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Глава 1
Комплексные числа

§ 1. Комплексные числа, алгебраические операции
над комплексными числами

1. Из школьного курса математики известно, что не всякое квад-
ратное уравнение имеет решение. Самый простой пример — уравнение

x2 + 1 = 0. (1.1)
Очевидно, никакое вещественное x не может быть корнем этого урав-
нения. Ситуация меняется, если ввести в рассмотрение новое число,
так называемую мнимую единицу. Будем обозначать ее через i и по-
лагать, что

i2 = −1.

Тогда уравнение (1.1) будет иметь корень α1 = i. Естественно поло-
жить, что (−i)2 = (−1)2i2 = −1. Тогда и число α2 = −i является
корнем уравнения (1.1), т. е. уравнение (1.1), как и аналогичное урав-
нение

x2 − 1 = 0,

имеет два различных корня. Рассматривая уравнение

x2 + q = 0,

где q > 0, естественно принять, что оно имеет два корня

α1 = i
√
q и α2 = −i√q.

Числа вида ib, где b — вещественное число, называют мнимыми.
Рассмотрим теперь общее квадратное уравнение, записывая его

для удобства в приведенном виде:

x2 − 2px+ q = 0. (1.2)

Элементарные преобразования дают

(x− p)2 + q − p2 = 0.

Будем считать, что q − p2 > 0, т. е. дискриминант уравнения (1.2)
отрицателен.
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Теперь естественно положить, что корнями уравнения (1.2) явля-
ются числа

α1 = p+ i
√
q − p2, α2 = p− i

√
q − p2. (1.3)

Это числа новой природы. Они имеют вид a + ib, где a и b — ве-
щественные числа. Их называют комплексными числами. В частном
случае, когда b = 0, считают, что комплексное число a+ ib совпадает
с вещественным числом a, а при a = 0 — c мнимым числом ib.

Как правило, комплексное число будем обозначать буквой z:

z = x+ iy.

Говорят, что x — вещественная часть комплексного числаz, а y —
его мнимая часть.z Обозначим x через Re z, а y — через Im z. Таким
образом, можно написать, что

z = Re z + i Im z.

По определению два комплексных числа равны, если совпадают
соответственно их вещественные и мнимые части.

2. Естественно теперь попытаться проверить, что числа α1, α2,
определенные в (1.3), — корни уравнения (1.2), т. е. при подстановке
их в равенство (1.2) последнее обращается в тождество. Для этого
надо уметь выполнять алгебраические операции над комплексными
числами. Дадим соответствующие определения.

Под суммой комплексных чисел z1 = x1 + iy1 и z2 = x2 + iy2
понимается комплексное число z = x+ iy, где x = x1+x2, y = y1+y2:

Re (z1 + z2) = Re z1 +Re z2,

Im (z1 + z2) = Im z1 + Im z2.

Разностью комплексных чисел z1 и z2 называется число

z = (x1 − x2) + i(y1 − y2).

Ясно, что если z — разность комплексных чисел z1 и z2, то z2+z = z1.
Например, сумма комплексных чисел z1 = 1 + i2 и z2 = 3 + i4 равна числу

z = (1 + i2) + (3 + i4) = (1 + 3) + i(2 + 4) = 4 + i6,

а их разность — числу

z = (1 + i2)− (3 + i4) = (1− 3) + i(2− 4) = −2− i2.
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Комплексное число вида 0 + i 0 называется нулевым. Будем обо-
значать его символом 0. Для любого комплексного числа z справед-
ливы равенства

z + 0 = z, 0 + z = z.

Определяя произведение комплексных чисел, будем действовать
как при перемножении обычных двучленов, учитывая при этом,
что i2 = −1. Получаем, таким образом,

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i(x1y2 + x2y1),

т. е. по определению

Re (z1z2) = Re z1Re z2 − Im z1Im z2, (1.4)
Im (z1z2) = Re z1Im z2 +Re z2Im z1. (1.5)

Вычислим, например, произведение чисел z1 = 1 + i2 и z2 = 3 + i4:

z1z2 = (1 + i2) · (3 + i4) = (1 · 3− 2 · 4) + i(1 · 4 + 3 · 2) = −5 + i10.

Для любого комплексного числа z

z0 = 0z = 0.

Упражнение. Убедиться, что определенные выше операции сло-
жения и умножения комплексных чисел обладают теми же свойства-
ми, что и соответствующие операции над вещественными числами:

1) z1 + z2 = z2 + z1, z1z2 = z2z1 — коммутативность, или пере-
становочность,

2) (z1+ z2)+ z3 = z1+(z2+ z3), (z1z2)z3 = z1(z2z3) — ассоциатив-
ность, или сочетательность,

3) (z1 + z2)z3 = z1z3 + z2z3 — дистрибутивность, или распреде-
лительность.

Упражнение. Непосредственной подстановкой показать, что
формулы (1.3) дают корни уравнения (1.2).

Комплексное число z назовем частным от деления комплексного
числа z1 на z2, если

zz2 = z1. (1.6)
Покажем, что если z2 ̸= 0, то z как решение уравнения (1.6) су-

ществует и определяется единственным образом. В самом деле, ис-
пользуя формулы (1.4), (1.5), запишем (1.6) более подробно:

xx2 − yy2 + i(xy2 + x2y) = x1 + iy1. (1.7)
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Приравнивая соответственно вещественные и мнимые части, получим

xx2 − yy2 = x1, (1.8)
xy2 + yx2 = y1. (1.9)

Единственно возможным решением этой системы уравнений будет

x =
x1x2 + y1y2
x22 + y22

, (1.10)

y =
x2y1 − x1y2
x22 + y22

. (1.11)

Формулы (1.10), (1.11) определяют правило деления комплексных чи-
сел.

Разделим, например, комплексное число z1 = 1 + i2 на z2 = 3 + i4:

z1
z2

=
1 + i2

3 + i4
=

1 · 3 + 2 · 4
32 + 42

+ i
3 · 2− 1 · 4
32 + 42

=
11

25
+ i

2

25
.

По определению zn = zz · · · z для натурального n, где сомножи-
тель z повторяется n раз, z0 = 1, z−n = (1/z)n.

Важно подчеркнуть, что все введенные нами операции в случае,
когда операнды вещественны, совпадают с соответствующим опера-
циями над вещественными числами (проверьте!).

Таким образом, множество комплексных чисел можно считать
расширением множества вещественных чисел.

§ 2. Операция сопряжения, модуль комплексного числа

1. Число z = x − iy называют сопряженным по отношению
к комплексному числу z = x + iy (часто говорят, что числа z и z
комплексно сопряжены). Ясно, что

z = z, z1 + z2 = z1 + z2, z1z2 = z1z2. (2.1)

Отметим также, что

z + z = 2x, z − z = i2y, zz = x2 + y2.

2. Вещественное неотрицательное число |z| =
√
zz =

√
x2 + y2

называется модулем комплексного числа z = x+ iy. Очевидно, что

если |z| = 0, то x = 0, y = 0, т. е. z = 0. (2.2)
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Рис. 1. К неравенствам (2.4), (2.5)

Элементарные вычисления показывают, что для любых двух ком-
плексных чисел z1, z2 справедливо равенство

|z1z2| = |z1||z2|. (2.3)

Упражнение. Используя хорошо известное неравенство

2|xy| 6 (x2 + y2),

справедливое для любых вещественных чисел x, y, убедиться, что для
любых комплексных чисел z1, z2 справедливо неравенство

|z1 + z2| 6 |z1|+ |z2|. (2.4)

Соотношения (2.2) – (2.4) показывают, что с модулем комплексно-
го числа можно оперировать так же, как и с абсолютной величиной
вещественного числа.

Заметим, что |z1| = |z1 − z2 + z2| 6 |z1 − z2|+ |z2|, следовательно,

|z1| − |z2| 6 |z1 − z2|.

Точно так же
|z2| − |z1| 6 |z1 − z2|.

Таким образом,
||z2| − |z1|| 6 |z1 − z2|. (2.5)

§ 3. Тригонометрическая форма комплексного числа

1. Напомним, что с каждым вещественным числом x можно свя-
зать точку на числовой прямой. Аналогичная (но более сложная) гео-
метрическая интерпретация полезна и для комплексных чисел.

Введем на плоскости декартову систему координат (x, y) и поста-
вим в соответствие каждому комплексному числу z = x+ iy точку с
координатами (x, y).
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Рис. 2. К тригонометрической форме комплексного числа

При этом модуль комплексного числа — это расстояние от точ-
ки (x, y) до начала координат (сделайте рисунок!).

Взаимно сопряженные числа симметричны относительно оси x
(сделайте рисунок!).

Напомним, что при сложении векторов их одноименные коор-
динаты складываются. Поэтому суммирование чисел z1 = x1 + iy1
и z2 = x2 + iy2 соответствует сложению векторов (x1, y1) и (x2, y2)
(сделайте рисунок!).

Неравенства (2.4), (2.5) можно интерпретировать теперь как хо-
рошо известные неравенства для сторон треугольника (см. рис. 1).

2. Каждое комплексное число (кроме нуля) можно однозначно
охарактеризовать двумя параметрами: модулем и углом φ, отсчиты-
ваемым от положительного направления оси x против часовой стрел-
ки (см. рис. 2). Угол φ меняется в пределах от 0 до 2π и называет-
ся аргументом комплексного числа z. Часто используют обозначе-
ния φ = arg z,

ρ = |z|. (3.1)
Получим явное выражение z через |z| и arg z. Имеем

z = |z|
(
x

|z|
+ i

y

|z|

)
.

При этом (см. рис. 2)

x

|z|
= cosφ,

y

|z|
= sinφ, (3.2)

т. е.
z = ρ(cosφ+ i sinφ). (3.3)

Соотношения (3.1) – (3.3) дают так называемое тригонометрическое
представление комплексного числа.
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Рис. 3. К умножению комплексных чисел

3. Тригонометрическая запись комплексных чисел позволяет по-
новому взглянуть на алгебраические операции над ними и получить
ряд полезных формул.

Пусть z1 = ρ1(cosφ1+ i sinφ1), z2 = ρ2(cosφ2+ i sinφ2). Перемно-
жая эти числа и используя известные тригонометрические соотноше-
ния, получим

z1z2 = ρ1ρ2 (cos(φ1 + φ2) + i sin(φ1 + φ2)) , (3.4)

т. е. при умножении комплексных чисел их модули перемножаются,
а аргументы складываются (см. рис. 3).

Вычислим, например, произведение чисел

z1 = 3
(
cos

π

2
+ i sin

π

2

)
и z2 = 2

(
cos

π

4
+ i sin

π

4

)
.

По формуле (3.4) имеем

z1z2 = 6

(
cos

3π

4
+ i sin

3π

4

)
.

Здесь нужно отметить, что число φ1 + φ2 может выйти из отрез-
ка [0, 2π], но вследствие периодичности тригонометрических функций
мы можем отождествлять их аргументы, отличающиеся на величину,
кратную 2π. Это замечание дает возможность корректно определить
аргумент произведения двух любых комплексных чисел. Аналогич-
ное относится и к другим операциям над комплексными числами,
представленными в тригонометрической форме.

Запишем уравнение (1.6), используя тригонометрическое пред-
ставление комплексных чисел и формулу (3.4):

ρρ2(cos(φ+ φ2) + i sin(φ+ φ2)) = ρ1(cosφ1 + i sinφ1). (3.5)
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Отсюда
z =

z1
z2

=
ρ1
ρ2
(cos(φ1 − φ2) + i sin(φ1 − φ2)), (3.6)

т. е. при делении комплексных чисел их модули делятся, а аргументы
вычитаются.

Разделим, например, комплексное число

z1 = 3
(
cos

π

2
+ i sin

π

2

)
на z2 = 2

(
cos

π

4
+ i sin

π

4

)
.

По формуле (3.6) имеем
z1
z2

=
3

2

(
cos

π

4
+ i sin

π

4

)
.

Получим формулу для вычисления степеней комплексного числа.
Используя (3.4), непосредственно получаем, что

z2 = zz = ρ2(cos 2φ+ i sin 2φ),

и, вообще, для любого целого числа n (включая нуль и отрицательные
целые числа)

zn = ρn(cosnφ+ i sinnφ). (3.7)

Формулу (3.7) называют формулой Муавра1).
Возведем, например, комплексное число

z = 3
(
cos

π

4
+ i sin

π

4

)
в третью степень:

z3 = ρ3 (cos 3φ+ i sin 3φ) = 27

(
cos

3π

4
+ i sin

3π

4

)
.

§ 4. Извлечение корня из комплексного числа

Обратимся к задаче извлечения корня степени n, n > 1 — целое,
из комплексного числа z = ρ(cosφ+ i sinφ), т. е. к отысканию такого
числа z̃ = ρ̃(cos φ̃+ i sin φ̃), что

z̃n = ρ̃n(cosnφ̃+ i sinnφ̃) = ρ(cosφ+ i sinφ). (4.1)

Понятно, что поставленная задача будет решена, если положить

ρ̃ = n
√
ρ, nφ̃ = φ+ 2πk, k = 0, 1, . . . ,

1)Абрахам де Муавр (Abraham de Moivre; 1667 — 1754) — английский математик француз-
ского происхождения.
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Рис. 4. К вычислению корня степени n из комплексного числа z = ρ(cosφ + i sinφ).
Здесь n = 4, zk = 4

√
ρ(cosφk + i sinφk), φk = φ/4 + kπ/2, k = 0, 1, 2, 3

где под корнем из ρ понимается арифметическое значение корня из
неотрицательного числа. Таким образом, показано, что числа

zk = n
√
ρ (cosφk + i sinφk) , φk =

φ

n
+

2πk

n
, k = 0, 1, . . . , n− 1, (4.2)

являются корнями степени n из числа z. Придавая k значения, боль-
шие, чем n− 1, в силу периодичности тригонометрических функций
мы будем повторять циклически уже найденные значения корней.

Например, корни четвертой степени из комплексного числа

z = 3
(
cos

π

2
+ i sin

π

2

)
вычисляются по формулам

zk =
4
√
3(cosφk + i sinφk), φk =

π

8
+ kπ/2, k = 0, 1, 2, 3.

Итак, у любого комплексного числа (кроме нуля) существует n
различных корней степени n > 1. Все они расположены на окружно-
сти радиуса n

√
ρ с центром в начале координат и делят ее на n равных

частей (см. рис. 4).
Естественно поставить вопрос, можно ли указать корни из чис-

ла z, отличные от найденных. Ответ отрицательный. Чтобы убедить-
ся в этом, надо обратиться к пункту 3, с. 24, трактуя при этом (4.1)
как уравнение для отыскания корней полинома степени n.

Формулу (4.2) часто записывают в несколько иной форме. Поло-
жим

qk = cos
2πk

n
+ i sin

2πk

n
, k = 0, 1, 2, . . . , n− 1.
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Очевидно, qnk = 1 для k = 0, 1, 2, . . . , n− 1, т. е. qk — корни степени n
из единицы. Нетрудно проверить, что

zk = z0qk, k = 0, 1, 2, . . . , n− 1.

Таким образом, вычислив корень

z0 = n
√
ρ (cosφ/n+ i sinφ/n) ,

все остальные можно получить последовательными сдвигами на
угол 2π/n по окружности.



Глава 2
Многочлены

§ 1. Алгебраические операции над многочленами

1. Многочленом (полиномом) называют функцию вида

Pn(z) = a0 + a1z + a2z
2 + · · ·+ anz

n. (1.1)

Здесь a0, . . . , an — фиксированные комплексные числа, называемые
коэффициентами многочлена. Если an не нуль, то целое число n > 0
называют порядком или степенью многочлена, an называется стар-
шим коэффициентом многочлена, переменная z может принимать
любые комплексные значения.

Многочлены Pn(z), Qn(z) равны, когда все их коэффициенты при
одинаковых степенях совпадают.

Многочлен равен нулю, если все его коэффициенты — нули. Ина-
че говоря, это — постоянная, равная нулю. Такому многочлену нельзя
приписать никакой степени. Мы будем называть его нулевым и обо-
значать символом 0.

Сумма многочленов Pn(z) +Qm(z) — многочлен, причем степень
его не больше максимального из чисел m и n, или это — нулевой
многочлен.

Произведение многочленов Pn(z)Qm(z) — многочлен, степень ко-
торого есть сумма степеней, т. е. m+ n.

Сложение любого многочлена с нулевым не меняет этого много-
члена. Произведение двух многочленов — нулевой многочлен тогда и
только тогда, когда один из сомножителей — нулевой многочлен.

Введем и исследуем операцию деления многочленов.

2. Теорема. Для любых двух многочленов P (z) и Q(z) можно
найти многочлены q(z) и r(z), где r(z) имеет степень, меньшую
степени многочлена Q(z), или является нулевым многочленом, та-
кие, что

P (z) = Q(z)q(z) + r(z). (1.2)
Многочлены q(z) и r(z), удовлетворяющие указанным условиям,
определяются по многочленам P (z), Q(z) однозначно.

Доказательство. Предположим сначала, что P (z) — нулевой
многочлен или его степень меньше степени многочлена Q(z). В этом
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случае равенство (1.2), очевидно, может быть выполнено лишь при
условии, что q(z) — нулевой многочлен, а r(z) = P (z).

Положим теперь, что многочлен P (z) имеет степень n, много-
член Q(z) имеет степень m, причем n > m. Для упрощения записей
будем считать, что старший коэффициент многочлена Q равен едини-
це. Случай, когда этот коэффициент — произвольное ненулевое чис-
ло, требует очевидных изменений в выписываемых ниже формулах.
Итак, пусть

P (z) = anz
n + an−1z

n−1 + · · ·+ a0,
Q(z) = zm + bm−1z

m−1 + · · ·+ b0,
q(z) = cn−mz

n−m + cn−m−1z
n−m−1 + · · ·+ c0,

r(z) = dm−1z
m−1 + dm−2z

m−2 + · · ·+ d0.

Коэффициенты многочленов P (z), Q(z) даны, а коэффициенты мно-
гочленов q(z), r(z) требуется найти. Проводя элементарные выклад-
ки, соберем коэффициенты при одинаковых степенях z в правой ча-
сти (1.2) и приравняем их соответствующим коэффициентам много-
члена P :

an = cn−m,
an−1 = cn−m−1 + cn−mbm−1,
an−2 = cn−m−2 + cn−m−1bm−1 + cn−mbm−2,
. . . . . . . . .
am = c0 + c1bm−1 + c2bm−2 + · · ·+ cmb0,
am−1 = dm−1 + c0bm−1 + c1bm−2 + · · ·+ cm−1b0,
. . . . . . . . .
a0 = d0 + c0b0.

Полученные соотношения представляют собой систему уравнений от-
носительно коэффициентов многочленов q(z), r(z). Эта система легко
решается и однозначно определяет коэффициенты искомых полино-
мов. Сначала находятся коэффициенты cj, последовательно, в поряд-
ке убывания индексов:

cn−m = an,
cn−m−1 = an−1 − cn−mbm−1,
cn−m−2 = an−2 − cn−m−1bm−1 − cn−mbm−2,
. . . . . . . . .
c0 = am − c1bm−1 − c2bm−2 − · · · − cmb0.

(1.3)

Затем с использованием уже найденных значений cj вычисляются
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коэффициенты dj:

dm−1 = am−1 − c0bm−1 − c1bm−2 − · · · − cm−1b0,
dm−2 = am−2 − c0bm−2 − c1bm−3 − · · · − cm−2b0,
. . . . . . . . .
d0 = a0 − c0b0.

(1.4)

Заметим, что cn−m не равен нулю, поскольку an не равен нулю, а
коэффициенты полинома r(z), вообще говоря, могут быть нулями. �

Здесь и далее символ � обозначает конец доказательства.
Описанный в ходе доказательства теоремы способ вычисления ко-

эффициентов многочленов q, r называется схемой Горнера1). Она ши-
роко применяется на практике.

Формула (1.2) определяет операцию деления многочлена P на
многочлен Q; q — частное от деления, r — остаток. В случае, ко-
гда многочлен r оказывается равным нулю, говорят, что многочлен P
делится на многочлен Q (иногда говорят, что делится нацело).

Замечание. Из формул, полученных в ходе доказательства тео-
ремы 2, очевидно, следует, что если P , Q являются многочлена-
ми с действительными коэффициентами, то коэффициенты много-
членов q, r — действительные числа.

Пример. В качестве примера применения схемы Горнера разделим

P4(z) = 2z4 − 3z3 + 4z2 − 5z + 6 на Q2(z) = z2 − 3z + 1,

т. е. найдем такие многочлены

q2(z) = c2z
2 + c1z + c0 и r(z) = d1z + d0,

что выполняется равенство

P4(z) = Q2(z)q2(z) + r(z).

В нашем примере n = 4, а m = 2. Сначала по формулам (1.3) вычислим коэффициен-
ты c2, c1 и c0:

c2 = a4 = 2,
c1 = a3 − c2b1 = −3− 2(−3) = 3,
c0 = a2 − c1b1 − c2b0 = 4− 3(−3)− 2 · 1 = 11.

Затем по формулам (1.4) найдем коэффициенты d1 и d0:

d1 = a1 − c0b1 − c1b0 = −5− 11(−3)− 3 · 1 = 25,
d0 = a0 − c0b0 = 6− 11 · 1 = −5.

Таким образом,
q2(z) = 2z2 + 3z + 11, r(z) = 25z − 5.

1)Уильям Джордж Гoрнер (William George Horner; 1786 — 1837) — английский математик.



§ 2. Корни многочленов 21

3. Естественно поставить вопрос: будут ли коэффициенты поли-
номов Pn(z), Qn(z) совпадать, если значения этих полиномов совпа-
дают при всех z, иными словами, будут ли все коэффициенты мно-
гочлена равны нулю, если сам многочлен тождественно равен нулю.
Это действительно так, но доказательство удобно будет выполнить
несколько позже. Как ни странно, наиболее просто оно проводится
при изучении систем линейных алгебраических уравнений (см. §5,
гл. 5, с. 86).

§ 2. Корни многочленов

Корнем многочлена Pn(z) называется такое число α, вообще го-
воря, комплексное, что Pn(α) = 0.

1. Теорема Безу1). Пусть n > 1, α — произвольное комплекс-
ное число. Тогда многочлен Pn(z)− Pn(α) делится на z − α.

Доказательство. По теореме 2, с. 18,

Pn(z)− Pn(α) = qn−1(z)(z − α) + r,

где r — число (многочлен нулевой степени). Полагая в этом равен-
стве z = α, получим, что r = 0, т. е.

Pn(z)− Pn(α) = qn−1(z)(z − α). �

Из теоремы Безу очевидным образом вытекает

1.1. Следствие. Многочлен Pn тогда и только тогда делится
на z − α, когда α — корень этого многочлена.

Число α называется корнем кратности k > 1 многочлена Pn,
если Pn(z) делится на (z − α)k:

Pn(z) = (z − α)kqn−k(z),

а qn−k(z) не делится на (z − α), т. е. α не является корнем многочле-
на qn−k(z).

Если кратность корня равна единице, то корень называют про-
стым.

1)Этьен Безу (Etienne Bezout; 1730 — 1783) — французский математик.



22 Глава 2. Многочлены

2. Исследуя свойства корней полинома, для упрощения записей
обычно переходят к приведенному (часто говорят нормированному)
полиному, получающемуся делением всех коэффициентов исходного
полинома на его старший коэффициент.

Очевидно, что любой корень исходного полинома является кор-
нем приведенного полинома и, наоборот, любой корень приведенного
полинома — корень исходного полинома.

2.1. Теорема (основная теорема алгебры). Всякий полином

Pn(z) = zn + an−1z
n−1 + · · ·+ a0, n > 1,

имеет хотя бы один корень.
Доказательство. Будем обозначать декартовы координаты

точек на плоскости через x1, x2. Пусть x = (x1, x2) — точка на плос-
кости, z = x1 + ix2 — соответствующее ей комплексное число.

Равенство f(x) = |Pn(z)| определяет функцию f двух веществен-
ных переменных. Эта функция неотрицательна при всех x.

Если удастся доказать, что существует точка x = (x1, x2) такая,
что f(x) = 0, то число z = x1 + ix2 будет корнем полинома Pn.

Докажем, прежде всего, что функция f непрерывна на всей плос-
кости. Для любых двух точек x, x̃ вследствие (2.5), с. 12, имеем

|f(x̃)− f(x)| = ||Pn(z̃)| − |Pn(z)|| 6 |Pn(z̃)− Pn(z)|.

Здесь z̃ = x̃1 + ix̃2. Положим h = z̃ − z. Тогда

Pn(z̃) = Pn(z + h) =

= (z + h)n + an−1(z + h)n−1 + · · ·+ a1(z + h) + a0. (2.1)

По формуле бинома Ньютона1) для любого целого k > 1

(z + h)k = zk + C1
kz

k−1h+ · · ·+ Ck−1
k zhk−1 + hk.

Приводя подобные в правой части (2.1), найдем, что

Pn(z + h) = Pn(z) + c1h+ c2h
2 + · · ·+ cn−1h

n−1 + hn, (2.2)

причем коэффициенты c1, . . . , cn−1 зависят только от z и коэффици-
ентов полинома Pn. Применяя (2.3), (2.4), с. 12, нетрудно получить,
что

|f(x̃)− f(x)| = |Pn(z + h)− Pn(z)| 6 L(|h|+ |h|2 + · · ·+ |h|n), (2.3)
1)Исаак Ньютон (Isaac Newton, 1643 — 1727) — английский физик, математик и астроном.
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где L зависит только от |z| и модулей коэффициентов полинома Pn.
Выбирая точку x̃ достаточно близкой к x, правую часть неравен-
ства (2.3) можно сделать меньше любого наперед заданного поло-
жительного числа. Это и означает непрерывность функции f .

Можно считать, что f(0) = |a0| > 0. В противном случае нуль —
корень полинома. Построим круг BR радиуса R с центром в нача-
ле координат. Обозначим через SR окружность, границу круга BR.
Пусть x ∈ SR. Запишем f(x) в виде f(x) = |zn−(−an−1z

n−1−· · ·−a0)|.
Вследствие (2.5), с. 12, отсюда вытекает, что

f(x) > |z|n− |an−1||z|n−1− · · ·− |a0| = Rn− |an−1|Rn−1− · · ·− |a0| =
= Rn(1− |an−1|R−1 − · · · − |a0|R−n).

Правая часть полученного неравенства стремится к бесконечности
при R → ∞. Поэтому, выбирая R достаточно большим, можно до-
биться того, что

f(x) > 2f(0) ∀x ∈ SR. (2.4)
По доказанному выше функция f непрерывна на всей плоско-

сти, значит, по теореме Вейерштрасса1) она достигает минимального
значения в некоторой точке x1 на замыкании круга BR. Очевидно,
f(x1) 6 f(0), но тогда вследствие оценки (2.4) точка x1 не может
лежать на SR, следовательно, она — внутренняя точка области BR.
Будем считать, что f(x1) > 0. В противном случае точка x1 соответ-
ствует корню полинома Pn.

Пусть h = h1 + ih2. Если модуль h достаточно мал, то точка

x2 = (x11 + h1, x
1
2 + h2)

лежит внутри BR. По определению f(x2) = |Pn(z1 + h)|. Исполь-
зуя (2.2), получим, что Pn(z1 + h) = Pn(z

1) + c1h + c2h
2 + · · · + hn,

причем коэффициенты c1, . . . , cn−1 зависят только от z1 и коэффи-
циентов полинома Pn. По предположению Pn(z

1) не нуль, поэтому

Pn(z
1 + h)

Pn(z1)
= 1 + d1h+ · · ·+ dnh

n.

Среди чисел d1, . . . , dn хотя бы одно не нуль, по крайне мере, послед-
нее таково. Пусть dk ̸= 0, а все числа dj с меньшими номерами —
нули. Тогда для любого c ̸= 0

Pn(z
1 + h)

Pn(z1)
= 1 +

dk
ck
(ch)k +

dk+1

ck+1
(ch)k+1 + · · ·+ dn

cn
(ch)n. (2.5)

1)См. курс математического анализа. Карл Теодор Вильгельм Вейерштрасс (Karl Theodor
Wilhelm Weierstrass; 1815 — 1897) — немецкий математик.
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Выберем c так, чтобы ck = −dk. Положим v = ch. Тогда

f(x2)

f(x1)
=

|Pn(z1 + h)|
|Pn(z1)|

= |1− vk + vkb(v)|,

где b(v) =
dk+1

ck+1
v+ · · ·+ dn

cn
vn−k. Выберем теперь h так, что v — веще-

ственное положительное число, меньшее единицы, а |b(v)| 6 1/2. При
таком v, очевидно,

f(x2)

f(x1)
6 1− vk

2
< 1,

а этого быть не может, так как x1 — точка минимума функ-
ции f на замыкании BR. Получили противоречие. Остается принять,
что f(x1) = 0, т. е. z1 = x11 + ix12 — корень полинома Pn. �

3. Пусть Pn(z) = zn + an−1z
n−1 + · · · + a0, n > 1. По основной

теореме алгебры полином Pn имеет корень. Обозначим его через α1.
Пусть этот корень имеет кратность k1 > 1. Тогда

Pn(z) = (z − α1)
k1qn−k1(z).

Если k1 = n, то, очевидно, qn−k1 = 1. В противном случае поли-
ном qn−k1(z) имеет корень. Обозначим его через α2. Понятно, что α2

является корнем полинома Pn, причем по построению отличным
от α1. Пусть кратность α2 (как корня полинома qn−k1) равна k2. Тогда

qn−k1(z) = (z − α2)
k2qn−k1−k2(z),

следовательно,

Pn(z) = (z − α1)
k1(z − α2)

k2qn−k1−k2(z).

Ясно, что k2 — кратность α2 как корня полинома Pn. Продолжая этот
процесс, получим, что

Pn(z) = (z − α1)
k1(z − α2)

k2 · · · (z − αm)
km, (2.6)

где k1, k2, . . . , km — целые числа, не меньшие единицы, и такие,
что k1 + k2 + · · ·+ km = n.

Таким образом, всякий полином степени n имеет n корней (с уче-
том их кратности).
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3.1. Теорема. Полином Pn степени n > 1 не может иметь
больше чем n корней.

Доказательство. В самом деле, пусть Pn(α) = 0 и α не сов-
падает ни с одним из чисел α1, . . . , αm, определенных в предыдущем
пункте. По следствию из теоремы Безу имеем Pn(z) = (z−α)qn−1(z),
откуда на основании (2.6) получаем, что

(z − α1)
k1(z − α2)

k2 · · · (z − αm)
km = (z − α)qn−1(z).

Правая часть этого равенства при z = α равна нулю, а левая не
равна нулю. Полученное противоречие означает, что никакое число,
отличное от α1, . . . , αm, не может быть корнем полинома Pn. �

4. Пусть Qn(z) = a0+a1z+a2z
2+ · · ·+anzn — произвольный по-

лином степени n, α1, . . . , αm — корни полинома Qn, k1, k2, . . . , km —
их кратности, причем k1 + k2 + · · · + km = n. Вследствие результа-
тов, полученных в пункте 3, полином Qn можно представить в ви-
де Qn(z) = A(z − α1)

k1(z − α2)
k2 · · · (z − αm)

km, где A — некоторая
постоянная.

5. Занумеруем корни полинома Pn целыми числами от 1 до n,
повторяя каждый корень столько раз, какова его кратность, и запи-
шем (2.6) в виде Pn(z) = (z − α1)(z − α2) · · · (z − αn). Раскрывая
скобки в правой части равенства, приводя подобные и приравнивая
коэффициенты при степенях z соответствующим коэффициентам в
левой части, получим формулы, выражающие коэффициенты поли-
нома Pn через его корни:

an−1 = −(α1 + α2 + · · ·+ αn),

an−2 = α1α2 + α1α3 + · · ·+ αn−1αn,

. . . . . . . . . . . . . . . . . . . . .

a0 = (−1)nα1α2 · · ·αn.
Закономерность образования этих формул очевидна: в каждой по-

следующей строке количество сомножителей увеличивается на едини-
цу, складываются всевозможные произведения различных сомножи-
телей.

Полученные формулы называются формулами Вьета (часто пи-
шут Виета)1).

1)Франсуа Виет (Francois Viete; 1540 — 1603) — французский математик, основоположник
символической алгебры. По образованию и основной профессии — юрист.
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§ 3. Многочлены с действительными коэффициентами

1. Пусть все коэффициенты полинома

Pn(z) = zn + an−1z
n−1 + . . . + a0

есть вещественные числа, тогда если α — корень этого полинома, то
и сопряженное число α — корень полинома Pn.

Доказательство этого утверждения сразу вытекает из формулы

P n(z) = zn + an−1z
n−1 + . . . + a0,

получающейся непосредственным применением соотношений (2.1),
с. 11, и того очевидного факта, что если Pn(α) = 0, то и Pn(α) = 0.

Пусть теперь α1, α2, . . . , αs — все вещественные корни полино-
ма Pn. Обозначим через k1, k2, . . . , ks их кратности. Положим

r = k1 + k2 + · · ·+ ks, Qr(z) = (z − α1)
k1(z − α2)

k2 · · · (z − αs)
ks.

Тогда
Pn(z) = Qr(z)Rn−r(z). (3.1)

Очевидно, что все коэффициенты многочлена Qr вещественны, по-
этому и все коэффициенты многочлена Rn−r вещественны (см. заме-
чание на с. 20). По построению многочлен Rn−r может иметь только
комплексные корни. Заметим, что при любых z, α

(z − α)(z − α) = z2 + pz + q,

где p = −α− α = −2Reα, q = αα = |α|2 — вещественные числа. По-
этому, если α — комплексный корень полинома Pn, а следовательно,
и корень полинома Rn−r, то из (3.1) вытекает равенство

Pn(z) = Qr(z)(z
2 + pz + q)Rn−r−2(z),

причем числа p, q вещественны, значит, полином Rn−r−2 имеет только
вещественные коэффициенты. Продолжая этот процесс, получим, что

Pn(z) = (z − α1)
k1(z − α2)

k2 · · · (z − αs)
ks(z2 + p1z + q1) · · ·

· · · (z2 + ptz + qt). (3.2)

Здесь s — количество различных вещественных корней полинома Pn,
а t — количество пар комплексно сопряженных корней этого полино-
ма.
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Из представления (3.2) сразу же вытекает, что у полинома с веще-
ственным коэффициентами нечетного порядка существует по край-
ней мере один вещественный корень.

Полагая, что z в равенстве (3.2) — вещественное число, можно
сказать, что полином с вещественными коэффициентами допускает
представление в виде произведения линейных и квадратичных веще-
ственных сомножителей.

Пример. Нетрудно видеть, что одним из корней полинома

P3(z) = a3z
3 + a2z

2 + a1z + a0 = z3 − 6z + 9

является число α = −3. Разделим многочлен P3(z) на

Q1(z) = z + b0 = z + 3,

т. е. найдем такой многочлен

q2(z) = c2z
2 + c1z + c0,

что выполняется равенство
P3(z) = Q1(z)q2(z).

Вычисления проведем с помощью схемы Горнера. Их удобно оформить в виде таблицы:

a3 = 1 a2 = 0 a1 = −6 a0 = 9
b0 = 3 c2b0 = c1b0 = c0b0 =

= 1 · 3 = 3 = (−3)3 = −9 = 3 · 3 = 9
c2 = a3 = c1 = a2 − c2b0 = c0 = a1 − c1b0 = r0 = a0 − c0b0 =
= 1 = −3 = 3 = 0

Итак,
q2(z) = z2 − 3z + 3,

а остаток r0 равен нулю, поскольку многочлен P3(z) нацело делится на z + 3:

P3(z) = (z + 3)
(
z2 − 3z + 3

)
.

Очевидно, число α = −3 не является корнем полинома q2(z). Поэтому α — простой
корень полинома P3(z). Для того, чтобы найти оставшиеся два его корня, надо решить
квадратное уравнение

z2 − 3z + 3 = 0.

Дискриминант этого уравнения равен −3, следовательно, оно не имеет вещественных
корней. Таким образом, полином третьего порядка P3(z) с вещественными коэффици-
ентами мы представили в виде произведения линейного и квадратичного вещественных
сомножителей.



Глава 3
Определители второго и третьего порядков

§ 1. Определители второго порядка

Рассмотрим систему двух уравнений с двумя неизвестными

a11x1 + a12x2 = b1,
a21x1 + a22x2 = b2.

(1.1)

Здесь a11, a12, a21, a22, b1, b2 — заданные, вообще говоря, комплексные
числа, x1, x2 требуется найти.

Решим эту систему, используя метод исключения неизвестных.
Этот метод обычно называют методом Гаусса1). Поделим обе части
первого уравнения на a11:

x1 +
a12
a11

x2 =
b1
a11

.

Затем умножим полученное уравнение на a21 и вычтем почленно это
уравнение из второго уравнения системы:(

a22 −
a12
a11

a21

)
x2 = b2 −

b1
a11

a21.

Отсюда

x2 =
b2a11 − a21b1
a22a11 − a12a21

. (1.2)

Подставляя найденное выражение для x2 в первое уравнение систе-
мы (1.1), легко найти выражение для x1:

x1 =
b1a22 − a12b2
a22a11 − a12a21

. (1.3)

Понятно, что формулы (1.2), (1.3) имеют смысл, если

a11a22 − a12a21 ̸= 0.

Формулы (1.2), (1.3) полезно записать в несколько ином виде. Вве-
дем соответствующие определения и обозначения.

1)Иоганн Карл Фридрих Гаусс (Johann Carl Friedrich Gauss; 1777 — 1855) — немецкий мате-
матик, астроном и физик.
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Таблицу

A =

(
a11 a12
a21 a22

)
(1.4)

называют матрицей второго порядка. Величину

∆ = a11a22 − a12a21 (1.5)

называют определителем матрицы A. Для определителя используют
следующие обозначения:

det(A) = |A| =
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = ∆.

Равенства (1.2), (1.3) теперь можно записать в виде

x1 =
∆1

∆
, x2 =

∆2

∆
,

где

∆1 =

∣∣∣∣ b1 a12
b2 a22

∣∣∣∣ , ∆2 =

∣∣∣∣ a11 b1
a21 b2

∣∣∣∣ .
Полученные формулы называют формулами Крамера1).

Формулы (1.2), (1.3) не имеют смысла, когда

|A| = a11a22 − a12a21 = 0,

или a11
a21

=
a12
a22

,

т. е. строки определителя |A| пропорциональны. Если при этом и

b1
b2

=
a12
a22

,

то первое и второе уравнения системы (1.1), фактически, совпадают,
и она имеет бесконечное множество решений. Если |A| = 0, но

b1
b2

̸= a12
a22

,

то уравнения системы (1.1) противоречивы, система несовместна, не
имеет ни одного решения.

