem [25].

Much work has been done on computable groups [27,20,10], fields [14,37,36], Boolean algebras [42,19], linear orders [11], 
computable aspects of model theory [23,35,2,31] and the degree-theoretic properties of algebraic structures [45,50,15]. 
Investigations of this sort form a field known under the names of computable structure theory and effective algebra, see 
books [3,13] and surveys [21]. From a purely technical point of view computable structure theory is more closely related to 
definability by infinitary formulae [3], HF-definability [14], degree theory [47] and reverse mathematics [44], rather than 
to any actual computational applications. Nonetheless, computable structures in some natural algebraic classes tend to have 
computationally “feasible” presentations. We still do not have a satisfactory formal explanation of this phenomenon. Thus 
we have the following non-trivial question:

When does a computable algebraic structure have a feasible presentation?
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What does it mean for an infinite algebraic structure to have a feasible presentation? Different branches of effective 
mathematics suggest different rigorous answers to this question. For example, we could restrict ourselves to algebraic struc-
tures that are presented by finite automata [28–30]. Automatic structures have a number of nice properties, including quick 
computational characteristics and decidability of their first-order theories (and even beyond), but automatic structures tend 
to be rare. For example, a countably infinite Boolean algebra is finite-automatic iff it is isomorphic to the interval-algebra 
of the ordinal ω · n, see [30]. Although having a finite-automatic presentation of a structure is highly desirable, it is usu-
ally quite difficult to see whether a non-trivial algebraic structure has such a presentation. For instance, using deep results 
borrowed from additive combinatorics [16], Tsankov [48] has showed that the group of the rationals (Q, +) cannot be 
represented by a finite automaton. The result of Tsankov settled a long-standing conjecture of Khoussainov and Nerode 
(see e.g. [29]). Despite these difficulties, there have been a number of deep works on finite automatic structures [28,30], 
especially on finite-automatic groups [12,39,4,38].

Cenzer, Remmel, Downey and their co-authors developed a more relaxed and general approach, see survey [7]. More 
specifically, a computable presentation is feasible, or polynomial time, if the operations and relations of the structure are 
polynomial time computable in the length of input. Clearly this definition depends on how we represent the domain ω but 
we shall not discuss these subtleties here (see [7]). There is a relatively large body of research on polynomial time algebra 
(e.g., [7,8,6,22]), and some of these results relate computable structure theory with feasible algebra. Nonetheless, there is 
still a significant gap between these two topics, and deep results relating computable structure theory and polynomial time 
algebra are rare. In this paper we suggest a systematic approach designed to fill this gap.

1.1. From computable to feasible

When considering computable structures we allow algorithms to be extremely inefficient. For example, we may use an 
unbounded search through ω as long as we can prove that it will halt. More formally, our algorithms do not even have 
to be primitive recursive. Nonetheless, in several common algebraic classes we can show that every computable structure 
has a polynomial-time computable copy. These classes include linear orders [22], broad subclasses of Boolean algebras [5], 
some commutative groups [8,6], and other structures [7]. Interestingly, many known proofs of this sort (e.g., [7,8,6,22]) are 
essentially focused on making the operations and relations on the structure primitive recursive, and then observing that we 
get a polynomial-time presentation almost for free. It appears that primitive recursion plays a rather important intermediate 
role in such proofs. This thesis is also supported by a number of negative results in the literature. Indeed, to illustrate that a 
structure has no polynomial time computable copy, it is sometimes easiest to argue that it does not even have a copy with 
primitive recursive operations, see e.g. [8]. For this technical reason Cenzer and Remmel [7] came up with the following 
general definition.

Definition 1.2. An algebraic structure is primitive recursive if its domain is a primitive recursive subset of ω and the opera-
tions and relations of the structure are (uniformly) primitive recursive.

Our initial thought was that primitive recursive structures would be an excellent candidate for an intermediate class 
between computable structures and feasible structures. However, we very soon realized that the above definition is a bit 
too relaxed. In a primitive recursive structure, we may see new elements appearing in the structure extremely slowly; the 
principal function of the domain might not be primitive recursively bounded. This feature can be exploited to show that 
most computable structures have primitive recursive copies. For example, as observed by Alaev (personal communication), 
every computable structure whose finitely generated substructures are finite has a primitive recursive copy. Indeed, we can 
simply keep elements of ω out of the domain until we wait for a larger finite substructure to be revealed in the computable 
copy. In particular, any computable relational structure in a finite language admits a primitive recursive copy.1 This fact 
strongly suggests that primitive recursive structures are not “truly” primitive recursive, i.e. they seem too close to (general) 
computable structures to be a good intermediate notion.

We suggest that a truly “non-delayable” computable presentation must minimally satisfy the following definition:

Definition 1.3. A countable structure is fully primitive recursive (fpr) if its domain is ω and the operations and predicates 
of the structure are (uniformly) primitive recursive. We also fix the convention that all finite structures are fully primitive 
recursive by allowing the domain to be a finite initial segment of ω.

The reader should note that the situation here is quite different from computable structures where the domain can 
typically be assumed an arbitrary computable subset of ω. Indeed, a fully primitive recursive structure must reveal itself 
without any unbounded delay. One of our main results (Theorem 3.2, to be stated) combined with the observation of 
Alaev discussed above imply:

Fact 1.4. There exist primitive recursive structures that have no fully primitive recursive presentation.

1 As noted by the anonymous referee, this observation was known to Remmel and Nerode long before Alaev.
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Although primitive recursive functions can be computationally very inefficient, we will see that, when compared with 
computable structures, fpr structures behave much more impatiently and enumerate themselves more rapidly. Thus, we may 
informally call such structures computable without delay.

We are unaware of any previous systematic study of fpr structures in their own right. We note that primitive recursive 
presentations upon ω have been used by Cenzer and Remmel (at least once) as a technical tool for showing that certain 
structures have no feasible copy (see [8]). We also note that Alaev has recently and independently suggested an alternate 
approach to computable structures via primitive recursion [1].

1.2. The main questions

We are ready to state the first main question addressed in the paper:

When does a computable structure have a fully primitive recursive presentation?

The natural morphisms in the category P Rω of fully primitive recursive structures are primitive recursive isomorphisms 
with primitive recursive inverse. We call such isomorphisms fully primitive recursive (fpr). For example, the dense linear order 
(Q, <) clearly has a fpr presentation. It is also clear that any two such presentations are computably isomorphic. Nonethe-
less, it is not hard to see that there exist two (in fact, infinitely many) fpr-copies of (Q, <) that are not fpr-isomorphic. We 
note that there has been a lot of work on the number of (Turing) computable presentations of algebras up to computable 
isomorphism [31,13,18,46,32,40,26], but not much is known about the situation with primitive recursive isomorphisms. 
Given a fpr algebraic structure A, we ask the second main question of the paper:

How many fpr presentations does A have up to fpr isomorphism?

The rest of the paper is devoted to a systematic study of the above two questions and comparing them with the respec-
tive problems in computable structure theory [3,13]. We will also address some other problems, but most of these directions 
we leave wide open. Although we conjecture that most fpr structures that appear in this paper have polynomial-time copies, 
verifying this claim is outside the scope of this paper.

We now turn to a detailed discussion of the results.

1.3. Existence of a fpr presentation

We open the paper with a rather satisfying positive result.

Theorem 1.5. In each of the following classes, every computable structure has a fully primitive recursive presentation:

(1) Equivalence structures.
(2) Linear orders.
(3) Torsion-free abelian groups.
(4) Boolean algebras.
(5) Abelian p-groups.

We note that (1) follows from an observation of Cenzer and Remmel [7], and (2) easily follows from Grigorieff [22]. We 
outline the proofs of (1) and (2) for the sake of completeness of exposition. The idea behind (3) was known to Downey2

in a different set-up, but it has never been published. Parts (4) and (5) are new (but [5] contains several related partial 
results). Our proofs exploit techniques specific to each class under consideration. For example, our proof of (5) uses a 
70-year-old theorem of Prüfer, and the proof of (4) exploits the old theorem of Remmel [43] and presentations by trees [19]
blended within a priority construction. Although there are certain similarities between the proofs of the different parts 
of Theorem 1.5, we could not come up with any convenient sufficient condition for a computable structure to have a 
fpr presentation. We leave the existence of such a condition as an open question.

In contrast to Theorem 1.5, Theorem 3.2 says that in each of the following classes, there exists a computable structure that does 
not admit a fpr presentation:

(1) torsion abelian groups,
(2) Archimedean ordered abelian groups,
(3) undirected graphs.

2 Personal communication with the second author.
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Part (1) of Theorem 3.2 was proved in [8], we will outline a rather elementary proof. Parts (2) and (3) are new. Observe 
that Theorem 3.2(1) contrasts with (3) and (5) of Theorem 1.5. As we will discuss in Subsection 3.2, (2) of Theorem 3.2
is quite unexpected since both torsion-free abelian groups (Theorem 1.5(3)) and Archimedean ordered abelian groups have 
computable copies with a computable basis [40,20,24], and the proof of Theorem 1.5(3) will be heavily exploiting this 
property.

Recall that every computable graph has a primitive recursive copy (not upon ω). Furthermore every computable locally 
finite graph has a fully primitive recursive presentation (as one can easily verify this, we omit details). It is thus natural to 
conjecture that every computable graph has a fpr presentation. Part (3) of Theorem 1.5 refutes this conjecture. The proof, 
while not difficult, does employ some novel ideas and may be of technical interest to the reader.

We conclude that, in contrast to primitive recursive structures, fully primitive recursive structures behave quite differ-
ently from computable structures. We feel that this justifies further investigations into this notion. In Subsection 3.3 we 
also suggest and briefly discuss a primitive recursive analogy of 1-decidability. This approach can be further extended to 
n-decidability or decidability, although we do not do this in the paper. This stronger notion is designed to eliminate several 
unsatisfactory features that fpr structures may exhibit in some classes.

1.4. Uniqueness of a fpr presentation

Following Mal’cev, we say that a structure is computably categorical or autostable if it has a unique computable copy up 
to computable isomorphism. Note that the inverse of a primitive recursive function does not have to be primitive recursive. 
Thus it is reasonable to define an isomorphism f to be fully primitive recursive (fpr) if f and f −1 are both primitive recursive. 
Fully primitive recursive isomorphisms preserve all properties of fpr structures at the right (primitive recursive) level, and 
thus such isomorphisms seem to be the most natural morphisms between fpr structures.

Definition 1.6. A fully primitive recursive structure A is fpr-categorical if it has a unique fully primitive recursive presenta-
tion up to fully primitive recursive isomorphism.

We were able to characterize fpr-categorical structures in many common classes.

Theorem 1.7.

(1) An equivalence structure S is fpr-categorical iff it is either of the form F ∪ E, where F is finite and E has only classes of size 1, or 
S has finitely many classes at most one of which is infinite.

(2) A linear order is fpr-categorical iff it is finite.
(3) A Boolean algebra is fpr-categorical iff it is finite.
(4) An abelian p-group is fpr-categorical iff it has the form F ⊕V, where pV = 0 and F is finite.
(5) A torsion-free abelian group is fpr-categorical iff it is the trivial group 0.

Even though Theorem 1.5 typically produces the most “boring” fpr presentations in each class, Theorem 1.7 says that 
almost all structures in these classes have complex (“irregular”, “unpredictable”) fpr presentations. In fact, in many cases 
we can even diagonalize against all computable isomorphisms between two fpr copies of a structure. We also note that 
Theorem 1.7 resembles the following result of Khoussainov and Nerode [28]: A structure is automatically categorical iff it is 
finite.

According to our definition, every fpr-categorical structure must have a fully primitive recursive (thus, computable) copy. 
Theorem 1.7 suggests that fpr-categorical structures in common classes are necessarily computably categorical and tend to 
be trivial. Nonetheless, in Proposition 4.2 we will construct the first example of a fpr-categorical structure that is not trivial 
(in the sense that will become clear later). Furthermore, to our surprise, fpr-categorical structures do not form a proper 
subclass of computably categorical structures.

Theorem 1.8. There exists a fpr-categorical structure which is not computably categorical.

The proof of Theorem 1.8 combines several novel strategies and is quite combinatorially involved. We also note that the 
structure witnessing Theorem 1.8 is rigid and is in a finite language consisting of four unary function symbols. We leave 
open whether such structures can be found in the common algebraic classes (e.g., groups or fields), and we conjecture that 
with some effort such examples can be constructed.

1.5. Further topics

There are many interesting questions one can ask about fpr structures, but in this paper we touch only a few further 
subjects. First of all, we note that Theorem 1.8 has several pleasant consequences. For instance, the structure A witnessing 
Theorem 1.8 cannot be uniformly fpr-categorical (meaning that fpr ismorphism cannot be witnessed by a pair of primitive 
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recursive functionals). Indeed, otherwise we could produce a c.e. Scott family consisting of first-order ∃-formulae, thus giving 
that the structure is (relatively) computably categorical. This observation explains why examples of non-computably cate-
gorical, fpr-categorical structures are hard to find in the natural non-universal classes where relative and plain computable 
categoricity tend to be the same.

Also, as we will show in Proposition 4.6, the proof of Theorem 1.8 can be modified to show that there exists a fpr struc-
ture A and a relation P on A which is primitive recursive in all fpr copies of A, but there is a computable presentation of 
A in which P is not even computable.

Finally, we strongly conjecture that the proof of Theorem 1.7 can be modified to show that in all these classes we have 
one or infinitely many fpr presentations up to fully primitive recursive isomorphism. We leave open whether there exists a 
fpr structure with exactly two (or 0 < n < ∞) fpr presentations up to fully primitive recursive isomorphism.

2. Primitive recursion

Before we turn to a more detailed discussion of the new notion, we should remind the reader what primitive recursive 
functions are, and how to deal with them.

Recall that a recursive function is primitive recursive if the function can be generated from the basic functions s(x) = x +1, 
o(x) = 0, In

m(x1, . . . , xn) = xm by composition and the primitive recursion operator h =P( f , g):

h(x1, . . . , xn,0) = f (x1, . . . , xn),

h(x1, . . . , xn, y + 1) = g(x1, . . . , xn, y,h(x1, . . . , xn, y)).

We note that the history of primitive recursive functions goes back all the way to Dedekind [9] in the 19th century. The 
unbounded search operator (the μ-operator) cannot be used in the scheme but (as it is well-known) we may allow the 
bounded μ-operator.

Primitive recursive functions are much easier to understand if one follows the restricted Church–Turing thesis for primi-
tive recursive functions. More specifically, if we can describe our algorithm without using unbounded loops (such as WHILE 
. . . DO, REPEAT . . . UNTIL, and GOTO in a Pascal-like language) then our function is primitive recursive. Even less formally, 
if our algorithm does not have instructions of the form “wait until some effective process halts”, then our algorithm will be 
primitive recursive.

It will also be important that all primitive recursive functions are total.

3. Existence of fpr presentations

3.1. Proof of Theorem 1.5

(1) If the given computable equivalence structure has finitely many classes, we can clearly produce a fpr presentation 
by first fixing finitely many parameters. Otherwise, assume there are infinitely many distinct classes in E . We build a 
fpr presentation I of E , and a computable isomorphism f : I �→ E . At stage s of the construction we check if the next 
element x of E has been decided. That is, we check if E(x, y)[s] ↓ for every y < x. If x is not yet decided then at stage s we 
introduce a new element into I[s] and declare it unrelated to all existing elements of I . Otherwise x is decided at stage s. 
If x is E-unrelated to all y < x then we pick the least n /∈ dom( f ) and define f (n) ↓= x. Otherwise E(x, y) holds for some 
collection of y < x, where y ∈ Rng( f ). Introduce a new element n in I[s] and declare it to be I-related to f −1(y) (and 
taking the transitive closure if necessary). Declare f (n) = x.

Clearly f is total because E has infinitely many distinct classes. Thus f witnesses that E ∼= I . Note that f is computable 
but not necessarily primitive recursive. I is fpr because at every stage s, I(x, y)[s] is decided for every x, y < s.

(2) The proof then splits into the following cases.

Case 1: L has a left limit point b. That is, L contains an element b with no predecessor and where b is not the least 
element of L. We describe how to produce a fpr presentation A and a computable isomorphism f : A �→ L. In A we 
fix a = f −1(b) and grow an increasing sequence of elements a0 < a1 < a2 < · · · < a. At the beginning we start with 
a0 ∈ A and define f (a0) < b to be the first enumerated in L. While waiting for the next element to be enumerated in 
L we continue to place the elements of the sequence a0 < a1 < a2 < · · · in A.

Suppose at some stage s we find a new element x enumerated in L. If x > b then we place a corresponding element 
n > a in A and set f (n) = x. Otherwise x < b and assume that i is the largest so far such that f (ai) ↓. By the construc-
tion we assume that f (ai) is the largest element < b present in L (except possibly for x), and that for every y < f (ai)

in L, we have already defined f −1(y). Now if x < f (ai) in L then we introduce a corresponding element n in A and 
declare f (n) = x. Place n in L appropriately. On the other hand if x > f (ai) then we declare f (ai+1) = x.

Clearly, f is a partial isomorphism at every stage, and is clearly surjective as each new x ∈ L is immediately put in 
the range of f . Furthermore f is total by the assumption that b is a left limit point of L. Clearly A is fpr.

Case 2: L has a right limit point. Same as Case 1.
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Case 3: L contains a sub-interval of order-type ω + ω∗ . Then we (non-uniformly) fix the end-points a < b of the interval 
ω + ω∗ . We build a copy A ∼= L and a computable isomorphism f : A − [

f −1(a), f −1(b)
] �→ L − [a, b]. The strategy to 

build A is simple. Monitor L − [a, b], and each time a new element shows up in L − [a, b] we place a corresponding 
element in A − [

f −1(a), f −1(b)
]

and extend f . While waiting we simply grow the ω + ω∗ chain in A.
Case 4: Assume that none of the above holds. We may assume that L has a greatest element, because otherwise we can 

proceed as in Case 1 for L ∪ {∞}. Similarly L has a least element. Since the greatest and least elements of L are not 
limit points, we can continue to argue that L = ω + L′ + ω∗ for some L′ . In fact L′ is non-empty as ω + ω∗ is not 
a sub-interval of L. Any x ∈ L′ must have a successor and a predecessor (otherwise we are in Case 1 or Case 2). So 
any x ∈ L′ is part of a Z-chain. As ω + ω∗ is not a suborder of L we conclude that the Z-chains of L′ are dense 
with no greatest and no least Z-chain. In other words, L is of the form ω + Z · η + ω∗ . This ordering clearly has a 
fpr presentation.

(3) Recall that elements a1, . . . , ak of an abelian group are linearly independent if they are linearly independent over Z, 
i.e., if n1a1 + . . . + nkak = 0 implies n1 = . . . = nk = 0 for any integer coefficients n1, . . . , nk . A basis of a group is a maximal 
linearly independent subset of the group. The rank of an abelian group, which is the cardinality of its basis, is an invariant 
of the group. A basis should not be confused with a generating set; for example, {(2, 0), (2, 4)} is a basis of Z2, but it does 
not generate the group under + and −. On the other hand, each generating set of a free abelian group can be replaced by 
a linearly independent one, and we will assume all generating sets of free abelian groups under consideration are linearly 
independent. We will also be using the well-known fact that a finitely generated subgroup of a torsion-free abelian group 
is free abelian.

It is well-known that every computable torsion-free abelian group has a computable copy with a computable basis [40]
(see also [24] for a modern proof). We explain the case when the rank of the group is infinite, the case of any finite rank is 
simpler (just remove the basis-extension strategy from the construction below).

Thus, without loss of generality we may assume that G has an infinite computable basis (ai)i∈ω . The idea is to keep 
building the subgroup generated by the ai (which is isomorphic to the free abelian group of rank ω) while we wait for 
another generator of G to show up.

We are building a fpr H ∼= G . Suppose at a stage s we have enumerated a finite partial group Hs with a basis 
b1, . . . , bs and a generating set e1, . . . , es . We also assume that we have defined a partial embedding ψs : Hs → Gs such 
that range(ψs) ⊆ Gs and φs(bi) = ai for some i ≤ s such that ai have already been seen at this stage (φs will not be primi-
tive recursive). Since each bi is the intended isomorphic pre-image of ai , every element h of Hs is uniquely associated with 
a (reduced) linear combination of b0, . . . , bs:

mh =
∑
i≤s

nibi,

where m, n0, . . . , ns ∈ Z and m �= 0. The partial group Hs always comes together with its generating set e0, . . . , es that makes 
it a (partial) free abelian group upon these generators:

Hs = 〈e0〉m ⊕ . . . ⊕ 〈es〉m,

where 〈ei〉m = {−mei, . . . , −ei, 0, ei, . . . , mei} and m is some positive integer (which will be determined by the construction). 
Such a generating set exists because any finitely generated torsion-free abelian group is free abelian. Note that the number 
of elements in the generating set should be the same as in the basis b1, . . . , bs , since the rank of the free Z-span of Hs is 
its invariant.

There are three types of strategies that work together towards building a fpr presentation of G .

The basis-extension strategy
If the strategy becomes active at stage s, it introduces a new element bs+1, and initiates the enumeration of the free 

group naturally extending Hs to Hs ⊕ 〈bs+1〉. In the notation as above, we set es+1 = bs+1 and keep the rest of the ei (i ≤ s) 
unchanged.

Note that all actions of the strategy are primitive recursive. In the construction, we will also wait for as+1 to show up in 
the basis, and then we will set φs+1(bs+1) = as+1. Then φ is perhaps not primitive recursive, but the construction will be.

The copy-delay strategy
This strategy is always given (as its input) a finitely generated partial (free) abelian group Hs upon a fixed generating 

set e1, . . . , es . The strategy then makes s steps towards extending Hs naturally to the corresponding free abelian group ⊕
i≤s〈ei〉.
Finally, we need to make sure that φs is an isomorphism onto. The strategy below ensures that all elements in G

eventually get φ-preimages. The strategy itself is not primitive, but it will be stretched in the construction into a sequence 
of primitive actions, with copy-delay and basis-extension strategies acting in-between.
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The onto-strategy
The strategy has a witness g ∈ G , and it waits for a reduced linear combination

mg =
∑
i≤s

niai

to show up in G . The strategy then decides whether the free group naturally extending the current Hs (in the sense of the 
copy-delay strategy) will ever have an element h′ with the property mh′ = ∑

i≤s nibi .

Remark. Note that the latter is decidable. Recall that Hs comes together with its generating set e1, . . . , es . Replace the 
bi in the sum by the respective linear combination of the e j (say, b j = ∑

i mi, jei ) and see whether the resulting linear 
combination 

∑
j k je j satisfies m|k j for all j.

If such an h′ exists, then wait for it to appear in the enumeration of the free group extending Hs , and define φ(h′) = g . 
Otherwise, introduce a new element h′ with the desired property. Then find a new set of generators e′

1, . . . , e′
s in the new 

extended partial group (to be used by the copy-delay strategy) extending the partial group further if necessary. Finally, 
define φ(h′) = g and declare that the action of the strategy is finished.

Construction
Let the strategies act one after another according to some natural order, but with one important restriction. More specifi-

cally, we will let the copy-delay and the basis-extension strategy alternate their actions while the onto-strategy waits for its 
computation to be finished. We will also postpone the definition of φ in the basis-extension strategy by allowing φ(bs) to 
be decided later in the construction. Also, whenever we introduce a new element into H , we always use the least element 
of ω never used to index elements of the group H that we construct.

Verification
It is clear that φ = ∪sφs is a homomorphism of H onto G . Since every element of G corresponds to a linear combination 

of (ai)i∈ω , the onto-strategy ensures that the homomorphism φ is surjective. Furthermore, φ maps a basis of H to a basis 
of G , thus it is actually injective and hence an isomorphism.

We now check that H is fully primitive recursive. Very informally, we did not use any unbounded delay in the definition 
of the operations on H = ⋃

s Hs , thus it is fpr. More formally, we need to verify that the group operations + and − are 
primitive recursive. Recall the domain of H is ω. If h, h′ ∈ H then we can primitively recursively find an s such that both 
h, h′ ∈ Hs (indeed, we may arrange the construction so that, say, s < max{h, h′}). Again primitively recursively, we can 
find generators e1, . . . , es of Hs and express h, h′ as linear combinations of these generators. Since we very often have 
copy-delay stages acting, we can primitively recursively find the linear combination of the e j corresponding to h + h′ , and 
thus a t and the element h′′ of Ht ⊇ Hs representing this linear combination. Then evidently h + h′ = h′′ . Similarly, − is 
primitive recursive as well. Indeed, for every h if h ∈ Hs then −h ∈ Hs .

(4) Suppose that B is a computable Boolean algebra. We write (b)B or simply (b) for the ideal of B generated by b ∈ B. 
We will also use the standard terminology (such as atom, atomless etc.), see [19] for these definitions. For instance, we will 
be using the standard partial ordering induced by the operations on B. Under this order, x ≤ y (x is below y) iff x ∈ (y).

If B is finite, then there is nothing to prove. Without loss of generality, we may also assume that B has no atomless 
elements. Indeed, if B had an atomless b ∈ B, then B = A ⊕ (b) and we could just keep building the atomless (b) of B
bounded by b while waiting for new elements to show up in B. A rather routine argument shows that this way we’ll end 
up with a fpr presentation of B, we leave reconstructing the elementary formal details to the reader (see also [5] for a 
similar proof).

We concentrate on the more interesting case when B is infinite and has no atomless elements. We thus we assume that 
B is infinite and atomic; that is, every element of B bounds an atom. The main idea behind the proof can be informally 
described as follows. While we wait for another element to split in the computable Boolean algebra, we insert more atoms 
into our fpr presentation. Since there will be plenty of extra atoms, we will need to somehow find their isomorphic images 
in the computable Boolean algebra that we copy. To do this we will use a priority construction and some techniques 
standard for computable Boolean algebras (to be explained).

We are building a fpr presentation P of B and a �0
2 map

φ : P → B,

such that φ is “almost” an isomorphism of P onto B. That is, we relax the definition of an isomorphism and allow the 
φ-preimage of an atom in B to be the sum of finitely many atoms in P . It is well-known that any two Boolean algebras 
almost isomorphic in this sense are in fact isomorphic [43]. Since at the end φ will be merely �0

2, at every stage we can 
define only our best guess on φ(x), and this may later change. We will then argue that there will be at most finitely many 
changes of our definition of φ(x) for every x.