1)Габриэль Крамер (Gabriel Cramer; 1704 — 1752) — швейцарский математик, один из созда-
телей линейной алгебры.
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Примеры. 1) Определитель матрицы системы

x1 + 2x2 = 5,
3x1 + 4x2 = 6,

равен

∆ =

∣∣∣∣1 2
3 4

∣∣∣∣ = 4− 6 = −2.

Система имеет единственное решение

x1 =

∣∣∣∣5 2
6 4

∣∣∣∣∣∣∣∣1 2
3 4

∣∣∣∣ =
20− 12

−2
= −4, x2 =

∣∣∣∣1 5
3 6

∣∣∣∣∣∣∣∣1 2
3 4

∣∣∣∣ =
6− 15

−2
=

9

2
.

2) Определитель матрицы системы

x1 + 2x2 = 3,
2x1 + 4x2 = 6,

равен

∆ =

∣∣∣∣1 2
2 4

∣∣∣∣ = 4− 4 = 0.

При этом
b1
b2

=
a12
a22

=
3

6
=

2

4
.

Уравнения системы, фактически, совпадают. Система имеет бесчисленное множество
решений.

3) Система
x1 + 2x2 = 2,
2x1 + 4x2 = 6,

не имеет решений, так как ее определитель равен нулю, но b1/b2 ̸= a12/a22.

§ 2. Определители третьего порядка

1. Обратимся к системе трех уравнений с тремя неизвестными

a11x1 + a12x2 + a13x3 = b1, (2.1)
a21x1 + a22x2 + a23x3 = b2, (2.2)
a31x1 + a32x2 + a33x3 = b3. (2.3)

Из ее коэффициентов можно составить матрицу третьего порядка

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 . (2.4)
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Получим формулы для решения системы, вновь используя метод
Гаусса. Поделим обе части уравнения (2.1) на a11. Полученное урав-
нение умножим на a21 и вычтем почленно из уравнения (2.2). Анало-
гично поступим с уравнением (2.3). В результате система (2.1) – (2.3)
преобразуется к виду

x1 +
a12
a11

x2 +
a13
a11

x3 =
b1
a11

, (2.5)(
a22 −

a12
a11

a21

)
x2 +

(
a23 −

a13
a11

a21

)
x3 = b2 −

b1
a11

a21, (2.6)(
a32 −

a12
a11

a31

)
x2 +

(
a33 −

a13
a11

a31

)
x3 = b3 −

b1
a11

a31. (2.7)

Теперь из уравнений (2.6), (2.7) исключим неизвестную x2 по анало-
гии с тем, как мы исключали неизвестную x1 из системы (1.1). После
элементарных преобразований получим

x3 =

b1

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣− b2

∣∣∣∣ a11 a12
a31 a32

∣∣∣∣+ b3

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣
a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣− a23

∣∣∣∣ a11 a12
a31 a32

∣∣∣∣+ a33

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ . (2.8)

Упражнение. Вывести равенство (2.8).
Знаменатель полученной дроби называют определителем матри-

цы A, т. е. по определению

|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
= a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣− a23

∣∣∣∣ a11 a12
a31 a32

∣∣∣∣+ a33

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ . (2.9)

Заметим, что числитель дроби в правой части (2.8) аналогичен
знаменателю, а именно, множители при определителях второго по-
рядка заменены на b1, b2, b3 соответственно. Формуле (2.8) поэтому
можно придать вид

x3 =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
. (2.10)



32 Глава 3. Определители второго и третьего порядков

Зная выражение для x3, из уравнения (2.6) найдем выражение
для x2, а затем при помощи уравнения (2.5) — для x1. Можно из-
бежать этих громоздких вычислений, действуя следующим образом.
Запишем систему (2.1) – (2.3) в виде

a11x1 + a13x3 + a12x2 = b1,

a21x1 + a23x3 + a22x2 = b2,

a31x1 + a33x3 + a32x2 = b3.

Теперь, фактически, вновь используя формулу (2.10), получим

x2 =

∣∣∣∣∣∣
a11 a13 b1
a21 a23 b2
a31 a33 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a13 a12
a21 a23 a22
a31 a33 a32

∣∣∣∣∣∣
. (2.11)

Аналогично,

x1 =

∣∣∣∣∣∣
a12 a13 b1
a22 a23 b2
a32 a33 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a12 a13 a11
a22 a23 a21
a32 a33 a31

∣∣∣∣∣∣
. (2.12)

Формулы (2.10) – (2.12) имеют смысл, если определитель матрицы A
не равен нулю. Полное исследование разрешимости линейных систем
с тремя неизвестными в случае, когда определитель |A| равен нулю,
довольно сложно. Позже мы рассмотрим этот вопрос применительно
к системам с произвольным числом неизвестных.

2. Формулам (2.10) – (2.12) мы придадим в дальнейшем более
симметричный вид, но сначала представим определитель в более
удобной для дальнейших исследований форме.

Вычислим входящие в (2.9) определители второго порядка, рас-
кроем скобки и соберем вместе слагаемые с одинаковыми знаками.
Получим:

|A| = a11a22a33 + a12a23a31 + a13a21a32−
− a13a22a31 − a12a21a33 − a11a23a32. (2.13)
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Для того, чтобы подметить закономерность расстановки знаков
в этой сумме, нам полезно будет ввести некоторые новые понятия и
обозначения.

Три целых числа 1, 2, 3 можно расположить шестью различными
способами:

123, 231, 312, 321, 213, 132. (2.14)
Иначе говоря, из трех чисел, можно составить шесть различных пе-
рестановок.

В дальнейшем будет удобно записывать перестановки в ви-
де n1n2n3, подразумевая под ni одно из чисел 1, 2, 3. При этом, ко-
нечно, все числа n1, n2, n3 считаются различными.

Рассмотрим некоторую конкретную перестановку n1n2n3 и соста-
вим все пары чисел ninj, где i < j. Понятно, что таких пар всего
три: n1n2, n1n3 и n2n3. Говорят, что пара чисел ninj, где i < j, образу-
ет инверсию, если ni > nj. Каждой перестановке соответствует опре-
деленное количество инверсий, а именно, 0, 1, 2, или 3. Количество
инверсий в перестановке n1n2n3 будем обозначать через σ(n1, n2, n3).

Перестановку n1n2n3 будем называть четной, если ей соответ-
ствует четное количество инверсий (нуль считается четным числом).
В противном случае перестановка называется нечетной.

Нетрудно убедиться, что первые три из перестановок (2.14) чет-
ные, а остальные нечетные.

Каждое слагаемое в выражении определителя (2.13) имеет вид
±a1n1a2n2a3n3,

причем знак плюс ставится в том случае, когда перестановка n1n2n3
четная. В противном случае ставится знак минус. Равенство (2.13) с
использованием введенных обозначений можно записать в виде

|A| =
∑
n1n2n3

(−1)σ(n1n2n3)a1n1a2n2a3n3, (2.15)

где символ
∑

n1n2n3

означает суммирование, которое распространяется
на всевозможные перестановки n1n2n3.

Для запоминания способа расстановки знаков в (2.13) полезно ис-
пользовать схему, представленную на рис. 1.

Пример.∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = 1 · 5 · 9 + 2 · 6 · 7 + 3 · 4 · 8− 3 · 5 · 7− 4 · 2 · 9− 1 · 8 · 6 =

= 45 + 84 + 96− 105− 72− 48 = 225− 225 = 0.
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Рис. 1. Правило расстановки знаков в определителе третьего порядка

§ 3. Свойства определителей третьего порядка

1. Матрица

AT =

 a11 a21 a31
a12 a22 a32
a13 a23 a33


называется матрицей, транспонированной по отношению к матри-
це A.

Матрица AT состоит из тех же элементов, что и матрица A, но
расположенных в другом порядке. Первый столбец матрицы AT со-
стоит из элементов первой строки матрицы A. Аналогичное справед-
ливо и для последующих столбцов матрицы AT .

Вычисляя по формуле (2.13) определитель матрицы AT , получим

|AT | = a11a22a33 + a21a32a13 + a31a12a23−
− a31a22a13 − a21a12a33 − a11a32a23. (3.1)

Сравнивая |AT | и |A|, легко заметить, что они различаются только
порядком следования сомножителей в соответствующих слагаемых и
порядком расположения этих слагаемых.

Таким образом, определитель не меняется при транспонировании
матрицы.

Все дальнейшие свойства определителей формулируются в тер-
минах их строк. По только что доказанному свойству 1 они будут
справедливы и для столбцов.

2. Непосредственно из формулы (2.15) вытекает, что если все
элементы некоторой строки определителя — нули, то определитель
равен нулю.

3. Если элементы некоторой строки определителя представле-
ны в виде суммы двух слагаемых, то определитель представляется
в виде суммы определителей. Запишем соответствующую формулу
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применительно к первой строке:∣∣∣∣∣∣
a11 + b11 a12 + b12 a13 + b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ .
Справедливость данного свойства проверяется непосредственным ис-
пользованием формулы (2.15):∑
n1n2n3

(−1)σ(n1n2n3)(a1n1+b1n1)a2n2a3n3=
∑
n1n2n3

(−1)σ(n1n2n3)a1n1a2n2a3n3+

+
∑
n1n2n3

(−1)σ(n1n2n3)b1n1a2n2a3n3.

Аналогично доказывается, что общий множителей элементов
строки можно вынести за знак определителя:∣∣∣∣∣∣

αa11 αa12 αa13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = α

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ ,
и, вообще,∣∣∣∣∣∣

αa11 + βb11 αa12 + βb12 αa13 + βb13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
= α

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+ β

∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ .
Это свойство часто формулируют так: определитель линеен по

каждой строке.

4. Если в определителе две строки совпадают, то он равен нулю.
Будем считать, что совпадают две первые строки. Для других пар
строк выкладки полностью аналогичны. Запишем равенство (2.13),
заменяя элементы второй строки на равные им элементы первой стро-
ки:

|A| = a11a12a33 + a12a13a31 + a13a11a32−
− a13a12a31 − a12a11a33 − a11a13a32. (3.2)

Легко заметить, что для каждого слагаемого со знаком плюс находит-
ся одно слагаемое, состоящее из тех же сомножителей, но со знаком
минус, значит, |A| = 0.
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5. Если в определителе поменять местами две строки, то знак
его изменится на противоположный, например,∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
a21 a22 a23
a11 a12 a13
a31 a32 a33

∣∣∣∣∣∣ . (3.3)

Действительно, в силу только что доказанного свойства 4 имеем, что∣∣∣∣∣∣
a11 + a21 a12 + a22 a13 + a23
a11 + a21 a12 + a22 a13 + a23
a31 a32 a33

∣∣∣∣∣∣ = 0.

Последовательно используя свойство 3, левую часть этого равенства
можно записать в виде суммы четырех слагаемых:∣∣∣∣∣∣

a11 + a21 a12 + a22 a13 + a23
a11 + a21 a12 + a22 a13 + a23
a31 a32 a33

∣∣∣∣∣∣ =∣∣∣∣∣∣
a11 a12 a13

a11 + a21 a12 + a22 a13 + a23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣

a21 a22 a23
a11 + a21 a12 + a22 a13 + a23
a31 a32 a33

∣∣∣∣∣∣ =∣∣∣∣∣∣
a11 a12 a13
a11 a12 a13
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a21 a22 a23
a11 a12 a13
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a21 a22 a23
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ .
Вследствие свойства 4 первое и последнее слагаемые этой суммы рав-
ны нулю, поэтому∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a21 a22 a23
a11 a12 a13
a31 a32 a33

∣∣∣∣∣∣ = 0,

т. е. равенство (3.3) справедливо.
Переставляя столбцы определителей, (2.11), (2.12) можно запи-

сать в виде

x2 =

∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
, x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
. (3.4)
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Формулам, дающим решение системы (2.1) – (2.3), можно придать
теперь компактный вид

xi =
∆i

∆
, i = 1, 2, 3, (3.5)

где ∆ = |A|, а ∆i получается из |A| заменой i-того столбца столбцом
правой части системы (2.1) – (2.3). Формулы (3.5) называют форму-
лами Крамера.

Продолжим изучение свойств определителей третьего порядка.

6. Определитель не изменится, если к некоторой его строке до-
бавить другую, умноженную на произвольное число. Опять проведем
доказательство, рассматривая первую и вторую строки. Используя
свойство 3, получим∣∣∣∣∣∣

a11 + αa21 a12 + αa22 a13 + αa23
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+ α

∣∣∣∣∣∣
a21 a22 a23
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ .
Последний определитель равен нулю, так как его первая и вторая
строки совпадают.

7. Получим необходимое и достаточное условие равенства опре-
делителя |A| нулю. Будем говорить, что строки определителя линей-
но зависимы, если существуют числа α, β, γ, не все равные нулю, и
такие, что

αa1j + βa2j + γa3j = 0, j = 1, 2, 3.

В дальнейшем будем для определенности считать, что α ̸= 0.
Тогда

a1j = c1a2j + c2a3j, j = 1, 2, 3, (3.6)
где c1 = −β/α, c2 = −γ/α. Говорят, что в этом случае первая строка
есть линейная комбинация второй и третьей строк.

Покажем, что определитель |A| равен нулю тогда и только тогда,
когда его строки линейно зависимы.

Пусть для строк определителя выполнено условие (3.6). Умножим
вторую строку определителя на −c1 и прибавим к первой. Величина
определителя не изменится. Умножим третью строку на −c2 и приба-
вим к первой строке преобразованного определителя. Вновь величина
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определителя не изменится, но первая строка определителя, очевид-
но, будет содержать только нулевые элементы и потому определитель
будет равен нулю.

Пусть определитель |A| равен нулю. Рассмотрим все определи-
тели второго порядка, получающиеся из |A| вычеркиванием одного
столбца и одной строки, например,∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ .
Если не все элементы определителя |A| равны нулю (в такой си-

туации доказываемое утверждение выполняется тривиальным обра-
зом), то возможны два случая: 1) все эти определители второго по-
рядка равны нулю, 2) хотя бы один из них отличен от нуля.

Рассмотрим второй случай. Первый рассматривается аналогично,
причем рассуждения оказываются более простыми. Будем считать,
что определитель ∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
не равен нулю, что не снижает общности рассуждений, так как этого
всегда можно добиться, переставляя строки и столбцы и не меняя при
этом величины определителя A. Действительно, такие перестановки
могут изменить лишь знак определителя, а он, как мы полагаем, ра-
вен нулю.

Воспользовавшись формулой (2.9), отсюда получим, что

a13 = c1a23 + c2a33, (3.7)

где

c1 =

∣∣∣∣ a11 a12
a31 a32

∣∣∣∣∣∣∣∣ a21 a22
a31 a32

∣∣∣∣ , c2 = −

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣∣∣∣∣ a21 a22
a31 a32

∣∣∣∣ .
Далее, определитель ∣∣∣∣∣∣

a11 a12 a12
a21 a22 a22
a31 a32 a32

∣∣∣∣∣∣
равен нулю, так как у него два последних столбца совпадают. Запи-
сывая этот определитель по формуле (2.9), получим как и раньше,
что

a12 = c1a22 + c2a32. (3.8)
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Наконец, рассматривая нулевой определитель∣∣∣∣∣∣
a11 a12 a11
a21 a22 a21
a31 a32 a31

∣∣∣∣∣∣ ,
получим, что

a11 = c1a21 + c2a31. (3.9)
Равенства (3.7) – (3.9) означают, что первая строка определителя есть
линейная комбинация второй и третьей строк.

8. Получим так называемую формулу разложения определителя
по строке. Используя свойство 3, запишем следующие равенства:∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 0 0
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 a12 0
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣

0 0 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
= a11

∣∣∣∣∣∣
1 0 0
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+ a12

∣∣∣∣∣∣
0 1 0
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+ a13

∣∣∣∣∣∣
0 0 1
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ .
Обозначив черезA1j множители при соответствующих элементах пер-
вой строки определителя |A|, можем написать

|A| = a11A11 + a12A12 + a13A13. (3.10)

Преобразуем определители A1j, j = 1, 2, 3. Умножим первую
строку A11 на a21 и вычтем из второй, затем умножим первую строку
на a31 и вычтем из третьей. Получим в результате

A11 =

∣∣∣∣∣∣
1 0 0
0 a22 a23
0 a32 a33

∣∣∣∣∣∣ .
Аналогично,

A12 =

∣∣∣∣∣∣
0 1 0
a21 0 a23
a31 0 a33

∣∣∣∣∣∣ , A13 =

∣∣∣∣∣∣
0 0 1
a21 a22 0
a31 a32 0

∣∣∣∣∣∣ .
Определитель A1j называется алгебраическим дополнением элемен-
та a1j.

Определитель M1j второго порядка, получающийся из A1j вы-
черкиванием первой строки и j-того столбца, называется минором,
соответствующим элементу a1j определителя |A|.
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Вообще, алгебраическое дополнение Aij элемента aij определите-
ля |A| получается заменой в |A| элемента aij единицей, всех осталь-
ных элементов i-той строки и j-того столбца — нулями.

Минор Mij элемента aij определителя |A| — определитель второго
порядка, получающийся из |A| вычеркиванием i-той строки и j-того
столбца.

Установим связь между алгебраическим дополнениями и минора-
ми. Меняя местами первый и второй столбец, получим, что

A12 = −

∣∣∣∣∣∣
1 0 0
0 a21 a23
0 a31 a33

∣∣∣∣∣∣ . (3.11)

Аналогично, выполняя две перестановки столбцов и потому не меняя
знака, получим, что

A13 =

∣∣∣∣∣∣
1 0 0
0 a21 a22
0 a31 a32

∣∣∣∣∣∣ . (3.12)

Теперь понятно, что достаточно научиться вычислять определи-
тель A11. Используя формулу (2.13), получим

A11 =

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ =M11.

Вследствие (3.11), (3.12) будем иметь, что A12 = −M12, A13 = M13.
Формуле (3.10) можно придать вид

|A| = a11M11 − a12M12 + a13M13.

Нетрудно сообразить, что справедливы общие формулы

|A| = ai1Ai1 + ai2Ai2 + ai3Ai3, (3.13)

|A| = ai1(−1)i+1Mi1 + ai2(−1)i+2Mi2 + ai3(−1)i+3Mi3 (3.14)
разложения определителя по i-той строке, где i = 1, 2, 3.

Можно написать и аналогичную формулу разложения определи-
теля по столбцу

|A| = a1i(−1)i+1M1i + a2i(−1)i+2M2i + a3i(−1)i+3M3i, (3.15)

где i = 1, 2, 3.
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Подчеркнем, что знаки в формулах (3.14), (3.15) определяются
количеством перестановок строк и столбцов в алгебраическом допол-
нении Aij, необходимых для того, чтобы переместить единицу на по-
зицию первого элемента первой строки.

Пример. Вычислим определитель разложением по первому столбцу:∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = 1 ·
∣∣∣∣5 6
8 9

∣∣∣∣− 4 ·
∣∣∣∣2 3
8 9

∣∣∣∣+ 7 ·
∣∣∣∣2 3
5 6

∣∣∣∣ = −3− 4(−6) + 7(−3) = 0.

Тот же определитель вычислим разложением по второй строке:∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = −4

∣∣∣∣2 3
8 9

∣∣∣∣+ 5 ·
∣∣∣∣1 3
7 9

∣∣∣∣− 6 ·
∣∣∣∣1 2
7 8

∣∣∣∣ = −4(−6) + 5(−12)− 6(−6) = 0.

Используем теперь свойство 6) для вычисления того же определителя. Умножим
сначала первый столбец на два и вычтем из второго столбца. Придем к равенству∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 0 3
4 −3 6
7 −6 9

∣∣∣∣∣∣ .
Затем умножим первый столбец на три и вычтем из третьего столбца. Получим∣∣∣∣∣∣

1 0 3
4 −3 6
7 −6 9

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 0 0
4 −3 −6
7 −6 −12

∣∣∣∣∣∣ .
Разлагая последний определитель по первой строке, найдем его значение:∣∣∣∣∣∣

1 0 0
4 −3 −6
7 −6 −12

∣∣∣∣∣∣ = 1 ·
∣∣∣∣−3 −6
−6 −12

∣∣∣∣ = 0.

Отметим, что на формулу (2.9) можно смотреть теперь как на
разложение определителя по третьему столбцу.

9. Пусть i ̸= k. Тогда

ai1Ak1 + ai2Ak2 + ai3Ak3 = 0. (3.16)

Действительно, выражение в левой части (3.16) можно интерпретиро-
вать как разложение определителя по k-той строке, которая состоит
из элементов i-той строки. Определитель с двумя равными строками
равен нулю.

Соотношениям (3.13), (3.16) полезно придать общую форму

ai1Ak1 + ai2Ak2 + ai3Ak3 = |A|δik, i, k = 1, 2, 3, (3.17)
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где

δik =

{
0, i ̸= k,
1, i = k, (3.18)

так называемый символ Кронекера1).

1)Леопольд Кронекер (Leopold Kronecker; 1823 — 1891) — немецкий математик.



Глава 4
Введение в аналитическую геометрию

§ 1. Векторы. Алгебраические операции над векторами

1. В этой главе мы будем использовать только вещественные чис-
ла. Рассматривается трехмерное евклидово1) пространство. Вводится
декартова2) система координат. Это означает следующее. Фиксиру-
ется некоторая точка пространства (в дальнйшем она всегда будет
обозначатся символом 0 (ноль)). Она называется началом системы
координат. Задаются три попарно ортогональные прямые, проходя-
щие через точку 0. Задается единица длины и направление отсчета
от точки 0 на каждой прямой.

Положение точек на этих прямых будем определять вещественны-
ми числами x1, x2, x3 (т. е. будем интерпретировать эти прямые как
вещественные оси). Будем называть их в дальнейшем осями коорди-
нат.

Понятно, что теперь положение каждой точки в пространстве вза-
имно однозначно определяется заданием трех чисел x1, x2, x3, назы-
ваемых координатами точки (геометрический смысл координат по-
ясняется на рис. 1, a).

Точки пространства будем обозначать малыми латинскими буква-
ми: x, y, z, . . . Будут использоваться и обозначения с явным указани-
ем координат, например x = (x1, x2, x3). Иногда нам придется нуме-
ровать различные точки пространства. В этом случае номер (индекс)
будем писать сверху, например, x1 = (x11, x

1
2, x

1
3).

Как обычно, направленные отрезки будем называть векторами.
На рисунках (при необходимости) направление вектора будем указы-
вать стрелкой. Векторы, имеющие равные длины и одинаковые на-
правления, считаются равными (см. рис. 2, a). С каждой точкой x
пространства взаимно однозначно связан вектор, соединяющий ее с
началом координат (см. рис. 1, b). Концом этого вектора считается
точка x.

Вектор, соответствующий точке 0, будем называть нулевым.
1)Евклид или Эвклид (ок. 300 г. до н. э.) — древнегреческий математик. Мировую известность

приобрел благодаря сочинению по основам математики ≪Начала≫.
2)Рене Декарт (Rene Descartes; лат. Renatus Cartesius — Картезий; 1596 — 1650) — француз-

ский математик, философ, физик и физиолог, создатель аналитической геометрии и современ-
ной алгебраической символики.



44 Глава 4. Введение в аналитическую геометрию

Рис. 1. Декартовы координаты точки x = (x1, x2, x3) (a). Вектор x (b)

Векторы будем обозначать теми же символами, что и соответству-
ющие им точки пространства.

Координаты точки x будем называть декартовыми координата-
ми вектора x. Геометрический смысл декартовых координат вектора
очевиден. Это длины проекций вектора x (с учетом знака) на соот-
ветствующие оси координат.

Длину вектора x часто называют модулем и обозначают через |x|.
Лишь один вектор имеет нулевую длину. Это вектор 0. Из теоремы
Пифагора сразу же вытекает, что для любого вектора x = (x1, x2, x3)

|x| =
√
x21 + x22 + x23.

2. Определим теперь так называемые алгебраические операции
над векторами. Будем опираться при этом на знакомые из школьного
курса физики правила действия с силами, приложенными к матери-
альной точке.

1) Умножение вектора на число. Пусть заданы вещественное чис-
ло α и вектор x. Вектор y называется произведением α и x (пишет-

Рис. 2. Равные векторы (a). Коллинеарные векторы, α > 0, β < 0 (b)
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Рис. 3. Сложение векторов. Правило параллелограмма (a) и правило треугольника (b)

ся y = αx), если |y| = |α||x|, а направление y совпадает с направлени-
ем вектора x при положительном α и противоположно направлению x
при отрицательном α.

Поясним, что умножение любого вектора на нуль дает нулевой
вектор, умножение любого числа на нулевой вектор также дает нуле-
вой вектор.

Векторы, лежащие на одной прямой, называют коллинеарными
(см. рис. 2, b). Понятно, при любых α и x векторы y = αx и x кол-
линеарны. Наоборот, если векторы x, y коллинеарны, и хотя бы один
из них не нуль (например, x), то найдется такое число α, что y = αx.

2) Сложение векторов. Вектор z называется суммой векторов x
и y (пишется z = x+y), если он образует диагональ параллелограмма,
построенного на векторах x, y (см. рис. 3, a).

Нетрудно видеть, что x + y = y + x, т. е., как говорят, операция
сложения векторов коммутативна (перестановочна).

Упражнение. Интерпретируйте правило сложения векторов в
предельном случае, когда слагаемые коллинеарны.

Иногда удобнее описывать то же самое правило сложения век-

Рис. 4. Сложение векторов: (a) сумма трех векторов; (b) к правилу ассоциативности
w = x + y + z = (x + y) + z = x + (y + z); (c) вычитание векторов, x + (−y) = x − y,
x = y + (x− y)
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Рис. 5. К дистрибутивности умножения на скаляр (a) и по сложению векторов (b)

торов иначе: от конца вектора x откладывается вектор y, вектор z
замыкает треугольник (см. рис. 3, b).

Аналогично можно описать правило сложения нескольких векто-
ров (см. рис. 4, a).

Нетрудно видеть, что операция сложения векторов ассоциативна
(см. рис. 4, b), т. е. (x+ y) + z = x+ (y + z).

Вектор z называется разностью векторов x и y (см. рис. 4, c),
если x = z + y. Понятно, что z = x+ (−1)y = x+ (−y).

Из рис. 5 сразу усматриваются следующие свойства, связываю-
щие операции сложения векторов и умножения вектора на число:

(α+ β)x = αx+ βx,

α(x+ y) = αx+ αy.

Эти свойства называют свойствами дистрибутивности (распредели-
тельности).

3. Базис. Разложение вектора по базису. Будем говорить, что
векторы компланарны, если они лежат в одной плоскости. Фиксируем

Рис. 6. Разложение вектора по базису, x = x1e
1 + x2e

2 + x3e
3



§ 1. Векторы. Алгебраические операции над векторами 47

Рис. 7. К доказательству единственности разложения вектора по неортогональному
базису (a). Декартов базис (b)

произвольным образом три некомпланарных вектора. Обозначим их
через e1, e2, e3. Очевидно, что любой вектор x можно представить в
виде (см. рис. 6)

x = x1e
1 + x2e

2 + x3e
3.

Будем писать также x = (x1, x2, x3).
Говорят, что векторы e1, e2, e3 образуют базис пространства. Чис-

ла x1, x2, x3 называют координатами вектора в этом базисе. Они од-
нозначно определяются вектором x (если базис фиксирован). Дей-
ствительно, если предположить, что возможно еще одно разложение

x = x̂1e
1 + x̂2e

2 + x̂3e
3,

то
(x̂1 − x1)e

1 + (x̂2 − x2)e
2 + (x̂3 − x3)e

3 = 0.

Следовательно, векторы (x̂1−x1)e1, (x̂2−x2)e2, (x̂3−x3)e3 образуют
треугольник и, значит, лежат в одной плоскости (см. рис. 7, a), чего
не может быть, так как по условию векторы e1, e2, e3 некомпланарны.

Особую роль играет базис, составленный из трех попарно ортого-
нальных векторов единичной длины (см. рис. 7, b). Они образуют так
называемый декартов базис. Мы будем обозначать его через i1, i2, i3.
Координаты вектора в этом базисе есть его декартовы координаты.

Базис, составленный из трех произвольных некомпланарных век-
торов, иногда называют обобщенным декартовым базисом.

Далее в этом параграфе под координатами вектора понимаются
обобщенные декартовы координаты. Случаи, когда используются де-
картовы координаты, оговариваются особо.
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Рис. 8. Угол φ1 между векторами x и y (a). Угол ψ = π−φ1 между векторами x и −y (b)

4. Представление алгебраических операций через координаты.
Пусть α — произвольное число. Используя свойство дистрибутивно-
сти, получим

αx = (αx1)e
1 + (αx2)e

2 + (αx3)e
3,

т. е. при умножении вектора на число координаты вектора умножа-
ются на это же число. Будем также писать

αx = (αx1, αx2, αx3).

Далее, пусть x = x1e
1 + x2e

2 + x3e
3, y = y1e

1 + y2e
2 + y3e

3. Тогда,
опираясь на свойства ассоциативности и дистрибутивности, получим

x+ y = (x1 + y1)e
1 + (x2 + y2)e

2 + (x3 + y3)e
3,

т. е. при сложении векторов их компоненты складываются.
Будем также писать

x+ y = (x1 + y1, x2 + y2, x3 + y3),

и, вообще,

αx+ βy = (αx1 + βy1, αx2 + βy2, αx3 + βy3).

Например, даны векторы x = (1, 2, 4), y = (5, 6, 7). Вычислим координаты векто-
ра z = 2x− y. Получим z = (2− 5, 4− 6, 8− 7) = (−3,−2, 1).

§ 2. Скалярное произведение векторов

1. Скалярным произведением векторов x и y называется число

(x, y) = |x||y| cos(x, y).

Здесь cos(x, y) — косинус угла между векторами x, y. Под углом меж-
ду двумя векторами подразумевают тот угол, который не превосхо-
дит π (см. рис. 8, a).
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Рис. 9. Проекция вектора (a). К доказательству аддитивности скалярного произведе-
ния (b)

Понятие скалярного произведения векторов возникает, например,
в физике при проектировании силы на заданное направление.

Длина проекции (с учетом знака) вектора x на прямую, парал-
лельную вектору e единичной длинны, равна скалярному произведе-
нию (x, e) (см. рис. 9, a):

(x, e) = |x||e| cos(x, e) = |x||e| cosα = |x| cosα.

Очевидно, что для ортогональности двух ненулевых векторов
необходимо и достаточно, чтобы их скалярное произведение равня-
лось нулю.

Если один из сомножителей — нуль, то и скалярное произведение
равно нулю.

Скалярное произведение обладает следующими свойствами:
1) (x, y) = (y, x) для любых векторов x, y — симметрия,
2) (αx, y) = α(x, y) для любых векторов x, y и для любого веще-

ственного числа α — однородность,
3) (x + y, z) = (x, z) + (y, z) для любых векторов x, y, z — адди-

тивность,
4) (x, x) = |x|2 > 0 для любого вектора x, и если (x, x) = 0,

то x = 0 — положительная определенность.
Заметим, что из свойств 2), 3) вытекает, что

(αx+ βy, z) = α(x, z) + β(y, z)

для любых векторов x, y, z и для любых вещественных чисел α, β. Это
свойство часто называют свойством линейности скалярного произве-
дения векторов по первому аргументу.

Убедимся в справедливости свойств 1) – 4).
Свойство 1) — непосредственное следствие определения.



50 Глава 4. Введение в аналитическую геометрию

Свойство 2) при α > 0 очевидно, а при α < 0 надо заметить, что
умножение одного вектора на отрицательное число превращает угол
между векторами в дополнительный до π и, стало быть, меняет знак
косинуса угла (см. рис. 8, b).

Если z = 0, то свойство 3), очевидно, выполняется для любых x
и y. Если z ̸= 0, то, используя свойство 2), получим

(x+ y, z) = |z|(x+ y, e),

где e = |z|−1z, причем, очевидно, |e| = 1. Теперь достаточно доказать
равенство

(x+ y, e) = (x, e) + (y, e).

Слева в этом равенстве — проекция вектора x+ y на прямую, парал-
лельную вектору e, а справа — сумма проекций векторов x и y на эту
же прямую (см. рис. 9, b). Понятно, что две эти величины совпадают.

Свойство 4) выполняется очевидным образом.
Отметим еще, что для любых x, y справедливо неравенство

|(x, y)| 6 |x||y|.

Это неравенство называют неравенством Коши1). Очевидно также,
что для любых x, y справедливо неравенство

|x+ y| 6 |x|+ |y|,

называемое неравенством треугольника (см. рис. 3, b).

2. Укажем формулу вычисления скалярного произведения век-
торов x = (x1, x2, x3), y = (y1, y2, y3) через их координаты. Восполь-
зовавшись установленными только что свойствами скалярного про-
изведения, получим

(x, y) = (x1e
1+x2e

2+x3e
3, y1e

1+y2e
2+y3e

3) =
3∑

k,l=1

xkyl(e
k, el). (2.1)

Использованные здесь символы означают суммирование по всем зна-
чениям индексов k, l = 1, 2, 3 (всего — девять слагаемых).

Полученная формула показывает, что для вычисления скалярно-
го произведения двух любых векторов надо знать скалярные произ-
ведения всех (шести) пар базисных векторов.

1)Огюстен Луи Коши (Augustin Louis Cauchy; 1789 — 1857) — французский математик.
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Проще всего вычисляется скалярное произведение векторов по их
декартовым координатам. Действительно, в этом случае (ek, el) = δkl,
следовательно,

(x, y) = x1y1 + x2y2 + x3y3. (2.2)
Приведем в заключение очевидную, но полезную, формулу, вы-

ражающую косинус угла между векторами через их декартовы коор-
динаты:

cos(x, y) =
(x, y)

|x||y|
=

x1y1 + x2y2 + x3y3√
x21 + x22 + x23

√
y21 + y22 + y23

.

Пример. Треугольник xyz задан декартовыми координатами вершин (сделайте
рисунок!):

x = (2, 1,−1), y = (3, 2,−1), z = (3, 1, 0). (2.3)

Требуется найти угол α при вершине x. Сначала находим векторы

y − x = (1, 1, 0) и z − x = (1, 0, 1).

Затем вычисляем их длины |y−x| =
√
12 + 12 =

√
2, |z−x| =

√
12 + 12 =

√
2, скалярное

произведение (y−x, z−x) = 1 ·1+1 ·0+0 ·1 = 1 и, наконец, косинус угла при вершине x:

cosα =
(y − x, z − x)

|y − x||z − x|
=

1

2
,

следовательно, α = π/3.

§ 3. Векторное произведение

1. Векторное произведение векторов естественным образом воз-
никает в физике, например, при введении понятия момента силы от-
носительно данной точки.

Пусть в пространстве фиксирована некоторая базисная система
векторов e1, e2, e3. Введем понятие ориентации базиса. Будем гово-
рить, что тройка базисных векторов e1, e2, e3 имеет правую ориента-
цию, если с конца вектора e3 кратчайший поворот от e1 к e2 совер-
шается против часовой стрелки. В противном случае тройка имеет
левую ориентацию (см. рис. 10, a).

Векторным произведением вектора x на вектор y называется век-
тор z, удовлетворяющий следующим трем условиям:

1) |z| = |x||y| sin(x, y) 1),
2) вектор z ортогонален каждому из векторов x и y,

1)Последний множитель — синус угла (минимального) между векторами x и y.
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Рис. 10. К определению векторного произведения: левый базис (a), z = [x, y] (b)

3) вектор z направлен так, что тройка векторов x, y, z имеет ту
же ориентацию, что и фиксированный выше базис пространства (см.
рис. 10, b).

Векторное произведение векторов x, y будем обозначать че-
рез [x, y].

Отметим, что |[x, y]| равен площади параллелограмма, построен-
ного на векторах x, y (см. рис. 10, b).

Ясно, что необходимым и достаточным условием коллинеарности
двух векторов является равенство нулю их векторного произведения.

Векторное произведение обладает следующими свойствами:
1) [x, y] = −[y, x] для любых векторов x, y — антисимметрич-

ность (кососимметричность),
2) [αx, y] = α[x, y] для любых векторов x, y и любого веществен-

ного числа α — однородность по первому аргументу,
3) [x + y, z] = [x, z] + [y, z] для любых векторов x, y — аддитив-

ность по первому аргументу.
Убедимся в справедливости свойств 1)–3). Проверка свойств 1), 2)

аналогична проверке свойств 1), 2) скалярного произведения. При
этом надо учесть, что если в тройке векторов поменять местами пер-
вые два вектора, то тройка меняет ориентацию на противоположную;
если умножить первый вектор на отрицательное число, то тройка так-
же меняет ориентацию на противоположную.

Для проверки третьего свойства заметим, что при z = 0 оно
выполняется тривиальным образом. Если z ̸= 0, то, поделив равен-
ство 3) на |z| и используя затем свойство 2), нетрудно убедиться, что
достаточно доказать справедливость равенства

[x+ y, e] = [x, e] + [y, e], (3.1)
где e — произвольный вектор единичной длины. Построение вектор-
ного произведения [x, e] можно описать следующим образом. Снача-
ла вектор x проектируется на плоскость, ортогональную вектору e.
Затем полученный вектор поворачивается в этой плоскости так, что-
бы он стал ортогональным вектору x и при этом получилась тройка
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Рис. 11. К доказательству аддитивности векторного произведения. Произведение век-
тора x на вектор e единичной длины, z = [x, e], |z| = |x| sinα = |x| cos(π/2 − α) (a).
К доказательству равенства [x+ y, e] = [x, e] + [y, e] (b)

нужной ориентации (см. рис. 11, a). Заметим, что возможность та-
кого описания построения векторного произведения обеспечивается
хорошо известным равенством sinα = cos(π/2 − α). После выполне-
ния указанных геометрических построений равенство (3.1) становит-
ся очевидным (см. рис. 11, b).

2. Получим теперь выражение для векторного произведения век-
торов x = x1e

1+x2e
2+x3e

3, y = y1e
1+y2e

2+y3e
3 через их координаты.

Последовательно используя свойства 1)–3) и учитывая, что [z, z] = 0
для любого вектора z, можно написать

[x, y] = x1[e
1, y1e

1 + y2e
2 + y3e

3] + x2[e
2, y1e

1 + y2e
2 + y3e

3]+

+ x3[e
3, y1e

1 + y2e
2 + y3e

3] = −x1[y1e1 + y2e
2 + y3e

3, e1]−
− x2[y1e

1 + y2e
2 + y3e

3, e2]− x3[y1e
1 + y2e

2 + y3e
3, e3] =

= (x1y2 − x2y1)[e
1, e2] + (x1y3 − x3y1)[e

1, e3]+

+ (x2y3 − x3y2)[e
2, e3]. (3.2)

Таким образом, для того, чтобы вычислить векторное произведе-
ние произвольных векторов, нужно уметь строить векторные произ-
ведения векторов базиса.