We may assume that in the effective enumeration (Bs)s∈ω of B either exactly one atom of Bs−1 splits in Bs into two 
atoms, or Bs−1 = Bs . If c is the atom in Bs−1 that splits in Bs then we say that c s-splits, and we also say that the stage 
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s at which the element was split is a splitting stage of c, or simply a splitting stage if knowing c is not necessary. It will 
be convenient to use a c.e. binary generating tree [19] to represent B. In such a subtree of 2<ω , the root represents 1, 
nodes represent generators of a Boolean algebra, and the join of two nodes corresponds to the union (supremum) of two 
generators. See [19] for an excellent exposition. Without loss of generality, we may assume that we are given such a 
computably enumerable subtree of 2<ω of generators in B. Since B is atomic, every node in the tree bounds a terminal 
node. We identify the nodes on the tree with the respective generators of B.

The basic copying strategy can be described as follows. Suppose an element x ∈ B s-splits, say

x = x1 ⊕ x2.

Then we pick y ∈ P such that φ(y) = x and such that y is not in any queue (to be defined) and split y into the (disjoint) 
sum of y1 and y2. We postpone the definition of φ on y1 and y2. At every stage t > s that is not a splitting stage of any 
element, we will introduce more atoms below y by further splitting y1 and y2. Keep splitting until the next splitting stage 
s′ is found. Depending on whether this new split occurs within (x) or its complement, at stage s′ the algebra (x) has k = 3
or k = 2 atoms, respectively. Then pick any k atoms in (y) and map them into the k atoms in (x) under φ, but do not define 
φ on the rest of the atoms z0, . . . , zn in (y). These remaining atoms (if there are any) now form the queue of x-followers that 
will be assigned to its own isomorphism-builder strategy (to be introduced) whose task will be to find a stable definition of 
φ on these remaining atoms.

The isomorphism-builder strategy
The strategy will be associated with its queue z0, z1, . . . , zn of x-followers. The strategy picks the least (under the natural 

order on ω) element a below x that currently looks like an atom, i.e., is an atom in Bs . Call a the witness of the strategy. 
Once such an a is found, define φ(zi) = a for all i ≤ n. On the remaining generators below y, set φ to be any isomorphism 
of (y − ⊕

i≤n zi) onto (x). (Here u − v stands for the complement of v ∧ u in (u).)

Remark
We will argue that the number of atoms in the finite Boolean algebra (x) will never exceed the number of atoms in (y)

at every stage. Furthermore, we will see that the extra atoms (if there are any) are exactly the z0, z1, . . . , zn forming the 
queue of the strategy. Thus, the definition of φ is consistent.

Priority ordering
The copying strategies have no priority and cannot be initialized. We assign each isomorphism-builder strategy a certain 

priority in the construction; this priority depends on the stage at which the respective queue was introduced (the earlier it 
was formed, the higher priority it receives). An isomorphism-builder strategy can be initialized, and it may also modify its 
queue (see below).

Initialization and queue modification
As we noted above, only an isomorphism-builder strategy can be initialized. Suppose we have two isomorphism-builder 

strategies I ′ and I whose queues follow x′ and x, respectively, where x′ is below x. As we will see, I ′ must have a weaker 
priority than I . If I discovers that its witness is not an atom, we initialize I ′ and adjoin its queue to the queue of I . This is 
done before I chooses a new witness. The initialized strategy will never act again.

Construction
At every splitting stage we let the isomorphism-builder strategies re-define φ if necessary. As explained above, if an 

isomorphism-builder strategy I whose queue follows x is forced to change its witness, then we first initialize all weaker 
priority strategies working below x and only then we let the strategy I act. We let the copying strategies act according to 
their instructions between splitting stages.

Verification
First, we argue that every isomorphism-builder strategy can successfully define φ as described in its basic module above. 

This follows by induction. At the beginning, immediately after the queue z0, z1, . . . , zn of x-followers is introduced, the 
respective strategy I guesses that one of the at most three atoms of Bs below x, say a, is an atom in B. Then the strategy 
defines φ within (y) so that φ(z j) = a for all j, and ψ : (y − ⊕

j≤n z j) → (x) is an isomorphism. The number of atoms in 
the queue was initially chosen so that the Boolean algebras (y − ⊕

j≤n z j) and (x) have equal number of atoms, see the 
basic module of the copying strategy. But then the strategy can define φ according to its instructions.

Now suppose the strategy I has already acted several times, and without loss of generality there will be at most finitely 
many other isomorphism-builder strategies I ′, I ′′, . . . whose queues follow elements x′, x′′, . . . below x. Since these strategies 
have been introduced after the queue of x was formed, all these strategies I ′, I ′′, . . . have weaker priorities than I . The only 
reason I needs to act again is that its previous witness has split. But this means that all the strategies I ′, I ′′, . . . must be 
initialized and must immediately adjoin their queues to the queue of I . After these extra elements have been adjoined, the 
strategy I acts. By a straightforward induction, the finite Boolean algebra (y) will have more atoms than (x). Furthermore, 
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we claim that these extra atoms are exactly the elements in the new extended queue z0, z1, . . . , zm of I . Indeed, the only 
reason we introduce any extra atoms to (y) (when compared with (x)) is because of the actions of various copying strategies 
working below y. In other words, the queue of I has accumulated all the extra atoms that we have put so far below y, 
when compared with x. Thus, the strategy may safely define φ(z j) = a, where a is as above, and then define φ to be any 
isomorphism of (y − ⊕

i≤m zi) onto (x).
Note that, since the algebra is atomic, every isomorphism-builder strategy that has ever been formed eventually is either 

initialized or finds a true atom below its respective x. If an isomorphism-builder strategy is initialized, then by induction 
we have that all atoms in its queue eventually receive a stable φ-definition. The base of induction follows from the nature 
of the search being �0

2, and from the analysis in previous paragraph. We conclude that any extra atom z of P that was 
introduced by copying strategies will eventually find itself in a queue that follows some x, and so that the witness a of the 
respective isomorphism-builder strategy is a true atom in B.

We may replace the computable Boolean algebra B by its computable generating tree, with Ts naturally representing the 
finite Bs . Now splitting an element x ∈ Bs−1 in Bs corresponds introducing two children of the respective terminal node of 
Ts−1. It will be most convenient to assume that, together with P , we are building a generating tree Y of P . The tree that 
we build tries to “copy” the tree T of B, in the following sense. Re-defining ψ below y corresponds to replacing the current 
finite subtree (y) by another finite binary tree with the same number of leaves, and whose leaves are labeled by the same 
(current) atoms in (y). The new tree will be the same as the subtree of Ts rooted in x, with the exception that the subtree 
with leaves z0, . . . , zm will correspond to a single atom a below x. Then showing that ψ is total and �0

2 is the same as 
arguing this process of re-arranging Y must stabilize for every node of the tree Y .

The isomorphism-builder strategies that are introduced late in the construction will be following elements x far from 
the root of T , and thus by induction y will be far from the root of Y , where ψ(y) = x. Recall that an isomorphism builder 
strategy (unless initialized) may possibly rearrange ψ only below some fixed y corresponding to x. Furthermore, the basic 
module of the isomorphism-builder strategy ensures that, once a stable atom a below its x is found, φ will never be 
re-defined below x up to, and including, the elements of P that were used by the strategy in its last action. (Those were 
the atoms z0, . . . , zm and a few more atoms corresponding to the part of (x) seen at that stage.) It means that in the tree 
of P each level can be re-arranged at most finitely many times. Thus, ψ is indeed total and �0

2.
But this means not only that every element of P eventually receives a stable definition of ψ , but also that ψ is an 

almost-isomorphism. Indeed, it is an almost-isomorphism on every subalgebra Ps , where P = ⋃
s Ps is defined by the 

construction. To see why, note that each Ps is generated by Ys . But ψ is eventually stable on Ys , and thus on Ps as well. 
Also, ψ is an almost-isomorphism of Boolean algebras (in the sense as above), by its very definition. Therefore, as noted 
above, P ∼= B.

It remains to observe that every two elements k, l of P are contained in a finite subalgebra Ps , where s (and thus Ps) can 
be reconstructed in a primitive recursive way given k, l. We then primitively recursively compute the standard operations 
in Ps . Therefore, P is fully primitive recursive.

(5) Somewhat unexpectedly, this case is not very much different from the case of equivalence structures (see (1) above), 
but it requires a less straightforward preliminary analysis and applications of basic abelian group theory. We assume that 
the reader is familiar with the classification of finitely generated abelian groups and with the standard terminology of 
abelian group theory that can be found in any standard text.

Suppose we are given a computable abelian p-group G . We aim to build a fpr presentation I . Recall that the socle of G
is the Zp-vector space

G[p] = {a ∈ G : pa = 0}.
If the socle of G is finite, then we claim that G has to be isomorphic to a group of the form F ⊕ ⊕

i≤k Zp∞ where F is 
finite. In this case we can clearly produce a fpr presentation of G . We now explain why the above claim is indeed true. 
Consider the following possibilities. If the divisible part had infinite rank then the socle would clearly be infinite. Now if 
the reduced part had at least one non-zero element h of infinite height (that is, ∀k∃bk pkbk = h), then the socle would 
have infinite dimension, as in this case there must exist infinitely many pairs (k, k′) such that the respective elements 
pk−1bk − pk′−1bk′ ∈ G[p] are independent over Zp . So the reduced part must contain only elements of finite height, and 
therefore by a well-known theorem of Prüfer [17] the reduced part splits into a direct sum of cyclic p-groups. If there 
are infinitely many summands in this sum, then the socle is again infinite. We conclude that the only possibility is when 
G ∼= F ⊕ ⊕

i≤k Zp∞ , where F is finite. A group of this from clearly has a fpr presentation.
Let us therefore assume that the socle of G is infinite. As in (1), the socle will be used by the delaying strategy when 

building a fpr presentation I of G . We enumerate a fpr presentation of the infinite-dimensional vector space Vp over the 
finite field Zp . The plan is to build I “around” Vp .

At stage s we have a finite group Is = Hs ⊕ ⊕
i≤ks

Zp on an initial segment of ω, an isomorphic embedding ψs : Hs → G
that is perhaps not yet defined on 

⊕
i≤ks

Zp . The subgroup 
⊕

i≤ks
Zp will be the part of Vp enumerated so far which has 

not yet been put into Hs . There are two basic strategies that will be acting together towards building I .

The copy-total strategy
The strategy has a witness, an element v /∈ Hs of the fixed basis of the currently built part of Vp . Its main task is to find 

a ψ-image for v . This strategy is not primitive recursive, and its actions will be stretched using the delay strategy (to be 



82 I. Kalimullin et al. / Theoretical Computer Science 674 (2017) 73–98
introduced below). The copy-total strategy waits for a first found finite A � G such that ψs(Hs) detaches in A as a direct 
summand and

dimψs(Hs)[p] + 1 = dim A[p].
Without loss of generality, we may assume that A = ψs(Hs) ⊕ Zp . Indeed, there should be an element a of the socle G[p]
such that ψs(Hs)[p] intersects 〈a〉 only by 0, for otherwise the socle G[p] would have finite dimension. Therefore, the cyclic 
subgroup 〈a〉 generated by a will detach in 〈ψs(Hs), a〉 as a direct summand with ψs(Hs) serving as its direct complement. 
Then the strategy defines ψs+1(v) = a and then extends the map naturally to 〈Hs, v〉 = Hs ⊕ 〈v〉. We remove v from the 
basis of the currently built part of Vp , and set Hs+1 = Hs ⊕ 〈v〉. This strategy is not primitive recursive.

The copy-delay strategy
The task of the strategy is introducing more Zp-summands to Hs ⊕ ⊕

i≤ks
Zp thus increasing ks to a new ks+1 = ks + 1. 

We keep ψ undefined on the new summands.

The copy-onto strategy
The strategy is in charge of making ψ onto. It has a witness g ∈ G . When the strategy becomes active, it finds a finite 

A � ψs(Hs) such that g ∈ A, then extends Hs to a finite group Hs+1 ∼= A using the pull-back via ψs . This strategy is not 
primitive recursive.

In the construction we let the strategies act according to their instructions, using the copy-delay strategy to pass time 
while waiting for either the copy-total strategy or the copy-onto strategy to become active. This ensures that Is = ⊕

s Hs is 
fpr. Verifying that ψ is an onto isomorphism is straightforward.

3.2. Negative results

It is not difficult to construct an example of a computable structure that has no fully primitive recursive copy. Perhaps, 
the easiest such example is (ω, S, A) where s is the standard successor function on ω and A is the unary predicate coding a 
computable set that is not primitive recursive. We open this section with a proposition showing that such structures can be 
found “arbitrarily close” to fully primitive recursive ones. For this purpose we define a computation to be primitive recursive 
relative to a total function f if its general recursive definition can be viewed as primitive recursion with the extra symbol 
for f . The proof of the proposition below, although not difficult, may be of some interest to the reader as it splits into two 
substantially different cases.

Proposition 3.1. Let f be total and not primitive recursive. Then there is a structure A with the domain ω which is primitive recursive 
relative to f but is not isomorphic to a fpr structure.

Proof. Fix a computable list {pn}n∈ω of all primitive recursive functions such that n codes the definition of pn by primitive 
recursion and composition. Let pn,s(x) be the result (defined or undefined) of the uniform partial computation of pn at the 
stage s. Note that the function pn,s(x) is uniformly primitive recursive. Let tn(x) be the first number s such that pn,s(x) ↓. It 
is easy to see that each tn , n ∈ ω, is primitive recursive. We say that tn is the time function for pn .

We claim that it is enough to find a set A which is primitive recursive relative to f but is not primitive recursive. Once 
such a set is found, we define the desired structure to be the successor structure upon ω with the unary predicate coding 
the set.

Case 1. There exists a primitive recursive function t such that f (x) < t(x) for all x ∈ ω. Then we can set A = graph f =
{〈x, y〉 : y = f (x)}. Now A is not primitive recursive since f (x) = (μy < t(x))[〈x, y〉 ∈ A].

Case 2. Case 1 does not hold. Then for every primitive recursive function t there are infinitely many x ∈ ω such that 
t(x) � f (x). Define A(x) ∈ {0, 1}, x ∈ ω, inductively. Suppose A(y), y < x, is already defined. Then define

g(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(μn � x)[pn, f (x)(x) ↓ & if there is an n � x such that

¬(∃y < x)[A(y) �= pn, f (y)(y) ↓]], pn, f (x)(x) ↓ and for no y < x we have

A(y) �= pn, f (y)(y) ↓,

0 otherwise,

and

A(x) =
{

1, if pg(x), f (x)(x) = 0,

0 otherwise.

Clearly, A(x) and g(x) are primitively recursive relative to f . To show that A is not primitive recursive we prove by induction 
that for every n we have a yn such that A(yn) �= pn, f (yn)(yn) ↓.
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Suppose that the statement holds for every n′ < n. For the next n we consider an x > yn′ , n′ < n, such that tn(x) � f (x). 
Then the inductive hypothesis and the definition of g ensures that either there exists an y = yn < x such that A(y) �=
pn, f (y)(y) ↓, or g(x) = n. In the last case we can set yn = x by the definition of A. Thus, A �= pn for every n ∈ ω, so that A
is not primitive recursive. �

Our next theorem gives several negative results which disprove a few natural conjectures the reader might already have 
at this point. The proof of Theorem 1.5(2) for torsion-free groups relies on the existence of a computable copy of the group 
with a computable basis. As has recently been discovered in [24], there is a broad class of commutative algebraic structures 
that have a computable copy with a computable basis. These also include ordered abelian groups [20], differentially closed 
fields, difference closed fields, and real closed fields [24]. One might be tempted to conjecture that the existence of a 
computable basis always implies the existence of a fpr presentation, with a proof along the lines of Theorem 1.5(2). We will 
see this is not true.

Every computable graph has a primitive recursive copy (the domain does not have to be ω). Also, every computable lo-
cally finite graph clearly has a fpr presentation. The natural conjecture would be that all computable graphs have fpr copies. 
We show that this is not true either.

Finally, the reader may think that Theorem 1.5 can be extended to all computable abelian groups, but this is again a 
wrong guess.

Theorem 3.2. In each of the following classes, there exists a computable structure that does not admit a fpr presentation:

(1) Torsion abelian groups.
(2) Archimedean ordered abelian groups.
(3) Undirected graphs.

Proof. (1). We are building a group that will be of the form

A S =
⊕
p∈S

Zp,

for some infinite set S of primes. Note that A S has a computable copy iff S is c.e. It thus suffices to construct an infinite 
c.e. set of primes S such that A S has no fpr presentation.

We construct S by stages. The diagonalization strategy Ne will be waiting for the eth fpr structure Pe to either give us a 
non-zero element ae of some order m > 0, in which case it will attempt to keep at least one prime factor of m out of S , or 
Pe will give us an element of infinite order, in which case we win automatically since A S is a torsion group. There will also 
be auxiliary strategies, each controlling a primary summand of A S , that collectively ensure that S is infinite. Each auxiliary 
strategy will attempt to enumerate a different prime number into S .

We now explain how the strategies interact. The auxiliary strategies working below a diagonalization strategy Ne will 
have followers significantly smaller than the current lower bound on the order of ae . More specifically, if the order of ae at 
stage s is greater than m, then we could use a prime number less than m

√
m for an auxiliary strategy below Ne . This ensures 

that the product of all followers controlled by the auxiliary strategies below Ne will be less than the order of ae if it is 
finite.

If at a later stage we see that the order of ae is equal to p1 . . . pk , then for at least one prime pi in this factorization, all 
cyclic summands in A[s′] are not of order pi , and we will win Ne by permanently keeping pi out of S .

Now the strategies can be put together by a standard finite injury priority argument. We make an interesting observation 
about the complexity of the priority method used here. The satisfaction of Ne depends on whether the order of ae is finite 
or infinite, and would normally involve infinite injury. However the �0

2 outcome is a degenerate one, as the fpr nature 
of Pe allows us to either increase the lower bound on the order of ae , or to obtain the order of ae at each stage of the 
construction, so we never need to “wait forever”. In this way the lower priority auxiliary strategies only need to guess if Ne
is met via a �0

1 or a �0
1 outcome.

(2). We build a computable real α > 1 and let G be the additive subgroup of reals (R, +) generated by {1, α}. Clearly G
has a computable copy since α is computable. Note that since the group has a finite basis, two copies of it are isomorphic 
iff they are computably isomorphic.

We identify 1 and α with their respective numbers in G . At stage s we will have αs ∈
[

ms
ns

, ms+1
ns

]
. The diagonalization 

strategy De, j will want to argue that P j is not isomorphic to G via ϕe . It will wait for ϕe(1) and ϕe(α) to converge and see 
whether in P j we have

ϕe(α) ∈
[

ms

ns
ϕe(1),

ms + 1

ns
ϕe(1)

]
,

or more formally,

msϕe(1) ≤ nsϕe(α) ≤ (ms + 1)ϕe(1).
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If not, then the requirement is met. Another possibility is that Pe proves it is not an ordered abelian group, and this can 
be detected in a c.e. way since such groups are ∀-axiomatizable. Otherwise, enumerate the primitive structure P j and see 
whether ϕe(α) belongs to the first half or the second half of the interval [ms

ns
ϕe(1), ms+1

ns
ϕe(1)]. In the definition of αs+1

we do the opposite. More specifically, in the former case define a new rational approximation αs+1 of α to be any number 
in the second half of the interval [ms

ns
, ms+1

ns
], and in the second case choose αs+1 to be a rational from the first half of the 

interval. Alternatively, ϕe(α) may approach the middle of the interval, and in this case it will eventually be in the middle 
third of the interval; in this case choose αs+1 in the first third of [ms

ns
, ms+1

ns
]. In each case we will successfully diagonalize 

against ϕe and P j , and the requirement will be met.
In the construction we will also need to choose a better approximation αs+1 of α in the case where none of the De, j for 

〈e, j〉 < s need to act. The construction can then be implemented by a straightforward finite injury argument.
(3). The graph G which we build will have a special vertex c which we call the coloring vertex. Let E denote the edge 

set of G . A vertex x �= c is red if {x, c} ∈ E , and otherwise x is blue. The requirements are

D〈n,m〉 : ¬(∃ isomorphism f : (ω, En) → G where f (m) = c),

where En is the n-th binary primitive recursive relation and m ∈ ω.
The universe of G , except for the coloring vertex c, splits into disjoint sets of red elements

Rk =
{

r1
k , r2

k , . . . , rk+3
k

}
,

and blue elements

Bk =
{

b1
k ,b2

k , . . . ,bk+3
k

}
,

for each k ∈ ω. The set E contains the edges {ri
k, r

j
k} and {bi

k, b
j
k} if i − j ≡ 1 (mod k + 3), connecting each of sets Rk and Bk

into cycles of the size k + 3. The set Rk will be called the kth red cycle, and Bk will be called the kth blue cycle. Note that the 
graph G will not have any edges between vertices of the same color except for those described above.

For each k ∈ ω the elements of the cycles Rk and Bk will either be not connected with all vertices from R p and B p , 
p > k, of the other color, or they will be connected with almost all of them. The construction does not connect the cycles 
Rk and Bk to vertices from R p and B p , p > k, of the other color unless the diagonalization strategy D〈n,m〉 (see below), 
where 〈n,m〉 = k, acts to connect these vertices.

The main activity of the construction is to add the cycles Rk and Bk , k ∈ ω, one at a time, while waiting for a diagonaliza-
tion strategy to become active. For each 〈n,m〉 the D〈n,m〉-strategies described below work independently from each other.

The strategy for D〈n,m〉

(1) We say that an element z ∈ ω, z �= m is 〈n,m〉-red if (x, m) ∈ En . Otherwise z is 〈n,m〉-blue. Wait for a 〈n,m〉-red 
En-cycle Xk of size k + 3 and a 〈n,m〉-blue En-cycle Yk of size k + 3 to be enumerated in (ω, En) for each k � 〈n,m〉. If 
such cycles do not exist D〈n,m〉 is satisfied. Also, we meet D〈n,m〉 if there exists an En-cycle of the size k + 3 � 〈n,m〉+ 3
which differs from Xk and Yk .

(2) Suppose we have at most N vertices added into G at the current stage. Fix a finite set Z ⊆ ω of size N + 1 such that 
m /∈ Z and

Z ∩
⋃

k�〈n,m〉
(Xk ∪ Yk) = ∅.

Check whether we have an integer z ∈ Z such that either

z is 〈n,m〉-red and (∃y ∈ Y〈n,m〉)[(z, y) ∈ En],
or

z is 〈n,m〉-blue and (∃x ∈ X〈n,m〉)[(z, x) ∈ En].
If no such z ∈ Z exists, then we start to connect by edges each new vertex from R p , p > 〈n,m〉+3, with the elements of 
B〈n,m〉+3. Also we start to connect by edges each new blue vertex from B p , p > 〈n,m〉, with the elements of R〈n,m〉 . Then 
in G we will have at most N vertices outside of {c} ∪ ⋃

k�〈n,m〉(Rk ∪ Bk) which are not connected with the elements of 
R〈n,m〉 ∪ B〈n,m〉 . But for (ω, En) we have at least N + 1 elements outside of {m} ∪ ⋃

k�〈n,m〉(Xk ∪ Yk) not connected with 
the elements X〈n,m〉 ∪ Y〈n,m〉 . Thus, D〈n,m〉 is satisfied.

(3) If such z ∈ Z exists, then we satisfy D〈n,m〉 just because we will not connect the vertices of R〈n,m〉 and B〈n,m〉 with 
vertices from R p and B p , p > 〈n,m〉.

It is easy to see that the graph G is computable, and the strategy ensures that it is not isomorphic to any fpr graph. �
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We suspect that one could get satisfactory (positive or negative) results for other common algebraic classes, the most 
promising classes perhaps being real closed and differentially closed fields, but we leave it open.

3.3. Strongly fpr presentations

In this subsection we briefly discuss one possible strengthening of our main definition. We first explain the motivation. 
Although in the next section we will essentially show that almost all structures from Theorem 1.5 posses complicated 
fpr copies, the reader may find the queuing idea (exploited in the proof of Theorem 1.5 for delaying) somewhat unsatisfying. 
Indeed, we perhaps want our structure to be rapidly growing not only globally but also locally. We may remove this delaying 
feature in many structures by considering the natural primitive recursive analogy of 1-decidability.

Definition 3.3. A strongly primitive recursive structure I is a fpr structure which possesses a primitive recursive Skolem func-
tion.

The definition above is equivalent to saying that there exists a primitive recursive � such that

�(c̄, φ) =
{

−1, if I �|= ∃xφ(c̄, x),

y, such that I |= φ(c̄, y),

where c̄ ∈ I and φ (the Gödel number of) a quantifier-free formula in the language of the structure. We note that this 
approach resembles the earlier notion of an honest witness due to Cenzer and Remmel [7].

Example 3.4. The following structures have strongly primitive recursive copies:

• The additive groups Z and Q and their direct sums.
• The countable atomless Boolean algebra.
• The order-type ω.

Clearly, there exist fpr structures that have no 1-decidable presentation, and thus have no strongly primitive recur-
sive presentation. For instance, there exist computable linear orders in which the successivity relation is intrinsically 
undecidable [11], and similarly there exists a computable Boolean algebra in which the atom relation is intrinsically un-
decidable [19]. Now Theorem 1.5 guarantees that in each of these classes we can find fpr presentation, but no strongly 
p.r. presentations can exist. However, these examples are unsatisfying since they all give fpr structures that are not even 
1-decidable. A rather straightforward example below separates strongly primitive recursive structures from 1-decidable 
fpr structures.

Proposition 3.5. There exists a fpr 1-decidable equivalence structure that has no strongly primitive recursive presentation.

Proof. For any infinite set X , let E(X) denote the equivalence structure having exactly one class of size x for each x ∈ X . 
Note that for an infinite c.e. set X , the structure E(X) has a computable, hence fpr presentation (by Theorem 1.5(1)). To 
make E(X) 1-decidable, make the kth class have size exactly xk , where X = {x0, x1, x2, . . .} is some computable enumeration 
of X . It is easy to see that deciding an existential formula about c̄ boils down to deciding the sizes of the classes that 
contain c̄.

Thus, it remains to build an infinite c.e. set X (in fact, X will be computable) such that E(X) has no strongly p.r. pre-
sentation. Suppose we have enumerated {x0, . . . , xk}. Suppose we want to diagonalize against the eth potential strongly 
fpr structure Se . When Se is first processed we use the primitive recursive Skolem function in Se to primitively recursively 
decide if there exists a class [z] of size > s. If no then we win because Se must contain at least two classes of equal sizes, 
and thus E(X) � Se . If yes then we can primitively recursively compute a witness z. In this case we say that Se is pending 
with witness z. We will ensure that all future elements of X are chosen to be smaller than the current approximation to 
the size of [z] in Se .