Проще всего вычисляются векторные произведения векторов
декартова базиса. Непосредственно из определения вытекает (см.
рис. 7, b), что [i1, i2] = i3, [i1, i3] = −i2, [i2, i3] = i1, следовательно,
в декартовых координатах

[x, y] = (x2y3 − x3y2)i
1 − (x1y3 − x3y1)i

2 + (x1y2 − x2y1)i
3. (3.3)
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Рис. 12. Смешанное произведение векторов (x, y, z). Угол α между векторами [x, y] и z
острый (a), тупой (b)

Для запоминания этого равенства полезна следующая запись:

[x, y] =

∣∣∣∣∣∣
i1 i2 i3

x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ . (3.4)

Если (формально) разложить этот определитель по первой строке,
получим (3.3).

Пример. Декартовы координаты векторов x, y, z заданы равенствами (2.3). Най-
дем векторное произведение векторов y−x, z−x (сделайте рисунок!). По формуле (3.4)

[y − x, z − x] =

∣∣∣∣∣∣
i1 i2 i3

1 1 0
1 0 1

∣∣∣∣∣∣ = i1 − i2 − i3,

или [y − x, z − x] = (1,−1,−1).

§ 4. Смешанное произведение векторов

1. Смешанным произведением векторов x, y, z называется чис-
ло (x, y, z) = ([x, y], z). Поясним, что сначала строится вектор [x, y],
затем этот вектор скалярно умножается на вектор z.

Смешанное произведение векторов имеет отчетливый геометриче-
ский смысл. Если векторы [x, y] и z образуют острый угол, это — объ-
ем параллелепипеда, построенного на векторах x, y, z. В противном
случае — объем параллелепипеда, построенного на векторах x, y, z,
взятый со знаком минус (см. рис. 12).

Отсюда сразу вытекает, что при перестановке любых двух сомно-
жителей в смешанном произведении абсолютная величина его не ме-
няется, а знак меняется на противоположный, например,

(x, y, z) = −(y, x, z), (x, y, z) = −(x, z, y).
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Ясно, что необходимым и достаточным условием компланарности
трех векторов является равенство нулю их смешанного произведения.

2. Получим выражение для смешанного произведения векторов

x = x1e
1 + x2e

2 + x3e
3, y = y1e

1 + y2e
2 + y3e

3, z = z1e
1 + z2e

2 + z3e
3

через их координаты. Используя формулу (3.2), можем написать

(x, y, z) = ((x1y2 − x2y1)[e
1, e2] + (x1y3 − x3y1)[e

1, e3]+

+ (x2y3 − x3y2)[e
2, e3], z1e

1 + z2e
2 + z3e

3).

Раскроем здесь скобки, используя линейность и симметрию скалярно-
го произведения, описанное выше правило изменения знака смешан-
ного произведения, а также тот очевидный факт, что если два сомно-
жителя в смешанном произведении совпадают, то оно равно нулю.
Получим

(x, y, z) = {(x1y2 − x2y1)z3 − (x1y3 − x3y1)z2+

+ (x2y3 − x3y2)z1)}(e1, e2, e3).

Выражение в фигурных скобках — разложение определителя третье-
го порядка по последней строке. Поэтому

(x, y, z) =

∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣ (e1, e2, e3).
Поскольку (e1, e2, e3) ̸= 0 (векторы базиса некомпланарны), то

отсюда сразу вытекает, что необходимое и достаточное условие ком-
планарности векторов x, y, z есть равенство нулю определителя∣∣∣∣∣∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣ ,
составленного из компонент векторов относительно любого базиса.

Если базис декартов, то, очевидно, (e1, e2, e3) = 1, т. е. в декарто-
вых координатах

(x, y, z) =

∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣ . (4.1)
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Вычислим, например, смешанное произведение векторов x, y, z, декартовы кооор-
динаты которых заданы равенствами (2.3), с. 51. Имеем (сделайте рисунок!)

(x, y, z) =

∣∣∣∣∣∣
2 1 −1
3 2 −1
3 1 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣
2 1 −1
1 1 0
3 1 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣
2 1 −1
1 1 0
2 0 0

∣∣∣∣∣∣ = 2.

Упражнение. Пусть векторы e1, e2, e3 некомпланарны. Поло-
жим Q = (e1, e2, e3),

e1 = Q−1[e2, e3], e2 = −Q−1[e1, e3], e3 = Q−1[e1, e2].

Показать, что векторы e1, e2, e3 некомпланарны, причем (ek, e
l) = δkl.

Говорят, что векторы e1, e2, e3 образуют взаимный базис. Ба-
зис e1, e2, e3 называют при этом основным. Равенство (3.2), фактиче-
ски, дает правило вычисления компонент вектора [x, y] при разложе-
нии его по взаимному базису, если известны компоненты векторов x, y
при разложении их по основному базису.

Упражнение. Вычислить скалярное произведение (x, y), разла-
гая вектор x по основному базису, а y — по взаимному.

§ 5. Примеры задач, решаемых методами векторной
алгебры

1. Расстояние между двумя точками. Даны точки

x = (x1, x2, x3) и y = (y1, y2, y3).

Найти расстояние между ними.
Искомое расстояние равно длине вектора y − x. Но, как мы зна-

ем, y − x = (y1 − x1, y2 − x2, y3 − x3), и по формуле (2.1) получаем

|y − x| =
√

(x− y, x− y) =

√√√√ 3∑
k,l=1

(xk − yk)(xl − yl)(ek, el). (5.1)

В декартовых координатах

|y − x| =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.
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Рис. 13. К уравнению отрезка прямой, z = x + θ(y − x) (a). К вычислению площади
треугольника xyz (b)

2. Уравнение сферы. Написать уравнение сферы радиуса R с
центром в точке x0 = (x01, x

0
3, x

0
3).

По определению сфера — это множество всех точек пространства,
равноудаленных от данной. Следовательно, для любой точки x, ле-
жащей на сфере

|x− x0|2 = R2.

Это и есть уравнение сферы. Запишем его в координатной форме.
Используя формулу (5.1), получаем

3∑
k,l=1

(xk − x0k)(xl − x0l )(e
k, el) = R2.

В декартовых координатах

(x1 − x01)
2 + (x2 − x02)

2 + (x3 − x03)
2 = R2.

3. Уравнение отрезка прямой. Деление отрезка в данном от-
ношении. Рассмотрим две точки x = (x1, x2, x3), y = (y1, y2, y3). По-
ложим

z = x+ θ(y − x), 0 6 θ 6 1. (5.2)
Нетрудно видеть, что при изменении θ от нуля до единицы, точка z
пробегает отрезок прямой, соединяющий точки x и y (см. рис. 13, a).
Говорят, что (5.2) — уравнение отрезка прямой (в пространстве).

Ясно, что |z − x| = θ|y − x|, т. е. точка z (при данном θ) делит
отрезок в отношении θ : (1 − θ). В частности, при θ = 1/2 отрезок
делится пополам. Запишем уравнение (5.2) в координатной форме

zi = xi + θ(yi − xi), i = 1, 2, 3, 0 6 θ 6 1.
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При θ = 1/2 получаем координаты середины отрезка

zi = (xi + yi)/2, i = 1, 2, 3.

4. Площадь треугольника. Рассмотрим плоскость, отнесенную к
декартовой системе координат x1, x2, и на этой плоскости треуголь-
ник с вершинами x = (x1, x2), y = (y1, y2), z = (z1, z2) (см. рис. 13, b).

Поставим задачу: выразить площадь треугольника через коорди-
наты его вершин. Нам будет удобно трактовать плоскость x1, x2 как
координатную плоскость x3 = 0 трехмерной декартовой системы ко-
ординат x1, x2, x3.

Построим векторы x−z, y−z (см. рис. 13, b) и составим их вектор-
ное произведение. Получим вектор, направленный вдоль оси x3. Дли-
на этого вектора будет равна удвоенной площади треугольника xyz.
Координаты вектора [x−z, y−z] определим по формуле (3.3). Понят-
но, что среди них только одна, третья, будет отлична от нуля. Она,
очевидно, будет равна ∣∣∣∣ x1 − z1 x2 − z2

y1 − z1 y2 − z2

∣∣∣∣ .
Следовательно, с точностью до знака |[x − z, y − z]| совпадет с ве-
личиной этого определителя. Отсюда вытекает, что с точностью до
знака площадь треугольника равна

S =
1

2

∣∣∣∣ x1 − z1 x2 − z2
y1 − z1 y2 − z2

∣∣∣∣ . (5.3)

Часто используют и такую форму записи:

S =
1

2

∣∣∣∣∣∣
x1 x2 1
y1 y2 1
z1 z2 1

∣∣∣∣∣∣ . (5.4)

Пример. Вычислить площадь треугольника с вершинами в точках x = (1, 1),
y = (2, 2), z = (−1, 3). Используем формулу (5.4), а затем выполним очевидные эле-
ментарные преобразования определителя:

S =
1

2

∣∣∣∣∣∣
1 1 1
2 2 1

−1 3 1

∣∣∣∣∣∣ = 1

2

∣∣∣∣∣∣
1 1 1
0 0 −1
0 4 2

∣∣∣∣∣∣ = 4/2 = 2.

Упражнение. Покажите, что определители (5.3), (5.4) совпада-
ют.
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4.1. Для любых векторов x, y положим

G(x, y) =

∣∣∣∣(x, x) (x, y)
(y, x) (y, y)

∣∣∣∣ .
Упражнение. Докажите, что

G(x, y) = S2, (5.5)

где S — площадь параллелограмма, построенного на векторах x, y.
Из (5.5) вытекает, что G(x, y) > 0 для любых векторов x, y, при-

чем G(x, y) = 0 тогда и только тогда, когда векторы x, y коллинеар-
ны.

Рис. 14. Декартовы координаты точки x = (x1, x2) и вектор x (a). К уравнению прямой,
проходящей через точку x0 параллельно вектору e (b)

§ 6. Различные формы уравнения прямой на плоскости

Отнесем плоскость к декартовой системе координат x1, x2. Как
и ранее, точки x = (x1, x2) будут отождествляться с векторами (см.
рис. 14, a).

1. Прямую l, проходящую через точку x0 = (x01, x
0
2) параллельно

вектору e = (e1, e2), зададим уравнением (см. рис. 14, b)

x = x0 + θe, −∞ < θ <∞. (6.1)

2. В каком-то смысле альтернативный способ описания: пря-
мая — это множество всех векторов, ортогональных данному векто-
ру p (прямая, проходящая через начало координат), сдвинутое парал-
лельно p на расстояние d от начала координат (см. рис. 15), т. е. для
точек прямой выполнено уравнение

(x, p)− d = 0, (6.2)
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Рис. 15. К нормальному уравнению прямой: d > 0, угол α между векторами p и x
острый (a); d < 0, угол α между векторами p и x тупой (b)

где p = (p1, p2) — заданный вектор единичной длины. Поясним,
что d — проекция x на направление p, одна и та же для всех то-
чек прямой. Знак d показывает, в какую сторону (по отношению к p)
выполняется сдвиг (см. рис. 15). Уравнение (6.2) называют нормаль-
ной формой уравнения прямой. Нужно напомнить, что поскольку мы
пользуемся декартовыми координатами, то (x, p) = p1x1 + p2x2.

3. Записывая уравнения (6.1), (6.2) в координатах, получаем
уравнения прямой в формах, знакомых из школьной математики:

(x2 − x02) = k(x1 − x01), k = e2/e1, (6.3)
ax1 + bx2 + c = 0, (6.4)
x2 = kx1 + b. (6.5)

Геометрический смысл участвующих в (6.3) – (6.5) коэффициентов
также хорошо знаком читателю. Напомним только, что k — тангенс
угла наклона прямой к оси x1.

4. Из уравнения прямой в любой из форм (6.3) – (6.5) элементар-
ными эквивалентными преобразованиями нетрудно получить уравне-
ние в форме (6.1) или (6.2). Получим, например, нормальное уравне-
ние прямой из уравнения в так называемой общей форме (6.4). Для
этого поделим обе части уравнения (6.4) на

√
a2 + b2 и положим

p1 = a/
√
a2 + b2, p2 = b/

√
a2 + b2, d = −c/

√
a2 + b2.

Поскольку p21+p22 = 1, то полученная форма записи уравнения прямой
будет нормальной.
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Рис. 16. К вычислению расстояния от точки до прямой: d > 0 (a), d < 0 (b)

§ 7. Задачи о взаимном расположении прямых и точек на
плоскости

1. Определим расстояние от точки x0 = (x01, x
0
2) до прямой l.

Проще всего эта задача решается, когда прямая l задана нормаль-
ным уравнением (6.2). Действительно, поскольку |p| = 1, то (x0, p) —
величина проекции вектора x0 на прямую, параллельную p, следова-
тельно, величина δ = (x0, p)−d есть отклонение точки x0 от прямой l
(см. рис. 16). Причем знак δ показывает, по какую сторону от пря-
мой l расположена точка x0. Расстояние от точки x0 до прямой l
равно |(x0, p)− d|.

Пример. Найти расстояние от точки x0 = (1,−2) до прямой 3x1 − 4x2 − 26 = 0

(сделайте рисунок!). Сначала приведем прямую к нормальному виду:
3

5
x1−

4

5
x2−

26

5
= 0,

т. е. p = (3/5,−4/5), d = 26/5. Теперь вычислим δ = 3/5 + 8/5− 26/5 = −3. Расстояние
от точки до прямой равно трем.

2. Даны две прямые l1 и l2, определяемые уравнениями

a11x1 + a12x2 = b1,
a21x1 + a22x2 = b2.

(7.1)

Требуется исследовать взаимное расположение этих прямых, т. е. вы-
яснить, пересекаются ли эти прямые, и указать точку их пересечения.

Эта задача была нами полностью решена в 1, с. 28. Действи-
тельно, фактически, поставленная задача эквивалентна исследова-
нию условий разрешимости системы линейных уравнений (7.1). Здесь
надо различать три случая.
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1) Определитель

∆ =

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣
не равен нулю. Тогда система уравнений (7.1) имеет единственное ре-
шение x1, x2 при любых b1, b2. Точка x = (x1, x2) — точка пересечения
прямых.

2) Определитель ∆ равен нулю, но определитель

∆1 =

∣∣∣∣ b1 a12
b2 a22

∣∣∣∣ ,
а следовательно, и определитель

∆2 =

∣∣∣∣ a11 b1
a21 b2

∣∣∣∣
отличны от нуля. Тогда система (7.1) не имеет решений, т. е. пря-
мые l1, l2 параллельны.

3) Все три определителя ∆, ∆1, ∆2 — нули. Это условие эквива-
лентно существованию числа α ̸= 0 такого, что

a21 = αa11, a22 = αa12, b2 = αb1.

Система (7.1) имеет бесконечное множество решений (фактически,
уравнения системы совпадают). Прямые l1, l2 совпадают.

3. Найдем угол между прямыми y = k1x+ b1 и y = k2x+ b2 (см.
рис. 17). Так как φ = α2 − α1, tgα1 = k1, tgα2 = k2, то

tgφ = tg(α2 − α1) =
tgα2 − tgα1

1 + tgα2 tgα1
=

k2 − k1
1 + k1k2

.

Рис. 17. Угол между прямыми
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Рис. 18. К уравнению плоскости, проходящей через точку x0, натянутой на векторы e1

и e2; а также к нормальному уравнению плоскости (x, p)− q = 0

Упражнения.

1) Найдите косинус угла между двумя прямыми, заданными урав-
нениями вида (6.1).

2) Найдите косинус угла между двумя прямыми, заданными урав-
нениями вида (6.2).

3) Используя выражение для тангенса угла между прямыми, по-
кажите, что при k1 = k2 прямые параллельны, а при k1k2 = −1
ортогональны.

§ 8. Различные формы уравнения плоскости

Рассматривается трехмерное евклидово пространство. Пусть e1

и e2 — неколлинеарные векторы в трехмерном пространстве, а x0 —
произвольный вектор. Уравнение

x = x0 + α1e
1 + α2e

2, −∞ < α1, α2 <∞, (8.1)

определяет плоскость π, проходящую через точку x0. Говорят, что
эта плоскость натянута на векторы e1, e2 (см. рис. 18).

Пусть p — единичный вектор. Уравнение

(x, p)− q = 0 (8.2)

определяет множество векторов, концы которых принадлежат плос-
кости, ортогональной вектору p и отстоящей от начала координат
на расстояние q (см. рис. 18). Знак q определяет направление сдвига
плоскости (по отношению к направлению вектора p). Уравнение (8.2)
называют нормальным уравнением плоскости. Напомним, что нор-
мальное уравнение прямой (6.2) имеет аналогичный вид.
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Запишем уравнение (8.1) в координатной форме (здесь и далее до
конца главы используются только декартовы координаты)

x1 − x01 = α1e
1
1 + α2e

2
1, (8.3)

x2 − x02 = α1e
1
2 + α2e

2
2, (8.4)

x3 − x03 = α1e
1
3 + α2e

2
3. (8.5)

Полагая, что x ̸= x0, рассмотрим определитель

∆(x) =

∣∣∣∣∣∣
x1 − x01 e11 e21
x2 − x02 e12 e22
x3 − x03 e13 e23

∣∣∣∣∣∣ .
Равенства (8.3) – (8.5) означают, что если точка x принадлежит

плоскости π, то столбцы этого определителя линейно зависимы, сле-
довательно, он равен нулю. Наоборот, равенство нулю этого опреде-
лителя означает, что его столбцы линейно зависимы и, поскольку век-
торы e1, e2 линейно независимы, то выполнены равенства (8.3)–(8.5).

Таким образом, уравнение∣∣∣∣∣∣
x1 − x01 e11 e21
x2 − x02 e12 e22
x3 − x03 e13 e23

∣∣∣∣∣∣ = 0 (8.6)

есть уравнение плоскости (в координатной форме), проходящей че-
рез точку x0 и натянутой на векторы e1, e2. Раскрывая определи-
тель ∆(x) (например, по первому столбцу), запишем уравнение плос-
кости π в виде

ax1 + bx2 + cx3 + d = 0. (8.7)
Здесь числа a, b, c, d очевидным образом выражаются через коорди-
наты векторов e1, e2, x0. Уравнение вида (8.7) называют общим урав-
нение плоскости.

Аналогично уравнению прямой уравнения (8.1), (8.2), (8.7) можно
эквивалентно преобразовывать из одной формы в другую.

Упражнения.

1) Преобразовать уравнение (8.7) к нормальному виду.
Ответ:

p =
1√

a2 + b2 + c2
(a, b, c), q = − d√

a2 + b2 + c2
.

2) Показать, анализируя общее уравнение плоскости, что:
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Рис. 19. Точки пересечения плоскости с осями координат

если a = 0, b = 0, то плоскость параллельна координатной плос-
кости x1x2;

если a = 0, то плоскость параллельна оси x1;
если d = 0, то плоскость проходит через начало координат.
3) Показать, что α = −d/a, β = −d/b, γ = −d/c — координаты

точек пересечения плоскости с осями x1, x2, x3 (см. рис. 19), проана-
лизировать случаи, когда соответствующие знаменатели — нули.

4) Показать, что косинус угла φ между плоскостями, задаваемы-
ми уравнениями

a1x1 + b1x2 + c1x3 + d1 = 0, a2x1 + b2x2 + c2x3 + d2 = 0,

можно вычислить по формуле

cosφ =
a1a2 + b1b2 + c1c2√

a21 + b21 + c21
√
a22 + b22 + c22

. (8.8)

5) Используя уравнение (8.6), написать уравнение плоскости, про-
ходящей через три заданные точки. Проанализировать случай, когда
эти точки лежат на одной прямой.

6) Используя нормальное уравнение плоскости (8.2), найти откло-
нение данной точки x0 от плоскости.

Пример. Даны плоскости π1 и π2, описываемые уравнениями

2x1 − x2 + 2x3 − 3 = 0, (8.9)

6x1 + 2x2 − 3x3 + 8 = 0, (8.10)

и точка x0 = (1, 1, 8). Определить величину того угла между плоскостями π1, π2, кото-
рому принадлежит точка x0.

Приведем уравнения (8.9), (8.10) к нормальному виду. Имеем√
22 + 12 + 22 = 3,

√
62 + 22 + 32 = 7,

следовательно, нормальный вид уравнения (8.9) есть

(p1, x)− q1 = 0,
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Рис. 20. Плоскости π1, π2

где p1 =
1

3
(2,−1, 2), q1 = 1, а для уравнения (8.10) получаем

(p2, x)− q2 = 0,

где p2 =
1

7
(6, 2,−3), q2 = −8/7. Заметим далее, что

(p1, x0)− q1 =
1

3
(2 · 1− 1 · 1 + 2 · 8− 3) =

14

3
> 0,

(p2, x0)− q2 =
1

7
(6 · 1 + 2 · 1− 3 · 8 + 8) = −8

7
< 0.

Поэтому конец вектора p1 и точка x0 лежат по одну сторону от плоскости π1, а конец
вектора p2 и точка x0 лежат по разные стороны от плоскости π2 и, следовательно,
точка принадлежит углу φ (см. рис. 20). Угол φ равен углу между векторами p1, p2.
Используя формулу (8.8), получим

cosφ =
2 · 6− 1 · 2− 2 · 3

3 · 7
=

4

21
, φ ≈ 0, 44π.

§ 9. Уравнения прямой в пространстве

Уравнение
x = x0 + θe, −∞ < θ <∞, (9.1)

определяет прямую, проходящую через точку x0 параллельно векто-
ру e = (e1, e2, e3) (см. рис. 21).

Запишем уравнение (9.1) в координатах

x1 − x01 = θe1, (9.2)

x2 − x02 = θe2, (9.3)
x3 − x03 = θe3. (9.4)
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Рис. 21. Прямая в пространстве

Исключая из этих уравнений параметр θ, получим

x1 − x01
e1

=
x2 − x02
e2

=
x3 − x03
e3

. (9.5)

Множество всех точек x = (x1, x2, x2), координаты которых удовле-
творяют уравнениям (9.5), образуют прямую, проходящую через точ-
ку x0 параллельно вектору e. Уравнения (9.5) называют канониче-
скими уравнениями прямой.

Упражнение. Интерпретируйте случай, когда какой-либо зна-
менатель в (9.5) обращается в нуль.

§ 10. Задачи о взаимном расположении точек, прямых и
плоскостей

1. Найти расстояние d от прямой l, заданной уравнением (9.1),
до точки x1 = (x11, x

1
2, x

1
3).

Искомым расстоянием является длина перпендикуляра, опущен-
ного из точки x1 на прямую l (см. рис. 22, a). Рассмотрим параллело-
грамм, построенный на векторах e и x1 − x0. Площадь этого парал-
лелограмма равна |[e, x1 − x0]|, следовательно, d = |[e, x1 − x0]|/|e|.
Для того, чтобы выразить входящие сюда величины через координа-
ты точек x0, x1 и компоненты вектора e, нужно, в частности, восполь-
зоваться формулой (3.3), с. 53, для компонент векторного произведе-
ния.

2. Найти расстояние d между непараллельными прямыми l1 и l2,
заданными уравнениями

x = x1 + θe1, −∞ < θ <∞,

x = x2 + θe2, −∞ < θ <∞.



68 Глава 4. Введение в аналитическую геометрию

Рис. 22. К вычислению расстояния от точки до прямой (a) и между прямыми (b)

Искомое расстояние, очевидно, есть длина отрезка прямой, кото-
рый ортогонален l1 и l2, концы его лежат на l1 и l2 (см. рис. 22, b). По-
строим параллелепипед на векторах e1, e2 и x2−x1. Понятно, что d —
высота этого параллелепипеда и, следовательно, d есть отношение его
объема к площади основания.

Таким образом, d = |(e1, e2, x2 − x1)|/|[e1, e2]|. Осталось выразить
все входящие в эту формулу величины через координаты точек x1, x2
и компоненты векторов e1, e2 (см. (3.3), с. 53, и (4.1), с. 55).

3. Найти угол φ между прямой l, заданной уравнением (9.1), и
плоскостью π, заданной нормальным уравнением (8.2).

Угол φ является дополнительным к углу ψ между направляющим
вектором прямой e и нормальным вектором плоскости p, следователь-
но,

sinφ = cosψ = cos(e, p) =
(e, p)

|e|
=
e1p1 + e2p2 + e3p3√

e21 + e22 + e23
.

4. Определить общие точки прямой l, заданной уравнением (9.1),
и плоскости π, заданной уравнением (8.7).

Подставим значения x1, x2, x3 из (9.2) – (9.4) в уравнение (8.7).
После элементарных преобразований получим

ax01 + bx02 + cx03 + d+ θ(ae1 + be2 + ce3) = 0. (10.1)

Возможны следующие случаи.
1) ae1 + be2 + ce3 ̸= 0. Это означает, что прямая l не параллельна

плоскости π (почему?). Из уравнения (10.1) находим

θ = θ1 = −ax
0
1 + bx02 + cx03 + d

ae1 + be2 + ce3
.

Точка x1 = x0 + θ1e — точка пересечения прямой и плоскости (см.
рис. 23, a).
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Рис. 23. К определению точки пересечения прямой и плоскости (a). Прямая l, парал-
лельная плоскости π (b)

2) ae1+ be2+ ce3 = 0, но ax01+ bx02+ cx03+ d ̸= 0. Уравнение (10.1)
не имеет решений. Прямая l проходит через точку x0, не принадле-
жащую плоскости π, параллельно плоскости π (см. рис. 23, b).

3) ae1+be2+ce3 = 0, ax01+bx02+cx03+d = 0. Любое θ ∈ (−∞,∞) —
решение уравнения (10.1). Прямая l лежит в плоскости π.

5. Выяснить условия, при которых две прямые l1 и l2, задаваемые
уравнениями

x = x1 + θe1, θ ∈ (−∞,∞),

x = x2 + θe2, θ ∈ (−∞,∞),

лежат в одной плоскости.
Если прямые l1 и l2 лежат в одной плоскости, то векторы x2− x1,

e1, e2 лежат в одной плоскости (см. рис. 24, a), иначе говоря, ком-
планарны. Обратно, если векторы x2 − x1, e1, e2 компланарны, то
прямые l1, l2 лежат в одной плоскости. Используя результаты § 4,
непосредственно получаем, что для принадлежности прямых l1, l2 од-
ной и той же плоскости необходимо и достаточно, чтобы смешанное
произведение (x2 − x1, e1, e2) равнялось нулю.

6. Написать уравнение прямой l, являющейся пересечением двух
различных и не параллельных плоскостей π1, π2, задаваемых уравне-
ниями

a1x1 + b1x2 + c1x3 + d1 = 0, a2x1 + b2x2 + c2x3 + d2 = 0. (10.2)

Найдем сначала какую-либо точку, принадлежащую обеим плос-
костям (см. рис. 24, b). Иными словами, найдем какое-то реше-
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Рис. 24. К компланарности прямых l1 и l2 (a). К построению уравнения прямой, по
которой пересекаются две плоскости (b)

ние x1, x2, x3 системы уравнений (10.2). По условию плоскости не па-
раллельны, следовательно, векторы

a1 = (a1, b1, c1) и a2 = (a2, b2, c2),

нормальные к ним, не коллинеарны. Значит не выполняется хотя бы
одно из равенств

a1
a2

=
b1
b2

=
c1
c2
.

Примем для определенности, что a1b2 − a2b1 ̸= 0. Положим x3 = 0,
тогда из (10.2) получаем

a1x1 + b1x2 = −d1,
a2x1 + b2x2 = −d2.

Решая эту систему, приходим к выводу, что точка

x0 =

(
b1d2 − b2d1
a1b2 − a2b1

,
a2d1 − a1d2
a1b2 − a2b1

, 0

)
принадлежит прямой l, по которой пересекаются плоскости π1, π2.

Найдем теперь направляющий вектор e этой прямой. Вектор e ор-
тогонален каждому из векторов a1 и a2, следовательно, можно взять
вектор e, равным их векторному произведению:

e = [a1, a2] =

∣∣∣∣∣∣
i1 i2 i3

a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣ . (10.3)
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Рис. 25. К выводу уравнения прямой, по которой пересекаются плоскости π1, π2

Таким образом, найдены точка x0, принадлежащая прямой l, и век-
тор e, параллельный этой прямой, следовательно, уравнение прямой l
можно записать, например, в виде (9.1).

Пример. Найдем уравнение прямой, по которой пересекаются плоскости π1, π2,
определяемые уравнениями (8.9), (8.10) (см. рис. 25).

Положим x3 = 0 в уравнениях (8.9), (8.10), получим систему уравнений для отыс-
кания первых двух координат точки, принадлежащей пересечению плоскостей π1, π2:

2x1 − x2 − 3 = 0,

6x1 + 2x2 + 8 = 0.

Решение этой системы: x1 = −1/5, x2 = −17/5, т. е. точка x1 = (−1/5,−17/5, 0) принад-
лежит пересечению плоскостей (8.9), (8.10). Вектор e, параллельный искомой прямой,
определим по формуле

e =

∣∣∣∣∣∣
i1 i2 i3

2 −1 2
6 2 −3

∣∣∣∣∣∣ = −i1 + 18i2 + 10i3, (10.4)

или e = (−1, 18, 10). По формуле (9.1) множество точек искомой прямой описывается
уравнением x = (−1/5,−17/5, 0) + θ(−1, 18, 10), θ ∈ (−∞,∞). Более подробно,

x1 = −1/5− θ, x2 = −17/5 + 18θ, x3 = 10θ, θ ∈ (−∞,∞).



Глава 5
Системы линейных уравнений,

матрицы, определители

§ 1. Перестановки

1. Рассмотрим множество n целых чисел: Mn = {1, 2, 3, . . . , n}.
Эти числа можно располагать в различном порядке. Каждое такое
расположение называют перестановкой. Например, возможны пере-
становки:

1, 2, 3, . . . , n, (1.1)
2, 1, 3, . . . , n. (1.2)

Вообще, перестановку будем записывать в виде

n1, n2, . . . , nn. (1.3)

Каждая перестановка определяет взаимнооднозначное отображение
множества Mn на себя. При этом отображении числу 1 соответствует
число n1, числу 2 соотвествует n2 и т. д.

Можно построить график такого отображения. Он будет пред-
ставлять собой n точек, расположенных в узлах целочисленной ре-
шетки. Причем на каждой вертикальной линии этой решетки лежит
ровно одна точка графика, и на каждой горизонтальной линии этой
решетки лежит ровно одна точка графика (см. рис. 1, a). Понятно,
что перестановка однозначно определяется ее графиком и, наоборот,
задание графика однозначно определяет перестановку (запишите пе-
рестановку, изображенную на рис. 1, a!).

Количество всех перестановок множества Mn принято обозначать
символом Pn. Покажем, что

Pn = 123 · · ·n. (1.4)

Здесь записано произведение всех первых n членов натурального ря-
да. Принято обозначение 123 · · ·n = n! (читается n-факториал).

Для n = 1 и n = 2 формула (1.4), очевидно, справедлива. Вос-
пользуемся методом математической индукции. Предположим, что
равенство Pn−1 = (n − 1)! верно. Возьмем теперь некоторую пере-
становку множества Mn−1 и добавим к ней элемент n. Его можно
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Рис. 1. Пример перестановки из десяти элементов (a). Перестановка b получена из пе-
рестановки a транспозицией (4,8)

поставить первым, вторым, и, наконец, последним, т. е. n-ым. По-
нятно, что таким образом можно создать n перестановок по каждой
перестановке множества Mn−1 и, поскольку по индуктивному пред-
положению Pn−1 = (n− 1)!, то формула (1.4) доказана.

2. Будем говорить, что элементы ni, nj, i < j, перестановки (1.3)
образуют инверсию, если ni > nj. Например, в перестановке (1.1) нет
инверсий, а в перестановке (1.2) только одна инверсия, ее образуют
элементы n1, n2. Полезно отметить, что если соединить отрезком на
графике перестановки точки (i, ni) и (j, nj), то он будет иметь отри-
цательный наклон для точек, образующих инверсию.

Количество всех инверсий данной перестановки будем обозначать
через

σ(n1, n2, . . . , nn)

и называть сигнатурой перестановки.
Перестановка называется четной, если ее сигнатура — четное чис-

ло (нуль, как обычно, полагаем четным числом). В противном случае
перестановка называется нечетной.

Таким образом, все перестановки разбиваются на два непустых
класса: четные перестановки и нечетные перестановки. Например, пе-
рестановка (1.1) четная, а перестановка (1.2) нечетная.

Говорят, что в перестановке выполнена транспозиция, если по-
меняли местами два ее элемента. Для того, чтобы определить транс-
позицию данной перестановки, нужно задать номера двух перестав-
ляемых элементов. Например, можно сказать, что перестановка (1.2)
получена из перестановки (1.1) транспозицией (1,2). Еще один пример
транспозиции показан на рис. 1.
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2.1. Теорема. Всякая транспозиция меняет четность пере-
становки.

Доказательство. Достаточно убедиться, что количества ин-
версий в перестановках

n1, n2, . . . , ni−1, ni, ni+1, . . . , nj−1, nj, nj+1, . . . , nn, (1.5)

n1, n2, . . . , ni−1, nj, ni+1, . . . , nj−1, ni, nj+1, . . . , nn (1.6)
различаются на нечетное число. Введем в рассмотрение множества

B1 = {n1, n2, . . . , ni−1}, B2 = {ni+1, . . . , nj−1}, B3 = {nj+1, . . . , nn}.
Обозначим через B+

ks количество элементов множества Bk, боль-
ших ns, через B−

ks — количество элементов множестваBk, меньших ns,
s = i, j. Ясно, что B+

ks + B−
ks = card(Bk), где card(Bk) — количество

элементов множества Bk, при любых k = 1, 2, 3, s = i, j. Достаточно
подсчитать количество инверсий в перестановках (1.5), (1.6), отвеча-
ющих парам, содержащим, либо ni, либо nj, так как остальные пары
при переходе от (1.5) к (1.6) не меняются. Количество указанных ин-
версий в перестановке (1.5), очевидно, равно

BI = B+
1i +B−

2i +B−
3i +B+

1j +B+
2j +B−

3j + I(ni, nj),

где I(ni, nj) — количество инверсий пары ni, nj, а для перестанов-
ки (1.6) оно есть

BII = B+
1j +B−

2j +B−
3j +B+

1i +B+
2i +B−

3i + I(nj, ni).

Очевидно, что BI−BII = B−
2i−B+

2i+B
+
2j−B−

2j+I(ni, nj)−I(nj, ni) =

= B−
2i−B+

2i+B
+
2j−B−

2j±1 = B−
2i−B+

2i+B
+
2j−B−

2j±2(B+
2i+B

−
2j)±1 =

= B−
2i +B+

2i +B+
2j +B−

2j − 2(B+
2i +B−

2j)± 1 =

= 2 card(B2)− 2(B+
2i +B−

2j)± 1.

Таким образом, BI −BII — нечетное число. �
2.2. Теорема. При любом n количества четных и нечетных

перестановок совпадают.
Доказательство. Из предыдущей теоремы вытекает, что вся-

кую четную перестановку можно превратить в нечетную, поменяв
местами каких-либо два ее элемента. Справедливо и обратное. Это
означает, что между множеством всех четных перестановок и мно-
жеством всех нечетных перестановок (множества Mn) можно устано-
вить взаимнооднозначное соответствие. Эти два множества конечны,
поэтому имеют равные количества элементов. �
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§ 2. Определители произвольного порядка

1. Квадратной матрицей порядка n называется таблица, состо-
ящая из n строк и n столбцов

A =

 a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . .
an1 an2 . . . ann

 . (2.1)

Здесь aij, i, j = 1, 2, . . . , n, — числа, вообще говоря, комплексные.
Определитель матрицы порядка n может быть введен по аналогии

с определителями второго и третьего порядка в ходе решения системы
линейных уравнений с n неизвестными. Однако нам будет удобнее
опираться непосредственно на обобщение формулы (2.15), с. 33.

Определителем матрицы A назовем величину

|A| =
∑

n1n2 . . . nn

(−1)σ(n1,n2, . . . ,nn)a1n1a2n2 · · · annn
. (2.2)

Будем использовать следующие обозначения:

∆ = det(A) = |A| =

∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . .
an1 an2 . . . ann

∣∣∣∣∣∣∣ . (2.3)

Поясним, что определителем матрицы порядка n является сум-
ма n! слагаемых, составленная следующим образом: слагаемыми слу-
жат всевозможные произведения n элементов матрицы, взятых по
одному из каждой строки и из каждого столбца, причем слагаемое
берется со знаком плюс, если перестановка n1, n2, . . . , nn четная, и со
знаком минус в противоположном случае.

Вследствие теоремы 2.2 количество слагаемых в (2.2) со знаком
плюс равно количеству слагаемых со знаком минус.

Отметим также, что элементы матрицы, участвующие в сла-
гаемом определителя, соответствующем перестановке n1, n2, . . . , nn,
изображаются точками графика этой перестановки (см. рис. 1, с. 73).

Говорят, что элементы a1n1, a2n2, . . . , annn
составляют диагональ

матрицы. Диагональ называется четной, если перестановка n1, . . . , nn
четная, и нечетной в противном случае.
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Упражнение. Докажите равенство∣∣∣∣∣∣∣
1 0 . . . 0
a21 a22 . . . a2n
. . . . . . . . . . . . . . . .
an1 an2 . . . ann

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a22 a23 . . . a2n
a32 a33 . . . a3n
. . . . . . . . . . . . . . . .
an2 an3 . . . ann

∣∣∣∣∣∣∣ . (2.4)

Поясним, что слева — определитель порядка n, а справа — поряд-
ка n− 1.

§ 3. Основные свойства определителей

Переходим к изучению основных свойств определителей. Все они
являются обобщением свойств определителей третьего порядка, и их
доказательства зачастую не требуют дополнительных сколько-нибудь
сложных рассуждений. В этих случаях мы ограничиваемся только
формулировками соответствующих утверждений.

1. Если одна из строк (или один из столбцов) определителя со-
стоит только из нулей, то этот определитель равен нулю. Доказа-
тельство сразу же следует из того, что каждая диагональ матрицы A
содержит в этом случае нулевой элемент.

2. Определитель линеен по каждой строке (по каждому столбцу).

3. Если в определителе две строки (или два столбца) совпадают,
то он равен нулю. Пусть совпадают строки с номерами k и l, k < l.
Множество всех диагоналей матрицы A можно представить в виде
объединения множества пар

a1n1, a2n2, . . . , aknk
, . . . , alnl

, . . . , annn
,

a1n1, a2n2, . . . , aknl
, . . . , alnk

, . . . , annn
.

Диагонали каждой такой пары имеют противоположные четности,
так как соответствующие им перестановки получены одна из другой
при помощи транспозиции (k, l). Произведения же элементов этих
диагоналей совпадают, так как по предположению

aknk
= alnk

, aknl
= alnl

.