At stage s of the construction we process each requirement Se for e < s. If Se is unstarted then we proceed as above, 
and move to the next requirement. If Se is already pending with witness z we check if the size of [z] in Se is larger than s. 
If yes, the status of Se remains pending, and we move to the next requirement. If no then the size of [z] must be s. In this 
case we terminate the actions of stage s at Se and initialize all lower priority requirements.

It is easy to see that if s is enumerated in X at stage s then this is compatible with the satisfaction of all requirements Re , 
e < s. Each requirement is initialized finitely often and will be met. Finally X is infinite because only a pending requirement 
can block the enumeration of s into X at stage s. �

Given a class K of structures we may ask whether every fpr 1-decidable member of this class K has a strongly fpr pre-
sentation. It might also be interesting to develop fpr computable structure theory specifically for strongly fpr structures 
since they are perhaps closer to being genuinely “computable without delay”. We leave these questions and directions open.
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4. fpr-Categoricity

Recall that a structure is fpr-categorical if it has a unique fpr presentation up to fpr isomorphism (Section 1.4). Recall 
also that an isomorphism f is fpr if f and f −1 are both primitive recursive. We first illustrate this definition with several 
simple examples. Let (pe)e∈ω be a computable listing of all primitive recursive functions.

Example 4.1.

(1) The additive group Vp ∼= ⊕
i∈ω Zp is fpr-categorical

Proof. Indeed, suppose A and B are fpr presentations of Vp . Note that given a tuple ā in A we can primitively recur-
sively choose a maximal Zp -independent sub-tuple in ā. We may assume that we always choose the lexicographically 
smallest independent tuple among all such independent sub-tuples of ā. We first explain how we can define a primitive 
recursive isomorphism f :A → B, and then we explain how we make sure that f −1 is primitive recursive as well. Sup-
pose f : ās → b̄s has already been defined, where ās is the longest initial segment of A on which f has been defined. 
To define f (a) on the next element a of A extending ās , first see whether a is dependent on ās . If yes, then suppose 
a = ∑

j m ja j , where the a j range over ās and m j over Zp . In this case set f (a) = ∑
j m j f (a j). If no, then we look 

through at most pcard(bs) first elements of B and choose the first found element b independent over b̄s . To make sure 
f −1 is primitive recursive as well, we choose the longest initial segment b̄′

s for which f −1 has been defined and repeat 
the procedure above but now with a and f replaced by b and f −1. �

(2) The dense linear order (Q, <) without end points is not fpr-categorical

Proof. We produce fpr copies A and B and diagonalize against all pairs of primitive recursive (pi, p j)i, j∈ω , where 
p j plays the role of a potential p−1

i . We explain how to diagonalize against the first pair ( f , g). Begin by growing 
increasing chains a0 < a1 < a2 < · · · and b0 < b1 < b2 < · · · in A and B respectively, and wait for f (a0) to halt. When 
we see f (a0)↓= bi , keep growing A and B in the same way, but in B we add one additional point b∗ < b0. Now wait 
for g to converge on b∗ . In order for g = f −1 we must have g(b∗) < a0 in A, but there are currently no elements in A
with this property, so we win against the pair ( f , g).
For a general requirement suppose we have built â0 < â1 < · · · < âk in A and b̂0 < b̂1 < · · · < b̂k in B. We now wish to 
attack (pi, p j). Begin as above by growing âk < a0 < a1 < · · · and b̂k < b0 < b1 < · · · . We wait for pi

(
â0

) ↓. When we 
see this, we add a new point b∗ < b̂0 and wait for p j(b∗) ↓. Since each pair (pi, p j) are total functions we can finish 
each pair in this way before moving on to the next pair. In between satisfying each requirement, we can extend A to 
the left and make progress towards making A and B dense. �

(3) The successor structure S = (ω, S), where S(x) = x + 1, is not fpr-categorical

Proof. Build two fpr copies A and B of S and enumerate all potential primitive recursive isomorphisms pe . The copy 
B is the standard copy, and A will be used to diagonalize against primitive recursive isomorphisms. The strategy for 
diagonalizing pe is the following. Pick a fresh witness x ∈ As which currently has no predecessor, and wait for pe(x) to 
converge. While waiting we grow two independent chains, one with the least element 0A and the other with the least 
element x. That is, introduce distinct elements S(0A), S2(0A), S3(0A), · · · and distinct elements S(x), S2(x), S3(x), · · · . 
When we see pe(x) converge, declare x to be Sn(0A) for the least n > pe(x). �

Examples (1) and (2) illustrate the subtle difference between computable and primitive recursive back-and-forth methods. 
Interestingly (1) shows that the usual computable back-and-forth construction still works for Vp in the fpr setting, while 
(2) in contrast shows that the back-and-forth method cannot be adapted for Q. Example (3) shows that there exists rigid 
computably categorical structures that are not fpr-categorical. As we will see later (Proposition 4.2), there also exist rigid 
infinite fpr-categorical structures, which are less straightforward to construct.

4.1. fpr-Categoricity in natural algebraic classes

We now characterize the notion of fpr-categoricity in several common algebraic classes. The proof of the theorem below 
exploits Theorem 1.5 and techniques from its proof. It also applies several classical results from computable structure theory. 
Recall that, according to our definition, a fpr-categorical structure must in particular have a fpr presentation.

Proof of Theorem 1.7. (1). Note that if an equivalence structure S has one of the claimed isomorphism types then it is 
fpr-categorical.
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Now suppose S is fpr-categorical. First, assume the structure has infinitely many classes each having at least two ele-
ments. We fix a fpr presentation A of S and build B. To diagonalize against a primitive recursive f , we iterate the following 
strategy. In B we only put classes of size 1 that we may (or may not) later grow to a larger size, and wait for some class 
of size at least 2 to show up in A. Such a class must eventually show up, by our assumption. Let’s say this class contains 
{a0, a1}. Next we wait for f (a0) and f (a1) to converge. When these two converge, we see that f cannot be an isomor-
phism (as we have only been putting classes of size one in B). Only after then we grow the size one classes from B to be 
isomorphic to A keeping f (a0) and f (a1) in different classes.

In general, at step e of the construction we assume that we have defined B up to the first s many elements, and 
A � s ∼= B � s. To kill off the next primitive recursive function pe+1 we continue putting new classes in B of size one, while 
waiting for s + 1 many new classes of size at least 2 to show up in A, and for pe+1 to converge on all of these classes. 
Then pe+1 has to map at least one of these classes outside A � s, and we have diagonalized against pe+1. We then grow B
to match A on these new elements.

Thus, the equivalence structure S has either only finitely many different classes, or almost every class is of size 1. We 
now claim that if S contains an infinite class C , then in fact S has only finitely many elements outside of C . This implies that 
S is one of the claimed isomorphism types. For a contradiction, suppose that S − C is infinite. We fix a fpr presentation A
of S and build B. To diagonalize against a primitive recursive f , we assume that we currently have (A − C) � s ∼= (B− C) � s. 
Now in B we continue adding elements to the class C and hold back from adding elements to B − C . We wait for s + 1
many new elements to be enumerated in A − C , and for s + 1 many new elements to be enumerated in C in A, and for f
to be defined on all of them. Now f has to map at least one of the new elements of A − C to an element of C in B, and at 
least one of the new elements of C in A to an element of C in B, and so we have diagonalized against f . Now grow B− C
to catch up with A − C . We can iterate the above procedure to diagonalize against all primitive recursive (pe)e∈ω .

(2). First we prove that if a linear ordering L is not computably categorical then it is not fpr-categorical. This claim can 
be easily deduced from the proof of Theorem 1.5(2). Indeed, suppose L0, L1 are computable copies of the linear order L
that are not computably isomorphic. The proof of Theorem 1.5(2) guarantees that unless L ∼= ω +Z · η + ω∗ or ω + ω∗ is a 
sub-interval of L, there exist two fpr copies I0 and I1 of L such that I0 is computably isomorphic to L0 and I1 is computably
isomorphic to L1. We claim that if L ∼= ω +Z · η + ω∗ or L contains a sub-interval ω + ω∗ , then L is not fpr-categorical.

Suppose L ∼= ω + Z · η + ω∗ . Build two fpr copies, X and Y . To diagonalize against pe , we keep building the left-most 
ω-chain in X and the right-most ω∗-chain in Y and wait for pe to converge on some x ∈ X that is in the ω-chain but its 
image is in the ω∗-chain of Y . Such an element must eventually be found. We then do a few more steps towards making X
and Y isomorphic to ω +Z · η + ω∗ , and repeat the strategy with pe+1.

Now assume L contains a sub-interval ω + ω∗ , say [c, d]. We can implement essentially the same strategy as in the 
previous case, but now extending the ω-chain in X and the ω∗-chain in Y while we wait for pe to converge. Note that at 
intermediate stages we have to also build an isomorphism from X to L, and similarly from Y to L. But this can be done 
since we know that [c, d] ∼= ω + ω∗ . We can simply keep building the respective interval in X (in Y ) while we wait for 
another element outside [c, d] to show up in L. As soon as a new element outside [c, d] appears in L, we copy it into X
and Y . We then proceed to meeting the next diagonalization requirement, then copy another element, etc. We leave the 
elementary details to the reader.

Now if L is an infinite computably categorical linear order, then it contains finitely many successivities [11]. In this case 
any isomorphism has to map each η-interval to the corresponding η-interval. Thus, the same argument as in Example 4.1(2) 
illustrates that L is not fpr-categorical.

(3). We assume B is infinite. The proof splits into several cases.
First, suppose B is infinite and computably categorical. Then B it has only finitely many atoms e0, · · · , ek [32,19] and 

at least one atomless element d. We construct two fpr copies A and C of B with no fpr isomorphism between them. To 
diagonalize against a pair of primitive recursive functions p : A → C and q : C → A, fix a witness w in the dense part of 
A which is currently an atom in As , i.e. we have not yet split w in As . We do not yet split w in A and wait for p(w)

to converge. If p(w) ∈ C is equal to one of the finitely many (true) atoms in C , then resume splitting w in A. Otherwise, 
immediately split p(w) in B if it already is not split, say p(w) = c ⊕ d. Do not resume splitting w in A until q(c) and q(d)

converge (but keep building A elsewhere). Note that q(c) ∨ q(d) �= w . As soon as they converge, resume splitting w in A. 
The strategy can be iterated to diagonalize against all pairs of primitive recursive functions.

Now suppose B is not computably categorical and has an atomless element. In this case the isomorphism produced in 
the proof of Theorem 1.5(4) is computable. We thus can produce two fpr presentations of B that are not even computably 
isomorphic.

Finally, suppose B is not computably categorical and is atomic. This is equivalent to saying that B is atomic and infinite. 
Unfortunately, in this case we cannot use Theorem 1.5(4) as its proof does not produce a computable isomorphism. Nonethe-
less, we will combine the basic copying strategy and the isomorphism-builder strategies from the proof of Theorem 1.5(4) with 
a simplified version of the above diagonalization strategy, as follows.

We construct two fpr copies, A and C , of B. The fact that B is fpr but not merely computable will not be helpful. Both A
and C will be copying B (via almost-isomorphisms φA and φC ) simultaneously diagonalizing against all potential primitive 
recursive isomorphisms pe :A → C .
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The diagonalization strategy
Wait for more new atoms d1, d2, . . . to be introduced into A and more new atoms e1, e2, . . . to be put into C by the basic 

copying strategies (to be discussed) working with A and C , respectively. Wait for more of the pe(d1), pe(d2) . . . to converge. 
If pe(d1), . . . , pe(dk) are not distinct atoms in C for some k, then stop. Otherwise, there must be a k (large enough) such that 
p(dk) = ei for some new atom enumerated by into C . Once such an ei is found, split p(dk) = ei into two disjoint elements 
xi and yi and stop.

The isomorphism-builder strategies
For both A and C , the strategy is the same as in the proof of Theorem 1.5(4). We also adopt the same priority and 

initialization as in the proof of Theorem 1.5(4).

The basic copying strategy
This is the same as in the proof of Theorem 1.5(4) for A, with the only extra promise that the atom dk used for the 

diagonalization purpose will be put into the queue (and thus will be kept an atom). The strategy working in C will also 
need a slight modification. Recall at most one of the new atoms ei produced by the strategy in C may be split into two new 
atoms, xi and yi , due to an action of some diagonalization strategy. When the copying strategy in C forms a queue, it will 
put these new elements xi, yi into the queue instead of ei .

The basic copying strategy
Alternate between building A and C , as follows. In A we let the basic copying strategy act between splitting stages, 

but before the strategy stops producing more atoms it also waits for one more diagonalization strategy to finish its action. 
Similarly in C , before the basic copying strategy waits for one more diagonalization strategy to finish its action. We then 
also let the isomorphism-builder strategies act in each C and A. At every splitting stage we let the isomorphism-builder 
strategies re-define φA and φC if necessary. If an isomorphism-builder strategy I whose queue follows x is forced to change 
its witness, then we first initialize all weaker priority strategies working below x and only then we let the strategy I act.

Verification
We argue, that every diagonalization strategy successfully diagonalizes against its pe . Indeed, when it first becomes active 

there will be at most finitely many elements in C previously produced by other strategies. Since different atoms must go to 
different atoms, eventually either pe proves that it is not an isomorphism or the strategy finds a non-restrained element to 
diagonalize. The diagonalization will be successful since we will put the atom di in A into a queue, and thus it will never 
be split again.

Checking that A ∼= C ∼= B is literally the same as in Theorem 1.5(4). Indeed, the only extra effect the diagonalization 
strategies have in A is just perhaps making the queues of the extra atoms longer (due to a longer delay). But in C the effect 
is essentially the same, but now the queues might be longer because of the longer wait and also because at most one extra 
atom might be split into two extra atoms. Finally, both A and C are clearly fpr.

(4). Note that if a p-group A is not computably categorical, then its socle A[p] is infinite. Indeed, otherwise A is 
isomorphic to a finite sum of a finite group and the groups Z p∞ by the proof of Theorem 1.5(5), and all such groups are 
computably categorical. But if the socle is infinite then the proof of Theorem 1.5(5) gives a computable isomorphism from 
any computable copy of A onto a fpr presentation of the group. In this case we can produce two fpr copies of A that are 
not even computably isomorphic.

Now suppose that A is computably categorical. Then A is of the form F ⊕ S , where F [p] is finite (see the description of 
such groups in the proof of Theorem 1.5(5)) and S ∼= ⊕

k∈I Zpm for some fixed m ∈ ω ∪ {∞} [3,13] and some I ⊆ ω. We split 
this situation into several subcases, according to the isomorphism type of A.

If A has a divisible component, then pick a witness w in the divisible component of the first fpr presentation and do 
not declare its order until we see pe(w)↓. Then make sure that the order of pe(w) (in the second component), is different 
from the order of w (in the first component). Note we can control the former.

We conclude that A must be of the form F ⊕ S , where F is finite and S ∼= ⊕
k∈I Zpm for some fixed m ∈ ω. If I is 

infinite then we claim m = 1. Indeed, if m > 1 then we can diagonalize against pe similarly to how it was done in the 
respective case of the proof for equivalence structures (see (1) above). Indeed, we can extend the second copy by growing 
only its socle, but at the same time extend the first copy naturally. We wait until for some w with order(w) > p we have 
Order(pe(w)) ≤ p.

(5). Suppose a fpr torsion-free abelian group G has at least one non-zero element. As we discussed in the proof of 
Theorem 1.5(3), without loss of generality we may assume that G has a computable basis. Let H be the copy of G produced 
in the proof of Theorem 1.5(3). By construction, H also has a computable (in fact, primitive recursive) basis. Recall that 
having a computable basis is equivalent to having a linear independence algorithm [34]. This means that, given two element 
h, h′ we can decide whether {h, h′} is a linearly independent set. (In fact, in H this procedure is primitive recursive, but it 
has no use for us.)

We will produce another fpr presentation U of G and will diagonalize against all potential primitive recursive isomor-
phisms pe : U → H , e ∈ ω. We will also build a computable surjective isomorphism φ : U → H .
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Since we assumed that G has at least one non-zero element, the basis of H has at least one element h. We initially start 
building U by introducing a non-zero u ∈ U and declaring φ(u) = h. We will be extending both U and φ naturally, thus 
copying H into U via φ. To diagonalize against pe , we introduce a new element w that we keep outside the domain of φ. 
We wait for pe to converge on w and h. Meanwhile, we make progress in building U as a direct sum of dom φ and the 
(partial) cyclic group generated by w:

Us = domφs ⊕ 〈w〉s,

where 〈w〉s = {−sw, . . . , −w, 0, w, . . . , sw}. As soon as pe(h) and pe(w) converge, we decide whether {pe(h), pe(w)} is a 
linearly independent set in H . We keep w outside dom φ until the decision is made. Once the decision is made and we 
either see {pe(h), pe(w)} is independent or see a reduced linear combination kpe(h) = npe(w) (no matter what the outcome 
is), declare w = m · h, where m larger than any integer mentioned so far in the construction. Then extend φ naturally to 
〈w〉s by setting in particular φ(w) = mφ(h). This definition is clearly consistent with the part of the atomic diagram listed 
in Us by far, and with making φ an isomorphism. This action is also consistent with making Us fpr. We need to argue that 
in both cases we have successfully diagonalized against pe .

If {pe(h), pe(w)} is independent, then setting w = m · h will ensure pe is not an isomorphism, as any isomorphism must 
preserve linear independence. Now suppose kpe(h) = npe(w) and pe is an isomorphism. But w = mh and kh = nw together 
imply kh = nw = nmh, which is impossible since m is too large. Thus, in both cases we will successfully diagonalize. �

We suspect that, along the lines of the proof of (5) above, most “natural” algebraic classes of structures having charac-
teristic 0 (in some general sense) will have only trivial fpr-categorical fpr copies. For example, we conjecture that all known 
classes that have the Mal’cev Property [24] have this feature.

4.2. An infinite rigid fpr-categorical structure

Recall that in both Example 4.1 and Theorem 1.7 we have seen only fpr-categorical structures that are not rigid. Indeed, 
all examples we have seen so far were, in some sense, far form being rigid. The reader may have started to suspect that all 
fpr-categorical must be like that. Nonetheless, we show that infinite rigid structures can be fpr-categorical. Understanding 
the proof of the proposition below should help the reader to understand the much more involved proof of Theorem 1.8
where the constructed structure will also be rigid.

Proposition 4.2. There exists an infinite rigid fpr-categorical structure.

Proof. The functional signature of the structure A consists of a constant o (which we call the root) and two unary 
functions s and c. The universe of the structure is a union of c-cycles of finite length. The s-function maps each ele-
ment of any cycle to a fixed element of another cycle. The values of the s-function together with o form the ω-chain
o, s(o), s(s(o)), . . . , sn(o), sn+1(o), . . . .

For a function f : ω → ω \ {0} define a structure A f so that the element sn(o) is located in a c-cycle of size f (n) for 
each n. The structure A f has a fpr presentation if and only if the graph {〈x, y〉 : y = f (x)} is a primitive recursive set.

Given an element x of the structure, we say that x has coordinates (n, m) if x is the mth element of its cycle, and x is 
located in the cycle attached to sn(o). Given any fpr presentation B of A f , define χB to be the function which maps each 
element x ∈ B to the pair (n, m) where x has coordinates (n, m). Observe that χ−1

B is always primitive recursive, but χB is 
generally not primitive recursive. (For instance, by Example 4.1, already (ω, s) is not fpr-categorical, so given x we cannot 
hope to quickly compute n.)

We will identify A f with its canonical fpr presentation (ω, o, s, c) where χA f and χ−1
A f

are both primitive recursive. 
Then for every fpr presentation B of A f , the function χB−1 ◦ χA f is a primitive recursive isomorphism from A f onto B.

Since the structure is rigid it remains to construct a fpr structure A f for some primitive recursive f satisfying the 
requirements

Pn : Bn ∼= A f =⇒ χBn is primitive recursive,

where Bn = (ω, on, sn, cn) is the n-th fpr structure in the language of A f . We think of the functions sn and cn as being 
partial computable functions with corresponding primitive recursive time functions tn , i.e. sn(x)[tn(x)] ↓ and cn(x)[tn(x)] ↓
for every n and x. (Although each tn is primitive recursive, the sequence (tn)n∈ω is not uniformly primitive recursive.)

The trick to satisfying Pn is to define the function f such that for every n and m we have

f (〈n,m〉) ∈ {2n + 1,2n + 2},
where 〈n, m〉 = 2n(2m +1) −1. We adopt this pairing function 〈·, ·〉 since for every n the sequence 〈n, m〉 forms an arithmetic 
progression, and hence in every interval of size 2n+1 we will have a number of the form 〈n, m〉. The choice between 2n + 1
and 2n + 2 will depend on the enumeration of the fpr structure Bn .
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The requirements Pn work independently for each n, and there are no interactions amongst the requirements. Fix n. We 
now describe informally how to define f (〈n,m〉) for m ∈ ω.

We begin by considering x = 0 ∈ Bn and applying sn to x at most 2n+1 times to find some y0 associated with a cn-cycle 
of length 2n +1. If y0 is found then compute y1 = s2n+1

n (y0) and see if y1 generates a cn-cycle of length 2n +1. Suppose this 
takes u0 many steps. While computing these values we cannot delay the definition of f (x), so we simply set f (〈n,m〉) =
2n + 1 for all m ≤ u0. Notice that if u0 is not defined then we will end up defining f (〈n,m〉) = 2n + 1 for all m ∈ ω, and 
in that case Bn �A f . Otherwise u0 is eventually found, and we will ensure that for all m > u0 we never have a pair of 
adjacent 2n + 1-cycles, i.e. we will not have f (〈n,m〉) = f (〈n,m + 1〉) = 2n + 1 for any m > u0.

Now we will proceed to define f (〈n,m〉) for m > u0. We now assume x = 1 and apply sn at most 2n+2 times to x to find 
some y0 which generates a cn-cycle of the length 2n + 1. If y0 is found then compute y1 = s2n+1

n (y0) and y2 = s2n+1

n (y1)

and check that y1 or y2 generates a cycle of length 2n + 1. Suppose this process takes u1 > u0 many steps. While waiting 
we define f (〈n,m〉) to alternate between a cycle of length 2n + 1 and a cycle of length 2n + 2 for u0 < m ≤ u1. Again if 
u1 does not exist we end up defining f (〈n,m〉) to eventually alternating between cycles of length 2n + 1 and 2n + 2, and 
in this case demonstrate that Bn �A f . Otherwise u1 is eventually found, and we will ensure that for all m > u1 we never 
have the pattern 2n + 1, 2n + 2, 2n + 1.

Now we set x = 2 and search for y0 with cycle length 2n + 1, and y1, y2, y3 with cycle lengths 2n + 2, 2n + 2 and 2n + 1
respectively. Suppose this takes u3 steps, we define f (〈n,m〉) to repeat the pattern 2n + 1, 2n + 2, 2n + 2 for u2 < m ≤ u3. 
Repeat this for all x, each time increasing the number of successive 2n + 2 in each pattern.

If ux is not defined for some x, then it is easy to check that Bn � A f . Otherwise if ux is defined for all x, then it 
is easy to see that ux is bounded by the composition of tn with primitive recursive functions. Thus given x ∈ Bn we 
claim that χBn (x) = (n, m) for some n ≤ ux . This is because the pattern 2n + 1, 2n + 2, · · · ,2n + 2︸ ︷︷ ︸

x times

, 2n + 1 cannot be 

found after ux . So to compute χBn (x) = (n, m) we simply generate the structure Bn , starting from the root o, the elements 
sn(o), s2

n(o), · · · , sux
n (o) and all the attached cycles, until we find the element x. This process is bounded by ux and f .

(More formal details will be provided in the stronger Theorem 1.8.) �
The infinite rigid fpr-categorical structure in the proposition above was in a finite functional language. It is worth noting 

that a fpr-categorical structure in a relational language cannot be rigid.

Proposition 4.3. An infinite fpr-categorical relational structure cannot be rigid.

Proof. Let p be a primitive recursive permutation on ω such that p−1 is not primitive recursive. Then for a fpr relational 
structure A the structure B = p−1(A) is again fpr. If A is rigid then the unique isomorphism from A onto B is p−1 which 
is not primitive recursive. �
4.3. A fpr-categorical structure that is not computably categorical

Recall that, by definition, a fpr-categorical structure must be fpr to begin with. This section is completely devoted to a 
proof of the rather counter-intuitive Theorem 1.8 which says that there exists a fpr-categorical structure which is not com-
putably categorical. (Furthermore, the language of the structure is finite and contains only four unary functional symbols.)

Proof of Theorem 1.8. We will heavily recycle the key ideas and notation of Proposition 4.2. Therefore we suggest that the 
reader first familiarizes himself with the proof of the elementary Proposition 4.2.

Notation
We have four unary functions in the structure A: c, s, p and r. The structure will have the following properties.

(1) Instead of a single distinguished root (as in Proposition 4.2), we will now have an infinite set of components, each with 
its own root. The function r is a projection of A onto the set of roots. That is, an element x of A is called root iff 
r(x) = x iff x ∈ rng r.

(2) The component of a root x is the set Cx of all y such that r(y) = x. The component will resemble the structure in the 
proof of Proposition 4.2, but for every root x the component will be finite. The component with root x consists of the 
following pairwise distinct elements{

cm(sn(x)) : n � 
x & m < fx(n)
}
,

where 
x is the length of the component, and fx is a numeric function from ω � 
x + 1 to ω \ {0}. The numbers (n, m)

are called coordinates of the element cm(sn(x)) of the component Cx . The chain of the root x is the set

Hx = {sn(x) : n � 
x} ⊆ Cx.
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Fig. 1. A normal component with root x.

(3) The function c generates cycles

Y n
x = {cm(sn(x)) : m < fx(n)}

inside each component Cx . Y n
x is the cycle attached to sn(x) in the chain. To close the cycles we declare

c fx(n)(sn(x)) = sn(x)

for every n < 
x .
(4) For the function s we have

s(cm(sn(x))) = sn+1(x)

for n < 
x , and

s(cm(s
x(x))) = cm(s
x(x)).