Это означает, что слагаемые в (2.2), отвечающие каждой такой паре, в
сумме дают нуль, следовательно, |A| = 0. Доказательство равенства
нулю определителя, у которого два столбца совпадают, проводится
аналогично.
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4. При перестановке двух строк (столбцов) определитель меняет
знак.

5. Определитель не изменится, если к некоторой его строке доба-
вить другую, умноженную на произвольное число. То же самое спра-
ведливо и для столбцов определителя.

6. Введенные ранее понятия алгебраических дополнений и ми-
норов дословно переносятся на случай определителей произвольного
порядка. Без каких-либо изменений проходит и доказательство фор-
мулы, аналогичной формуле (3.17), с. 41. При этом нужно использо-
вать равенство (2.4). Таким образом, для любого определителя |A|

ai1Ak1 + ai2Ak2 + · · ·+ ainAkn = |A|δik, i, k = 1, 2, . . . , n, (3.1)

где δik — символ Кронекера.
Справедлива и формула разложения определителя по столбцу:

a1iA1k + a2iA2k + · · ·+ aniAnk = |A|δik, i, k = 1, 2, . . . , n. (3.2)

Пример. Вычислим определитель пятого порядка

∆ =

∣∣∣∣∣∣∣∣∣
−2 5 0 −1 3
1 0 3 7 −2
3 −1 0 5 −5
2 6 −4 1 2
0 −3 −1 2 3

∣∣∣∣∣∣∣∣∣ .
Сначала добьемся того, чтобы все элементы третьего столбца, кроме последнего, были
нулями. Для этого умножим последнюю строку на три и прибавим ко второй, а затем
умножим последнюю строку на четыре и вычтем из четвертой строки. Получим

∆ =

∣∣∣∣∣∣∣∣∣
−2 5 0 −1 3
1 −9 0 13 7
3 −1 0 5 − 5
2 18 0 −7 −10
0 −3 −1 2 3

∣∣∣∣∣∣∣∣∣ .
Разлагая этот определитель по третьему столбцу, получим

∆ = (−1)3+5(−1)

∣∣∣∣∣∣∣
−2 5 −1 3
1 −9 13 7
3 −1 5 −5
2 18 −7 −10

∣∣∣∣∣∣∣ .
Преобразуем теперь определитель так, чтобы все элементы первого столбца, кроме вто-
рого, были нулями. С этой целью умножим вторую строку на два и прибавим к первой,
затем умножим вторую строку на три и вычтем из третьей и, наконец, умножим вторую
строку на два и вычтем из последней, получим:

∆ = −

∣∣∣∣∣∣∣
0 −13 25 17
1 − 9 13 7
0 26 −34 −26
0 36 −33 −24

∣∣∣∣∣∣∣ .
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Разлагая этот определитель по первому столбцу, будем иметь

∆ = −(−1)2+1

∣∣∣∣∣∣
−13 25 17
26 −34 −26
36 −33 −24

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−13 25 17
26 −34 −26
36 −33 −24

∣∣∣∣∣∣ .
Вычислим определитель третьего порядка, разложив его по третьей строке:

∆ = 36

∣∣∣∣ 25 17
−34 −26

∣∣∣∣− (−33)

∣∣∣∣−13 17
26 −26

∣∣∣∣+ (−24)

∣∣∣∣−13 25
26 −34

∣∣∣∣ =
= 36(−72)− (−33)(−104) + (−24)(−208) = −1032.

7. Матрица

AT =

 a11 a21 . . . an1
a12 a22 . . . an2
. . . . . . . . . . . . . . . .
a1n a2n . . . ann

 (3.3)

называется матрицей, транспонированной по отношению к А. По-
ясним, что матрицы A и AT состоят из одних и тех же элементов.
Первая строка матрицы AT составлена из элементов первого столбца
матрицы A, вторая строка — из элементов второго столбца матри-
цы A и т. д.

Определители матриц A и AT совпадают.
Докажем это утверждение индукцией по порядку определителя.

Для определителя второго порядка равенство |A| = |AT | выполня-
ется очевидным образом. Предположим справедливость этого равен-
ства для произвольного определителя порядка n− 1 и покажем, что
тогда оно верно и для произвольного определителя порядка n. Пред-
ставим |A| в виде разложения по первой строке:

|A| = a11M11 − a12M12 + · · ·+ (−1)n+1a1nM1n. (3.4)

Определитель |AT | разложим по первому столбцу:

|AT | = a11M
T
11 − a12M

T
21 + · · ·+ (−1)n+1a1nM

T
n1. (3.5)

Здесь MT
ij — минор определителя |AT |, соответствующий элементу

этого определителя, находящегося в позиции i, j. По предположению
индукции имеем, что MT

ij =Mji, следовательно, |AT | = |A|.
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8. Будем говорить, что строки матрицы A линейно зависимы,
если существуют числа α1, α2, . . . , αn, не все одновременно равные
нулю и такие, что

α1a1j + α2a2j + · · ·+ αnanj = 0, j = 1, 2, . . . , n.

Для того, чтобы определитель матрицы A был равен нулю, необ-
ходимо и достаточно, чтобы ее строки были линейно зависимы.

То, что из линейной зависимости строк вытекает равенство нулю
определителя, доказывается точно так же, как и для определителя
третьего порядка.

Докажем обратное утверждение, т. е. докажем, что если стро-
ки матрицы линейно независимы, то определитель матрицы не равен
нулю. Пусть |A|=0. Рассмотрим все определители порядка n− 1, ко-
торые получаются вычеркиванием одной строки и одного столбца из
матрицы A.

Если все они окажутся равными нулю, перейдем к определителям
порядка n− 2 и т. д. В конце концов, либо все элементы матрицы A
окажутся равными нулю, и тогда доказываемое утверждение будет
выполнено тривиальным образом, либо найдется определитель поряд-
ка k > 1, отличный от нуля и полученный вычеркиванием n−k строк
и столбцов матрицы A, а все определители большего порядка будут
нулями. Поскольку при перестановке строк и при перестановке столб-
цов меняется лишь знак определителя, то, не ограничивая общности
рассуждений, можно считать, что этот определитель (обозначим его
через dk) составлен из элементов первых k строк и первых k столбцов
матрицы A.

Рассмотрим определитель dk+1, составленный из первых k + 1
строк и первых k + 1 столбцов матрицы A. По предположению он
равен нулю. Разложив этот определитель по элементам последнего
столбца, получим, что

α1a1k+1 + α2a2k+1 + · · ·+ αkakk+1 + dkak+1k+1 = 0. (3.6)

Подчеркнем, что dk ̸= 0, а числа α1, . . . , αk — алгебраические до-
полнения соответствующих элементов последнего столбца определи-
теля dk+1. Важно отметить, что они зависят только от элементов пер-
вых k столбцов определителя dk+1.

Переставляя столбцы определителя |A|, мы можем составить по-
следний столбец определителя dk+1 из элементов

a1j, a2j, . . . , akj, ak+1j, j = k + 2, k + 3, . . . , n.
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По предположению этот определитель равен нулю. Выполняя разло-
жение по его последнему столбцу, получим, что

α1a1j+α2a2j+· · ·+αkakj+dkak+1j = 0, j = k+2, k+3, . . . , n. (3.7)

Наконец, поместив на место k + 1 столбца определителя |A| его
же столбец с номером j 6 k, мы получим нулевой определитель (как
определитель с равными столбцами). По той же причине и определи-
тель dk+1 будет равен нулю. Вновь выполняя разложение по послед-
нему столбцу этого определителя, получим, что

α1a1j + α2a2j + · · ·+ αkakj + dkak+1j = 0, j = 1, 2, . . . , k. (3.8)

Теперь можно написать:

α1a1j + α2a2j + · · ·+ αkakj + dkak+1j + 0 · ak+2j + · · ·+ 0 · anj = 0,

где j = 1, 2, . . . , n; dk ̸= 0, т. е. строки матрицы A линейно зависимы.
Замечание. Поскольку |AT | = |A|, то, очевидно, для того, что-

бы определитель матрицы A был равен нулю, необходимо и достаточ-
но, чтобы ее столбцы были линейно зависимы.

§ 4. Примеры вычисления определителей

Приведем примеры вычисления определителей, часто возникаю-
щих в различных разделах алгебры.

1. Определитель треугольной матрицы. Матрицу A называют
верхней треугольной, если aij = 0 при i > j. Матрицу A называют
нижней треугольной, если aij = 0 при i < j.

Если матрица A треугольная, то

|A| = a11a22 · · · ann. (4.1)

Докажем это утверждение применительно к верхней треуголь-
ной матрице. Справедливость формулы (4.1) для нижней треугольной
матрицы A сразу вытекает из того, что |A| = |AT | и AT — верхняя
треугольная матрица.

Для матриц первого и второго порядков формула (4.1), очевидно,
справедлива. Для доказательства этой формулы при произвольном n
используем метод математической индукции, т. е. предположим, что
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для определителей (n−1)-го порядка она уже доказана, и рассмотрим
определитель

|A| =

∣∣∣∣∣∣∣∣∣
a11
0
0
. . .
0

a12
a22
0
. . .
0

a13
a23
a33
. . .
0

. . .

. . .

. . .

. . .

. . .

a1n
a2n
a3n
. . .
ann

∣∣∣∣∣∣∣∣∣ .
Разлагая определитель |A| по первому столбцу, получим

|A| = a11

∣∣∣∣∣∣∣
a22
0
. . .
0

a23
a33
. . .
0

. . .

. . .

. . .

. . .

a2n
a3n
. . .
ann

∣∣∣∣∣∣∣ .
К определителю, стоящему в правой части, применимо предположе-
ние индукции, т. е. он равен произведению a22a33 . . . ann, поэтому

|A| = a11a22a33 . . . ann.

2. Определитель Вандермонда1). Так называют определитель ви-
да

d =

∣∣∣∣∣∣∣∣∣
1 1 1 . . . 1
a1
a21
. . .
an−1
1

a2 a3 . . . an
a22 a23 . . . a2n
. . . . . . . . . . . .
an−1
2 an−1

3 . . . an−1
n

∣∣∣∣∣∣∣∣∣ .
Покажем, что при любом n > 2 определитель Вандермонда равен
произведению всевозможных разностей ai − aj, где 1 6 j < i 6 n:

d =
∏

16j<i6n
(ai − aj).

Доказываемая формула, очевидно, справедлива при n = 2. Вос-
пользуемся методом математической индукции. Предположим, что
для определителей (n− 1)-го порядка формула уже доказана, т. е.∣∣∣∣∣∣∣∣

1 1 . . . 1
a2 a3 . . . an
. . . . . . . . . . . .
an−2
2 an−2

3 . . . an−2
n

∣∣∣∣∣∣∣∣ =
∏

26j<i6n
(ai − aj).

1)Александр Теофил Вандермонд (Alexandre-Theophile Vandermonde; 1735 — 1796) — фран-
цузский музыкант и математик.
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Рассмотрим определитель d. Умножим предпоследнюю строку
на a1 и вычтем из последней. Затем вычтем из (n−1)-й строки строку
с номером (n − 2), умноженную на a1, и так далее. Наконец, умно-
жим первую строку на a1 и вычтем из второй. В результате такой
последовательности преобразований получим

d =

∣∣∣∣∣∣∣∣∣
1 1 1 . . . 1
0
0
. . .
0

a2 − a1 a3 − a1 . . . an − a1
a22 − a1a2 a23 − a1a3 . . . a2n − a1an

. . . . . . . . . . . .
an−1
2 − a1a

n−2
2 an−1

3 − a1a
n−2
3 . . . an−1

n − a1a
n−2
n

∣∣∣∣∣∣∣∣∣ .
Разлагая определитель d по первому столбцу, получим определи-
тель (n− 1)-го порядка:

d =

∣∣∣∣∣∣∣∣
a2 − a1 a3 − a1 . . . an − a1
a22 − a1a2 a23 − a1a3 . . . a2n − a1an

. . . . . . . . . . . .
an−1
2 − a1a

n−2
2 an−1

3 − a1a
n−2
3 . . . an−1

n − a1a
n−2
n

∣∣∣∣∣∣∣∣ .
Заметим, что общим множителем всех элементов первого столбца яв-
ляется a2 − a1, общим множителем всех элементов второго столбца
является a3 − a1 и т. д. Поэтому

d = (a2 − a1) (a3 − a1) . . . (an − a1)

∣∣∣∣∣∣∣∣
1 1 . . . 1
a2 a3 . . . an
. . . . . . . . . . . .
an−2
2 an−2

3 . . . an−2
n

∣∣∣∣∣∣∣∣ ,
где последний множитель — определитель Вандермонда (n − 1)-го
порядка. Следовательно,

d = (a2 − a1) (a3 − a1) . . . (an − a1)
∏

26j<i≤n
(ai − aj) =

∏
16j<i6n

(ai − aj).

§ 5. Крамеровские системы линейных уравнений

1. В этом параграфе будем рассматривать системы линейных
уравнений, у которых количество неизвестных равно числу уравне-
ний:

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1x1 + an2x2 + · · ·+ annxn = bn.

(5.1)
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Матрица

A =

 a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

 , (5.2)

составленная из коэффициентов уравнений, называется матрицей
системы (5.1). Будем предполагать, что |A| ≠ 0. В этом случае систе-
му уравнений (5.1) называют крамеровской. Набор чисел b1, b2, . . . , bn
называют столбцом правой части (или просто правой частью) си-
стемы (5.1). Если правая часть системы нулевая, т. е. bi = 0 для
всех i = 1, 2, . . . , n, то система называется однородной. Однород-
ная система уравнений всегда имеет решение. Например, можно по-
ложить x1, x2, . . . , xn = 0. Такое решение называют тривиальным.

1.1. Теорема. Однородная крамеровская система уравнений
может иметь только тривиальное решение.

Доказательство. Предположим противное. Тогда для некото-
рого набора чисел x1, x2, . . . , xn, среди которых по крайней мере одно
не равно нулю, справедливы равенства

a11x1 + a12x2 + . . .+ a1nxn = 0,
a21x1 + a22x2 + . . .+ a2nxn = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1x1 + an2x2 + . . .+ annxn = 0.

(5.3)

Это показывает, что столбцы матрицы A линейно зависимы, т. е. ее
определитель равен нулю, но по условию теоремы определитель |A|
не равен нулю. Значит, предположение о наличии нетривиального ре-
шения у однородной крамеровской системы уравнений неверно. �

1.2. Для того, чтобы система (5.3) имела нетривиальное реше-
ние, необходимо и достаточно, чтобы определитель матрицы A был
равен нулю. Справедливость этого утверждения непосредственно вы-
текает из замечания на с. 80.

1.3. Теорема. При любой правой части крамеровская система
уравнений не может иметь двух различных решений.

Доказательство. Предположим противное и пусть

x11, x
1
2, . . . , x

1
n

и
x21, x

2
2, . . . , x

2
n
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представляют собой два различных решения системы (5.1), т. е.

a11x
1
1 + a12x

1
2 + . . .+ a1nx

1
n = b1,

a21x
1
1 + a22x

1
2 + . . .+ a2nx

1
n = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1x

1
1 + an2x

1
2 + . . .+ annx

1
n = bn

(5.4)

и
a11x

2
1 + a12x

2
2 + . . .+ a1nx

2
n = b1,

a21x
2
1 + a22x

2
2 + . . .+ a2nx

2
n = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1x

2
1 + an2x

2
2 + . . .+ annx

2
n = bn.

(5.5)

Положим

x1 = x11 − x21, x2 = x12 − x22, . . . , xn = x1n − x2n

и вычтем почленно одноименные уравнения систем (5.4), (5.5). В ре-
зультате получим, что x1, x2, . . . , xn — решение однородной систе-
мы (5.3). Но тогда по теореме 1.1 имеем, что x1 = x2 = . . . = xn = 0,
т. е. предположение о наличии двух различных решений системы (5.1)
неверно. �

1.4. Теорема. Крамеровская система уравнений при любой пра-
вой части имеет решение.

Доказательство. Фактически, мы сконструируем решение си-
стемы (5.1), опираясь на формулу (3.1), с. 77. Будем разыскивать
решение системы (5.1) в виде

xi = ci1b1 + ci2b2 + · · ·+ cinbn, i = 1, 2, . . . , n, (5.6)

где коэффициенты cik, i, k = 1, 2, . . . , n, подлежат определению. Под-
ставляя выражения (5.6) в уравнения системы (5.1) и собирая в левых
частях этих уравнений коэффициенты при одинаковых bi, получим

b1(ai1c11 + ai2c21 + · · ·+ aincn1)+

+ b2(ai1c12 + ai2c22 + · · ·+ aincn2) + · · ·
· · ·+ bi(ai1c1i + ai2c2i + · · ·+ aincni) + · · ·

· · ·+ bn(ai1c1n + ai2c2n + · · ·+ aincnn) = bi (5.7)

для i = 1, 2, . . . , n. Понятно, что если выбрать коэффициенты cik
так, чтобы выполнялись условия

ai1c1k + ai2c2k + · · ·+ aincnk = δik, (5.8)
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где i, k = 1, 2, . . . , n, δik — символ Кронекера, то формулы (5.6)
будут давать решение системы (5.1). Сравнивая соотношения (5.8) с
формулами (3.1), с. 77, нетрудно заметить, что если положить

cik =
Aki

|A|
, i, k = 1, 2, . . . , n, (5.9)

то условия (5.8) будут выполнены. Подставляя найденные выраже-
ния для cik в (5.6), получим следующие формулы для решения систе-
мы (5.1):

xi = (A1ib1 + A2ib2 + · · ·+ Anibn)/|A|, i = 1, 2, . . . , n. (5.10)

Используя разложение определителя по столбцу, соотношения (5.10)
можно переписать в более компактном виде:

xi =
∆i

∆
, i = 1, 2, . . . , n. (5.11)

Здесь ∆ = |A|, ∆i — определитель, который получается заменой i-го
столбца определителя ∆ правой частью системы (5.1). �

Формулы (5.11) называют формулами Крамера.
Пример. Решим при помощи формул Крамера систему уравнений

x1 + x2 + x3 = −2,

x1 + 3x2 − 2x4 = −4,

2x1 + x3 − x4 = −1,

2x2 − x3 − 3x4 = −3.

Подсчитаем соответствующие определители:

∆ =

∣∣∣∣∣∣∣
1 1 1 0
1 3 0 −2
2 0 1 −1
0 2 −1 −3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 1 1 0
1 3 0 −2
1 −1 0 −1
1 3 0 −3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 3 −2
1 −1 −1
1 3 −3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 4 −1
1 0 0
1 4 −2

∣∣∣∣∣∣ = −
∣∣∣∣4 −1
4 −2

∣∣∣∣ = 4,

∆1 =

∣∣∣∣∣∣∣
−2 1 1 0
−4 3 0 −2
−1 0 1 −1
−3 2 −1 −3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
−2 1 1 0
−4 3 0 −2
1 −1 0 −1

−5 3 0 −3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
−4 3 −2
1 −1 −1

−5 3 −3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−4 −1 −6
1 0 0

−5 −2 −8

∣∣∣∣∣∣ = 4,

∆2 =

∣∣∣∣∣∣∣
1 −2 1 0
1 −4 0 −2
2 −1 1 −1
0 −3 −1 −3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 −2 1 0
1 −4 0 −2
1 1 0 −1
1 −5 0 −3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 −4 −2
1 1 −1
1 −5 −3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 −5 −1
1 0 0
1 −6 −2

∣∣∣∣∣∣ = −4,

∆3 =

∣∣∣∣∣∣∣
1 1 −2 0
1 3 −4 −2
2 0 −1 −1
0 2 −3 −3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 0 0 0
1 2 −2 −2
2 −2 3 −1
0 2 −3 −3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣

2 −2 −2
−2 3 −1
2 −3 −3

∣∣∣∣∣∣ =
∣∣∣∣∣∣

2 0 0
−2 1 −3
2 −1 −1

∣∣∣∣∣∣ = −8,
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∆4 =

∣∣∣∣∣∣∣
1 1 1 −2
1 3 0 −4
2 0 1 −1
0 2 −1 −3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 1 1 −2
1 3 0 −4
1 −1 0 1
1 3 0 −5

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 3 −4
1 −1 1
1 3 −5

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 3 −4
0 −4 5
0 0 −1

∣∣∣∣∣∣ = 4.

По формулам Крамера

x1 = ∆1/∆ = 1, x2 = ∆2/∆ = −1, x3 = ∆3/∆ = −2, x4 = ∆4/∆ = 1.

Замечание. В вычислительной практике формулы Крамера ис-
пользуются очень редко. Чаще для решения систем линейных алгеб-
раических уравнений применяются различные варианты метода ис-
ключения неизвестных (метода Гаусса) или итерационные методы.
Подробнее по этому поводу см. с. 99, с. 302.

2. В качестве примера применения теории крамеровских систем
построим так называемую интерполяционную формулу Лагранжа.

2.1. Теорема. Пусть z0, z1, . . . , zn — попарно различные чис-
ла, h0, h1, . . . , hn — произвольные числа. Тогда существует, и при
том только один, полином Pn(z) = a0 + a1z + a2z

2 + · · · + anz
n та-

кой, что
Pn(zj) = hj, j = 0, 1, . . . , n. (5.12)

Доказательство. Условия (5.12) представляют собой систе-
му линейных уравнений относительно коэффициентов полинома Pn.
Определитель этой системы — определитель Вандермонда (см. с. 81).
Он, очевидно, не равен нулю, поэтому система уравнений (5.12) имеет
единственное решение при любой правой части. �

2.2. Теперь ясно, что если полином степени n всюду (на самом
деле, по крайней мере в n+ 1 различных точках) равен нулю, то все
его коэффициенты — нули.

2.3. Нетрудно построить в явном виде полином, удовлетворяю-
щий условиям (5.12), а именно, решение задачи дает интерполяци-
онная формула Лагранжа1)

Pn(z) = h0Φ0(z) + h1Φ1(z) + · · ·+ hnΦn(z), (5.13)

где Φj — полином степени n, удовлетворяющий условиям

Φj(zk) = 0, k = 0, 1, . . . , j − 1, j + 1, . . . , n, (5.14)

Φj(zj) = 1, (5.15)
1)Жозеф Луи Лагранж (Joseph Louis Lagrange; 1736 — 1813) — французский математик,

астроном и механик итальянского происхождения.
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для j = 0, 1, 2 . . . , n.
Как показано в п. 3, с. 24, полином своими корнями определяется

с точностью до постоянного множителя, следовательно,

Φj(z) = Aj(z − z0)(z − z1) · · · (z − zj−1)(z − zj+1) · · · (z − zn).

Используя (5.15), найдем значение постоянной:

Aj =
1

(zj − z0)(zj − z1) · · · (zj − zj−1)(zj − zj+1) · · · (zj − zn)
,

т. е.

Φj(z) =
(z − z0)(z − z1) · · · (z − zj−1)(z − zj+1) · · · (z − zn)

(zj − z0)(zj − z1) · · · (zj − zj−1)(zj − zj+1) · · · (zj − zn)
,

где j = 0, 1, 2, . . . , n.

§ 6. Матрицы. Операции над матрицами

1. Выше было введено понятие квадратной матрицы. Прямо-
угольной матрицей A размера m×n называется таблица, состоящая
из m строк и n столбцов:

A =

 a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . . .
am1 am2 . . . amn

 . (6.1)

Элементами таблицы служат числа aij (вообще говоря, комплексные).
Иногда будем явно указывать размеры матрицы A и обозначать ее
через A(m,n).

Отметим некоторые частные случаи. При m = n получаем квад-
ратную матрицу. Ее размер (говорят также порядок) будем обозна-
чать одной буквой n.

Если m = 1, а n произвольно, получаем матрицу-строку (или,
просто, строку)

x = (x1, x2, . . . , xn). (6.2)
Говорят, что эта строка имеет длину n.

Если n = 1, а m произвольно, получаем матрицу-столбец (или,
просто, столбец)

x =


x1
x2
...
xm

 . (6.3)
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Говорят, что этот столбец имеет длину m. Подчеркнем, что при за-
писи строк и столбцов второй индекс обычно не пишут. Столбцы или
строки часто будем называть векторами.

Матрица называется нулевой, если все ее элементы — нули. Ну-
левая матрица обозначается символом 0.

2. Опишем некоторые специальные виды квадратных матриц.

2.1. Говорят, что элементы a11, a22, . . . , ann образуют главную
диагональ квадратной матрицы A. Квадратная матрица D называет-
ся диагональной, если dij = 0 при i ̸= j, или, подробнее,

D =

 d11 0 . . . 0
0 d22 . . . 0
. . . . . . . . . . . . . . . .
0 0 . . . dnn

 . (6.4)

Для диагональной матрицы будем использовать также обозначение

D = diag(d11, d22, . . . , dnn).

Диагональная матрица называется единичной, если dii = 1 для
всех i = 1, . . . , n. Единичную матрицу будем обозначать буквой I:

I =

 1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . .
0 0 . . . 1

 . (6.5)

2.2. Матрица Pik называется матрицей перестановки, если она
получена из единичной матрицы перестановкой строк с номерами i, k.
Например, матрицами перестановок третьего порядка являются мат-
рицы

P12 =

0 1 0
1 0 0
0 0 1

 , P13 =

0 0 1
0 1 0
1 0 0

 , P23 =

1 0 0
0 0 1
0 1 0

 .

2.3. Напомним, что квадратная матрица L называется нижней
треугольной, если все ее элементы, стоящие выше главной диагонали,
равны нулю:

L =

 l11 0 . . . 0
l21 l22 . . . 0
. . . . . . . . . . . . . . .
ln1 ln2 . . . lnn

 , (6.6)
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квадратная матрица U называется верхней треугольной, если все ее
элементы, стоящие ниже главной диагонали, равны нулю:

U =

 u11 u12 . . . u1n
0 u22 . . . u2n
. . . . . . . . . . . . . . . .
0 0 . . . unn

 . (6.7)

2.4. Квадратная матрица

Lk =


1 · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . .
0 · · · lk,k 0 · · · 0
0 · · · lk+1,k 1 · · · 0
. . . . . . . . . . . . . . . . . . . . . .
0 · · · ln,k 0 · · · 1

 (6.8)

называется элементарной нижней треугольной. Поясним, что эта
матрица отличается от единичной матрицы лишь элементами k-го
столбца.

3. Умножение матрицы на число, сложение матриц. Произведе-
нием матрицы A и числа α называется матрица

αA =

 αa11 αa12 . . . αa1n
αa21 αa22 . . . αa2n
. . . . . . . . . . . . . . . . . . . . . .
αam1 αam2 . . . αamn


(все элементы матрицы A умножаются на число α).

Суммой двух матриц A,B одинаковых размеров называется мат-
рица C того же размера с элементами cij = aij+bij. Пишут: C = A+B.

Упражнение. Убедиться, что введенные операции обладают
следующим свойствами:

1) A+ 0 = A,
2) (A+B) + C = A+ (B + C),
3) A+B = B + A,
4) (α+ β)A = αA+ βA.
Отметим, что сумма двух нижних (верхних) треугольных мат-

риц — нижняя (верхняя) треугольная матрица.
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4. Умножение строки на столбец. По определению произведение
строки x и столбца y одинаковой длины n есть число

(x1, x2, . . . , xn)


y1
y2
...
yn

 =
n∑
k=1

xkyk. (6.9)

Пример.

(
5 −1 3 1

)−1
−2
3
4

 = 5 · (−1) + (−1) · (−2) + 3 · 3 + 1 · 4 = 10.

5. Умножение матрицы на вектор. Произведением матрицы A
размера m× n и вектора x длины n называется вектор y длины m с
элементами

yi =
n∑
j=1

aijxj, i = 1, . . . ,m.

Символически это записывают так:

y = Ax.

Иногда будем применять более подробную запись:
y1
y2
...
ym

 =

 a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . . .
am1 am2 . . . amn



x1
x2
...
xn

 .

Поясним, что умножение матрицы на вектор выполняется следу-
ющим образом: столбец x последовательно накладывается на строки
матрицы A, соответствующие элементы попарно перемножаются, а
затем полученные n величин суммируются. В результате получаются
элементы вектора y.

Пример.  0 −3 1
2 1 5

−4 0 −2

 3
−2
2

 =

 8
14

−16

 .

Непосредственно из определения вытекает, что для любых чи-
сел α, β и для любых векторов x, y (подходящей длины) справедливо
равенство

A(αx+ βy) = αAx+ βAy. (6.10)
Говорят поэтому, что операция умножения матрицы на вектор линей-
на.
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6. Умножение строки на матрицу. Произведением строки x дли-
ны m и матрицы A размера m × n называется строка y длины n с
элементами

yj =
m∑
i=1

aijxi, j = 1, . . . , n.

Символически это записывают так:

y = xA.

Иногда будем применять более подробную запись:

(
y1, y2, . . . , yn

)
=
(
x1, x2, . . . , xm

) a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . . .
am1 am2 . . . amn

 .

Умножение строки на матрицу выполняется следующим образом:
столбцы матрицы A последовательно накладываются на строку x,
соответствующие элементы попарно перемножаются, а затем полу-
ченные m величин суммируются. В результате получаются элементы
строки y.

Пример. (
5 1 0 −3

)2 0
1 −4
3 1
0 −1

 =
(
11 −1

)
.

Непосредственно из определения вытекает, что для любых чи-
сел α, β и для любых строк x, y (подходящей длины) справедливо
равенство

(αx+ βy)A = αxA+ βyA. (6.11)
Говорят поэтому, что операция умножения строки на матрицу линей-
на.

7. С использованием введенных операций система n линейных
уравнений c n неизвестными (5.1) может быть записана так:

Ax = b, (6.12)

где A — заданная квадратная матрица, b — заданный вектор, x —
искомый вектор, или в виде

xAT = b, (6.13)

где b — заданная строка, x — искомая строка. В дальнейшем мы чаще
будем пользоваться формой записи (6.12).
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8. Умножение прямоугольных матриц. Пусть A — матрица раз-
мера m× n, B — матрица размера n× p. Матрица C размера m× p
называется произведением матриц A, B, если ее элементы опреде-
ляются по правилу

cij =
n∑
q=1

aiqbqj, i = 1, . . . ,m, j = 1, . . . , p. (6.14)

Пишут C = AB, или, более подробно, c11 c12 . . . c1p
c21 c22 . . . c2p
. . . . . . . . . . . . . . . . .
cm1 cm2 . . . cmp

 =

=

 a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . . .
am1 am2 . . . amn


 b11 b12 . . . b1p
b21 b22 . . . b2p
. . . . . . . . . . . . . . . .
bn1 bn2 . . . bnp

 . (6.15)

Полезно пояснить, что элементы каждого столбца матрицы C вы-
числяются как результат умножения матрицы A на соответствующий
столбец матрицы B. Точно так же элементы каждой строки матри-
цы C получаются как результат умножения соответствующей строки
матрицы A на матрицу B. Отметим также, что элемент cij есть ре-
зультат умножения i-й строки матрицы A на j-й столбец матрицы B.

Пример:

(
5 −1 3 1
2 0 −1 4

)−1 3 0
−2 1 1
3 0 −2
4 1 2

 =

(
10 15 −5
11 10 10

)
.

Произведение матриц зависит от порядка сомножителей. Напри-
мер, (

1 2
3 2

)(
1 2
1 1

)
=

(
3 4
5 8

)
,(

1 2
1 1

)(
1 2
3 2

)
=

(
7 6
4 4

)
.

Матрицы A, B называют перестановочными, если AB = BA.
Перестановочные матрицы существуют. Например,(

7 −12
−4 7

)(
26 45
15 26

)
=

(
26 45
15 26

)(
7 −12

−4 7

)
=

(
2 3
1 2

)
.
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Для любой квадратной матрицы A

AI = IA = A.

Отметим следующие свойства операции умножения матриц:
1) (A+B)C = AC +BC,
2) C(A+B) = CA+ CB,
3) A(BC) = (AB)C.
Понятно, что размеры участвующих здесь матриц должны быть

согласованы так, чтобы все операции имели смысл.
Элементарно проверяется, что 1), 2) следуют из (6.11), (6.10) соот-

ветственно. Для доказательства свойства 3) заметим, что элементы
матрицы D = A(BC) есть числа вида dij = ai(Bcj), где ai — i-ая
строка матрицы A, cj — j-й столбец матрицы C. Элементы матри-
цы F = (AB)C — это числа fij = (aiB)cj. Поэтому достаточно до-
казать, что x(By) = (xB)y для любой строки x и любого столбца y.
Понятно, что их длины должны быть согласованы с размерами мат-
рицы B. Будем полагать, что матрица B имеет m строк и n столбцов.
Элементарные вычисления дают

x(By) =
m∑
i=1

xi

n∑
j=1

bijyj =
m∑
i=1

n∑
j=1

bijxiyj, (6.16)

аналогично,

(xB)y =
n∑
j=1

yj

m∑
i=1

bijxi =
n∑
j=1

m∑
i=1

bijxiyj. (6.17)

Суммы (6.16), (6.17) отличаются лишь порядком следования слагае-
мых и потому совпадают.

Упражнения.
1) Пусть Pik — матрица перестановки (см. с. 88). Показать, что

вектор Pikx получается из вектора x перестановкой элементов с но-
мерами i, k.

2) Как следствие показать, что матрица PikA получается из мат-
рицы A перестановкой строк с номерами i, k.

3) Показать, что если L, M — нижние треугольные матрицы, то
матрица LM — нижняя треугольная. Показать, что аналогичное вер-
но и для верхних треугольных матриц.

4) Показать, что нижняя треугольная матрица L равна произ-
ведению элементарных нижних треугольных матриц Lk (см. (6.8)),
т. е. L = L1L2 · · ·Ln−1Ln.
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Указание. Проведите вычисления в соответствии со следующей
расстановкой скобок: L = L1(L2 · · · (Ln−2(Ln−1Ln) . . . ), т. е. сначала
перемножьте Ln−1Ln, результат умножьте слева на Ln−2 и т. д.

5) Показать, что для любой квадратной матрицы A

det(PikA) = detPik detA = − detA.

6) Показать, что для любой квадратной матрицы A и элементар-
ной нижней треугольной матрицы Lk

det(LkA) = lkk detA. (6.18)

Решение. Пусть a = (a1, a2, . . . , an) — вектор. Элементарные
вычисления дают

Lka =



a1
a2
...

ak−1

lk,kak
lk+1,kak + ak+1

lk+2,kak + ak+2
...

ln,kak + an


.

Такой вид будут иметь столбцы матрицы LkA. Полученное равен-
ство показывает, что определитель det(LkA) можно преобразовать
следующим образом: из k-ой строки вынести общий множитель lkk,
затем умножить эту строку на ljk и вычесть из j-ой строки последо-
вательно для всех j = k + 1, k + 2, . . . , n. В результате, получим
равенство (6.18).

7) Опираясь на предыдущие упражнения и правило вычисления
определителя треугольной матрицы (см. с. 80), показать, что для лю-
бой квадратной матрицы A и любой нижней треугольной матрицы L

det(LA) = detL detA. (6.19)

Показать, что если R — верхняя треугольная матрица, то

det(RA) = detR detA. (6.20)

9. Транспонирование матриц. Определенная на с. 78 операция
транспонирования квадратных матриц естественным образом распро-
страняется на прямоугольные матрицы.
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Понятно, что при транспонировании размеры матрицы меня-
ются местами. В частности, матрица-строка становится матрицей-
столбцом.

Отметим основные свойства операции транспонирования.
1) Для любой матрицы A справедливо равенство (AT )T = A.
2) Для любых чисел α, β и любых матриц A,B одинаковых раз-

меров
(αA+ βB)T = αAT + βBT

(поэтому говорят, что операция транспонирования линейна).
3) Если операция умножения матриц AB имеет смысл, то: а) опе-

рация умножения BTAT также имеет смысл; б) (AB)T = BTAT .
Все сформулированные здесь утверждения, кроме утвержде-

ния 3, б), непосредственно вытекают из определений, и их проверка
предлагается читателю.

Докажем утверждение 3, б). Элемент с номерами i, j матри-
цы (AB)T — это результат умножения j-й строки матрицы A на i-й
столбец матрицы B. Элемент с номерами i, j матрицы BTAT — это
результат умножения i-й строки матрицы BT и j-го столбца матри-
цыAT . Элементы i-й строки матрицыBT совпадают с элементами i-го
столбца матрицы B, а элементы j-го столбца матрицы AT совпадают
с элементам j-ой строки матрицы A. Последнее замечание завершает
доказательство утверждения 3, б).

§ 7. Обратная матрица

В этом параграфе мы будем широко использовать результаты тео-
рии крамеровских систем (см. § 5, с. 82).

1. Квадратная матрица A называется вырожденной, если ее
определитель равен нулю. В противном случае матрица A называ-
ется невырожденной.

При обосновании двух последующих утверждений будем опирать-
ся на п. 1.2, с. 83.

2. Если A, B — невырожденные матрицы, матрица C = AB
также невырождена. Для того, чтобы в этом убедиться, достаточно
показать, что однородная система линейных уравнений

ABx = 0 (7.1)

имеет только тривиальное решение. Последнее верно, так как, по-
скольку матрица A невырождена, то Bx = 0, а поскольку B невы-
рождена, то x = 0.
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3. Если одна из матриц A, B вырождена, то матрица C = AB
также вырождена. Действительно, в этом случае достаточно устано-
вить, что система (7.1) имеет нетривиальное решение. Пусть матри-
ца B вырождена. Тогда существует вектор x ̸= 0 такой, что Bx = 0,
значит ABx = 0.

Пусть теперь A вырождена, а B невырождена. Существует век-
тор y ̸= 0 такой, что Ay = 0. Так как B невырождена, существует
единственный вектор x такой, что Bx = y, причем x не равен нулю,
так как y ̸= 0. Вновь получаем, что ABx = 0 при x ̸= 0.

4. Матрица X называется правой обратной к квадратной мат-
рице A, если

AX = I. (7.2)
Матрица Y называется левой обратной к квадратной матрицеA, если

Y A = I. (7.3)

Вырожденная матрица не имеет правой обратной матрицы. Дей-
ствительно, если правая обратная матрица X существует, то

det(AX) = det(I) = 1.

С другой стороны, det(AX) = 0, так как A вырождена. Точно так
же доказывается невозможность существования левой обратной у вы-
рожденной матрицы.

5. Если det(A) ̸= 0, то правая обратная к матрице A существу-
ет и определяется единственным образом. Действительно, обозначим
через xk столбцы матрицы X, а через ik — столбцы матрицы I. Урав-
нение (7.2) распадается на совокупность систем уравнений

Axk = ik, k = 1, 2, . . . , n. (7.4)

Поскольку матрица A невырождена, каждая из этих систем имеет
единственное решение.

Точно так же доказывается существование и единственность ле-
вой обратной матрицы.