(5) For the function p we have

p(cm(sn(x))) = sn−1(x)

for n > 0.
(6) For each root x we have either

p(cm(x)) = cm(x)

for every m < fx(0), or

p(cm(x)) = yx

for every m < fx(0), where yx �= x is some fixed root such that p(yx) = yx . In the former case we call the root x and its 
component normal. In the latter case we call the root x and its component special and say that the special component 
is associated with the (normal) root yx . Every normal root has at most one special root associated with it. A normal 
component with root x is illustrated in Fig. 1.

(7) The value fx(0) is called the label of the root x. This is the length of the cycle Y 0
x attached to the root x. The labels of 

two different roots can coincide only if both roots are normal and are associated with special roots of different labels. 
Therefore, the structure is rigid.

(8) For each root x we also have

2i(2 j + 1) � 
x =⇒ fx(2i(2 j + 1)) ∈ {2i + 1,2i + 2}
for every i, j. This is to force the primitive recursiveness of χB for each fpr presentation B of A (as in Proposition 4.2).

We build the fpr structure A (with uniformly primitive recursive functions fx(m)) adding at stage t a new element and 
naming it by number t ∈ ω (recall the domain is ω). We also build a computable structure B ∼=A.

Since A is rigid, it suffices to satisfy the requirements:

Pi : Bi
∼= A =⇒ there exist primitive recursive isomorphisms

hi : Bi → A and ĥi : A → Bi,

where {Bi} ranges over all primitive recursive structures in the language of A, and

De : ϕe : B → A is not an isomorphism,

where ϕe is the eth partial recursive function. We order the requirements according to their priority: P0 < D0 < P1 < D1 <

· · · .
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4.3.1. Informal description of the strategies
At each stage of the construction there will be exactly one component Cx of the structure A which is not closed under 

the function s, that is, sn(x) �= sn−1(x) for the largest n where sn(x) is defined. Such a component is called active. All other 
existing components in A are closed. In fact we ensure p, r and c are defined on every element currently in the structure 
A, and s is defined on every element except for sn(x) and the elements of Y n

x .
To ensure that A is primitive recursive, at each stage s of the construction we will take one of the following actions:

• Continue growing Cx , which means defining sn+1(x) to be the next element in the domain of A, and grow primitively 
recursively the entire cycle Y n+1

x attached to sn+1(x), or
• close off Cx and introduce a new component C y with a new element y as the root, and grow primitively recursively 

the entire cycle Y 0
y attached to y.

We define all functions p, r, c on the new elements right away. In order to be able to do this, we will of course need to 
declare right away whether the new component C y is normal or special (and in the latter case, also decide the normal 
component C y is attached to).

Each requirement Pe will start off being in the defining state, where it will follow a certain procedure to decide the 
length of cycles in the currently active component. It may (or may not) later transit to being in the diagonalizing state. In 
the latter state there will be a Be-component C where Pe is making progress in diagonalizing against Be using component 
C , as follows. In this case Pe is waiting for the label of C to converge, i.e. the cycle attached to the root of C to close (more 
detail later below).

A requirement De will be in one of the following states:

(S1) unstarted,
(S2) searching for labels,
(S3) pending,
(S4) diagonalizing,
(S5) finished.

At every stage s of the construction there will be exactly one De which is given control. If control is given to De then it 
will either be in state S2 where it is searching for suitable labels for later use, or in state S4 where it will embark on the 
final part of its strategy to “kill” ϕe by growing different components in A and B. The structure B, unless otherwise stated, 
will copy A. A De-strategy in control and in state S4 may request to freeze B. In this case we stop growing B until De is 
initialized or transits to S5 in which case we will resume growing B. We will ensure that each De spends a finite amount 
of time in state S4 and so B is never frozen forever, hence, B ∼=A.

Informal description of Pe

We now describe the action of Pe in isolation. The presentation in the formal construction will slightly differ what we 
present here (this will be done in order for the different strategies to fit together). Nevertheless, this discussion describes 
the basic working module for each requirement in isolation fairly accurate. Suppose that Pe is in the defining state, and that 
the construction has decided to enumerate a new component C y with label a. Then Pe will wait for the previously active 
cycle CBe

x to close in Be , and for a new component to show up in Be . This wait will terminate because we will eventually 
see that CBe

x will either close itself isomorphically, or grow with a chain of size larger than the corresponding chain in A. 
In the latter case we know that A � Be and we can abandon the wait. In the former case we will check the label of the 
new component in Be , and if the label of this new component grows longer than a we will declare that Pe now enters the 
diagonalizing state. (We will discuss the diagonalizing state later.)

Now assume that Pe is in the defining state, and the construction has decided to keep growing the current compo-
nent Cx . In this case Pe must then advise the construction about the length of the next cycle in Cx . We use a modified form 
of the strategy in Proposition 4.2 to do this. In Proposition 4.2 we defined uz to be the number of steps needed to search 
for a pattern of 2n + 1, 2n + 2, · · · ,2n + 2︸ ︷︷ ︸

z times

, 2n + 1 by repeatedly applying s to z. This will not work well here because 

each component has a finite chain. So if z ∈ CBe
x then it might be that after repeatedly applying s to z to search for the 

pattern above, we find some number n such that sn+1(z) = sn(z). We cannot force the component Cx to close at ux because 
the component is required to be kept open due to other (De) strategies; in general the length of each component Cx will 
depend on the structures Bi for various i. If this is the case then computing uz tells us nothing about the coordinates of z
in Cx .

The most straightforward way around this problem is to repeatedly apply p (instead of s) to z to obtain uz . If we 
prematurely reach the root xBe of CBe

x before finding the pattern 2n + 1, 2n + 2, · · · ,2n + 2︸ ︷︷ ︸
≤z times

, 2n + 1, then we know the 

exact n-coordinate of z within the component CBe
x . Otherwise we find the pattern (where 2n + 2 is repeated ≤ z times) in 
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uz many steps, and the construction will then switch to the pattern 2n + 1, 2n + 2, · · · ,2n + 2︸ ︷︷ ︸
z+1 times

for m > uz . This allows us 

to argue that the coordinates of each z are primitive recursive.
Suppose now that Pe is in the diagonalizing state, waiting for the labeling loop of some Be -component to close. If the 

chain grows to infinity, then Be �A as A does not contain an infinite c-chain. Otherwise, if the label closes at some stage, 
then restrain this label a from the structure A, i.e. no new component in the future will have label a. Hence Be �A.

Now Pe is satisfied because if A ∼= Be then Pe is always in the defining state. When new components are introduced in 
A we always wait for the previous Be-component to close and for the new (necessarily isomorphic) Be-component to show 
up. Hence, the set of A-roots can be matched primitive recursively with the set of roots in Be . Furthermore the non-root 
elements can be matched because we can primitive recursively compute the coordinates of each element in Be .

Informal description of De

We now describe the strategy for De . It starts off in state S1 until it is given control by the construction. It is then 
upgraded to state S2 where it will pick a fresh number a. The construction then continues growing the current component 
Cx and waits for all Pi , i ≤ e which are in their diagonalizing state to show that their respective diagonalizing component 
has label larger than a + 2. If any of these Pi sees their diagonalizing label converge, we initialize De . This wait is finite, as 
each ci , i ≤ e is total, although we cannot delay the definition of A, so we have to keep the current component Cx open 
(i.e., growing) while we wait.

Once De sees that all higher priority diagonalizing P -requirements have labels larger than a +2, it closes off the currently 
active component. Then the strategy introduces a new normal component C(De) with the same label a. The construction 
now waits for all Pi , i ≤ e which are in defining state to close off the old component and catch up with a new component 
with label a (as in the description of P ’s strategy above). At any stage if something goes wrong for Pi we put Pi into the 
diagonalizing state and initialize De . As mentioned above (in P ’s strategy) this wait is finite and if we do not initialize De

we will get approval from all Pi , i ≤ e. At this point we will let De enter the pending state S3, and De relinquishes control 
to another (lower priority) D-strategy.

In state S3 we will check, at the beginning of every stage of the construction, whether control needs to be handed back 
to De . This will be the case if we see that the corresponding component C(De)

B in B with label a is mapped under ϕe to 
the isomorphic component C(De) in A. (Note that C(De) may no longer be the active component at this point, as other D
requirements might have introduced new components in the meantime.)

If ϕe converges we return control to De , which will move into the diagonalizing state S4. It will now request for B to be 
frozen, where we will not grow B until De is initialized or De is finished (i.e., in state S5). In this state S4 we will close off 
the currently active component, and introduce a new special component C0(De) with label a + 1 attached to C(De). Again 
wait for all Pi , i ≤ e in the defining state to respond (by closing off their old components and growing a new one with 
label a + 1). At any point if some Pi enters the diagonalizing state we initialize De and unfreeze B. Otherwise all Pi , i ≤ e
have now a special component C0(De)

Bi with label a + 1 attached to C(De)
Bi . At this point the construction will close off 

the special component C0(De) and simultaneously grow two new components C∗(De) and C∗
0(De). C∗(De) will be a normal 

component with label a and identical with C(De), while C∗
0(De) will be a special component attached to C∗(De) with label 

a + 2. We will let C∗
0(De) be the currently active component of the construction. (Note that C(De) is already completely 

determined by now and so we can grow the entire component C∗(De) primitively recursively.)
Again we wait for all Pi , i ≤ e to catch up with isomorphic C∗(De)

Bi and C∗
0(De)

Bi . We claim that this wait is again 
finite. Indeed, suppose the first new component we see in Pi has label a + 2. Then, applying pi to the root of C∗

0(De)
Bi , we 

can force Pi to reveal (what must necessarily be) the root of C∗(De)
Bi . Otherwise if the first new component we see in Pi

has label a then we wait for Pi to close off C∗(De)
Bi and the next new component must be C∗

0(De)
Bi . If something goes 

wrong at any time we move Pi to diagonalizing state and initialize De and unfreeze B.
Finally, if all Pi have caught up, we will move De to the finished state S5. We unfreeze B and grow B differently: To 

the component C(De)
B we attach a special component C∗

0(De)
B with label a + 2, and we grow a new normal component 

C∗(De)
B identical with C(De)

B but attach the special component C0(De)
B with label a + 1 to C(De)

B . Since ϕe maps 
C(De)

B to C(De), it cannot be an isomorphism. Hence De is satisfied. Note that De spends only a finite amount of time in 
S4 before it is initialized or finished, and so we never freeze B forever.

4.3.2. The formal construction
We make a technical comment. It will be convenient to view each primitive recursive function as a partial computable 

function ϕe where ϕe(x) ↓ in p(x) many steps for some primitive recursive p. The structure Be[s] evaluated at stage s refers to 
the finite substructure of Be[s] with all Be functions evaluated up to s steps. Our construction then defines partial recursive 
functions p, c, s, r for A and ensures that p(x), c(x), s(x) and r(x) all converge within x many steps (of the construction). 
Hence A is primitive recursive. At stage s of the construction we are only allowed to look at Bi[s] for i < s. This allows us 
to apply the Church–Turing thesis for primitive recursion.

Suppose we are at stage s of the construction. Let Des be the requirement in control. The construction consists of two 
phases.
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Phase 1, checking if some requirement needs attention
We now define what it means (for a requirement) to require attention. For requirement Pe this means that

• if Pe is in the defining state, then Be[s] is not a substructure of A[s], and
• if Pe is in the diagonalizing state with component CBe , then the label of CBe has converged.

For a requirement De , this means that

• if De is in state S2 waiting on label a, then for every P of higher priority in the diagonalizing state with component 
CB , the label of CB has grown larger than a + 2. If C(De) ↓ then all higher priority P in the defining state have found 
a matching component C(De)

B .
• If De is in pending state S3, then ϕe has mapped some B-component C(De)

B isomorphically onto C(De) in A.
• If De is in diagonalizing state S4 and C∗(De) is not yet defined, then all higher priority P in the defining state have 

found matching components C(De)
B and C0(De)

B . Otherwise if C∗(De) ↓, then all higher priority P in the defining 
state have found matching components C(De)

B, C0(De)
B, C∗(De)

B , and C∗
0(De)

B .

During the construction when we pass control to the next available D we mean that we pick the highest priority D which is 
currently unstarted. Declare D to be now in state S2 and waiting on a fresh label a. Declare that control is now given to D .

We check if there is some requirement Pi or Di for i ≤ es which requires attention at stage s. Pick the highest priority 
requirement Q which requires attention at s. Initialize all requirements of lower priority than Q (if B is frozen by Des and 
Des is initialized, unfreeze B and grow B to catch up with A[s]). We then take the following steps to give Q attention.

Q = Pe in the defining state: Declare Pe to be now in the diagonalizing state, with the currently active (unclosed) 
Be-component as the diagonalizing component. Pass control to the next available D .

Q = Pe in the diagonalizing state: Pass control to the next available D .
Q = De in state S2: Control is now given to De . If De was waiting on some label a, close off the current component and 

grow a new normal component C(De) with label a. Otherwise if C(De) is already started then we let De be now in 
pending state S3. Pass control to the next available D .

Q = De in state S3: Control is now given to De . We now let De be in diagonalizing state S4. Freeze B. Close off the cur-
rently active component, and grow a new special component C0(De) with label a + 1 attached to C(De).