6. На самом деле, правая и левая обратные матрицы совпадают.
Действительно, если Y A = I, то Y AX = X, но AX = I, т. е. Y = X.

7. В соответствии с вышесказанным матрицу X будем называть
обратной матрицей к матрице A, если AX = I. Обратную матрицу
к матрице A обозначают через A−1.
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8. Укажем явный вид матрицы A−1. Введем в рассмотрение так
называемую присоединенную к матрице A матрицу

Ã =

 A11 A21 . . . An1

A12 A22 . . . An2

. . . . . . . . . . . . . . . . . .
A1n A2n . . . Ann

 .

Здесь Aij — алгебраическое дополнение элемента aij матрицы A. Фор-
мулы (3.1), с. 77, можно записать в матричном виде

AÃ = |A|I. (7.5)

Отсюда вытекает, что если |A| ̸= 0, то

A−1 = |A|−1Ã (7.6)

есть матрица, обратная матрице A.
Пример. Построим матрицу, обратную к матрице

A =

 3 −1 0
−2 1 1
2 −1 4

 .

Вычислим сначала определитель матрицы A, разлагая его по первой строке:

|A| = 3

∣∣∣∣ 1 1
−1 4

∣∣∣∣+ ∣∣∣∣−2 1
2 4

∣∣∣∣ = 5.

Теперь подсчитаем алгебраические дополнения элементов матрицы A:

A11 =

∣∣∣∣ 1 1
−1 4

∣∣∣∣ = 5, A12 = −
∣∣∣∣−2 1

2 4

∣∣∣∣ = 10, A13 =

∣∣∣∣−2 1
2 −1

∣∣∣∣ = 0,

A21 = −
∣∣∣∣−1 0
−1 4

∣∣∣∣ = 4, A22 =

∣∣∣∣ 3 0
2 4

∣∣∣∣ = 12, A23 = −
∣∣∣∣ 3 −1

2 −1

∣∣∣∣ = 1,

A31 =

∣∣∣∣−1 0
1 1

∣∣∣∣ = −1, A32 = −
∣∣∣∣ 3 0
−2 1

∣∣∣∣ = −3, A33 =

∣∣∣∣ 3 −1
−2 1

∣∣∣∣ = 1.

По формуле (7.6)

A−1 =
1

|A|

A11 A21 A31

A12 A22 A32

A13 A23 A33

 =

1 4/5 −1/5
2 12/5 −3/5
0 1/5 1/5

 .

9. Отметим некоторые свойства обратной матрицы.
1) Матрица A−1 невырождена, (A−1)−1 = A. Это утверждение —

очевидное следствие равенства AA−1 = I.
2) Если матрицы A, B невырождены, то

(AB)−1 = B−1A−1.
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Действительно, AB(B−1A−1) = A(BB−1)A−1 = AA−1 = I.
3) Если матрица A невырождена, то матрица AT невырождена и

(AT )−1 = (A−1)T .

Невырожденность матрицы AT — следствие равенства |AT | = |A|.
Используя свойство 3 б), с. 94, можем написать

(AT )(A−1)T = (A−1A)T = IT = I,

т. е. матрица (A−1)T обратна к AT .
Упражнения.

1) Пусть матрицы A1, A2, . . . , Ap невырождены. Показать, что

(A1A2 · · ·Ap)
−1 = A−1

p A−1
p−1 · · ·A−1

1 .

2) Пусть Pik — матрица перестановки. Показать, что P−1
ik = Pik.

3) Пусть Lk есть элементарная нижняя треугольная матрица
и lkk ̸= 0. Показать, что

L−1
k =


1 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 1/lk,k 0 . . . 0
0 . . . −lk+1,k/lk,k 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . −ln,k/lk,k 0 . . . 1

 .

4) Пусть L — нижняя треугольная матрица, у которой все элемен-
ты главной диагонали отличны от нуля. Показать, что матрица L−1

существует и является нижней треугольной матрицей. Показать, что
аналогичное верно и для верхней треугольной матрицы.

5) Пусть квадратная матрица A имеет обратную, B — произволь-
ная квадратная матрица того же порядка. Показать, что существует
ε0 > 0 такое, что для всех ε ∈ (0, ε0] матрица A + εB также имеет
обратную.

Решение. Пусть x — решение системы уравнений

Ax+ εBx = 0. (7.7)

Тогда x — решение системы уравнений

x = −εA−1Bx. (7.8)



§ 8. Метод Гаусса решения систем линейных уравнений 99

Пусть x ̸= 0 и |xi| = max
16k6n

|xk|, где n — порядок матрицы A. Поло-

жим C = {cij}ni,j=1 = A−1B. Из (7.8) очевидным образом получаем

|xi| 6 |xi|ε max
16k6n

n∑
j=1

|ckj|.

Пусть ε выбрано так, что

ε max
16k6n

n∑
j=1

|ckj| < 1. (7.9)

Тогда |xi| < |xi|, что нелепо. Значит, при выполнении условия (7.9)
система (7.7) может иметь лишь тривиальное решение, следователь-
но, матрица A+ εB невырождена для всех достаточно малых ε.

§ 8. Метод Гаусса решения систем линейных уравнений

1. В основе метода Гаусса, как, впрочем, и многих других мето-
дов решения систем линейных алгебраических уравнений

Ax = b, (8.1)

лежит следующее утверждение.
Пусть матрица B невырождена. Тогда система уравнений

BAx = Bb (8.2)

эквивалентна системе (8.1), т. е. решение системы (8.2) — решение
системы (8.1) и, наоборот, решение системы (8.1) — решение систе-
мы (8.2).

Действительно, пусть x — решение системы (8.2). Тогда

B(Ax− b) = 0,

но матрица B невырождена, следовательно, Ax − b = 0. Обратное
утверждение очевидно.

Матрица B выбирается так, чтобы матрица BA была проще мат-
рицы A и решение системы (8.2) находилось легче, чем решение си-
стемы (8.1).

В методе Гаусса матрица B конструируется при помощи элемен-
тарных нижних треугольных матриц так, чтобы матрица BA была
верхней треугольной. Тогда решение системы (8.2) становится триви-
альной задачей.
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2. Переходим к описанию метода Гаусса решения крамеров-
ских систем. Выберем среди элементов первого столбца матрицы A
максимальный по модулю. Пусть это есть элемент ai1. Он не может
оказаться равным нулю, так как тогда все элементы первого столбца
матрицы A — нули и, значит, |A| = 0, но система по предположению
крамеровская, т. е. определитель матрицы A не нуль.

Умножим обе части уравнения на матрицу перестановки Pi1.
В дальнейшем будем обозначать эту матрицу через P1 (заметим, что
она равна единичной, если максимальный по модулю элемент первого
столбца матрицы A есть a11). Получим

A1x = b1, (8.3)

где A1 = P1A, b1 = P1b. Поясним, что матрица A1 получается из
матрицы A перестановкой первой и i-й строк, столбец b1 получает-
ся из столбца b перестановкой первого и i-го элементов. Элементы
матрицы A1 обозначим через a(1)kl , элементы столбца b1 — через b1k.
По построению a

(1)
11 ̸= 0.

Умножим обе части уравнения (8.3) на элементарную нижнюю
треугольную матрицу

L1 =


l1,1 0 0 . . . 0 0
l2,1 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
ln−1,1 0 0 . . . 1 0
ln,1 0 0 . . . 0 1

 , (8.4)

где l11 = 1/a
(1)
11 , l21 = −a(1)21 /a

(1)
11 , . . . , ln1 = −a(1)n1 /a

(1)
11 . Получим

A2x = b2, (8.5)

где A2 = L1A1, b2 = L1b
1. Вычисляя произведение L1A1, найдем, что

A2 =


1 a

(2)
12 a

(2)
13 . . . a

(2)
1n

0 a
(2)
22 a

(2)
23 . . . a

(2)
2n

. . . . . . . . . . . . . . . . . . . . .

0 a
(2)
n2 a

(2)
n3 . . . a

(2)
nn

 . (8.6)

Умножение L1 на A1 равносильно следующему преобразованию
матрицы A1: все элементы первой строки матрицы A1 делятся на a(1)11 ,
затем для всех i = 2, . . . , n первая строка умножается на a(1)i1 и вы-
читается из i-й строки матрицы A1. Аналогично, элементы столб-
ца b2 вычисляются по формулам b21 = b11/a

(1)
11 , b2i = b1i − b21a

(1)
i1 ,

где i = 2, . . . , n.
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Подчеркнем, что все элементы первого столбца матрицы A2, кро-
ме первого, оказываются при этом равными нулю.

Выберем среди элементов a(2)22 , a(2)32 , . . . , a(2)n2 максимальный по мо-
дулю. Пусть этот элемент есть a

(2)
i2 . Он не может равняться нулю.

Действительно, если он равен нулю, то все числа a(2)22 , a(2)32 , . . . , a(2)n2 —
нули и тогда, вычисляя det(A2) разложением по первому столбцу, по-
лучим, что det(A2) = 0. С другой стороны, используя то, что L1 —
элементарная нижняя треугольная матрица, а P1 — либо единичная
матрица, либо матрица перестановки, можем написать, что

det(A2) = l11 det(P1A) = det(P1A)/a
(1)
11 = ± det(A)/a

(1)
11 ̸= 0.

Умножим обе части уравнения (8.5) на матрицу P2 = P2i, т. е.
поменяем местами вторую и i-ю строки матрицы A2. Получим

Ã2x = P2L1P1b, (8.7)

где

Ã2 = P2A2 =


1 a

(2)
12 a

(2)
13 . . . a

(2)
1n

0 ã
(2)
22 ã

(2)
23 . . . ã

(2)
2n

. . . . . . . . . . . . . . . . . . . . .

0 ã
(2)
n2 ã

(2)
n3 . . . ã

(2)
nn

 .

Умножим обе части уравнения (8.7) на элементарную нижнюю тре-
угольную матрицу

L2 =


1 0 0 0 . . . 0 0
0 l2,2 0 0 . . . 0 0
0 l3,2 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . .
0 ln−1,2 0 0 . . . 1 0
0 ln,2 0 0 . . . 0 1

 ,

где l22 = 1/ã
(2)
22 , l32 = −ã(2)32 /ã

(2)
22 , . . . , ln2 = −ã(2)n2 /ã

(2)
22 . Получим

A3x = L2P2L1P1b,

где A3 = L2Ã2 = L2P2L1P1A. Нетрудно убедиться, что

A3 =


1 a

(2)
12 a

(2)
13 . . . a

(2)
1n

0 1 a
(3)
23 . . . a

(3)
2n

0 0 a
(3)
33 . . . a

(3)
3n

. . . . . . . . . . . . . . . . . . . .

0 0 a
(3)
n3 . . . a

(3)
nn

 .
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Важно подчеркнуть, что все элементы второго столбца матрицы A3,
кроме первых двух, — нули.

Продолжая этот процесс, в конце концов, получим систему урав-
нений

Ux = f (8.8)
(очевидно, эквивалентную исходной), где

U = LnPnLn−1Pn−1 · · ·L1P1A, (8.9)

f = LnPnLn−1Pn−1 · · ·L1P1b,

причем

U =



1 a
(2)
12 a

(2)
13 . . . a

(2)
1n−1 a

(2)
1n

0 1 a
(3)
23 . . . a

(3)
2n−1 a

(3)
2n

0 0 1 . . . a
(4)
3n−1 a

(4)
3n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 a
(n)
n−1,n

0 0 0 . . . 0 1


(8.10)

есть треугольная матрица с единицами на главной диагонали.
Решение системы (8.8) не вызывает затруднений. Из последнего

уравнения этой системы находим xn = fn, из предпоследнего имеем

xn−1 = fn−1 − a
(n)
n−1,nxn (8.11)

и так далее, наконец, из первого уравнения находим

x1 = f1 − a
(2)
1,2x2 − a

(2)
1,3x3 − . . . − a

(2)
1,nxn. (8.12)

Таким образом, реализация метода Гаусса состоит из двух эта-
пов. На первом этапе, называемом прямым ходом метода Гаусса, ис-
ходная система преобразуется к системе с треугольной матрицей. На
втором этапе, называемом обратным ходом метода Гаусса, решается
система с треугольной матрицей.

Замечание. Выбор максимального по модулю элемента столбца
при выполнении прямого хода метода Гаусса минимизирует влияние
ошибок округления в расчетах на компьютере. Если не заботиться
об ошибках округления, то на очередном шаге прямого хода метода
Гаусса можно выбирать любой ненулевой элемент столбца.
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3. Вычисление определителя методом Гаусса. Из (8.9), используя
формулы из упражнений на с. 98, получаем

A = P1L
−1
1 P2L

−1
1 · · ·PnL−1

n U, (8.13)

откуда, используя формулы из упражнений на с. 93, будем иметь

detA = det(P1L
−1
1 P2L

−1
1 · · ·PnL−1

n U) =
n∏
i=1

detPi

n∏
i=1

detL−1
i =

= ±
n∏
i=1

detL−1
i . (8.14)

При этом мы учли, что detU = 1. Нетрудно убедиться (см. упражне-
ние 3 на с. 98), что

detL−1
i = ã

(i)
ii ,

следовательно,
detA = ±a(1)11 ã

(2)
22 · · · ã(n)nn . (8.15)

Знак здесь определяется количеством перестановок строк, выполнен-
ных в ходе реализации прямого хода метода Гаусса. Если оно четно,
выбирается знак плюс. В противном случае — минус. Таким образом,
определитель матрицы A может быть вычислен в ходе реализации
метода Гаусса.

4. Оценим количество арифметических операций, требуемых для
решения системы уравнений методом Гаусса.

На первом шаге прямого хода метода Гаусса строится матрица L1.
Это требует выполнения n операций. Затем матрица L1 умножается
на матрицу A1. Нетрудно проверить, что умножение матрицы L1 на
столбец требует 2(n − 1) + 1 = 2n − 1 операций. Всего столбцов n.
Значит, умножение матрицы L1 на A1 требует 2n2 − n операций.

Кроме того, матрица L1 умножается на столбец P1b.
Таким образом, реализация первого шага прямого хода метода

Гаусса требует 2n2 + n− 1 операций.
На втором шаге, т. е. при умножении матриц L2, Ã2, как нетрудно

убедиться, мы фактически имеем дело с матрицами порядка n − 1.
Поэтому реализация второго шага прямого хода метода Гаусса тре-
бует

2(n− 1)2 + (n− 2)

операций.
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Это означает, что реализация прямого хода метода Гаусса требу-
ет 2(12 + 22 + . . . n2) + (1 + 2 + . . . + (n − 2)) операций. Хорошо
известно, что

1 + 2 + . . . + n− 2 = (n− 1)(n− 2)/2,

12 + 22 + . . . + n2 = n(n+ 1)(2n+ 1)/6.

Таким образом, прямой ход метода Гаусса можно выполнить, за-
тратив

n(n+ 1)(2n+ 1)/3 + (n− 1)(n− 2)/2 ≈ 2n3/3

арифметических операций (мы пренебрегаем слагаемыми порядка n2,
считая n достаточно большим).

Нетрудно также видеть, что вычисления по формулам (8.11),
(8.12) требуют

2(n− 1) + 2(n− 2) + . . . + 2 = 2(1 + . . . + n− 1) = n(n− 1) ≈ n2

операций.
Итак, решение системы линейных уравнений с n неизвестными

методом Гаусса требует порядка 2n3/3 операций. Это существенно
меньше, чем при использовании формул Крамера. Их непосредствен-
ное применение требует, очевидно, n2n! арифметических операций.
Нетрудно подсчитать, что если, например, n = 20, то n2n! ≈ 9, 7·1020,
а 2n3/3 ≈ 5, 3 · 103.

Пример. Решим методом Гаусса систему уравнений

3x1 + 6x2 + 15x3 = 60,

3x1 + 2x2 + 9x3 = 34,

9x1 + 6x2 − 3x3 = 12.

Выпишем матрицу системы уравнений и столбец правой части

A =

3 6 15
3 2 9
9 6 −3

 , b =

60
34
12

 .

Максимальный элемент первого столбца матрицы A есть a31 = 9. В соответствии с
описанным выше алгоритмом матрица A1 и столбец b1 равны соответственно

A1 =

9 6 −3
3 2 9
3 6 15

 , b1 =

12
34
60


(поменяли местами первую и третью строки матрицы A, первый и последний элементы
столбца b). Делим первую строку матрицы A1 на 9, умножаем ее на 3 и вычитаем из
второй и третьей срок; делим первый элемент столбца b1 на 9, затем умножаем его на 3
и вычитаем из второго и третьего элементов столбца b1. В результате получаем

A2 =

1 2/3 −1/3
0 0 10
0 4 16

 , b2 =

4/3
30
56

 .
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Максимальным из чисел a
(2)
22 , a(2)32 является a

(2)
32 , поэтому меняем местами вторую и

третью строки матрицы A2, а также второй и третий элемент столбца b2. Получим

Ã2 =

1 2/3 −1/3
0 4 16
0 0 10

 , b̃2 =

4/3
56
30

 .

Делим вторую строку матрицы Ã2 и второй элемент столбца b̃2 на 4. Получаем

˜̃A2 =

1 2/3 −1/3
0 1 4
0 0 10

 ,
˜̃
b
2
=

4/3
14
30

 .

Наконец, делим последнюю строку матрицы ˜̃A2 и последний элемент столбца ˜̃
b
2

на 10.
Получаем

A3 =

1 2/3 −1/3
0 1 4
0 0 1

 , b3 =

4/3
14
3

 .

Прямой ход метода Гаусса закончен. Теперь выполняем обратный ход метода Гаусса.
Последовательно находим x3 = 3, x2 = 14− 3 · 4 = 2, x1 = 4/3− (2/3) · 2 + (1/3) · 3 = 1.

В ходе реализации метода Гаусса мы, фактически, подсчитали и определитель мат-
рицы A. По формуле (8.15) его абсолютная величина равна произведению ведущих
элементов метода Гаусса, т. е. тех чисел, на которые приходилось выполнять деление
при приведении матрицы A к треугольному виду. В рассматриваемом примере — это
9, 4, 10. Было выполнено две перестановки строк, следовательно, определитель равен
произведению ведущих элементов: det(A) = 360.

5. Задачи.
1) Определители

∆1 = a11, ∆2 =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ , . . . , ∆n = |A| =

∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . .
an1 an2 . . . ann

∣∣∣∣∣∣∣
называются главными минорами матрицы A. Показать, что если

все главные миноры матрицы A отличны от нуля, (8.16)

то, реализуя метод Гаусса, можно полагать все матрицы P1, . . . , Pn
равными единичной матрице, т. е. опускать операцию поиска макси-
мального по модулю элемента в соответствующих столбцах.

2) Показать, что если выполнено условие (8.16), то матрица A
представима в виде

A = LU, (8.17)
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где L — нижняя треугольная матрица с ненулевыми элементами на
главной диагонали, U — верхняя треугольная матрица с единицами
на главной диагонали.

Равенство (8.17) определяет так называемое треугольное разло-
жение матрицы A.

3) Показать, что матрицы L, U с указанными свойствами опреде-
ляются равенством (8.17) однозначно.

4) Показать, что условие (8.16) необходимо для того, чтобы мат-
рицу A можно было представить в виде (8.17).

§ 9. Определитель произведения матриц

1. Теорема. Определитель произведения произвольных квад-
ратных матриц A и B равен произведению их определителей:

det(AB) = detA detB. (9.1)

Доказательство. Если матрица A вырождена, то, как было
установлено выше (см. п. 3, с. 96), матрица AB также вырождена, и в
этом случае равенство (9.1) тривиально выполняется. Если матрицаA
невырождена, то, применяя (8.13), получим

AB = P1L
−1
1 P2L

−1
1 · · ·PnL−1

n UB.

В этом произведении каждый сомножитель, кроме B, есть либо мат-
рица перестановки, либо треугольная матрица, следовательно,

det(AB) =
n∏
i=1

detPi

n∏
i=1

detL−1
i det(U) detB =

=
n∏
i=1

detPi

n∏
i=1

detL−1
i detB,

но (см. (8.14))
n∏
i=1

detPi

n∏
i=1

detL−1
i = detA,

т. е. равенство (9.1) доказано. �
2. Из формулы (9.1), очевидно, вытекает, что если матрица A

невырождена, то det(A−1) = 1/ det(A).
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§ 10. Некоторые классы матриц

В этом параграфе будут описаны классы матриц, часто возникаю-
щих в различных задачах линейной алгебры. Мы приведем и некото-
рые простейшие свойства этих матриц. Более подробное исследование
различных классов матриц будет проведено в последующих главах.

1. Пусть A — прямоугольная матрица. Матрица A∗ = (Ā)T назы-
вается сопряженной по отношению к матрице A. Поясним, что эле-
менты матрицы Ā комплексно сопряжены по отношению к элементам
матрицы A. Нетрудно видеть, что

(A∗)∗ = A, (αA)∗ = ᾱA∗, (A+B)∗ = A∗ +B∗, (AB)∗ = B∗A∗.

2. Квадратная матрица A называется эрмитовой1) (самосопря-
женной), если A = A∗. Квадратная матрица A называется косоэрми-
товой, если A = −A∗.

Определитель эрмитовой матрицы — вещественное число. В са-
мом деле, поскольку det(A∗) = det((A)T ) = det(A) = det(A), то для
эрмитовой матрицы det(A) = det(A).

3. Любая квадратная матрица A представима в виде

A = H1 + iH2, (10.1)

здесь H1, H2 — эрмитовы матрицы, i — мнимая единица. Матри-
цы H1, H2 однозначно определяются матрицей A. Возможность пред-
ставления (10.1) вытекает из очевидного тождества

A =
1

2
(A+ A∗) + i

1

2i
(A− A∗)

и легко проверяемых соотношений

(A+ A∗)∗ = A+ A∗,

(
1

i
(A− A∗)

)∗
=

1

i
(A− A∗).

Если предположить, что наряду с (10.1) возможно представление

A = H̃1 + iH̃2

с эрмитовыми матрицами H̃1, H̃2, то

(H1 − H̃1) + i(H2 − H̃2) = 0.

1)Шарль Эрмит (Charles Hermite; 1822 — 1901) — французский математик.
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Переходя к сопряженным матрицам, получим

(H1 − H̃1)− i(H2 − H̃2) = 0.

Складывая почленно два последних равенства, будем иметь, что
H1 = H̃1, но тогда и H2 = H̃2, т. е. представление (10.1) однозначно.

4. Матрицы, у которых все элементы вещественны, называют
вещественными матрицами.

Вещественная эрмитова матрица A называется симметричной.
Для такой матрицы A = AT .

Вещественная матрица A называется кососимметричной, ес-
ли A = −AT .

5. Для любой квадратной вещественной матрицы справедливо
представление

A = A1 + A2, (10.2)
где A1 — симметричная, A2 — кососимметричная матрицы. Такое
представление единственно,

A1 =
1

2
(A+ AT ), A2 =

1

2
(A− AT ).

6. Квадратная матрица A называется унитарной, если AA∗ = I,
иными словами, если A−1 = A∗. Из этого определения сразу следу-
ет, что определитель унитарной матрицы по модулю равен единице.
Произведение унитарных матриц является унитарной матрицей (до-
кажите!).

Важным примером унитарной матрицы является диагональная
матрица, диагональ которой состоит из чисел q1, q2, . . . , qn, равных
единице по модулю, n — порядок матрицы. Проверка унитарности
этой матрицы элементарна и поручается читателю.

7. Вещественная унитарная матрица называется ортогональной
матрицей. Определитель ортогональной матрицы может быть равен
только плюс единице или минус единице. Примеры ортогональных
матриц: матрица перестановки Pkl, матрица второго порядка

Q2(φ) =

(
cosφ − sinφ
sinφ cosφ

)
,

где φ — любое вещественное число.
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8. Квадратная матрица A называется нормальной, если она пе-
рестановочна с матрицей A∗, т. е. AA∗ = A∗A. Нетрудно убедиться,
что эрмитовы, косоэрмитовы и унитарные матрицы — нормальные
матрицы.

Пример. Матрица A =

(
1 −1
1 1

)
является нормальной, но не

принадлежит ни к одному из перечисленных выше классов.

§ 11. Блочные матрицы

1. Во многих случаях оказывается полезным ≪разрезать≫ мат-
рицу на блоки, т. е. представить ее в виде

A =

 A11 A12 . . . A1n

A21 A22 . . . A2n

. . . . . . . . . . . . . . . . . . .
Am1 Am2 . . . Amn

 , (11.1)

где элементы Aij, в свою очередь, являются матрицами.
Размеры блоков предполагаются согласованными, т. е. все бло-

ки, стоящие в одной строке, должны иметь одинаковое число строк,
все блоки, стоящие в одном столбце, должны иметь одинаковое чис-
ло столбцов. Одна и та же матрица может быть разбита на блоки
различными способами (см. рис. 2).

Рис. 2. Примеры разбиения матрицы на блоки

Нетрудно убедиться, что с блочными матрицами можно действо-
вать по тем же формальным правилам, что и с обычными. Так, если
наряду с матрицей (11.1) ввести в рассмотрение матрицу

B =

 B11 B12 . . . B1n

B21 B22 . . . B2n

. . . . . . . . . . . . . . . . . . .
Bm1 Bm2 . . . Bmn

 , (11.2)
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причем такую, что для любой пары индексов i, j размеры бло-
ков Aij, Bij совпадают, то матрица C = A+B может быть представле-
на как блочная с блоками Cij = Aij +Bij, i = 1, . . . ,m, j = 1, . . . , n.

Если

B =

 B11 B12 . . . B1p

B21 B22 . . . B2p

. . . . . . . . . . . . . . . . . .
Bn1 Bn2 . . . Bnp

 , (11.3)

то матрица C = AB может быть представлена как блочная с блоками

Cij =
n∑
q=1

AiqBqj, i = 1, 2, . . . ,m, j = 1, 2, . . . , p. (11.4)

При этом, конечно, требуется, чтобы все произведения AiqBqj имели
смысл, т. е. горизонтальные и вертикальные размеры перемножаемых
блоков должны быть согласованы.

2. Получим некоторые полезные формулы для вычисления опре-
делителей блочных матриц.

2.1. Рассмотрим сначала самый простой случай. Пусть

A =

(
I A12

0 A22

)
(11.5)

есть блочная 2×2 матрица, I — единичная матрица,A22 — квадратная
матрица, A12 — прямоугольная, вообще говоря, матрица. Тогда

|A| = |A22|. (11.6)

Справедливость равенства (11.6) легко устанавливается разложением
по первому столбцу. Аналогично, если

A =

(
A11 A12

0 I

)
, (11.7)

где A11 — квадратная матрица, то |A| = |A11|.
2.2. Теорема. Пусть

A =

(
A11 A12

0 A22

)
, (11.8)

где A11, A22 — квадратные матрицы. Тогда

|A| = |A11||A22|. (11.9)
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Доказательство. Покажем сначала, что если матрица A11 вы-
рождена, то |A| = 0. Обозначим через n1 порядок матрицы A11, че-
рез n2 — порядок матрицы A22. Если |A11| = 0, то существует век-
тор x1 длины n1, не равный нулю, и такой, что A11x

1 = 0. Тогда для
ненулевого вектора x = (x1, 0, . . . , 0) длины n1 + n2, очевидно, име-
ем Ax = 0, следовательно, |A| = 0. Таким образом, показано, что
если |A11| = 0, то равенство (11.9) выполняется тривиальным обра-
зом. Пусть теперь |A11| ̸= 0. Нетрудно убедиться, что справедливо
равенство (

A11 A12

0 A22

)
=

(
A11 0
0 I

)(
I A−1

11 A12

0 A22

)
(11.10)

и, следовательно,

|A| =
∣∣∣∣A11 0
0 I

∣∣∣∣ ∣∣∣∣I A−1
11 A12

0 A22

∣∣∣∣ .
Для завершения доказательства достаточно воспользоваться резуль-
татами предыдущего пункта. �

Упражнения.
1) Пусть

A =


A11

0
0
. . .
0

A12

A22

0
. . .
0

A13

A23

A33

. . .
0

. . .

. . .

. . .

. . .

. . .

A1n

A2n

A3n

. . .
Ann


есть блочно треугольная матрица, Aii, i = 1, 2, . . . , n, — произволь-
ные квадратные матрицы. Доказать, что |A| = |A11||A22| · · · |Ann|.

2) Пусть

A =

(
A11 A12

A21 A22

)
есть блочная матрица, A11, A22 — квадратные матрицы, при-
чем |A11| ̸= 0. Показать, что

|A| = |A11||A22 − A21A
−1
11 A12|. (11.11)

Указание. Вычислить произведение матриц(
A11 A12

A21 A22

)(
I −A−1

11 A12

0 I

)
.

Замечание. Равенство (11.11) можно рассматривать как обоб-
щение формулы для вычисления определителя второго порядка.



Глава 6
Линейные пространства

При изучении операций над векторами трехмерного евклидова
пространства (см. § 1, гл. 4) было показано, что, фиксируя в про-
странстве некоторый базис, можно установить взаимно однозначное
соответствие между векторами и упорядоченными тройками веще-
ственных чисел (координатами вектора в этом базисе). При этом опе-
рации над векторами могут быть, фактически, заменены операциями
над их координатами.

Аналогичная ситуация возникает и во многих других разделах
математики и ее приложений, когда приходится иметь дело с объек-
тами, описываемыми конечными наборами вещественных, а зачатую
и комплексных, чисел. При этом естественным образом возникает по-
нятие многомерного координатного пространства как множества упо-
рядоченных наборов чисел с введенными на этом множестве алгебра-
ическими операциями.

В этой главе мы будем систематически заниматься конструиро-
ванием и изучением такого рода пространств. Сначала будет введено
пространство Rn, представляющее собой множество упорядоченных
наборов из n вещественных чисел, потом пространство Cn, состоя-
щее из упорядоченных наборов комплексных чисел. Мы ограничимся
при этом лишь определениями и описанием простейших свойств этих
пространств, поскольку в дальнейшем будут введены и изучены более
общие линейные пространства. Результаты, которые будут получены
для этих пространств, распространяются и на пространства Rn, Cn.

§ 1. Пространства Rn и Cn

1. Пространство Rn — это множество всех упорядоченных набо-
ров x = (x1, x2, . . . , xn) вещественных чисел, n > 1 — фиксированное
целое число. Элементы пространства Rn будем называть векторами,
или точками, числа xk, k = 1, 2, . . . , n, — компонентами векто-
ра x. Два вектора x, y ∈ Rn будем считать равными тогда и только
тогда, когда xk = yk для всех k = 1, 2, . . . , n. Вектор, у которого
все компоненты равны нулю, будем называть нулевым и обозначать
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символом 0. Вектор

ik = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k

),

у которого компонента с номером k равна единице, а все остальные
компоненты — нули, будем называть единичным. В пространстве Rn

есть ровно n единичных векторов: i1, i2, . . . , in.
На множестве Rn вводятся линейные операции: умножение век-

торов на вещественные числа (скаляры) и сложение векторов.
Именно, по определению для любого вещественного числа α и

любого x ∈ Rn положим

αx = (αx1, αx2, . . . , αxn).

Для любых x, y ∈ Rn по определению

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn).

Отметим следующие свойства введенных операций. Для лю-
бых x, y, z ∈ Rn и для любых вещественных чисел α, β:

1) x+ y = y + x — коммутативность операции сложения;
2) (x+y)+z = x+(y+z) — ассоциативность операции сложения;
3) x+ 0 = x — нейтральность нулевого вектора;
4) x+(−x) = 0, где по определению −x = (−1)x, — существование

для каждого вектора единственного противоположного;
5) α(x+ y) = αx+ αy — дистрибутивность по сложению векто-

ров;
6) (α+β)x = αx+βx — дистрибутивность по сложению скаля-

ров;
7) (αβ)x = α(βx) — ассоциативность по умножению скаляров;
8) 1x = x — нейтральность единичного скаляра.
Тождества 1) – 8) называются аксиомами линейного простран-

ства. Их справедливость очевидным образом вытекает из определе-
ния линейных операций над элементами Rn.

Нетрудно заметить, что аксиомы 1) – 8) в точности соответствуют
свойствам линейных операций над векторами трехмерного евклидова
пространства (см. § 1, гл. 4).

Важно иметь в виду, что R1 одновременно является и линейным
пространством, и множеством всех скаляров. В дальнейшем будем
обозначать R1 через R.
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2. Пространство Cn — это множество всех упорядоченных набо-
ров x = (x1, x2, . . . , xn) комплексных чисел, n > 1 — фиксированное
целое число.

Элементы пространства Cn будем называть векторами, или точ-
ками, числа xk, k = 1, 2, . . . , n, — компонентами вектора x.

Два вектора x, y ∈ Cn будем считать равными тогда и только
тогда, когда xk = yk для всех k = 1, 2, . . . , n. Вектор, у которого
все компоненты равны нулю, будем называть нулевым и обозначать
символом 0.

Вектор ik, у которого компонента с номером k равна единице, а все
остальные компоненты — нули, будем называть единичным. В про-
странстве Cn есть ровно n единичных векторов: i1, i2, . . . , in.

На пространстве Cn вводятся линейные операции: умножение
векторов на комплексные числа (скаляры) и сложение векторов.

Именно, по определению для любого комплексного числа α и лю-
бого x ∈ Cn положим

αx = (αx1, αx2, . . . , αxn).

Для любых x, y ∈ Cn по определению

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn).

Отметим, что, фактически, мы уже встречались с таким линей-
ным пространством, а именно, множество всех матриц размера m×n
с введенными на нем операциями умножения матрицы на число и
сложения двух матриц (см. п. 3, с. 89) естественно интерпретировать
как пространство Cmn векторов длины mn. Векторы записывались в
виде прямоугольных таблиц, но с точки зрения выполнения опера-
ций умножения вектора на число и сложения векторов это не имеет
значения.

Для линейных операций, введенных на пространстве Cn, также
справедливы свойства, выраженные равенствами 1) – 8) с. 113.

Важно иметь в виду, что C1 одновременно является и линейным
пространством, и множеством всех скаляров. В дальнейшем будем
обозначать C1 через C.

§ 2. Общие линейные пространства

1. Во многих разделах математики широко используются более
общие конструкции, чем пространства Rn и Cn.
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Говорят, что множество X является линейным пространством
над полем вещественных чисел, или просто вещественным линей-
ным пространством, если для любых элементов x, y ∈ X определена
операция сложения, т. е. определен элемент z = x + y ∈ X, называ-
емый суммой элементов x, y; для любого элемента x ∈ X и любого
вещественного числа α определен элемент αx ∈ X, называемый про-
изведением α и x.

Предполагается, что для этих двух операций выполнены аксиомы
линейного пространства, аналогичные свойствам пространства Rn

(см. 1) – 8) с. 113):
1) x+ y = y + x — коммутативность операции сложения;
2) (x+y)+z = x+(y+z) — ассоциативность операции сложения;
3) существует единственный элемент 0 ∈ X такой, что x + 0 = x

для любого элемента x ∈ X; элемент 0 называют нулевым элементом
пространства X;

4) для любого элемента x ∈ X существует единственный эле-
мент x′ такой, что x+x′ = 0; элемент x′ называют противоположным
элементу x;

5) α(x+ y) = αx+ αy — дистрибутивность по сложению векто-
ров;

6) (α+β)x = αx+βx — дистрибутивность по сложению скаля-
ров;

7) (αβ)x = α(βx) — ассоциативность по умножению скаляров;
8) 1x = x — нейтральность единичного скаляра.
Если при определении пространства X допускается умножение на

комплексные числа, то X называется линейным пространством над
полем комплексных чисел, или комплексным линейным простран-
ством. При этом предполагается, что выполняются аксиомы 1) – 8).

Элементы линейного пространства X часто будем называть век-
торами, а само пространство — векторным.

В дальнейшем на протяжении всей книги буквами X, Y, Z бу-
дем обозначать линейные пространства. Если не оговорено против-
ное, пространства будут предполагаться комплексными. По большей
части, определения и результаты очевидным образом переносятся на
вещественные пространства. Те случаи, когда возникают хоть какие-
то различия при переходе к вещественным пространствам, рассмат-
риваются особо.

2. Упражнение. Проверить, что вводимые ниже множества
являются линейными пространствами, т. е. для определенных на них
операций выполняются аксиомы 1) – 8). В некоторых случаях дела-
ются необходимые указания.
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1) Множество всех векторов V3 трехмерного евклидова простран-
ства с введенными обычным образом операциями умножения вектора
на число и сложения векторов (см. § 1, гл. 4).

2) Множество всех вещественных функций вещественного пере-
менного, определенных на интервале (a, b) вещественной оси, явля-
ется вещественным линейным пространством, если определить обыч-
ным образом понятие суммы двух функций и умножение функции на
вещественное число.

3) Множество всех вещественных функций, определенных и
непрерывных на замкнутом отрезке [a, b] вещественной оси, является
вещественным линейным пространством. Это пространство обозна-
чают через C[a, b]. При проверке того, что C[a, b] — линейное про-
странство, надо иметь в виду, что сумма двух непрерывных функций
есть непрерывная функция, при умножении функции на любое число
непрерывность функции также сохраняется.

4) Множество всех функций из пространства C[a, b], равных нулю
в некоторой фиксированной точке c из отрезка [a, b], — вещественное
линейное пространство.

5) Множество всех полиномов с комплексными коэффициентами,
на котором обычным образом определены операции сложения двух
полиномов и умножения полинома на число, является комплексным
линейным пространством.

6) Множество Qn, состоящее из всех полиномов степени не вы-
ше n, где n > 0, есть фиксированное целое число, и нулевого много-
члена, является комплексным линейным пространством. Здесь надо
иметь в виду, что сумма полиномов есть полином, степень которого
не превосходит максимальной степени слагаемых.

3. Упражнения.
1) Рассмотрим множество всех положительных функций, опреде-

ленных на вещественной оси. Определим на этом множестве опера-
цию сложения функций f и g как их произведение, а операцию умно-
жения функции f на число α как возведение ее в степень α. Будет
ли описанное нами множество линейным пространством?

2) Рассмотрим множество всех четных функций, определенных
на отрезке [−1, 1]. Определим на этом множестве операцию сложения
двух функций как их произведение, а операцию умножения функции
на число будем понимать обычным образом. Будет ли описанное нами
множество линейным пространством?
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§ 3. Линейная зависимость векторов

1. Векторы a, b из линейного пространства X будем называть
коллинеарными (пропорциональными, линейно зависимыми), если
существуют числа α, β, не равные одновременно нулю, такие, что

αa+ βb = 0.

Понятно, что в этом случае либо a = γb, либо b = δa, где γ, δ —
некоторые числа.

Примеры.
1) Единичные векторы ik, il пространства Cn при k ̸= l неколлинеарны (докажите).
2) Векторы x1 = (1+i, 3, 2−i, 5), x2 = (2, 3−3i, 1−3i, 5−5i) ∈ C4 пропорциональны,

так как 2/(1 + i) = (3− 3i)/3 = (1− 3i)/(2− i) = (5− 5i)/5 = 1− i.