Q = De in state S4: Control is now given to De . If C∗(De) is not yet defined, we close off the currently active component 
(which will necessarily be C0(De)) and grow C∗(De) and C∗

0(De). Otherwise if C∗(De) is already previously defined, we 
declare De to be now finished S5. Unfreeze B and grow B differently (as described above). Pass control to the next 
available D .

If Q is found and given attention, proceed to the next stage of the construction (skipping Phase 2). We make a technical 
remark here. We do not allow D to close off the current component until every higher priority P requirement in the 
defining state has responded with a matching component. This does not cause any additional issues as this adds finitely 
more steps and we can grow the current component while waiting. Otherwise, if no Q is found, Des remains in control and 
we proceed to Phase 2. Notice that for each label a used by the construction, there are at most two components of A with 
label a.

Phase 2, growing the currently active component
We define the functions u and α. Let uq,e(x) be the number of steps needed to perform the following computable 

procedure within the structure Be:

(i) Evaluate re(x). If re(x) �= q we stop successfully.
(ii) Otherwise re(x) = q. Apply pe to x to search for some 0 < i ≤ 2e+x+1 such that pi

e(x) has an attached cycle of length 
2e + 1. Call this element y0. If y0 is not found, we stop unsuccessfully. If we reach the root q before 2e+x+1 many 
applications of pe , we stop successfully. (Otherwise assume y0 is found.)

(iii) Starting from y0, compute y j = p2e+1

e (y j−1) for 1 ≤ j ≤ x + 1. Again, if we reach the root q before computing yx+1 we 
stop successfully. Otherwise y1, y2, · · · , yx+1 are all found. Finally if there is at least one y j for 1 ≤ j ≤ x + 1 which 
has an attached cycle of length 2e + 1, we stop successfully, otherwise we stop unsuccessfully.

This procedure must terminate because all functions evaluated by the procedure are total and all searches are bounded. The 
number of steps required to complete this procedure is denoted by uq,e(x). The procedure will terminate either successfully 
or unsuccessfully. Intuitively, an unsuccessful termination allows the construction to kill off Pe by showing Be �A. Note that 
for each e, the function (q, x) �→ uq,e(x) is primitive recursive, but the function (e, q, x) �→ uq,e(x) is not primitive recursive 
in general (although computable). Nevertheless, this function has a primitive recursive graph, i.e. 

{
(e,q, x, y) | uq,e(x) = y

}
is a primitive recursive set.
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Now we will define the function α(a, i, 〈e, m〉). We explain the intended meaning of these parameters. Each component 
C of the structure A can be uniquely identified by its label a and whether C is the first component with label a enumerated 
by the construction (i = 1) or if C is the second (i = 2). The output of α(a, i, 〈e, m〉) will be the length of the cycle attached 
to the 〈e, m〉th element of the chain of C . We define α by primitive recursion on m.

• For fixed a, i and e, we let α(a, i, 〈e, m〉) = 2e + 1 for all m such that Be[m] does not yet have a component of type a, i.
• Suppose m0 is the first such that Be[m0] has a component of type a, i with root q. (If m0 does not exist then 

α(a, i, 〈e, m〉) = 2e + 1 for all m).
• Then for every m0 ≤ m ≤ uq,e(0) we define α(a, i, 〈e, m〉) = 2e + 1. If uq,e(0) stops unsuccessfully we define 

α(a, i, 〈e, m〉) = 2e + 1 for all m > uq,e(0).
• Otherwise, uq,e(0) stops successfully. Then for every uq,e(0) < m ≤ uq,r(1) we repeat the pattern 2e + 1, 2e + 2. What 

this means is that we define α(a, i, 〈e, uq,e(0) + 2 j + 1〉) = 2e + 1 and α(a, i, 〈e, uq,e(0) + 2 j + 2〉) = 2e + 2 for enough 
j. In order to complete the pattern we assume that uq,e(1) − uq,e(0) is divisible by 2. If uq,e(1) stops unsuccessfully we 
define α(a, i, 〈e, m〉) to repeat the pattern 2e + 1, 2e + 2 for all m > uq,e(1).

• Otherwise uq,e(1) stops successfully and we proceed with uq,e(2). Generally if some uq,e(k) stops unsuccessfully, we 
repeat the pattern 2e + 1, 2e + 2, · · ·︸ ︷︷ ︸

k times

forever. Otherwise, every uq,e(k) stops successfully. We end up repeating the 

pattern 2e +1, 2e + 2, · · ·︸ ︷︷ ︸
k times

for uq,e(k −1) < m ≤ uq,e(k). To ensure that the pattern is completed we assume that uq,e(k) −

uq,e(k − 1) is divisible by k + 1.

Now it is not hard to see that the function α(a, i, 〈e, m〉) is primitive recursive. This follows from the fact that evaluating 
the structure Be[m] takes bounded many steps, and that the graph of u is primitive recursive. At a particular step of the 
recursion, if m > uq,e(k − 1), we cannot primitive recursively evaluate uq,e(k), but we do not need to as we only need to 
check if uq,e(k) = m.

Having obtained the primitive recursive function α we can now describe what the construction does in Phase 2 at stage s. 
Suppose the currently active component (which we want to keep growing) has label a, root x and is the ith component with 
label a. Suppose n is the largest such that sn(x) ↑. We define sn(x) to be the next element of the domain and primitively 
recursively grow an attached cycle of length α(a, i, n). Define p, c and r appropriately. This ends Phase 2.

4.3.3. Verification
By the construction, at every stage s, exactly one Des is in control, and is in state S2 or S4. At each stage of the 

construction, everything we evaluate is time-bounded. Thus, A is a primitive recursive structure. No D is in state S4 forever, 
hence B ∼= A. It now remains to check that the requirements are met. It is clear that each requirement receives attention 
and is initialized finitely often.

Lemma 4.4. Each Pe is satisfied.

Proof. Assume that Be ∼= A and we fix a stage after which Pe is never initialized. First of all we claim that Pe is never 
placed in the diagonalizing state. Suppose this happens at some stage s0. The active Be-component CBe is declared the 
diagonalizing component at s0. At s0, one of the following must hold of CBe :

(i) The label of CBe is larger than any existing label in A (and has not yet converged).
(ii) The label of CBe has converged but is different from existing labels in A (taking multiplicity into account).

(iii) Some cycle attached to CBe is of a different length than the corresponding cycle in A.
(iv) The chain of CBe is longer than the length of the chain in the corresponding component in A (which is closed).
(v) Be has more root elements than A.

(vi) The functions pe, se, re, ce do not map correctly, for instance, re maps to a non-root element.

In (vi) clearly Be �A just because the structure is not of the correct type. In (iii) (iv) and (v) the component CBe has no 
matching image in A; note that any pair of components in A with the same label are identical. In the case of (ii) no new 
component with the same label as CBe can be later introduced as all lower priority D are initialized and higher priority D
are assumed not to act any more. In the case of (i) all new components in A are introduced by some D of lower priority, 
and due to the wait by D in state S2 will have new label smaller than the (eventual) label of CBe . If the label of CBe

eventually converges, we initialize all lower priority D and if not then Be �A as all labels in A are finite.
Thus Pe is always in the defining state. We now describe how to define primitive recursive isomorphisms he : Be �→ A

and ĥe : A �→ Be . It suffices to define he and ĥe on root elements (recognizing if a given element is a root element requires 
only a single application of r or re), and to argue that χBe is primitive recursive. Here χBe (x) is the coordinates (n, m) of 
element x ∈ Be in its component.
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First we define ĥe(q) for a root element q ∈ A. We run the construction until the stage where Cq is introduced into the 
construction; this takes at most q construction steps. As only lower priority Ds are active, no new component is introduced 
in A before Pe closes off the old component and introduces a new matching CBe

q in Be . So by applying se at most q times 
to the structure Be[q] and re once we will be able to find the root of the matching component CBe

q in Be . Notice that if Cq

is of the type C∗(Di) or C∗
0(Di) for some i, as we grow both components simultaneously in A, we can force Pe to reveal 

both matching components in Be before matching.
Now we describe how to define he(q) for a root element q ∈ Be . Run the construction until a stage s where the con-

struction recognizes that q is a root element of Be (this takes as many steps as to evaluate re(q)). Let Cu be the current 
active component of A at stage s. If h−1

e (u) is already defined then at stage s the construction sees that Be[s] (having more 
components) is not a substructure of A[s] and thus will put Pe in the diagonalizing state with diagonalizing component q. 
Thus h−1

e (u) is not defined. Also u must be the only root element of A which is not in the range of he because otherwise 
A[s] has at least two more components than Be[s], which is impossible since any D will wait for Pe to catch up before 
closing a component. Hence the components of u and q must have the same label (otherwise Pe gets into the diagonalizing 
state), and thus be matching. We define he(q) = u.

Notice that if there are two roots with the same label, then he and ĥe have to map the root of the first component to 
the root of the first component.

Finally we show that χBe is primitive recursive. Given x ∈ Be . Compute q = re(x) and u = he(q). Note that pe(se(x)) =
re(x) if and only if x = q or x ∈ Y 0

q . In this case we know that the n-coordinate of x is 0. To figure out the m-coordinate of 
x, notice that the label of u is at most u. So the m-coordinate of x can be found by applying ce to x at most u many times.

Now we assume that pe(se(x)) �= re(x), that is, the n-coordinate of x is positive. If we are given the n-coordinate of x, 
we can (primitively recursively) compute the m-coordinate of x because the cycle containing x is of length 2e + 1 or 2e + 2, 
where n = 〈e, j〉. It therefore suffices to give a fast procedure to compute the n-coordinate of x.

First of all, recall that for fixed e, the function uq,e(k) is primitive recursive. We claim that uq,e(k) stops successfully for 
all k. Suppose not, and that k is the least such that uq,e(k) stops unsuccessfully. (Note that q and u are both associated with 
the same pair (a, i).) In the component Cu we will end up repeating the pattern 2e + 1, 2e + 2︸ ︷︷ ︸

k times

as the cycle length attached 

to the 〈e, j〉th element of the chain, for j > uq,e(k − 1). This means that the longest consecutive run of js where s〈e, j〉
e (q)

has an attached cycle of length 2e + 2 is k.
There are two reasons why uq,e(k) stops unsuccessfully: Either y0 is not found or all of y1, · · · , yk+1 are attached a cycle 

of length 2e + 2. We get a contradiction in either case.
Thus uq,e(k) stops successfully for all k. We claim that the n-coordinate of x cannot be more than uq,e(x). Suppose it 

is. In that case, x is close to a sequence s〈e, j〉
e (q), s〈e, j+1〉

e (q), · · · , s〈e, j+ j′〉
e (q) where s〈e, j〉

e (q) and s〈e, j+ j′〉
e (q) have a cycle of 

length 2e + 1, and all other terms have a cycle of length 2e + 2. Here j′ − 1 ≤ x is the consecutive number of 2e + 2 cycles. 
This number is too small as in Cu we will repeat with longer runs of 2e + 2 after uq,e(k). �
Lemma 4.5. Each De is satisfied.

Proof. Fix a stage after which De is never initialized. The state of De cannot decrease after it is never initialized. Clearly 
each D spends a finite amount of time in states S2 and S4 each time, hence, no D retains control for cofinitely many stages. 
This means that the final state of De cannot be S1. Hence the final state of De has to be S3 or S5. If the final state is S3
then ϕe is not an isomorphism. Let’s consider now that the final state is S5. That means that at the end of state S4 when 
we unfreeze B we would have attached a special component with label a + 2 to C(De)

B . Since ϕe maps C(De)
B to C(De)

A , 
this means that ϕe cannot be an isomorphism. �

This concludes the proof of Theorem 1.8. �
An easy generalization of the proof of Theorem 1.8 yields the following:

Corollary 4.6. There is a fpr structure A and an existential unary predicate Q in the language of A such that Q is primitive recursive 
in all fpr copies of A and for some computable copy B ∼=A the predicate Q is not decidable.

Proof. The trick is in making A fpr-categorical and combining the copying strategies from Theorem 1.8 with a new diago-
nalization strategy making sure that the predicate is not computable in B. We give more detail.

We will construct a structure A in the same language and with the same properties as in Theorem 1.8. There is one 
modification needed. We introduce a new type of component called a red component. A red component is consists of a 
single element, the root x, and where s(x) = r(x) = c(x) = x. This component is a special component, and will be attached 
to a normal component of the construction. That is, p(x) will be the root of some normal component. A red component is 
attached to every normal component of the form C∗(De) (and only these ones). Hence C∗(De) will have a red component 
cr attached to it, and the corresponding C∗(De) will be attached to cr (instead of being attached to C∗(De) directly).
0
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The predicate Q is defined by the formula

r(x) = x & (∃z �= x)[r(z) = z & p(z) = x & c(z) = z],
which asserts that x is a root element with an attached red component.

In A the set Q A is primitive recursive, since given an element x we can check if it is a root, and if so, compute the 
construction up till the point where x is introduced (this happens by stage x of the construction). Check if there is already 
an existing component with the same label as x. If so then x ∈ Q A , otherwise x /∈ Q A .

Now if Q B is computable we claim that there is a computable isomorphism ϕ : B �→ A. Fix a computable enumeration 
of A and B. It suffices to define ϕ on root elements correctly, since each component itself is rigid. Given a root element 
z ∈ B, we first compute the label of CB

z (say, it is a) and check if z ∈ Q B . If yes, then we enumerate A[s] until the second 
component with label a is revealed in A. If no, then we can map z to the root of the first component with label a in A. �
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