2. В предыдущем пункте было введено понятие линейной зави-
симости двух векторов пространства X. Обобщая это понятие, будем
говорить, что система векторов {ai}mi=1 = {a1, a2, . . . ,am}, m > 1, ли-
нейно зависима, если существуют числа x1, x2, . . . , xm, среди которых
хотя бы одно отлично от нуля, такие, что

x1a
1 + x2a

2 + · · ·+ xma
m = 0. (3.1)

Пример. Система векторов

a1 =

 5
2
1

 , a2 =

 −1
3
3

 , a3 =

 9
7
5

 , a4 =

 3
8
7


из пространства R3 линейно зависима, так как, положив

x1 = 4, x2 = −1, x3 = −3, x4 = 2,

получим

x1a
1 + x2a

2 + x3a
3 + x4a

4 = 4

 5
2
1

−

 −1
3
3

− 3

 9
7
5

+ 2

 3
8
7

 =

 0
0
0

 = 0.

Полезно отметить, что это не единственный набор коэффициентов x1, x2, x3, x4, при
котором линейная комбинация x1a1 + x2a

2 + x3a
3 + x4a

4 обращается в нуль. Например,

2a1 + a2 − a3 = 2

 5
2
1

+

 −1
3
3

−

 9
7
5

 = 0,

3a2 + a3 − 2a4 = 3

 −1
3
3

+

 9
7
5

− 2

 3
8
7

 = 0.
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Определению линейной зависимости векторов удобно придать
матричную формулировку. Будем использовать следующие обозна-
чения: Am = {a1, a2, . . . , am} — упорядоченный набор векторов из
пространства X; для x ∈ Cm положим

Amx = x1a
1 + x2a

2 + · · ·+ xma
m.

Можно сказать тогда, что векторы a1, a2, . . . , am линейно зависимы,
если существует ненулевой вектор x ∈ Cm такой, что

Amx = 0.

Будем говорить, что вектор a ∈ X линейно выражается через
векторы b1, b2, . . . , bp, p > 1 (является линейной комбинацией этих
векторов), если существует вектор x ∈ Cp такой, что

a = x1b
1 + x2b

2 + · · ·+ xpb
p, (3.2)

в матричной записи:
a = Bpx.

Линейная комбинация векторов (3.2) называется нетривиальной, ес-
ли хотя бы одно из чисел x1, x2, . . .xp отлично от нуля.

Упражнения.

1) Доказать, что система векторов линейно зависима, если она
содержит линейно зависимую подсистему, в частности, если она со-
держит нулевой вектор.

2) Доказать, что для того, чтобы система векторов {ai}mi=1 была
линейно зависимой, необходимо и достаточно, чтобы она содержала
вектор ak, который линейно выражается через остальные.

3. Говорят, что система векторов {ai}mi=1 линейно выражается
через систему векторов {bi}pi=1, если существует матрица X(p,m) та-
кая, что

Am = BpX(p,m). (3.3)
В более подробной записи это означает, что

ak =

p∑
j=1

xj,kb
j, k = 1, 2, . . . ,m.
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3.1. Свойство транзитивности: если система векторов {ai}mi=1

линейно выражается через систему векторов {bi}pi=1, а та, в свою оче-
редь, — через систему векторов {ci}qi=1, то система векторов {ai}mi=1

линейно выражается через систему векторов {ci}qi=1.
Действительно, по определению имеем

Am = BpX(p,m), Bp = CqY (q, p).

Подставляя в первое из этих равенств выражение для Bp, получим

Am = CqZ(q,m),

где
Z(q,m) = Y (q, p)X(p,m).

3.2. Системы векторов {ai}mi=1 и {bi}pi=1 называются эквивалент-
ными, если существуют матрицы X(p,m), Y (m, p) такие, что

Am = BpX(p,m), Bp = AmY (m, p), (3.4)

т. е. каждый вектор одной системы линейно выражается через векто-
ры другой системы.

Упражнение. Используя свойство транзитивности, показать,
что если вектор x ∈ X линейно выражается через систему векто-
ров {ai}mi=1 , то он линейно выражается и через эквивалентную ей
систему векторов {bi}pi=1.

§ 4. Линейно независимые системы векторов

1. Будем говорить, что система векторов Am= {ai}mi=1 линейно
независима, если из равенства Amx = 0 вытекает, что x = 0.

Линейно независимые системы векторов существуют. Приведем
простые примеры.

1) Любой вектор a ̸= 0 образует линейно независимую систему,
состоящую из одного вектора.

2) Единичные векторы i1, i2, . . . , im ∈ Cn, m 6 n, линейно неза-
висимы. Это утверждение сразу же вытекает из того, что для любого
вектора x ∈ Cm вектор x1i1 + x2i

2 + · · ·+ xmi
m ∈ Cn имеет вид

(x1, x2, . . . , xm, 0, . . . , 0)

и, следовательно, равен нулю тогда и только тогда, когда x = 0.
3) Система векторов φ0(z) ≡ 1, φ1(z) = z, . . . , φk(z) = zk, где z —

комплексная переменная, k > 0 — целое число, линейно независима
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в пространстве полиномов. Для доказательства этого утверждения
достаточно вспомнить, что если полином равен нулю, то все его ко-
эффициенты — нули (см. п. 2.2, с. 86).

Непосредственно из упражнения 1), с. 118 вытекает

2. Теорема. Любая подсистема линейно независимой системы
векторов {ai}mi=1 линейно независима.

3. Теорема. Любая система a1, a2, . . . , an, b ∈ Cn из n + 1
вектора линейно зависима.

Доказательство. Пусть система векторов {ai}ni=1 линейно
зависима. Тогда доказываемое утверждение верно. Если векто-
ры {ai}ni=1 линейно независимы, то система уравнений

Ax = b, (4.1)

где A — матрица, столбцами которой являются компоненты векто-
ров ak, k = 1, 2, . . . , n, крамеровская, и потому имеет решение x при
любой правой части b, значит,

x1a
1 + · · ·+ xna

n = b,

т. е. система векторов a1, a2, . . . , an, b линейно зависима. �
4. Как очевидное следствие только что доказанного утверждения

получаем, что любая система векторов {ai}mi=1 ∈ Cn, m > n, линейно
зависима.

5. Теорема. Пусть система векторов Am = {ai}mi=1 простран-
ства X линейно независима и линейно выражается через систе-
му Bp = {bi}pi=1. Тогда m 6 p.

Доказательство. Предположим противное, т. е. пусть m > p.
По определению существует матрица X размера p × m такая,
что Am = BpX. Как следствие, для любого вектора y ∈ Cm име-
ем Amy = BpXy. Столбцы матрицы X — векторы из простран-
ства Cp. Их количество m > p, следовательно, они линейно зави-
симы. Поэтому существует вектор y ∈ Cm, не равный нулю и такой,
что Xy = 0, но тогда и Amy = 0, т. е. вопреки предположению век-
торы a1, a2, . . . , am линейно зависимы. �

6. Следствие. Любые две эквивалентные линейно независимые
системы векторов имеют равные количества векторов.
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7. Теорема. Пусть {ak}mk=1 — линейно независимые векторы.
Пусть система векторов {bk}mk=1 линейно выражается через систе-
му векторов {ak}mk=1, т. е. существует квадратная матрица X по-
рядка m такая, что Bm = AmX. Для того, чтобы система векто-
ров {bk}mk=1 была линейно независимой, необходимо и достаточно,
чтобы матрица X была невырожденной.

Упражнение. Следуя рассуждениям пункта 5, доказать теоре-
му 7.

8. Важно отметить, что матрица X, фигурирующая в теоре-
ме 7, однозначно определяется по системам векторов Am, Bm. В са-
мом деле, если существует матрица X̃ ̸= X такая, что Bm = AmX̃,
то Am(X̃ −X) = 0, но это вследствие линейной независимости систе-
мы векторов Am невозможно, если X̃ ̸= X.

§ 5. Ранг системы векторов

1. Фиксируем в пространстве X некоторую систему векто-
ров {ai}mi=1. Будем считать, что не все векторы этой системы нуле-
вые. Тогда указанная система обязательно содержит линейно неза-
висимую подсистему векторов. В частности, она сама может быть
линейно независимой.

Подсистема {aik}rk=1 ⊂ {ai}mi=1, состоящая из линейно независи-
мых векторов, называется максимальной, если добавление к ней лю-
бого нового вектора из {ai}mi=1 приводит к линейно зависимой системе.

Пример. Рассмотрим систему векторов

a1 =

 2
−2
−4

 , a2 =

 1
9
3

 , a3 =

 −2
−4
1

 , a4 =

 3
7

−1


пространства R3. Векторы a1, a2, очевидно, линейно независимы и образуют макси-
мальную линейно независимую подсистему, так как определители∣∣∣∣∣∣

2 1 −2
−2 9 −4
−4 3 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣

0 10 −6
−2 9 −4
0 −15 9

∣∣∣∣∣∣ ,∣∣∣∣∣∣
2 1 3

−2 9 7
−4 3 −1

∣∣∣∣∣∣ =
∣∣∣∣∣∣

0 10 10
−2 9 7
−0 −15 −15

∣∣∣∣∣∣ ,
составленные из компонент векторов a1, a2, a3 и a1, a2, a4 соответственно, равны нулю,
и, следовательно, векторы a1, a2, a3 и a1, a2, a4 линейно зависимы.

Вообще говоря, система {ai}mi=1 может содержать несколько мак-
симальных линейно независимых подсистем, однако, справедлива
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2. Теорема. Любые две максимальные линейно независимые
подсистемы системы {ai}mi=1 содержат одно и то же количество
векторов.

Доказательство. Заметим, что из определения максимальной
линейно независимой подсистемы непосредственно вытекает, что лю-
бой вектор из {ai}mi=1 линейно выражается через векторы ее макси-
мальной линейно независимой подсистемы {aik}rk=1. Вследствие оче-
видного равенства

aik = aik +
m∑

i=1,i̸=ik

0ai

справедливо и обратное, т. е. система {ai}mi=1 и любая ее максимальная
линейно независимая подсистема эквивалентны. Но тогда, очевидно,
эквивалентны и любые две максимальные линейно независимые под-
системы системы {ai}mi=1. Отсюда в силу следствия 6, с. 120, вытекает,
что любые две максимальные линейно независимые подсистемы си-
стемы {ai}mi=1 имеют равные количества векторов. �

3. Полученный результат позволяет ввести следующее определе-
ние. Рангом системы векторов пространства X называется количе-
ство векторов ее максимальной линейно независимой подсистемы.

Например, ранг системы векторов a1, a2, a3, a4, приведенной на
с. 121, равен двум.

Количество линейно независимых векторов пространства Cn не
превосходит n. Поэтому ранг любой системы векторов из Cn не пре-
восходит n.

Ясно, что система векторов {ai}mi=1 любого линейного простран-
ства X линейно независима тогда и только тогда, когда ее ранг ра-
вен m.

§ 6. Конечномерные линейные пространства. Базисы

1. Базисы в пространстве Cn. Всякая линейно независимая си-
стема {ek}nk=1 (состоящая из n векторов) называется базисом про-
странства Cn. Единичные векторы {ik}nk=1 образуют так называемый
естественный базис пространства Cn.

Из свойства 8 определителей (см. с. 79) вытекает, что для того,
чтобы система {ek}nk=1 ⊂ Cn была базисом, необходимо и достаточно,
чтобы матрица, столбцами которой служат векторы e1, e2, . . . , en,
была невырожденной.
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При доказательстве теоремы 3, с. 120, было показано, что ес-
ли En = {ek}nk=1 есть базис пространства Cn, то любой вектор x ∈ Cn

может быть представлен в виде линейной комбинации

x = ξ1e
1 + ξ2e

2 + · · ·+ ξne
n. (6.1)

Коэффициенты линейной комбинации (6.1) однозначно определяют-
ся по вектору x и удовлетворяют крамеровской системе линейных
алгебраических уравнений

Enξ = x. (6.2)

Здесь ξ = (ξ1, ξ2, . . . , ξn) — столбец коэффициентов разложения век-
тора x по базису {ek}nk=1.

2. Конечномерные пространства. Линейное пространство X на-
зывается конечномерным, если существуют векторы

En = {e1, e2, . . . , en}, (6.3)

образующие линейно независимую систему в пространстве X, и такие,
что любой вектор x ∈ X представим в виде линейной комбинации

x =
n∑
k=1

ξke
k = Enξ, ξ ∈ Cn. (6.4)

Говорят в этом случае, что векторы {ek}nk=1 образуют базис простран-
ства X. Число n называют размерностью пространства X. Линейное
пространство X размерности n будем обозначать через Xn. Коэффи-
циенты разложения ξ1, ξ2, . . . , ξn называют координатами вектора x
в базисе {ek}nk=1.

2.1. Координаты любого вектора x ∈ Xn однозначно опре-
деляются по базису {ek}nk=1. Действительно, пусть наряду с раз-
ложением (6.4) существует разложение x = Enξ̃, тогда, очевидно,
En(ξ − ξ̃) = 0, откуда вследствие линейной независимости системы
векторов {ek}nk=1 получаем, что ξ = ξ̃.

2.2. Теорема. В n-мерном линейном пространстве Xn любая
система Ẽn = {ẽk}nk=1, состоящая из n линейно независимых векторов,
является базисом.

Доказательство. Достаточно убедиться, что любой вектор
x ∈ Xn представим в виде линейной комбинации

x = Ẽnξ̃. (6.5)
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По определению n-мерного пространства в нем существует базис En.
Следовательно, любой вектор из Ẽn представим в виде линейной ком-
бинации векторов базиса En, иными словами, существует квадратная
матрица T порядка n такая, что Ẽn = EnT . Матрица T невырождена
(см. п. 7, с. 121). Поскольку En — базис, существует вектор ξ ∈ Cn та-
кой, что x = Enξ. Поскольку матрица T невырождена, можно найти
вектор ξ̃ ∈ Cn такой, что ξ = T ξ̃. В результате, получим соотноше-
ние x = EnT ξ̃ = Ẽnξ̃ вида (6.5). �

3. Если пространство не является конечномерным, его называют
бесконечномерным.

4. Приведем примеры конечномерных и бесконечномерных про-
странств.

1) Любые три некомпланарных вектора пространства V3 образу-
ют базис (см. § 1, гл. 4). Пространство V3 трехмерно.

2) Пространства Cn, Rn, очевидно, конечномерны. Их размер-
ность равна n.

3) Пространство Qn всех полиномов степени не выше n конеч-
номерно. Его размерность равна n + 1. Базисом в пространстве
полиномов степени не выше n является, например, система векто-
ров {1, z, . . . , zn}, где z — комплексная переменная.

4) Пространство всех полиномов бесконечномерно. Действитель-
но, в нем линейно независима система векторов {1, z, . . . , zk} при лю-
бом, сколь угодно большом, целом k.

5) Пространство C[a, b] бесконечномерно, так как содержит поли-
номы с вещественными коэффициентами любого порядка.

§ 7. Замена базиса

1. Пусть En ={ek}nk=1, Ẽn = {ẽk}nk=1 — базисы пространства Xn.
Как уже говорилось, En, Ẽn — эквивалентные системы векторов, су-
ществуют квадратные матрицы T , T̃ порядка n такие, что

En = ẼnT̃ , Ẽn = EnT. (7.1)

Матрицу T называют матрицей перехода от базиса En к базису Ẽn.
Матрицы T и T̃ взаимно обратны. Действительно, подставляя вы-
ражение для Ẽn из второго равенства (7.1) в первое, получим, что
En = EnT T̃ . Отсюда вследствие линейной независимости векторов ба-
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зиса вытекает (см. п. 8, с. 121), что

T T̃ = I. (7.2)

Пусть известны коэффициенты ξ разложения некоторого векто-
ра x ∈ Xn по базису {ek}nk=1, и пусть задана матрица перехода T
к базису {ẽk}nk=1. Получим формулу для вычисления коэффициен-
тов ξ̃ разложения того же вектора x по базису {ẽk}nk=1. В соответ-
ствии с (6.4) имеем x = Enξ, но En = ẼnT̃ = ẼnT−1 (см. (7.1), (7.2)),
следовательно, x = ẼnT−1ξ, а это означает, что

ξ̃ = T−1ξ. (7.3)

Пример. Пусть векторы e1, e2, e3 образуют базис в трехмерном пространстве X3.
Рассмотрим векторы

ẽ1 = 5e1 − e2 − 2e3,

ẽ2 = 2e1 + 3e2,

ẽ3 = −2e1 + e2 + e3.

Записывая эти равенства в матричном виде, получим Ẽ = ET , где Ẽ = {ẽ1, ẽ2, ẽ3},
E = {e1, e2, e3},

T =

 5 2 −2
−1 3 1
−2 0 1

 .

Нетрудно видеть, что

detT =

∣∣∣∣∣∣
5 2 −2

−1 3 1
−2 0 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 2 −2
1 3 1
0 0 1

∣∣∣∣∣∣ = 1,

следовательно, матрица T невырождена. Поэтому векторы ẽ1, ẽ2, ẽ3 также образуют
базис пространства X3. Рассмотрим вектор a = e1 + 4e2 − e3. Координатами этого
вектора в базисе E являются числа ξ1 = 1, ξ2 = 4, ξ3 = −1, т. е. a = Eξ, где ξ = (ξ1, ξ2, ξ3).
Найдем координаты того же вектора, но в базисе Ẽ . Вычислим матрицу T−1. Получим

T−1 =

 3 −2 8
−1 1 −3
6 −4 17

 ,

и, следовательно,

ξ̃ = T−1ξ =

 3 −2 8
−1 1 −3
6 −4 17

 1
4

−1

 =

−13
6

−27

 ,

т. е. a = −13ẽ1 + 6ẽ2 − 27ẽ3. Мы нашли, таким образом, представление вектора a в
базисе Ẽ .
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2. Отметим, что в пространстве Xn существует сколько угод-
но базисов. Действительно, если En — базис, то система векто-
ров Ẽn = EnT , где T — произвольная невырожденная матрица, также
является базисом (см. теорему 7, с. 121).

3. Приведем примеры часто используемых базисов в линейном
пространстве полиномов с комплексными коэффициентами степени
не выше n.

1) Естественным базисом в этом пространстве называют базис,
составленный из степеней независимой переменной {1, z, . . . , zn}.

2) Как показано на с. 86, полиномы

Φj(z) =
(z − z0)(z − z1) · · · (z − zj−1)(z − zj+1) · · · (z − zn)

(zj − z0)(zj − z1) · · · (zj − zj−1)(zj − zj+1) · · · (zj − zn)
,

j = 0, 1, 2, . . . , n, где z0, z1, . . . , zn — произвольные попарно раз-
личные комплексные числа, также образуют базис в пространстве
полиномов. Этот базис принято называть базисом Лагранжа.

3) Покажем, что полиномы

φ0(z) ≡ 1, φ1(z) = (z − z0), φ2(z) = (z − z0)(z − z1), . . . ,

φn(z) = (z − z0)(z − z1) · · · (z − zn−1), (7.4)

где z0, z1, . . . , zn−1 — произвольные попарно различные числа, обра-
зуют базис. Как и в случае базиса Лагранжа, достаточно установить,
что для z0, z1, . . . , zn, где zn не совпадает ни с одним из чисел z0,
z1, . . . , zn−1, система уравнений

c0φ0(zj) + c1φ1(zj) + · · ·+ cnφn(zj) = hj, j = 0, 1, 2, . . . , n, (7.5)

имеет единственное решение при любых h0, h1, . . .hn, но это очевид-
но, так как система (7.5) треугольна:

c0 = h0,

c0 + c1(z1 − z0) = h1,

c0 + c1(z2 − z0) + c2(z2 − z0)(z2 − z1) = h2, (7.6)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
c0 + c1(zn − z0) + · · ·+ cn(zn − z0)(zn − z1) · · · (zn − zn−1) = hn,

причем коэффициенты, стоящие на диагонали, отличны от нуля. Ба-
зис (7.4) называют базисом Ньютона.



Глава 7
Евклидовы пространства

Как уже говорилось, линейные пространства, изучавшиеся в
предыдущей главе, по своим свойствам во многом аналогичны трех-
мерному пространству векторов V3 (направленных отрезков). Одна-
ко, такие важные понятия, как длина вектора, угол между вектора-
ми, в них отсутствуют. В трехмерном евклидовом пространстве, зная
длины двух векторов и угол между ними, можно вычислить скаляр-
ное произведение векторов. Использование скалярного произведения
позволяет решать многие геометрические задачи в трехмерном ев-
клидовом пространстве. Для общих линейных пространств понятие
скалярного произведения вводится аксиоматически, и на основе ска-
лярного произведения определяются геометрические понятия, анало-
гичные случаю трехмерного евклидова пространства.

§ 1. Евклидовы пространства Rn и Cn

1. Вещественное евклидово пространство Rn. Будем говорить,
что на пространстве Rn задано скалярное произведение, если каждой
паре векторов x, y ∈ Rn поставлено в соответствие вещественное чис-
ло (x, y) и при этом выполнены так называемые аксиомы скалярного
произведения (соответствующие свойствам скалярного произведения
векторов трехмерного евклидова пространства):

1) (x, x) > 0 для любого x ∈ Rn, равенства (x, x) = 0 и x = 0
эквивалентны;

2) (x, y) = (y, x) для любых x, y ∈ Rn;
3) (αx + βy, z) = α(x, z) + β(y, z) для любых x, y, z ∈ Rn и лю-

бых α, β ∈ R.
Из 2), 3) очевидным образом вытекает, что
4) (x, αy + βz) = α(x, y) + β(x, z) для любых x, y, z ∈ Rn и лю-

бых α, β ∈ R.
Если на пространстве Rn введено скалярное произведение, то его

называют вещественным евклидовым пространством.
Существует бесчисленное множество способов введения скаляр-
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ного произведения на пространстве Rn, например, можно положить

(x, y) =
n∑
k=1

xkyk.

Такое скалярное произведение на Rn называют стандартным. Про-
верка аксиом 1) – 3) для стандартного скалярного произведения не
вызывает никаких затруднений.

Укажем еще целый класс скалярных произведений. Фиксируем n
положительных чисел ρ1, ρ2, . . . , ρn и положим

(x, y) =
n∑
k=1

ρkxkyk. (1.1)

Справедливость аксиом 1) – 3) очевидна. Меняя числа ρ1, ρ2, . . . , ρn,
получаем различные скалярные произведения.

Можно показать, что если определить длину (модуль) вектора x
при помощи соотношения |x| =

√
(x, x), то длина вектора из Rn бу-

дет обладать свойствами, аналогичными свойствам длины вектора в
трехмерном евклидовом пространстве, а именно1):

1) |x| > 0 для любого вектора x ∈ Rn, равенство |x| = 0 эквива-
лентно равенству x = 0;

2) |αx| = |α||x| для любых x ∈ Rn и α ∈ R;
3) |x+ y| 6 |x|+ |y| для любых x, y ∈ Rn.
Неравенство 3) называют неравенством треугольника (неравен-

ством Минковского2)).
Важно понимать, что, определяя различными способами скаляр-

ное произведение на Rn, мы получаем различные вещественные ев-
клидовы пространства.

Пространство Rn со стандартным скалярным произведением ча-
сто называют n-мерным арифметическим пространством. Это про-
странство играет важную роль во многих разделах математики. На-
пример, оно систематически используется в математическом анализе
при изучении функций многих вещественных переменных.

2. Комплексное евклидово пространство Cn. Будем говорить, что
на пространстве Cn задано скалярное произведение, если каждой па-
ре векторов x, y ∈ Cn поставлено в соответствие число (x, y), вообще
говоря, комплексное, и при этом выполнены аксиомы скалярного про-
изведения:

1)Обоснование неравенства 3) проведено в п. 3 на с. 132.
2)Герман Минковский (Hermann Minkowski; 1864 — 1909) — немецкий математик.
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1) (x, x) > 0 для любого x ∈ Cn, равенства (x, x) = 0 и x = 0
эквивалентны;

2) (x, y) = (y, x) для любых x, y ∈ Cn, напомним, что черта озна-
чает переход к комплексно сопряженному числу, и отметим, что в
отличие от вещественного евклидова пространства скалярное произ-
ведение в комплексном пространстве некоммутативно;

3) (αx + βy, z) = α(x, z) + β(y, z) для любых x, y, z ∈ Cn и лю-
бых α, β ∈ C.

Из 2), 3) очевидным образом вытекает, что
4) (x, αy + βz) = α(x, y) + β(x, z) для любых x, y, z ∈ Cn и лю-

бых α, β ∈ C.
Если на пространстве Cn введено скалярное произведение, то его

называют комплексным евклидовым пространством (часто говорят
также: унитарное пространство).

Можно указать бесчисленное множество способов введения ска-
лярного произведения на пространстве Cn, например, можно поло-
жить

(x, y) =
n∑
k=1

xkyk.

Такое скалярное произведение на Cn называют стандартным. Про-
верка аксиом 1) – 3) не вызывает никаких затруднений. На Cn также
можно ввести скалярное произведение, аналогичное (1.1).

Длину (модуль) вектора x определяют при помощи соотноше-
ния |x| =

√
(x, x). При этом выполняются свойства 1) – 3), с. 128.

§ 2. Общие евклидовы пространства

1. Будем говорить, что на вещественном линейном простран-
стве X введено скалярное произведение, если каждой паре элемен-
тов x, y этого пространства поставлено в соответствие вещественное
число (x, y), и при этом выполнены аксиомы скалярного произведе-
ния, задаваемые соотношениями вида 1) – 3) с. 127. Если на линейном
вещественном пространстве X введено скалярное произведение, его
называют вещественным евклидовым пространством.

2. Говорят, что на комплексном линейном пространстве X вве-
дено скалярное произведение, если каждой паре элементов x, y этого
пространства поставлено в соответствие, вообще говоря, комплексное
число (x, y), и при этом выполнены аксиомы скалярного произведе-
ния, задаваемые соотношениями вида 1) – 3), с. 129. Если на линейном
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комплексном пространстве X введено скалярное произведение, его
называют комплексным евклидовым (унитарным) пространством.

3. Упражнение. Проверить, что в рассматриваемых ниже при-
мерах аксиомы скалярного произведения выполнены.

1) Множество всех векторов трехмерного пространства с введен-
ными обычным образом линейными операциями и скалярным произ-
ведением (см. § 2, гл. 4) — вещественное евклидово пространство.

2) Пусть p — интегрируемая положительная на интервале (a, b)
вещественной оси вещественная функция. Пространство C[a, b] пре-
вращается в вещественное евклидово пространство, если определить
скалярное произведение элементов f и g пространства C[a, b] по фор-
муле

(f, g) =

b∫
a

p(x)f(x)g(x)dx. (2.1)

3) Для любой пары

Pn(z) = a0 + a1z + · · ·+ anz
n, Qn(z) = b0 + b1z + · · ·+ bnz

n

элементов пространства Qn определим скалярное произведение по
формуле

(Pn, Qn) =
n∑
j=0

ρjajbj,

где ρ0, ρ1, . . . , ρn — заданные положительные числа. После введения
таким образом скалярного произведения пространство Qn становится
комплексным евклидовым пространством.

4. Любое конечномерное линейное пространство Xn можно пре-
вратить в евклидово пространство. Действительно, пусть {ek}nk=1 —

базис пространства Xn, x =
n∑
k=1

ξke
k, y =

n∑
k=1

ηke
k — элементы про-

странства Xn. Примем в качестве скалярного произведения элемен-
тов x, y величину

(x, y) =
n∑
k=1

ξkη̄k. (2.2)

Нетрудно убедиться, что все аксиомы скалярного произведения при
этом будут выполнены.
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§ 3. Неравенство Коши — Буняковского

1. Тождество Пифагора1). Пусть a, b — векторы трехмерного
евклидова пространства V3, причем векторы a− b и b ортогональны,
т. е. (a− b, b) = 0 2). Тогда по теореме Пифагора

|a|2 = |a− b|2 + |b|2. (3.1)
Пусть теперь a, b — векторы произвольного евклидова простран-
ства X такие, что (a− b, b) = 0. Тождество (3.1) (тождество Пифа-
гора) справедливо и в этом случае, если положить, что |v| =

√
(v, v)

для любого вектора v ∈ X. Действительно, проводя элементарные
выкладки, будем иметь

|a|2 = (a, a) = (a− b+ b, a− b+ b) =

= (a− b, a− b) + (b, b) + (a− b, b) + (b, a− b) =

= (a− b, a− b) + (b, b) + (a− b, b) + (a− b, b) =

= (a− b, a− b) + (b, b) = |a− b|2 + |b|2.
2. Теорема. Пусть X — евклидово пространство. Для любых

векторов x, y ∈ X справедливо неравенство
|(x, y)|2 6 (x, x)(y, y). (3.2)

Равенство в (3.2) достигается тогда и только тогда, когда векто-
ры x, y пропорциональны.

Неравенство (3.2) обычно называют неравенством Коши — Буня-
ковского3).

Доказательство. Если y = 0, то неравенство (3.2) превраща-
ется в тривиальное равенство, и при любом x ∈ X векторы x, y
пропорциональны, так как 0x + y = 0. Поэтому в дальнейшем счи-
таем, что y ̸= 0. Положим e = |y|−1y. Очевидно, что (e, e) = 1,
а (x − (x, e)e, (x, e)e) = 0, значит, в тождестве (3.1) можно поло-
жить a = x, b = (x, e)e и получить, что |x|2 = |x− (x, e)e|2 + |(x, e)|2.
Отсюда следует, что |x|2 > |(x, e)|2. Последнее неравенство экви-
валентно (3.2). Пусть |x|2 = |(x, e)|2, т. е. неравенство (3.2) пре-
вращается в равенство. Тогда |x − (x, e)e|2 = 0, откуда вытекает,
что x = (x, e)e, или x = ((x, y)/|y|2)y, следовательно, векторы x, y
пропорциональны. Обратно, если векторы x, y пропорциональны, то,
как нетрудно убедиться, левая и правая части (3.2) совпадают. �

1)Пифагор Самосский (570 — 490 гг. до н. э.) — древнегреческий философ и математик.
2)Можно сказать, что вектор b получен проектированием вектора a на прямую, параллельную

вектору b.
3)Виктор Яковлевич Буняковский (1804 — 1889) — русский математик.
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3. Величина |x| =
√

(x, x) называется длиной (модулем) векто-
ра x. Неравенство (3.2) часто записывают в виде

|(x, y)| 6 |x||y| ∀x, y ∈ X. (3.3)

Введенное понятие длины обладает свойствами, аналогичными
свойствам длины вектора в трехмерном евклидовом пространстве, а
именно:

1) |x| > 0 для любого вектора x ∈ X, равенство |x| = 0 эквива-
лентно равенству x = 0;

2) |αx| = |α||x| для любых x ∈ X и α ∈ C;
3) |x+ y| 6 |x|+ |y| для любых x, y ∈ X.
Неравенство 3) называют неравенством треугольника (неравен-

ством Минковского).
Справедливость утверждений 1), 2) очевидна. Покажем, что нера-

венство треугольника вытекает из неравенства Коши — Буняковско-
го. В самом деле,

|x+ y|2 = (x+ y, x+ y) = |x|2 + 2Re(x, y) + |y|2.

Вследствие (3.3) справедливо неравенство |Re(x, y)| 6 |x||y|, откуда
получаем, что

|x+ y|2 6 |x|2 + 2|x||y|+ |y|2 = (|x|+ |y|)2.

Последнее неравенство эквивалентно неравенству 3).

4. По аналогии с трехмерным евклидовым пространством V3

векторы x, y естественно называть ортогональными, если (x, y) = 0.
Пример. Векторы ik, il ∈ Cn при k ̸= l ортогональны относительно стандартного

скалярного произведения.

5. Из неравенства (3.3) вытекает, что если X — вещественное ев-
клидово пространство, то (x, y)/|x||y| ∈ [−1, 1] для любых не равных
нулю векторов x, y ∈ X. Это дает возможность ввести понятие угла
между векторами x, y, а именно, принимают, что косинус этого угла
равен (x, y)/|x||y|.

§ 4. Матрица Грама

1. Пусть {ai}mi=1 — система векторов евклидова пространства X.
Построим квадратную матрицу
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G =


(a1, a1) (a2, a1) . . . (am, a1)
(a1, a2) (a2, a2) . . . (am, a2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(a1, am) (a2, am) . . . (am, am)

 (4.1)

порядка m. Матрица G называется матрицей Грама1) системы век-
торов {ai}mi=1.

Отметим, что поскольку (ak, al) = (al, ak), то матрица Грама лю-
бой системы векторов — эрмитова матрица (см. с. 107).

1.1. Теорема. Для того, чтобы система векторов {ai}mi=1 была
линейно независимой, необходимо и достаточно, чтобы ее матри-
ца Грама была невырожденной.

Доказательство. Пусть матрица ГрамаG невырождена. Тогда
система векторов {ai}mi=1 линейно независима. Действительно, если

x1a
1 + x2a

2 + · · ·+ xma
m = 0,

то
(x1a

1 + x2a
2 + · · ·+ xma

m, ak) = 0, k = 1, . . . ,m.

Записывая эти равенства более подробно, получаем

x1(a
1, ak) + x2(a

2, ak) + · · ·+ xm(a
m, ak) = 0, k = 1, . . . ,m. (4.2)

Система (4.2) — однородная система уравнений относительно неиз-
вестных x1, x2, . . . , xm с матрицей G. Поскольку матрица Грама G
невырождена, система имеет только тривиальное решение, следова-
тельно, x1, x2, . . . , xm = 0. Обратно, пусть система векторов {ai}mi=1

линейно независима. Составим линейную комбинацию столбцов мат-
рицы G с некоторым коэффициентами x1, x2, . . . , xm. Приравнивая
эту линейную комбинацию нулю, получим

x1(a
1, ak) + x2(a

2, ak) + · · ·+ xm(a
m, ak) = 0, k = 1, . . . ,m. (4.3)

Умножим почленно равенство с номером k на xk, затем сложим
почленно полученные равенства. После элементарных преобразова-
ний сможем написать, что(

m∑
k=1

xka
k,

m∑
k=1

xka
k

)
= 0,

1)Йорген Педерсен Грам (Jorgen Pedersen Gram; 1850 — 1916) — датский математик.
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следовательно,
x1a

1 + x2a
2 + · · ·+ xma

m = 0. (4.4)
Поскольку система векторов {ai}mi=1 линейно независима, то из (4.4)
вытекает, что x1, x2, . . . , xm = 0. Таким образом, мы получили, что
если линейная комбинация столбцов матрицы G обращается в нуль,
то все коэффициенты этой линейной комбинации равны нулю. Это
означает, что столбцы матрицы G линейно независимы, т. е. матри-
ца G невырождена. �

Пример. Исследуем на линейную зависимость векторы

x1 = (1, 3, 3, 1,−2), x2 = (3, 3, 1,−3, 2), x3 = (1, 3,−1, 1, 3)

пространства R5. Введем на этом пространстве стандартное скалярное произведение и
составим матрицу Грама третьего порядка G = {(xi, xj)}3i,j=1. Выполняя элементарные
вычисления, получим

G =

24 8 2
8 32 14
2 14 21

 , det(G) = 24

∣∣∣∣∣∣
6 2 1
2 8 7
1 7 21

∣∣∣∣∣∣ = 24

∣∣∣∣∣∣
0 −40 −125
0 − 6 − 35
1 7 21

∣∣∣∣∣∣ = 24 · 650,

т. е. векторы x1, x2, x3 линейно независимы.

§ 5. Ортогональные системы векторов

1. Система векторов {ai}mi=1 называется ортогональной, если все
векторы ai, i = 1, 2, . . . ,m, не нули и (ai, ak) = 0 при i ̸= k.

Матрица Грама ортогональной системы — диагональная невы-
рожденная матрица. Очевидно, ортогональная система линейно неза-
висима.

Система векторов {ai}mi=1 называется ортонормированной, ес-
ли (ai, ak) = δik для i, k = 1, 2, . . . ,m.

Матрица Грама ортонормированной системы — единичная матри-
ца. Все векторы ортонормированной системы имеют длину, равную
единице.

2. Матрица T перехода от любого ортонормированного бази-
са {ek}nk=1 к другому ортонормированному базису {ẽk}nk=1 евклидо-
ва пространства Xn является унитарной. В самом деле, записывая
равенство

Ẽn = EnT (5.1)
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более подробно, получим ẽk =
n∑
j=1

tjke
j, k = 1, 2, . . . , n. Вследствие

ортонормированности базиса Ẽn отсюда получаем, что(
n∑
j=1

tjke
j,

n∑
j=1

tjle
j

)
= (ẽk, ẽl) = δkl, k, l = 1, 2, . . . , n.

Преобразуя левую часть последнего равенства с учетом ортонорми-
рованности базиса En, будем иметь, что

n∑
j=1

tjktjl = δkl, k, l = 1, 2, . . . , n,

а это и означает, что матрица T унитарна (см. с. 108).
Важно отметить, что, как следует из только что выполненных

выкладок, справедливо и обратное утверждение, а именно, если ба-
зис En ортонормирован, а матрица T унитарна, то базис Ẽn = EnT
также ортонормирован.

§ 6. Процесс ортогонализации Грама — Шмидта

1. Теорема Грама — Шмидта1). Всякая линейно независи-
мая система {ai}mi=1 эквивалентна некоторой ортонормированной
системе {bi}mi=1, причем вектор b1 можно выбрать пропорциональ-
ным вектору a1.

Доказательство. Положим h1 = a1, h2 = x2,1h
1+a2. Вектор h1

не нуль, поскольку вектор a1 как элемент линейно независимой си-
стемы не нуль. При любом значении x2,1 вектор h2 также не нуль,
поскольку h2 — линейная комбинация линейно независимых векто-
ров, причем один из коэффициентов этой линейной комбинации не
равен нулю (он равен единице).

Выберем теперь число x2,1 так, чтобы вектор h2 был ортогонален
вектору h1. Записывая это условие, получим 0 = x2,1(h

1, h1)+(a2, h1),
откуда x2,1 = −(a2, h1)/(h1, h1). Итак, построены векторы h1, h2 та-
кие, что (h1, h2) = 0, h1, h2 ̸= 0.

Предположим теперь, что построены векторы h1, h2, . . . , hk та-
кие, что h1, h2, . . . , hk ̸= 0 и (hi, hj) = 0 для i ̸= j, i, j = 1, . . . , k.
Будем разыскивать вектор hk+1 в виде

hk+1 = xk+1,1h
1 + xk+1,2h

2 + · · ·+ xk+1,kh
k + ak+1. (6.1)

1)Эрхард Шмидт (Erhard Schmidt; 1876 — 1959) — немецкий математик.
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При любых значениях коэффициентов xk+1,1, . . . , xk+1,k век-
тор hk+1 не нуль. В самом деле, по построению векторы h1, h2, . . . , hk
линейно выражаются через векторы системы {ai}mi=1, причем так, что
в выражение для вектора hj входят векторы системы {ai}mi=1 с номе-
рами, не превосходящими j. Отсюда вытекает, что вектор hk+1 есть
линейная комбинация линейно независимых векторов a1, a2, . . . , ak+1,
причем вектор ak+1 входит в эту линейную комбинацию с коэффици-
ентом, равным единице.

Выберем числа xk+1,1, xk+1,2, . . . , xk+1,k так, чтобы вектор hk+1

был ортогонален уже построенным векторам h1, h2, . . . , hk. Последо-
вательно выполняя эти условия, найдем xk+1,1 = −(ak+1, h1)/(h1, h1),
xk+1,2 = −(ak+1, h2)/(h2, h2), . . . , xk+1,k = −(ak+1, hk)/(hk, hk).

Продолжая описанный процесс, построим ортогональную систему
ненулевых векторов {hi}mi=1. Полагая затем

bi = (|hi|)−1hi, i = 1, . . . ,m, (6.2)

получим ортонормированную систему векторов {bi}mi=1.
Как было установлено выше, система векторов {hi}mi=1 линейно

выражается через систему векторов {ai}mi=1. Формула (6.1) показы-
вает, что система векторов {ai}mi=1 линейно выражается через систе-
му векторов {hi}mi=1, формула (6.2) показывает, что системы {bi}mi=1,
{hi}mi=1 эквивалентны. Таким образом, все три рассматриваемые си-
стемы векторов попарно эквивалентны.

Заметим, наконец, что векторы a1, b1 пропорциональны, так как
по построению b1 = (|a1|)−1a1. �

Замечание. Доказательство теоремы 1 конструктивно. Оно со-
держит описание способа построения по любой линейно независимой
системе эквивалентной ортонормированной системы. Этот метод на-
зывается процессом ортогонализации Грама — Шмидта. Следует,
однако, иметь в виду, что в вычислительной практике процесс ор-
тогонализации Грама — Шмидта используется очень редко, так как
обычно он подвержен сильному влиянию погрешностей округления.

Пример. Даны полиномы Q0(x) ≡ 1, Q1(x) = x, Q2(x) = x2 вещественной пере-
менной x. Используя метод ортогонализации Грама — Шмидта, построим полиномы P0,
P1, P2 нулевой первой и второй степени соответственно, ортонормированные в смысле
скалярного произведения, определяемого формулой

(f, g) =

1∫
−1

f(x)g(x)dx.
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Проводя вычисления в соответствии с методом Грама — Шмидта, получим P̃0 = Q0 ≡ 1,

P̃1(x) = Q1(x)− P̃0(x)

1∫
−1

Q1(x)P̃0dx

 1∫
−1

P̃ 2
0 (x)dx

−1

= x,

P̃2(x) = Q2(x)− P̃0(x)

1∫
−1

Q2(x)P̃0dx

 1∫
−1

P̃ 2
0 (x)dx

−1

−

− P̃1(x)

1∫
−1

Q2(x)P̃1dx

 1∫
−1

P̃ 2
1 (x)dx

−1

= x2 − 1/3,

P0(x) = P̃0(x)

 1∫
−1

P̃ 2
0 (x)dx

−1/2

= 1/
√
2, P1(x) = P̃1(x)

 1∫
−1

P̃ 2
1 (x)dx

−1/2

= x
√
3/2,

P2(x) = P̃2(x)

 1∫
−1

P̃ 2
2 (x)dx

−1/2

=
1

2

√
5

2
(3x2 − 1).

Аналогично можно строить полиномы более высоких степеней P3(x), . . . , Pn(x),
применяя процесс ортогонализации Грама — Шмидта к полиномам 1, x, x2, . . . , xn при
произвольном целом положительном n. Полиномы P0(x), P1(x), . . . , Pn(x), . . . называют
полиномами Лежандра1). Справедлива так называемая формула Родрига2)

Pk(x) =

√
2k + 1

2

1

k!2k
dk

dxk
(x2 − 1)k, k = 0, 1, . . . (6.3)

Упражнение. Используя формулу Родрига и формулу интегрирования по ча-
стям, показать, что

1∫
−1

Pk(x)Pl(x)dx = 0 при k ̸= l, k, l = 0, 1, 2, . . . (6.4)

2. Пусть e — произвольный ненулевой вектор евклидова про-
странства Xn, n > 1. Понятно, что существует некоторый вектор f2,
непропорциональный e, затем можно указать вектор f3 так, чтобы
векторы e, f2, f3 были линейно независимы. Продолжая этот про-
цесс, получим базис пространства Xn, включающий в себя вектор e.
Применяя затем процесс ортогонализации Грама — Шмидта, можно
построить ортогональный базис пространства Xn, содержащий век-
тор, коллинеарный вектору e.

1)Адриен Мари Лежандр (Adrien-Marie Legendre; 1752 — 1833) — французский математик.
2)Бенжамен Оленд Родриг (Benjamin Olinde Rodrigues; 1794 — 1851) — французский мате-

матик.
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§ 7. Разложение вектора по базису евклидова пространства

В евклидовом пространстве Xn вычисление коэффициентов раз-
ложения вектора x ∈ Xn по любому базису {ek}nk=1 можно свести к
решению крамеровской системы линейных алгебраических уравнений
c эрмитовой матрицей. Действительно, умножим обе части равенства

ξ1e
1 + ξ2e

2 + · · ·+ ξne
n = x

скалярно на вектор e1, затем на вектор e2 и т. д. и, наконец, на век-
тор en. Получим систему уравнений

(e1, e1)ξ1 + (e2, e1)ξ2 + · · ·+ (en, e1)ξn = (x, e1),

(e1, e2)ξ1 + (e2, e2)ξ2 + · · ·+ (en, e2)ξn = (x, e2),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(e1, en)ξ1 + (e2, en)ξ2 + · · ·+ (en, en)ξn = (x, en),

матрицей которой служит матрица Грама базиса {ek}nk=1. Наиболее
просто эта система решается в случае, когда базис ортогонален, т. е.
когда матрица Грама диагональна. В этом случае получаем

ξk = (x, ek)/(ek, ek), k = 1, 2, . . . , n. (7.1)

Коэффициенты (7.1) называются коэффициентами Фурье1) векто-
ра x относительно ортогональной системы {ek}nk=1. Отметим, что если
базис {ek}nk=1 ортонормирован, то для любого вектора x ∈ Xn спра-
ведливо разложение

x =
n∑
k=1

(x, ek)ek. (7.2)

§ 8. Вычисление скалярного произведения

1. Пусть x, y — векторы евклидова пространства Xn, и пусть
известны векторы ξ, η ∈ Cn коэффициентов разложений x, y по бази-
су En, т. е. x = Enξ, y = Enη. Тогда

(x, y) =
( n∑
k=1

ξke
k,

n∑
k=1

ηke
k
)
=

n∑
k,l=1

ξkηl(e
k, el) = (Gξ, η), (8.1)

1)Жан Батист Жозеф Фурье (Jean Baptiste Joseph Fourier; 1768 — 1830) — французский
математик и физик.
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где G — матрица Грама базиса En, а скобками в правой части
равенства обозначено стандартное скалярное произведение в про-
странстве Cn. Следовательно, для вычисления скалярного произведе-
ния (x, y) достаточно знать коэффициенты разложения векторов x, y
по базису и матрицу Грама этого базиса.

2. В случае, когда базис ортонормирован, получаем

(x, y) =
n∑
k=1

ξkηk. (8.2)

Таким образом, скалярное произведение векторов можно подсчитать
как стандартное скалярное произведение коэффициентов разложения
этих векторов по любому ортонормированному базису.

§ 9. Взаимный базис

Пусть En={ek}nk=1 — базис евклидова пространства Xn. Нетрудно
убедиться, что уравнения

(ẽi, ej) = δij, i, j = 1, 2, . . . , n, (9.1)

однозначно определяют линейно независимые векторы ẽ1, ẽ1, . . . , ẽn.
Базис En принято называть основным, а базис Ẽn={ẽk}nk=1 — взаим-
ным. Понятно, что основной и взаимный базисы совпадают тогда и
только тогда, когда En — ортонормированный базис.

Пусть G — матрица Грама базиса En, а G̃ — матрица Грама
базиса Ẽn. Элементарно проверяется справедливость следующих ра-
венств: En = GẼn, Ẽn = G̃En, откуда вытекает, что G̃ = G−1. Пусть, да-
лее, x = Enξ, y = Ẽnη̃. Тогда ξk = (x, ẽk), η̃k = (y, ek), k = 1, 2, . . . , n,

(x, y) =
n∑
k=1

ξk ¯̃ηk. Числа ξ1, ξ2, . . . , ξn принято называть контравари-

антными компонентами вектора x, числа η̃1, η̃2, . . . , η̃n — ковари-
антными компонентами вектора y.

§ 10. Примеры ортогональных базисов

1. Примеры ортогональных базисов в пространстве Cn.
1) Естественный базис {ik}nk=1. Он ортонормирован относительно

стандартного скалярного произведения (докажите!).
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2) Базис Фурье. Нам удобно будет нумеровать сейчас компоненты
вектора и базисные векторы от 0 до n− 1. Пусть

qk =

(
cos

2πk

n
+ i sin

2πk

n

)
, k = 0, 1, . . . , n− 1,

есть корни степени k из единицы, i — мнимая единица (см. § 4, гл. 1).
Введем в рассмотрение систему векторов {φk}n−1

k=0, компоненты кото-
рых вычисляются по формулам

φkj = qjk, j = 0, 1, . . . , n− 1, (10.1)

k = 0, 1, . . . , n− 1.
Покажем, что векторы {φk}n−1

k=0 образуют ортогональную систе-
му относительно стандартного скалярного произведения в простран-
стве Cn. Заметим прежде всего, что qk = qk1 , qk = q−k1 . Поэтому,
вычисляя скалярное произведение (φk, φl), получим

(φk, φl) =
n−1∑
j=0

q
(k−l)j
1 = 1 + (qp1) + (qp1)

2 + · · ·+ (qp1)
n−1, (10.2)

где p = k − l. При k = l, т. е. при p = 0, справедливо равен-
ство (φk, φk) = n. Если p ̸= 0, то сумма в правой части (10.2) есть
геометрическая прогрессия со знаменателем qp1. Причем, посколь-
ку |p| = |k−l| < n, то qp1 ̸= 1. Используя формулу для суммы первых n
членов геометрической прогрессии, получим

n−1∑
j=0

(qp1)
j =

(qp1)
n − 1

qp1 − 1
, (10.3)

но (qn1 )
p = qpn1 = 1, следовательно, (φk, φl) = 0 при k ̸= l.

Коэффициенты Фурье ξ разложения любого вектора x ∈ Cn по
базису (10.1),

xj =
n−1∑
k=0

ξkq
j
k, j = 0, 1, . . . , n− 1, (10.4)

в соответствии с (7.1) вычисляются, таким образом, по формулам

ξk = (x, φk)/(φk, φk) =
1

n

n−1∑
j=0

xjq
−j
k , k = 0, 1, . . . , n− 1. (10.5)
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Базис {φk}n−1
k=0 принято называть базисом Фурье. Он широко ис-

пользуется, например, при цифровой обработке сигналов (звуковых,
видео).

В реальных задачах n (это длина обрабатываемого сигнала) ве-
лико, в связи с чем используются специальные приемы эконом-
ного вычисления сумм вида (10.4), (10.5), называемые алгоритма-
ми быстрого дискретного преобразования Фурье (FFT, Fast Fourier
Transformation).

2. Примеры ортогональных базисов в пространстве Pn полино-
мов с вещественными коэффициентами. Рассматривается множество
всех полиномов вида Pn(x) = anx

n+an−1x
n−1+ . . . +a0, где коэффи-

циенты a0, a0, . . . , an — произвольные вещественные числа, x может
принимать произвольные вещественные значения, n > 0 — фиксиро-
ванное целое число. Очевидно, что указанное множество полиномов
есть вещественное линейное пространство, если понимать операции
сложения двух полиномов и умножения полинома на число обычным
образом.

2.1. Полиномы Лежандра. Определим в пространстве Pn ска-
лярное произведение по формуле

(f, g) =

1∫
−1

f(x)g(x) dx ∀ f, g ∈ Pn. (10.6)

Тогда полиномы Лежандра P0, P1, . . . , Pn (см. (6.3), (6.4), с. 137)
образуют ортогональный базис в пространстве Pn.

2.2. Полиномы Чебышева1). Определим теперь скалярное про-
изведение в пространстве Pn при помощи соотношения

(f, g) =

1∫
−1

f(x)g(x)
1√

1− x2
dx ∀ f, g ∈ Pn. (10.7)

Введем в рассмотрение полиномы Чебышева. Так называют полино-
мы, вычисляемые при помощи следующих рекуррентных формул:

T0(x) ≡ 1, T1(x) = x, (10.8)

Tk+1(x) = 2xTk(x)− Tk−1(x), k = 1, 2, . . . (10.9)
1)Пафнутий Львович Чебышев (произносится как ≪Чебышёв≫; 1821 — 1894) — русский ма-

тематик и механик.



142 Глава 7. Евклидовы пространства

Здесь k — степень полинома.
Нам потребуется явная формула для полиномов Чебышева. Бу-

дем разыскивать значение Tk(x) в виде Tk(x) = λk. Используя это
представление в рекуррентной формуле (10.9), получим

λk+1 = 2xλk − λk−1,

откуда, предполагая, что λ ̸= 0, приходим к квадратному уравнению

λ2 − 2xλ+ 1 = 0

для определения λ. Корни этого уравнения

λ1,2 = x±
√
x2 − 1,

поэтому функции T (1)
k (x) = (x+

√
x2 − 1)k, T (2)

k (x) = (x−
√
x2 − 1)k,

а следовательно, и функции

Tk(x) = c1T
(1)
k (x) + c2T

(2)
k (x),

k = 0, 1, . . . , где c1, c2 — произвольные постоянные, удовлетворяют
рекуррентному соотношению (10.9). Выберем c1, c2 так, чтобы были
выполнены условия (10.8):

c1 + c2 = 1,

(c1 + c2)x+ (c1 − c2)
√
x2 − 1 = x.

Отсюда получаем c1 = c2 = 1/2, т. е. полиномы

Tk(x) =
1

2

(
x+

√
x2 − 1

)k
+

1

2

(
x−

√
x2 − 1

)k
, k = 0, 1, 2, . . .

удовлетворяют рекуррентному соотношению (10.9) и условиям (10.8).
При |x| 6 1 полиномам Чебышева можно придать более компактный
вид. Положим в этом случае x = cosφ. Тогда

Tk(x) =
1

2
(cosφ+ i sinφ)k +

1

2
(cosφ− i sinφ)k ,

откуда, используя формулу Муавра (см. (3.7), c. 15), получим,
что Tk(x) = cos kφ, или

Tk(x) = cos(k arccosx). (10.10)
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Полиномы Чебышева ортогональны в смысле скалярного произ-
ведения (10.7). Действительно, используя представление (10.10), мо-
жем написать, что

(Tk, Tl) =

1∫
−1

cos(k arccosx) cos(l arccosx)√
1− x2

dx.

Полагая x = cosφ, нетрудно подсчитать, что

(Tk, Tl) =

π∫
0

cos kφ cos lφ dφ =
1

2

π∫
0

(cos(k + l)φ+ cos(k − l)φ) dφ = 0

при k ̸= l.
Таким образом, полиномы Чебышева T0, T1, . . . , Tn образуют ор-

тогональный базис в смысле скалярного произведения (10.7) в про-
странстве Pn полиномов с вещественными коэффициентами.



Глава 8
Подпространства

§ 1. Сумма и пересечение подпространств

1. Множество L векторов линейного пространства X называется
подпространством, если из того, что векторы x, y принадлежат L,
вытекает, что вектор αx + βy при любых комплексных числах α, β
также принадлежит множеству L.

Тривиальные примеры подпространств: все пространство X явля-
ется подпространством; множество, состоящее только из одного век-
тора, равного нулю, является подпространством.

Поскольку по определению наряду с вектором x подпространству
должен принадлежать и вектор 0x, то всякое подпространство содер-
жит нулевой вектор.

Упражнения.
1) Пусть a1, a2, . . . , am, m > 1, — произвольным образом фик-

сированные векторы пространства X. Докажите, что множество всех
линейных комбинаций x1a1+x2a2+· · ·+xmam — подпространство. Го-
ворят, что это подпространство натянуто на векторы a1, a2, . . . , am.

2) Пусть a1, a2 — векторы пространства X, причем a2 ̸= 0. Мно-
жество L векторов вида a1 + αa2, где α пробегает множество всех
комплексных чисел, называется прямой, проходящей через точку a1
в направлении вектора a2. Показать, что множество L является под-
пространством тогда и только тогда, когда векторы a1, a2 линейно
зависимы.

2. Пусть L1, L2 — подпространства пространства X. Множе-
ство L всех векторов вида a1+a2, где a1 ∈ L1, a2 ∈ L2, называется сум-
мой подпространств L1, L2. Используют обозначение: L = L1 + L2.

Так определенное множество L — подпространство. Действитель-
но, пусть векторы x, y ∈ L. Это означает, что существуют векто-
ры a1, b1 ∈ L1, a2, b2 ∈ L2 такие, что x = a1 + a2, y = b1 + b2.
Пусть α, β — произвольные комплексные числа. Тогда

αx+ βy = α(a1 + a2) + β(b1 + b2) = (αa1 + βb1) + (αa2 + βb2).

Поскольку L1 — подпространство, вектор αa1+βb1 принадлежит L1.
Точно так же, вектор αa2+βb2 принадлежит L2, следовательно, век-
тор αx+ βy принадлежит L.
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3. Пересечение подпространств L1, L2, т. е. множество всех
векторов, принадлежащих как L1, так и L2, также является подпро-
странством. Действительно, пусть векторы x, y ∈ L1 ∩L2. Для любо-
го комплексного числа α вектор αx принадлежит как L1, так и L2,
т. е. αx ∈ L1 ∩L2. Аналогично, для любого β вектор βy ∈ L1 ∩L2, но
тогда, очевидно, и αx+ βy ∈ L1 ∩ L2.

4. Система векторов {ek}mk=1 ⊂ L называется базисом подпро-
странства L, если она линейно независима и любой вектор x ∈ L
представим в виде линейной комбинации векторов из {ek}mk=1. Чис-
ло m при этом будем называть размерностью подпространства. Раз-
мерность подпространства L обозначают через dim(L).

Подпространству, состоящему только из нулевого вектора, будем
приписывать размерность, равную нулю. Это подпространство будем
обозначать через {0} и называть нулевым подпространством.

Упражнение. Описать суммы и пересечения всевозможных
подпространств пространства V3.

5. Для того, чтобы подпространство L конечномерного простран-
ства Xn совпадало с Xn, необходимо и достаточно выполнения равен-
ства dim(L) = n. Справедливость этого утверждения сразу следует
из того, что любые n линейно независимых векторов пространства Xn

образуют его базис (см. теорему 2.2, с. 123).

6. Очевидно, что базис {ek}mk=1 любого подпространства L из Xn

можно дополнить до базиса {ek}nk=1 всего пространства Xn. Точно так

же, если L1 и L2 — подпространства и L1 ⊂ L2, то dim(L1) 6 dim(L2),
и базис подпространства L1 можно дополнить до базиса подпростран-
ства L2.

7. Сумма подпространств L1 и L2 называется прямой, если
для любого вектора x = x1 + x2 ∈ (L1 + L2) его составляющие
x1 ∈ L1 и x2 ∈ L2 определяются однозначно. Прямая сумма под-
пространств L1 и L2 обозначается через L1 u L2.

7.1. Теорема. Для того, чтобы сумма подпространств L1, L2

была прямой, необходимо и достаточно, чтобы из равенства

x1 + x2 = 0

для x1 ∈ L1, x2 ∈ L2 вытекало, что x1 = 0, x2 = 0.
Доказательство. Пусть из равенства x1+ x2 = 0 для x1 ∈ L1,

x2 ∈ L2 следует, что x1 = 0, x2 = 0. Покажем, что тогда для любо-
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го x = x1+x2 ∈ (L1+L2) составляющие x1 ∈ L1, x2 ∈ L2 определяют-
ся однозначно. Предположим, что существует еще одно разложение
вектора x, т. е. x = x̃1 + x̃2, x̃1 ∈ L1, x̃2 ∈ L2. Тогда, очевидно,
(x1 − x̃1) + (x2 − x̃2) = 0. Поскольку x1 − x̃1 ∈ L1, x2 − x̃2 ∈ L2, то
x1 − x̃1 = 0, x2 − x̃2 = 0, следовательно, x1 = x̃1, x2 = x̃2. Обратно,
пусть составляющие любого вектора x = x1 + x2 ∈ (L1 + L2) опреде-
ляются однозначно, и пусть x1+x2 = 0 для каких-то x1 ∈ L1, x2 ∈ L2.
Поскольку 0 + 0 = 0, то отсюда вытекает, что x1 = x2 = 0. �

7.2. Теорема. Для того, чтобы сумма подпространств L1, L2

была прямой, необходимо и достаточно, чтобы L1 ∩ L2 = {0}.
Доказательство. Пусть L1 ∩ L2 = {0}, x1 + x2 = 0, x1 ∈ L1,

x2 ∈ L2. Поскольку x1 = −x2, то x1 ∈ L2, значит, x1 ∈ L1 ∩ L2,
следовательно, x1 = 0, но тогда, очевидно, и x2 = 0. Обратно, пусть
x ∈ L1∩L2. Тогда x ∈ L1, x ∈ L2, кроме того, очевидно, x+(−x) = 0,
а так как сумма L1 и L2 прямая, то вследствие теоремы 7.1 получаем,
что x = 0, следовательно, L1 ∩ L2 = {0}. �

7.3. Упражнение. Пусть L — произвольное подпространство
конечномерного линейного пространства Xn. Докажите, что суще-
ствует подпространство M ⊂ Xn такое, что Xn = LuM .

8. Будем говорить, что подпространства L1 и L2 евклидова
пространства ортогональны (пишут L1⊥L2), если (x, y) = 0 для
всех x ∈ L1, y ∈ L2. Сумму ортогональных подпространств будем
называть ортогональной и обозначать через L1 ⊕ L2.

Ортогональная сумма является прямой. В самом деле, пусть
L1⊥L2, x1 ∈ L1, x2 ∈ L2 и x1+x2 = 0. В силу ортогональности x1, x2,
очевидно, |x1 + x2|2 = |x1|2 + |x2|2, поэтому |x1|2 + |x2|2 = 0, следова-
тельно, x1 = x2 = 0.

9. Понятия прямой и ортогональной сумм естественным образом
переносятся на случай любого конечного числа подпространств. Так,
сумма подпространств L1, L2, . . . , Lk называется ортогональной, если
она есть множество всех элементов вида x = x1+x2+· · ·+xk, xj ∈ Lj,
j = 1, 2, . . . , k, и Li⊥Lj для i ̸= j, i, j = 1, 2, . . . , k. Теорема 7.1 легко
обобщается на случай любого конечного числа подпространств.

Упражнения.

1) Покажите, что ортогональная сумма любого числа подпро-
странств является прямой, т. е. составляющие xj ∈ Lj, j = 1, 2, . . . , k,
определяются по любому x однозначно.
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2) Верно ли утверждение: сумма подпространств L1+L2+· · ·+Lk,
k > 2, является прямой, если их пересечение — нулевое подпростран-
ство?

§ 2. Размерность суммы подпространств

1. Теорема. Пусть L=L1 u L2 u · · ·u Lk — прямая сумма ко-
нечномерных подпространств L1, L2, . . . , Lk линейного простран-
ства X. Тогда

dim(L) = dim(L1) + dim(L2) + · · ·+ dim(Lk). (2.1)

Доказательство. Проведем его для случая k = 2. Для произ-
вольного k рассуждения полностью аналогичны. Пусть

f 1, f 2, . . . , f p; g1, g2, . . . , gq (2.2)

есть базисы подпространств L1 и L2, соответственно. Тогда объеди-
нение этих систем векторов есть базис подпространства L1 u L2.
Действительно, для любого x ∈ L1 u L2 справедливо представле-
ние x = x1 + x2, где

x1 = α1f
1+α2f

2+ · · ·+αpf p ∈ L1, x2 = β1g
1+β2g

2+ · · ·+βqgq ∈ L2,

причем, если x = 0, то x1 = 0, x2 = 0, поскольку сумма L1 u L2 пря-
мая. Вследствие того, что {fk}pk=1, {gk}

q
k=1 — базисы, отсюда вытека-

ет, что все числа α1, α2, . . . , αp, β1, β2, . . . , βq — нули. Таким образом,
система векторов (2.2) линейно независима. Теперь совершенно ясно,
что dim(L1 u L2) = p+ q. �

2. Теорема. Пусть L1, L2 — произвольные конечномерные под-
пространства линейного пространства X. Тогда

dim(L1 + L2) = dim(L1) + dim(L2)− dim(L1 ∩ L2). (2.3)

Доказательство. Пространство G = L1 ∩L2, очевидно, конеч-
номерно. Пусть Gl = {gi}li=1 — базис G, и пусть векторы Fk = {f i}ki=1

дополняют его до базиса пространства L1, а векторы Hm = {hi}mi=1 —
до базиса пространства L2. Обозначим через F подпространство про-
странства X, натянутое на векторы Fk, а через H — натянутое на
векторы Hm. Покажем, что

L1 + L2 = F +G+H. (2.4)
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Рис. 1. К теореме 2

Действительно, если x ∈ L1+L2, то x = x1+x2, где x1 ∈ L1, x2 ∈ L2.
Ясно, что x1 = f + g−, x2 = h + g+, где f ∈ F , h ∈ H, g+, g− ∈ G,
следовательно, x = f + g + h, где g = g+ + g− ∈ G. Таким образом,
x ∈ F +G+H. Еще проще доказывается, что если x ∈ F +G+ H, то
x ∈ L1 + L2. Сумма в правой части равенства (2.4) прямая. В самом
деле, пусть f + g + h = 0, где f ∈ F , g ∈ G, h ∈ H. Покажем, что
тогда f, g, h = 0. Имеем f + g = −h. Ясно, что −h ∈ L2, а f + g ∈ L1,
следовательно, f + g ∈ G, h ∈ G. Положим h + g = g̃. Получа-
ем f + g̃ = 0, причем g̃ ∈ G. Поскольку система векторов Fk ∪ Gl
линейно независима, отсюда вытекает, что f = 0, g̃ = 0. Совершенно
аналогичные рассуждения показывают, что h = 0, g = 0. По теоре-
ме 1 теперь имеем, что dim(L1+L2) = dim(F uGuH) = k+ l+m, но
dimL1 = k + l, dimL2 = l +m, dim(L1 ∩ L2) = l. Остается заметить,
что k + l +m = (k + l) + (l +m)− l. �

3. Следствие. Пусть L1, L2 — подпространства n-мерного
пространства Xn, причем dimL1+dimL2 > n. Тогда L1∩L2 ̸= {0}.

Доказательство. Поскольку L1 + L2 — подпространство про-
странства Xn, то dim(L1 + L2) 6 n, но тогда (см. (2.3))

dim(L1 ∩ L2) = dim(L1) + dim(L2)− dim(L1 + L2) > 1. �

§ 3. Ортогональная проекция вектора на подпространство

1. Пусть L — подпространство евклидова пространства X, x —
вектор из X. Вектор y ∈ L назовем наилучшим приближением к
вектору x, если

|x− y| 6 |x− z| для любого z ∈ L. (3.1)
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2. Теорема. Для любого x ∈ X в любом конечномерном подпро-
странстве L ⊂ X существует единственное наилучшее приближе-
ние.

Доказательство. Если L = {0}, то единственным наилучшим
приближением к x будет нулевой вектор. Поэтому далее полагаем,
что L ̸= {0}. Пусть y, z ∈ L. Представим z в виде z = y + h, h ∈ L.
Тогда

(x− z, x− z) = (x− y − h, x− y − h) =

= (x− y, x− y)− (x− y, h)− (h, x− y) + (h, h).

Отсюда очевидным образом получаем, что если (x − y, h) = 0 для
любого h ∈ L, то (3.1) выполнено. Обратно, если выполнено (3.1), то

−(x− y, h)− (h, x− y) + (h, h) > 0 ∀h ∈ L.

Заменив h на h1 = ((x− y, h)/|h|2)h, получим −|(x− y, h)|2/|h|2 > 0,
следовательно, (x − y, h) = 0. Итак, для того, чтобы вектор y ∈ L
был наилучшим приближением к вектору x ∈ X, необходимо и до-
статочно, чтобы

(x− y, h) = 0 для любого h ∈ L. (3.2)

Иными словами, вектор x − y должен быть ортогонален подпро-
странству L. Геометрически этот вывод вполне очевиден (см. рис. 2).
Вектор y, удовлетворяющий условию (3.2), если он существует, одно-

Рис. 2. К доказательству теоремы 2

значно определяется по вектору x. В самом деле, пусть существует
еще один вектор ỹ ∈ L такой, что (x − ỹ, h) = 0 для любого h ∈ L.
Тогда (y − ỹ, h) = 0 для любого h ∈ L. Полагая h = y − ỹ, получим,
что y = ỹ. Докажем теперь, что существует вектор y ∈ L, удовле-
творяющий условию (3.2). Пусть {ek}mk=1 — базис подпространства L.
Условие (3.2) эквивалентно тому, что

(x− y, ek) = 0, k = 1, 2, . . . ,m. (3.3)
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Будем искать y в виде разложения по базису: y =
m∑
i=1

ηie
i. Тогда

из (3.3) получаем, что( m∑
i=1

ηie
i, ek

)
= (x, ek), k = 1, 2, . . . ,m.

Более подробная запись этих условий дает систему линейных урав-
нений

m∑
i=1

ηi(e
i, ek) = (x, ek), k = 1, 2, . . . ,m, (3.4)

для отыскания η1, η2, . . . , ηm. Матрица этой системы — матрица Гра-
ма, соответствующая базису {ek}mk=1. Эта матрица невырождена (см.
теорему 1.1, с. 133), следовательно, система (3.4) однозначно разре-
шима при любом x ∈ X, т. е. условие (3.2) однозначно определяет
вектор y. �

Замечание. Вектор y вычисляется наиболее просто, когда ба-
зис {ek}mk=1 подпространства L ортонормирован, а именно, в этом

случае y =
m∑
k=1

(x, ek)ek.

3. Вектор y, удовлетворяющий условию (3.2), естественно на-
звать ортогональной проекцией вектора x на подпространство L, век-
тор z = x− y — перпендикуляром, опущенным из точки x на подпро-
странство L (см. рис. 2).

Заметим, что (x − y, y) = 0, поскольку y ∈ L, следовательно,
справедливо тождество Пифагора (см. п. 1, с. 131)

|x|2 = |x− y|2 + |y|2. (3.5)

Из (3.5) следует, что |y|2 6 |x|2. Это — так называемое неравен-
ство Бесселя1), показывающее, что длина проекции вектора не пре-
восходит длины вектора (см. рис. 2).

4. Если система векторов {ek}mk=1 ортонормирована, то неравен-
ство Бесселя принимает вид

m∑
k=1

|(x, ek)|2 6 |x|2 ∀x ∈ X. (3.6)

1)Фридрих Вильгельм Бессель (Friedrich Wilhelm Bessel; 1784–1846) — немецкий математик
и астроном.
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Равенство в (3.6) достигается тогда и только тогда, когда x ∈ L, т. е.

когда x =
m∑
k=1

(x, ek)ek.

Отметим, что неравенство Коши — Буняковского (3.2), с. 131,
можно трактовать как частный случай неравенства Бесселя (3.6), ко-
гда ортонормированная система векторов состоит только из одного
вектора e1 = |y|−1y, y ̸= 0.

Пример. Пусть L — подпространство арифметического пространства R4, натяну-
тое на векторы a1 = (−3, 0, 7, 6), a2 = (1, 4, 3, 2), a3 = (2, 2,−2,−2). Найдем ортогональ-
ную проекцию вектора x = (14,−3,−6,−7) на подпространство L и перпендикуляр,
опущенный из точки x на подпространство L.

Векторы a1, a2 линейно независимы (не пропорциональны), вектор a3 — линейная
комбинация векторов a1, a2, а именно, a3 = (−1/2)a1+(1/2)a2. Поэтому векторы a1, a2
можно принять за базис подпространства L. Компоненты η1, η2 вектора y — проекции
вектора x на L в базисе a1, a2 — могут быть найдены как решение системы уравнений

η1(a
1, a1) + η2(a

2, a1) = (x, a1), (3.7)

η1(a
1, a2) + η2(a

2, a2) = (x, a2). (3.8)

Вычисляя скалярные произведения, получим (a1, a1) = 9 + 49 + 36 = 94, (a2, a1) = 30,
(a2, a2) = 30, (x, a1) = −126, (x, a2) = −30. Решая систему (3.7), (3.8), найдем, что
η1 = −3/2, η2 = 1/2, т. е. y = (−3/2)a1 + (1/2)a2 = (5, 2,−9,−8) — ортогональная
проекция вектора x на подпространство L, z = x − y = (9,−5, 3, 1) — перпендикуляр,
опущенный из точки x на подпространство L.

5. Неудачный выбор базиса может вызвать большие вычисли-
тельные трудности при фактическом построении элемента наилуч-
шего приближения.

Приведем соответствующий пример. В линейном пространстве
функций C[0, 1] введем скалярное произведение по формуле (2.1),
с. 130, полагая, что p(x) ≡ 1. Рассмотрим в этом пространстве пя-
тимерное подпространство, натянутое на базис, образованный функ-
циями φ0(x) ≡ 1, φ1(x) = x, φ2(x) = x2, φ3(x) = x3, φ4(x) = x4, и
найдем наилучшее приближение к функции φ(x) = x5.

Матрица Грама в этом случае вычисляется элементарно:
1∫

0

φk(x)φl(x)dx = 1/(k + l + 1). (3.9)

Столбец правой части системы (3.4), очевидно, состоит из чисел 1/6,
1/7, 1/8, 1/9, 1/10.

Будем считать, что при вычислении последнего элемента столбца
правой части допущена ошибка, и заменим число 1/10 на (1/10) + ε.

На рис. 3 показаны графики функции φ(x) и приближающего ее
полинома P4(x) = 1+η1x+η2x

2+η3x
3+η4x

4 при различных значени-
ях ε. Видно, что малым погрешностям, допущенным при вычислении
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Рис. 3. К примеру почти линейно зависимого базиса: сплошная линия — функция φ,
символом ≪+≫ помечен график приближающего полинома при ε = 5 · 10−4, симво-
лом ≪∗≫ — при ε = 2 · 10−4

правой части (неизбежным на практике), соответствуют значитель-
ные погрешности приближения функции φ.

Причина кроется в том, что выбранный нами базис степеней неза-
висимой переменной на самом деле состоит из функций, почти линей-
но зависимых. Для того, чтобы убедиться в этом, достаточно взгля-
нуть на графики функций xp, p = 1, 2, . . . на отрезке [0, 1]. Даже
при не очень больших p эти графики близки. Поэтому матрица си-
стемы (3.4) оказалась в данном случае близкой к вырожденной или,
как говорят, плохо обусловленной.

Матрица с элементами (3.9), т. е. матрица вида

Hn =

{
1

i+ j − 1

}n
i,j=1

называется матрицей Гильберта1). Она часто встречается в различ-
ных разделах математики. Уже при n > 10 эта матрица оказывается
настолько плохо обусловленной, что решить на компьютере систему
линейных уравнений с такой матрицей практически невозможно.

Замечание. Обычно, приближая функции полиномами, исполь-
зуют ортогональные базисы, например, полиномы Лежандра или Че-
бышева (см. с. 137, с. 141). В этом случае система (3.4) становится
диагональной.

1)Давид Гильберт (David Hilbert; 1862 — 1943) — немецкий математик.
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§ 4. Ортогональное разложение евклидова пространства

1. Пусть L — подпространство евклидова пространства X. Мно-
жество всех векторов из X, ортогональных L, называется ортого-
нальным дополнением подпространства L и обозначается через L⊥.
Понятно, что (L⊥)⊥ = L.

Упражнение. Докажите, что L⊥ — подпространство простран-
ства X.

2. Теорема (об ортогональном разложении). Пусть L —
конечномерное подпространство евклидова пространства X, L⊥ —
ортогональное дополнение подпространства L. Тогда

X = L⊕ L⊥. (4.1)

Доказательство. По теореме 2, с. 149, для любого x ∈ X су-
ществует y ∈ L такой, что (x− y, h) = 0 для любого h ∈ L, следова-
тельно, z = x − y ∈ L⊥ и x = y + z, что означает (см. п. 8, с. 146)
справедливость (4.1). �

Пусть e ∈ X, e ̸= 0. Обозначим через πe множество всех векто-
ров пространства X, ортогональных e. Нетрудно убедиться, что πe —
подпространство пространства X. Это подпространство называют ги-
перплоскостью, ортогональной вектору e.

Рис. 4. К теореме 3

3. Теорема. Пусть x — произвольный, e — ненулевой векторы
евклидова пространства Xn. Существуют вектор y ∈ πe и число µ
такие, что

x = µe+ y, (4.2)
причем µ и y однозначно определяются по вектору x. Кроме того,

|x− y| 6 |x− z| для любого z ∈ πe, (4.3)
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т. е. y — элемент наилучшего приближения к вектору x из подпро-
странства πe (см. рис. 4).

Упражнение. Следуя доказательству теоремы 2, докажите тео-
рему 3.



Глава 9
Линейные операторы и матрицы

§ 1. Линейные операторы. Действия над операторами

1. Пусть X, Y — линейные пространства. Будем говорить,
что задано отображение φ пространства X в пространство Y (пи-
шут φ : X → Y), если каждому вектору x из X поставлен однозначно
в соответствие вектор φ(x) из Y. Говорят также в этом случае, что на
пространстве X задана функция φ со значениями в пространстве Y.
Подчеркнем, что при этом, вообще говоря, не каждый вектор из Y
должен быть результатом отображения некоторого вектора x из X.

Отображение φ называется линейным, если для любых x, y ∈ X
и любых α, β ∈ C

φ(αx+ βy) = αφ(x) + βφ(y). (1.1)

В линейной алгебре, почти исключительно, рассматриваются ли-
нейные отображения. Обычно их называют линейными оператора-
ми (или просто операторами) и обозначают большими латинским
буквами. Скобки в обозначениях действия оператора на вектор, если
это не приводит к недоразумениям, не пишут. Так, равенство (1.1)
применительно к оператору A запишется в виде

A(αx+ βy) = αAx+ βAy.

Из определения линейного отображения сразу вытекает, что

A0 = 0

для любого оператора A.
Если оператор действует из пространства X в пространство X, то

говорят, что он действует в пространстве X или является преобразо-
ванием пространства X.

2. Полезно отметить, что если в пространстве Xn фиксирован
некоторый базис {ej}nj=1, то определяя на Xn линейный оператор A,
достаточно описать его действие на векторы базиса, так как для лю-

бого вектора x =
n∑
j=1

ξje
j имеем Ax =

n∑
j=1

ξjAej.
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3. Действия над операторами. Пусть A,B : X → Y — линейные
операторы; α, β — числа. Оператор αA + βB : X → Y, называемый
линейной комбинацией операторов A, B, определяется соотношением

(αA+ βB)x = α(Ax) + β(Bx) ∀x ∈ X. (1.2)

Пусть A : X → Y, B : Y → Z, A,B — линейные операторы.
Оператор BA : X → Z, определяемый соотношением

BAx = B(Ax) ∀x ∈ X, (1.3)

называется произведением операторов A, B.
Упражнение. Показать, что отображения αA + βB, BA — ли-

нейные операторы.
Аналогично (1.3) можно определить произведение любого числа

операторов.
Упражнение. Показать, что если произведение операторов C,

B, A определено, то

CBA = C(BA) = (CB)A.

4. Примеры операторов.

4.1. Нулевой оператор. Этот оператор переводит все векторы
пространства X в нулевой вектор пространства Y. Нулевой оператор
обозначают символом 0, так что 0x = 0 для всех x ∈ X.

4.2. Единичный (тождественный) оператор. Оператор, действу-
ющий в пространстве X, называется единичным, если он оставляет
без изменения все векторы пространства X. Единичный оператор бу-
дем обозначать через I.

4.3. Оператор проектирования. Пусть линейное пространство X
есть прямая сумма подпространств L и M . Каждый вектор x ∈ X
представим в виде x = x1+x2, x1 ∈ L, x2 ∈M , причем векторы x1, x2
однозначно определяются по вектору x. Определим оператор P , дей-
ствующий из X в L, полагая Px = x1. Говорят, что оператор P есть
оператор проектирования пространства X на подпространство L (па-
раллельно подпространству M). Если X — евклидово пространство и
оно представлено как ортогональная сумма подпространств L иM , то
оператор P называют оператором ортогонального проектирования.
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Докажем, что оператор P линеен. Пусть x, y ∈ X и x = Px+ x2,
y = Py+y2 (здесь x2, y2 ∈M). Тогда для любых чисел α, β, очевидно,
справедливо равенство

αx+ βy = αPx+ βPy + αx2 + βy2.

Вследствие того, что L,M есть подпространства, получаем, что
αPx+ βPy ∈ L, αx2 + βy2 ∈ M , поэтому P(αx+ βy) = αPx+ βPy.

Точно так же можно ввести оператор Q, проектирующий про-
странство X на подпространство M . Нетрудно убедиться в справед-
ливости следующих равенств: P +Q = I, PQ = 0, QP = 0, P2 = P ,
Q2 = Q. Вообще, если пространство X — прямая сумма нескольких
подпространств

X = L1 u L2 u · · ·u Lk,

а Pi — оператор проектирования на Li, i = 1, 2, . . . , k, то

P1 + P2 + · · ·+ Pk = I, P2
i = Pi, PiPj = 0 при i ̸= j, (1.4)

i, j = 1, 2, . . . , k.

4.4. Умножение матрицы на вектор. Пусть A(m,n) — прямо-
угольная матрица. Поставим в соответствие каждому вектору x ∈ Cn

вектор y ∈ Cm при помощи равенства (см. п. 5, с. 90)

y = Ax. (1.5)

Операция умножения матрицы на вектор — линейная операция, по-
этому соотношение (1.5) определяет линейный оператор, действую-
щий из Cn в Cm.

§ 2. Обратный оператор

Будем говорить, что линейный оператор A :X→ Y имеет обрат-
ный, если существует такой оператор B : Y → X, что

BAx = x ∀x ∈ X, (2.1)

ABy = y ∀ y ∈ Y. (2.2)
Обратный оператор, если он существует, также является линейным
оператором. В самом деле, пусть y1, y2 ∈ Y, α, β ∈ C. Положим
x1 = By1, x2 = By2. Тогда Ax1 = ABy1 = y1, Ax2 = ABy2 = y2.
Отсюда
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B(αy1 + βy2) = B(αAx1 + βAx2) =
= BA(αx1 + βx2) = αx1 + βx2 = αBy1 + βBy2.

Если оператор A имеет обратный, то он осуществляет взаимно-
однозначное отображение пространства X на пространство Y. Дей-
ствительно, пусть x1, x2 ∈ X, x1 ̸= x2. Тогда и Ax1 ̸= Ax2. В самом
деле, если предположить, что Ax1 = Ax2, то BAx1 = BAx2 и, зна-
чит, x1 = x2. Далее, если y ∈ Y, то, полагая x = By, получим,
что Ax = ABy = y, т. е. всякий вектор из Y является результатом
действия оператора A на некоторый вектор из X.

Упражнение. Покажите, что линейный оператор не может
иметь двух различных обратных операторов.

Обратный к оператору A будем обозначать через A−1. Непосред-
ственно из определения вытекает, что если оператор A−1 существует,
то (A−1)−1 = A. Оператор, имеющий обратный, будем называть об-
ратимым.

Примеры.
1) Единичный оператор имеет обратный, причем I−1=I.
2) Нулевой оператор, очевидно, не имеет обратного.
3) Оператор проектирования P на подпространство L при усло-

вии, что подпространство L не совпадает со всем пространством X,
не имеет обратного (докажите!).

4) Всякая квадратная матрица A порядка n определяет линейный
оператор, действующий в пространстве Cn. Если матрица A невы-
рождена, то этот оператор имеет обратный и он порождается матри-
цей A−1 (см. § 7, с. 95).

Упражнение. Пусть A : X → Y, B : Y → Z — обрати-
мые операторы. Показать, что тогда и оператор BA обратим, при-
чем (BA)−1 = A−1B−1.

§ 3. Оператор разложения по базису

Пусть En = {ek}nk=1 — базис пространства Xn. Определим опера-
тор, действующий из Cn в Xn, при помощи соотношения

x = Enξ, ξ ∈ Cn. (3.1)

Очевидно, что так определенный оператор линеен. Будем обозначать
этот оператор через E .



§ 4. Изоморфизм конечномерных пространств 159

Поскольку {ek}nk=1 — базис, то каждому x ∈ Xn однозначно со-

ответствует элемент ξ ∈ Cn такой, что x =
n∑
k=1

ξke
k. Указанное соот-

ветствие порождает оператор разложения по базису, действующий
из Xn в Cn. Будем обозначать этот оператор через E−1.

Непосредственно из определения операторов E и E−1 вытекает,
что

E−1Eξ = ξ ∀ ξ ∈ Cn, EE−1x = x ∀ x ∈ Xn,

т. е. операторы E , E−1 взаимно обратны.
Замечание. Вычисление коэффициентов разложения вектора

по базису часто приводит к необходимости решения крамеровских
систем линейных алгебраических уравнений (см. примеры на с. 122,
138, 126). Наиболее просто коэффициенты разложения вектора вы-
числяются для ортонормированных базисов в евклидовых простран-
ствах (см. (7.2), с. 138, а также примеры на с. 140, 141).

§ 4. Изоморфизм конечномерных пространств

1. Линейные пространства X, Y называются изоморфными, если
существует обратимый линейный оператор A : X → Y. Иными сло-
вами, линейные пространства изоморфны, если между ними можно
установить линейное взаимно однозначное соответствие.

Понятно, что отношение изоморфизма обладает свойством тран-
зитивности, и, значит, если пространства X, Y изоморфны простран-
ству Z, то они изоморфны друг другу.

2. Теорема. Все конечномерные линейные комплексные про-
странства одной и той же размерности изоморфны.

Доказательство. Отношение изоморфизма транзитивно. По-
этому достаточно установить, что любое комплексное линейное про-
странство Xn изоморфно пространству Cn. Как следует из § 3, ли-
нейное взаимно однозначное соответствие пространств Xn и Cn осу-
ществляет оператор разложения по любому фиксированному бази-
су En пространства Xn. �

Точно так же доказывается, что все вещественные линейные про-
странства Xn изоморфны пространству Rn.

3. Теорема. Если конечномерные пространства X, Y изоморф-
ны, то их размерности совпадают.

Доказательство. Пусть {ek}nk=1 — базис пространства X, а ли-
нейный оператор A осуществляет взаимно однозначное отображение



160 Глава 9. Линейные операторы и матрицы

пространства X на пространство Y. Из равенства
n∑
k=1

αkAek = 0 вы-

текает, что A
n∑
k=1

αke
k = 0. Действуя на обе части последнего равен-

ства оператором A−1, будем иметь
n∑
k=1

αke
k = 0, откуда получаем,

что α1, α2, . . . , αn = 0, т. е. векторы {Aek}nk=1 линейно независимы,
и размерность пространства Y не меньше чем n. Меняя в этом рас-
суждении местами пространства X и Y, приходим к тому, что их
размерности совпадают. �

Таким образом, справедлива

4. Теорема. Для того, чтобы конечномерные комплексные (или
вещественные) пространства были изоморфны, необходимо и до-
статочно, чтобы их размерности совпадали.

5. Если установлен изоморфизм пространств X и Y, то с точки
зрения выполнения линейных операций над их элементами они ока-
зываются эквивалентными. Так, линейные операции над элементами
любого конечномерного пространства путем введения какого-либо ба-
зиса всегда можно свести к линейным операциям на пространстве
числовых строк (Rn или Cn). Такой подход, фактически, нами уже
применялся в § 1 гл. 4, где было установлено взаимно однозначное
соответствие между векторами (направленными отрезками) и их ко-
ординатами и показано, что линейные операции над векторами экви-
валенты операциям над их координатами.

§ 5. Образ оператора. Ядро оператора

1. Пусть A — линейный оператор, действующий из линейного
пространства X в линейное пространство Y.

Множество всех векторов y из пространства Y таких, что y =Ax
для некоторого x ∈ X, называется областью значений или образом
оператора и обозначается через Im(A).

Множество всех векторов x ∈ X таких, что Ax = 0, называется
ядром оператора A и обозначается через Ker(A).

2. Теорема. Множество Im(A) — линейное подпространство
пространства Y.

Доказательство. Пусть y1, y2 ∈ Im(A). Тогда существу-
ют x1, x2 ∈ X такие, что y1 = Ax1, y2 = Ax2. Для любых α, β ∈ C от-
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сюда получаем, что αy1+βy2 = αAx1+βAx2. Оператор A линеен, сле-
довательно, αy1+ βy2 = A(αx1+ βx2), потому αy1+ βy2 ∈ Im(A). �

Упражнение. Покажите, что Ker(A) — линейное подпростран-
ство пространства X.

3. Размерность подпространства Im(A) ⊂ Ym называется ран-
гом оператора A и обозначается через rank(A).

Размерность ядра оператора A называется дефектом операто-
ра A и обозначается через def(A).

4. Теорема. Для любого линейного оператора A : Xn → Ym

rank(A) + def(A) = n. (5.1)
Доказательство. Обозначим через M подпространство про-

странства Xn такое, что Xn = Ker(A) u M (см. упражнение 7.3,
с. 146). По теореме 1, с. 147, имеем n = def(A) + dim(M). Теперь с
учетом теоремы 4, с. 160, достаточно установить, что пространстваM
и Im(A) изоморфны. Для произвольного x ∈ Xn имеем x = x0 + x1,
где x0 ∈ Ker(A), x1 ∈ M , следовательно, Ax = Ax1. Таким обра-
зом, всякий элемент из Im(A) — образ некоторого элемента из M .
Осталось доказать, что если Ax′ = Ax′′ для x′, x′′ ∈ M , то x′ = x′′,
т. е. оператор A осуществляет взаимно однозначное отображение M
на Im(A). Равенство A(x′ − x′′) = 0 означает, что x′ − x′′ ∈ Ker(A).
С другой стороны, M — подпространство, поэтому x′ − x′′ ∈ M . По
теореме 7.2, с. 146, отсюда получаем, что x′ − x′′ = 0. �

§ 6. Матрица оператора

1. Пусть A : Xn → Ym — линейный оператор. Фиксируем в
пространстве Xn базис En = {ek}nk=1, а в пространстве Ym — ба-
зис Qm = {qk}mk=1.

Представим каждый вектор Aei, i = 1, 2, . . . , n, в виде разложе-
ния по базису Qm:

Aei =
m∑
j=1

a
(eq)
ji q

j, i = 1, 2, . . . , n. (6.1)

Введем в рассмотрение матрицу

Aeq =


a
(eq)
11 a

(eq)
12 . . . a

(eq)
1n

a
(eq)
21 a

(eq)
22 . . . a

(eq)
2n

. . . . . . . . . . . . . . . . . . .

a
(eq)
m1 a

(eq)
m2 . . . a

(eq)
mn

 (6.2)



162 Глава 9. Линейные операторы и матрицы

(коэффициенты разложения вектора Aei по базису Qm образуют i-й
столбец матрицы Aeq). Матрицу Aeq называют матрицей операто-
ра A. Она однозначно определяется оператором A и базисами En, Qm.

Оператор и соответствующую ему матрицу будем обозначать од-
ной и той же буквой, но набранной в разных шрифтах. Нижние ин-
дексы в обозначении матрицы оператора указывают на базисы, ис-
пользованные для ее построения.

Соотношения (6.1) можно записать более кратко:
AEn = QmAeq. (6.3)

2. Пусть x = Enξ ∈ Xn, ξ ∈ Cn. Представим Ax в виде разложе-
ния по базису: Ax = Qmη, η ∈ Cm. Тогда, используя (6.3), получим

Qmη = Ax = AEnξ = QmAeqξ,

следовательно,
η = Aeqξ. (6.4)

Формула (6.4) показывает, как связаны коэффициенты разложе-
ния векторов x и Ax по базисам пространств Xn, Ym соответственно.

Из (6.4) вытекает, что если матрица Aeq оператора A известна,
то по заданному вектору x ∈ Xn вектор Ax ∈ Ym можно построить
следующим образом.

1) Найти вектор ξ ∈ Cn коэффициентов разложения x по бази-
су En. Это можно представить в операторном виде: ξ = E−1x.

2) Умножив матрицу Aeq на вектор ξ, получить вектор η ∈ Cm

коэффициентов разложения элемента y = Ax ∈ Ym по базису Qm.
3) Вычислить элемент y по найденному вектору η, что опять мож-

но записать в операторной форме: y = Qη.
3. Сказанное выше означает, что, используя операторы E , Q,

порожденные базисами En, Qm, соотношение (6.3) можно представить
в следующих эквивалентных формах:

Aeq = Q−1AE , или A = QAeqE−1. (6.5)
Поясним, что
Aeqξ = Q−1AEξ ∀ ξ ∈ Cn, Ax = QAeqE−1x ∀x ∈ Xn. (6.6)
Равенства (6.5), (6.6) иллюстрируют следующие диаграммы:

Xn
A−−→ Ym

E
x yQ−1

Cn −−→
Aeq

Cm

Xn
A−−→ Ym

E−1

y xQ

Cn −−→
Aeq

Cm
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Таким образом, если в пространствах Xn, Ym фиксированы неко-
торые базисы En, Qm, то всякому линейному оператору A, действу-
ющему из Xn в Ym, однозначно соответствует линейный оператор,
действующий из Cn в Cm (оператор умножения на матрицу Aeq опера-
тора A в этих базисах), и, наоборот, всякой матрице A размера m×n
однозначно соответствует оператор A, действующий из Xn в Ym и
определяемый по формуле A = QAE−1.

4. Если A : Xn → Xn, то

AEn = EnAe, (6.7)

или
Ae = E−1AE , (6.8)

где Ae — матрица оператора A в базисе En.
5. Отметим два очевидных случая, когда матрица оператора не

зависит от выбора базиса: 1) нулевой оператор, его матрица при лю-
бом выборе базисов в пространствах Xn, Ym нулевая; 2) тождествен-
ный оператор, его матрица — единичная матрица в любом базисе
пространства Xn.

В дальнейшем (см. теорему 11, с. 166) будет доказано, фактиче-
ски, обратное утверждение: если матрица оператора A : Xn → Xn не
зависит от выбора базиса, то существует такое число α, что A = αI,
т. е. оператор A — это оператор умножения на число (скалярный опе-
ратор).

6. Из определения матрицы оператора сразу же вытекает, что
для любых операторов A,B : Xn → Ym и для любых α, β ∈ C

(αA+ βB)eq = αAeq + βBeq, (6.9)

т. е. линейным операциям над операторами соответствуют линейные
операции над их матрицами.

7. Аналогичное при определенных условиях справедливо и для
произведения операторов. Пусть A : Xn → Ym, B : Ym → Zp, A,B —
линейные операторы. Будем считать, что в пространствах Xn, Ym, Zp
заданы базисы {ek}nk=1, {qk}mk=1, {rk}

p
k=1, соответсвенно; Aeq — мат-

рица оператора A, Bqr — матрица оператора B, (BA)er — матрица
оператора BA : Xn → Zp. Покажем, что

(BA)er = BqrAeq, (6.10)
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т. е. матрица произведения операторов равна произведению матриц
операторов. Действительно, применяя формулы (6.5), получим

(BA)er = R−1BAE = R−1RBqrQ−1QAeqE−1E = BqrAeq.

Важно подчеркнуть, что здесь при определении матриц операто-
ров A и B использовался один и тот же базис {qk}mk=1 ⊂ Ym. Ука-
занное согласование базисов обычно предполагается выполненным.

Примеры.

1) Определим оператор A : C4 → C4 при помощи соотношения

Ax = (x2, x1, x3 + x4, x4)

для любого x = (x1, x2, x3, x4) ∈ C4. Построим матрицу оператора A в естественном ба-
зисе (см. с. 122, 114) пространства C4. Имеем Ai1 = (0, 1, 0, 0) = i2,Ai2 = (1, 0, 0, 0) = i1,
Ai3 = (0, 0, 1, 0) = i3, Ai4 = (0, 0, 1, 1) = i3 + i4, следовательно, матрица оператора A
имеет вид 0 1 0 0

1 0 0 0
0 0 1 1
0 0 0 1

 .

2) В трехмерном линейном пространстве Q2 всех полиномов степени не выше
двух с комплексными коэффициентами определим оператор T при помощи соотно-
шения T q2(z) = q2(z + h) для любого элемента q2 ∈ Q2. Здесь h — фиксированное ком-
плексное число (сдвиг). Построим матрицу оператора T , принимая за базис простран-
ства Q2 полиномы φ0(z) ≡ 1, φ1(z) = z, φ2(z) = z2. Имеем T φ0 = φ0, T φ1 = hφ0 +φ1,
T φ2 = h2φ0 + 2hφ1 + φ2, следовательно, матрица оператора T равна1 h h2

0 1 2h
0 0 1

 .

Поэтому, если q2(z) = a0 + a1z + a2z
2, то T q2(z) = b0 + b1z + b2z

2, гдеb0b1
b2

 =

1 h h2

0 1 2h
0 0 1

a0a1
a2

 =

a0 + ha1 + h2a2
a1 + 2ha2

a2

 .

8. Упражнения.

1) Определим в пространстве Cn так называемый оператор T
циклического сдвига, полагая T x = (x1, x2 . . . , xn−1, x0) для каждо-
го x = (x0, x1, . . . , xn−1) ∈ Cn. Построить матрицу этого оператора в
базисе Фурье (см. с. 140).

2) Пусть Tn — линейное пространство функций вида

fn(x) = a0 +
n∑
k=1

(ak cos kx+ bk sin kx),
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где n > 1 — фиксированное целое число, a0, ak, bk, k = 1, . . . , n —
произвольные вещественные числа, x может принимать любые веще-
ственные значения. Операции сложения функций и умножения функ-
ции на число определены обычным образом. Показать, что функции

1, cosx, sin x, cos 2x, sin 2x, . . . , cosnx, sinnx

образуют базис этого пространства. Построить матрицу оператора
дифференцирования Dfn(x) = f ′n(x) в этом базисе.

3) Пусть Pn — линейное пространство полиномов степени не вы-
ше n с вещественными коэффициентами. Определим на этом про-
странстве линейный оператор A, полагая Apn(x) = ap′n(x) + bpn для
любого pn ∈ Pn. Здесь a, b — произвольным образом фиксирован-
ные вещественные числа. Построить матрицу оператора A в бази-
се {1, x, x2, . . . , xn}.

4) Построить матрицу оператора A, описанного в предыдущем
примере, полагая при этом b = 0, трактуя возникающий оператор
как оператор из Pn в Pn−1 и принимая за базис пространства Pk ба-
зис Тейлора1) {1, (x−c), . . . , (x−c)k}, c — произвольное вещественное
число.

5) Определим оператор K, действующий из Pn в Pn+1 по формуле

Kpn(x) =
x∫

0

pn(t)dt.

Построить матрицу оператора K, принимая {1, x, . . . , xk} за базис в
пространстве Pk.

6) Определим так называемый разностный оператор ∆h, действу-
ющий из Qn в Qn−1 по формуле

∆hqn(z) = qn(z + h)− qn(z),

Qk — пространство полиномов степени не выше k с комплексными ко-
эффициентами, h— произвольным образом фиксированное комплекс-
ное число. Построить матрицу оператора ∆h, принимая {1, z, . . . , zk}
за базис в пространстве Qk.

9. Матрица оператора A : Xn → Ym определяется заданием
базисов пространств Xn,Ym. Выясним, как она изменяется при из-
менении базисов. Пусть наряду с базисами {ek}nk=1, {qk}mk=1 заданы
базисы {ẽk}nk=1, {q̃k}mk=1 и Aẽq̃ — матрица оператора A в этих базисах.

1)Брук Тэйлор (Brook Taylor; 1685 — 1731) — английский математик.
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Будем считать известными матрицы T , R перехода к новым базисам,
так что (см. § 7, с. 124)

Ẽn = EnT, Q̃m = QmR. (6.11)

Согласно (6.5), с. 162, имеем A = QAeqE−1, Aẽq̃ = Q̃−1AẼ , следова-
тельно, Aẽq̃ = Q̃−1QAeqE−1Ẽ . На основании (6.11) для любого ξ ∈ Cn

имеем Ẽnξ = EnTξ, поэтому Ẽ = ET , откуда получаем, что E−1Ẽ = T .
Аналогично, Q̃−1Q = R−1. Таким образом,

Aẽq̃ = R−1AeqT. (6.12)

10. В важном частном случае, когда оператор A отображает
пространство Xn в себя, получаем

Aẽ = T−1AeT. (6.13)

Квадратные матрицы B, C, связанные соотношением

B = D−1CD, (6.14)

гдеD — невырожденная матрица, называют подобными. Говорят еще,
что матрица B получена из матрицы C при помощи преобразования
подобия.

Соотношение (6.13) показывает, что матрицы одного и того же
оператора A : Xn → Xn в разных базисах подобны.

11. Теорема. Если матрица оператора A : Xn → Xn не за-
висит от выбора базиса в пространстве Xn, то существует такое
число α, что A = αI.

Доказательство. Обозначим через A матрицу оператора A в
некотором базисе. Поскольку матрицы одного и того же операто-
ра в различных базисах подобны, то A = BAB−1 и, следователь-
но, AB = BA для любой невырожденной матрицы B. Пусть Eik —
матрица, у которой элемент в позиции (i, k) равен единице, а все
остальные элементы — нули. Матрица Eik+I — треугольная матрица
с ненулевыми элементами на главной диагонали и потому обратима.
Значит, A(Eik + I) = (Eik + I)A, следовательно, AEik = EikA. Будем
считать, что i ̸= k. В левой части последнего равенства, как нетрудно
видеть, — матрица, у которой только k-й столбец отличен от нуля и
он состоит из элементов a1i, a2i, . . . , ani. В матрице, записанной в
правой части этого же равенства, только i-я строка отлична от ну-
ля и она состоит из элементов ak1, ak2, . . . , akn. Поэтому указанное
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равенство может быть выполнено лишь в случае, когда aii = akk, а
все участвующие здесь элементы с различающимися индексами рав-
ны нулю. Вследствие произвольности номеров i, k это означает, что
матрица A диагональна и все ее диагональные элементы совпадают
между собой, т. е. A = αI, но тогда, очевидно, и A = αI. �

§ 7. Матрица обратного оператора

1. Поскольку det(D−1) = 1/ det(D) для любой невырожденной
матрицы D, то определители подобных матриц совпадают. В связи с
этим можно назвать определителем оператора A : Xn → Xn опре-
делитель матрицы этого оператора. Такая характеристика оператора
не зависит от выбора базиса в пространстве Xn, т. е. является ин-
вариантом оператора. Определитель оператора A будем обозначать
через det(A).

2. Будем называть оператор A : Xn → Xn невырожденным, ес-
ли det(A) ̸= 0. Для любого невырожденного оператора A существу-
ет обратный. Действительно, фиксируем некоторый базис {ek}nk=1 и
определим оператор B соотношением

B = EA−1
e E−1.

Поскольку A = EAeE−1, то BA = AB = EIE−1 = I, значит, опера-
тор B — обратный оператор к оператору A.

3. Как, фактически, следует из предыдущих рассуждений, в лю-
бом базисе пространства Xn матрица обратного оператора обратна к
матрице исходного оператора.

4. Теорема. Если оператор A : Xn → Xn имеет обратный, то
он невырожден.

5. Теорема. Для того, чтобы оператор A : Xn → Xn имел об-
ратный, необходимо и достаточно, чтобы уравнение Ax = 0 имело
только тривиальное решение x = 0.

Упражнение. Докажите теоремы 4, 5.

§ 8. Линейное пространство операторов

Рассмотрим множество всех линейных операторов, действующих
из Xn в Ym. Как показано в п. 3, с. 156, на этом множестве можно
ввести операции сложения линейных операторов и умножения опера-
тора на число. Нетрудно убедиться, что эти операции удовлетворяют
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аксиомам линейного пространства. Таким образом, множество всех
линейных операторов, действующих из Xn в Ym, само можно рас-
сматривать как линейное пространство. Из результатов п. 1, с. 161,
вытекает, что это пространство изоморфно пространству всех прямо-
угольных матриц размера m×n. Соответствующее линейное отобра-
жение задается соотношением (6.3), с. 162. Размерность пространства
всех линейных операторов, действующих из Xn в Ym, равна mn.

Если пространства Xn и Ym вещественны и допускается умноже-
ние операторов только на вещественные числа, мы приходим к веще-
ственному линейному пространству операторов.

§ 9. Ранг матрицы

1. Пусть A(m,n) — произвольная прямоугольная матрица. Бу-
дем трактовать ее столбцы как систему векторов пространства Cm.
Ранг этой системы векторов (см. § 5, с. 121) назовем рангом матри-
цы A(m,n). Ранг матрицы A будем обозначать через rank(A).

2. Теорема. Пусть A : Xn → Ym, Aeq — матрица опера-
тора A относительно произвольным образом фиксированных бази-
сов {ek}nk=1 ⊂ Xn, {qk}mk=1 ⊂ Ym. Тогда rank(Aeq) = rank(A).

Доказательство. Пусть x = Enξ ∈ Xn. Тогда Ax = Qmη,
где η = Aeqξ (см. п. 2, с. 162). Понятно, что вектор η принадлежит
подпространству пространства Cm, натянутому на столбцы матри-
цы Aeq и, следовательно, имеющему размерность, равную rank(Aeq).
Поскольку линейный оператор Q обратим, то, очевидно, указанное
подпространство изоморфно ImA, следовательно, в силу теоремы 4,
с. 160, размерность Im(A) равна rank(Aeq). �

3. Таким образом, ранг матрицы оператора инвариантен по от-
ношению к выбору базисов, выбираемых при ее построении, и можно
было бы дать эквивалентное определение ранга оператора как ранга
его матрицы.

4. Матрицу A(m,n) можно трактовать и как систему строк из
пространства Cn. Ранг этой системы строк обозначим через rs.

Справедлива следующая, на первый взгляд, неожиданная

5. Теорема. Для любой матрицы A(m,n) выполнено равен-
ство rs = rank(A(m,n)).

Доказательство. Не ограничивая общности рассуждений мож-
но считать, что первые rs строк матрицы A(m,n) линейно незави-
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симы, а каждая из последующих линейно выражается через пер-
вые rs строк матрицы A(m,n). Пусть A(rs, n) — матрица, состоя-
щая из первых rs строк матрицы A(m,n). Используем для преоб-
разования матрицы A(rs, n) алгоритм, совпадающий, фактически, с
прямым ходом метода Гаусса (см. с. 99). Выберем в первой строке
матрицы A(rs, n) ненулевой элемент. Это возможно, так как ни одна
строка матрицы A(rs, n) не может быть нулевой. Переставим столбцы
матрицы A(rs, n) так, чтобы столбец, содержащий указанный ненуле-
вой элемент, оказался первым. Сохраним за преобразованной таким
образом матрицей прежнее обозначение. Умножим первую строку
на −a21/a11 и сложим со второй. Затем аналогичные преобразования
проделаем со всеми последующими строками матрицы A(rs, n). В ре-
зультате получим матрицу, у которой все элементы первого столб-
ца, кроме элемента a11, равны нулю, причем a11 ̸= 0. Вторая строка
преобразованной матрицы есть нетривиальная линейная комбинация
первых двух строк, поэтому она отлична от нуля. Поменяв местами
при необходимости второй столбец преобразованной матрицы с од-
ним из последующих, мы получим матрицу, у которой элемент a22
не нуль. Умножим вторую строку на −a32/a22 и сложим с третьей.
Аналогичные преобразования проделаем и с последующими строками
матрицы A(rs, n). Продолжая такие преобразования, мы, в результа-
те, придем к матрице, которую можно представить в блочном виде

(Ã(rs, rs), B(rs, n− rs)), (9.1)

где Ã(rs, rs) — верхняя треугольная матрица с ненулевыми элемен-
тами на главной диагонали. Описанные выше преобразования не мо-
гут ≪сорваться≫, так как в ходе указанных вычислений каждый раз
возникает строка, которая является нетривиальной линейной ком-
бинацией предыдущих строк матрицы A(rs, n), и потому не может
оказаться нулевой. Очевидно, что, не ограничивая общности рас-
суждений, можно считать, что первые rs столбцов исходной матри-
цы A(rs, n) таковы, что выполняя описанные выше преобразования и
не прибегая к перестановке столбцов, мы придем к матрице вида (9.1).
Ясно, что det(Ã(rs, rs)) ̸= 0, поэтому первые rs столбцов исходной
матрицы A(rs, n) линейно независимы. Но тогда и первые rs столбцов
матрицы A(m,n) линейно независимы. Покажем, что добавление к
ним любого столбца матрицы A(m,n) приводит к линейно зависимой
системе. Пусть ∆rs — главный минор1) порядка rs матрицы A(m,n).

1)Напомним, что главным минором порядка r называется минор, образованный элементами
матрицы, стоящими на пересечении ее первых r строк и первых r столбцов (см. задачу 1 на
с. 105).
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Из предыдущих рассуждений следует, что ∆rs ̸= 0, поэтому система
линейных уравнений

rs∑
j=1

aijxj = aik, i = 1, 2, . . . , rs, (9.2)

имеет решение при любом k = 1, 2, . . . , n. Поскольку каждая строка
матрицы A(m,n) с номером большим rs линейно выражается через
первые rs строк матрицы A(m,n), то вектор (x1, x2, . . . , xrs), являю-
щийся решением системы (9.2), удовлетворяет и соотношениям

rs∑
j=1

aijxj = aik, i = rs + 1, . . . ,m.

Таким образом, каждый столбец матрицы A(m,n) есть линейная ком-
бинация ее первых rs столбцов, следовательно, rank(A(m,n)) = rs. �

6. Квадратная матрица порядка n невырождена тогда и только
тогда, когда ее ранг равен n.

7. Любая перестановка строк или столбцов матрицы, очевидно,
не меняет ее ранга. Более того, имеет место

8. Теорема. Пусть A(m,n) — произвольная матрица, а B(m,m)
и C(n, n) — квадратные невырожденные матрицы. Тогда

rank(A) = rank(BA), (9.3)

rank(A) = rank(AC). (9.4)

Доказательство. Для проверки справедливости равенства (9.3)
достаточно заметить, что если матрица B невырождена, то для ли-
нейной независимости системы столбцов Ba1, . . . , Bap необходимо и
достаточно линейной независимости столбцов a1, . . . , ap (проверьте!).
Справедливость (9.4) устанавливается затем переходом к транспони-
рованным матрицам. �

Упражнение. Показать, что для любых допускающих умноже-
ние прямоугольных матриц A, B справедливо неравенство

rank(AB) 6 min{rank(A), rank(B)}.
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§ 10. Элементарный метод вычисления ранга матрицы

1. Из рассуждений, выполненных при доказательстве теоремы 5
предыдущего параграфа, следует, что если матрицаA имеет ранг рав-
ный r, то можно так переставить столбцы и строки этой матрицы, что
главный минор ∆r порядка r полученной матрицы будет отличен от
нуля. Указанный минор принято называть базисным минором мат-
рицы A.

Сформулируем и докажем в некотором смысле обратное утвер-
ждение. Пусть A — произвольная прямоугольная матрица, ∆r — ее
главный минор порядка r. Назовем главный минор ∆r+1 окаймляю-
щим минором для минора ∆r. Переставляя строки и столбцы мат-
рицы A с номерами, большими чем r, можно построить различные
окаймляющие миноры для минора ∆r.

2. Лемма. Пусть главный минор ∆r матрицы A не равен ну-
лю, а все окаймляющие его миноры — нули. Тогда ранг матрицы A
равен r.

Доказательство. Поскольку ∆r ̸= 0, первые r столбцов матри-
цы A линейно независимы. Покажем, что любой столбец матрицы A
с номером, большим чем r, линейно выражается через ее первые r
столбцов. Это и будет означать, что rank(A) = r. Предположим про-
тивное. Тогда, присоединяя к первым r столбцам матрицы A неко-
торый столбец с большим номером, мы получим, что образованная
таким образом матрица имеет ранг r + 1. Поэтому она имеет r + 1
линейно независимую строку. Причем первые ее r строк линейно неза-
висимы, так как ∆r ̸= 0. Значит, найдется строка с номером, боль-
шим чем r, которая не выражается линейно через первые r строк.
Делая указанную строку (r + 1)-й строкой матрицы A, получим,
что ∆r+1 ̸= 0, чего по условию леммы быть не может. �

3. Доказательство леммы 2 приводит к следующему способу вы-
числения ранга матрицы1).

1) Просматриваем элементы матрицы. Если все они — нули, по-
лагаем ранг равным нулю и останавливаем процесс.

2) Если найден элемент матрицы, отличный от нуля, то, пере-
ставляя соответствующие строки и столбцы матрицы, помещаем его
на место первого элемента первого столбца.

3) Окаймляем элемент a11, т. е. составляем определители второ-
го порядка, присоединяя к нему элементы других строк и столбцов

1)В реальной вычислительной практике обычно применяют способ отыскания ранга матрицы,
описанный на с. 238.
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(например, элементы второй строки и второго столбца). Если все эти
определители второго порядка — нули, то, очевидно, у матрицы толь-
ко один линейно независимый столбец (и одна линейно независимая
строка). Значит, ранг матрицы равен единице.

4) Если обнаружен ненулевой определитель второго порядка, то
путем перестановки строк и столбцов матрицы превращаем этот опре-
делитель в определитель вида ∆2 (образованный элементами, стоя-
щими на пересечении первых двух строк и первых двух столбцов) и
окаймлением строим определители третьего порядка, пока не полу-
чим среди них определитель, отличный от нуля, и т. д.

Если на каком-то шаге описанного алгоритма получен определи-
тель ∆r, не равный нулю, а все определители порядка r + 1, постро-
енные его окаймлением, — нули, то это означает, что ранг матрицы
равен r.

Понятно, что описанный процесс зачастую может быть ускорен.
Именно, пусть удалось установить, что определитель, образованный
элементами, стоящими на пересечении каких-то r строк и каких-то r
столбцов матрицы, не равен нулю. Строим окаймлением этого опре-
делителя определители порядка r+1. Если среди них есть ненулевой,
процесс продолжается. Если все такие определители — нули, то ранг
матрицы равен r.

Пример. Найдем ранг матрицы

A =

2 −4 3 1 0
1 −2 1 −4 2
0 1 −1 3 1
4 −7 4 −4 5

 .

Заметим, что в матрице A содержится минор

d =

∣∣∣∣−4 3
−2 1

∣∣∣∣ ,
не равный нулю. Минор третьего порядка

d ′ =

∣∣∣∣∣∣
2 −4 3
1 −2 1
0 1 −1

∣∣∣∣∣∣ = 2

∣∣∣∣−2 1
1 −1

∣∣∣∣− ∣∣∣∣−4 3
1 −1

∣∣∣∣ ,
окаймляющий минор d, не равен нулю, однако, оба минора четвертого порядка∣∣∣∣∣∣∣

2 −4 3 1
1 −2 1 −4
0 1 −1 3
4 −7 4 −4

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
2 0 3 1
1 0 1 −4
0 1 −1 3
4 1 4 −4

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
2 0 3 1
1 0 1 −4
0 1 −1 3
4 0 5 −7

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣
2 3 1
1 1 −4
4 5 −7

∣∣∣∣∣∣ =

= −

∣∣∣∣∣∣
2 3 1
1 1 −4
2 2 −8

∣∣∣∣∣∣ = −2

∣∣∣∣∣∣
2 3 1
1 1 −4
1 1 −4

∣∣∣∣∣∣
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и ∣∣∣∣∣∣∣
2 −4 3 0
1 −2 1 2
0 1 −1 1
4 −7 4 5

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
2 0 3 0
1 0 1 2
0 1 −1 1
4 1 4 5

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
2 0 3 0
1 0 1 2
0 1 −1 1
4 0 5 4

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣
2 3 0
1 1 2
4 5 4

∣∣∣∣∣∣ =

= −

∣∣∣∣∣∣
2 3 0
1 1 2
2 2 4

∣∣∣∣∣∣ = −2

∣∣∣∣∣∣
2 3 0
1 1 2
1 1 2

∣∣∣∣∣∣ ,
окаймляющие минор d ′, очевидно, равны нулю, поэтому ранг матрицы A равен трем.



Глава 10
Линейные уравнения

§ 1. Общее решение линейного уравнения

В этом параграфе будем считать, что уравнение

Ax = y, (1.1)

где A — линейный оператор, действующий из линейного простран-
ства Xn в линейное пространство Ym, y — заданный элемент про-
странства Ym, x — искомый элемент пространства Xn, имеет реше-
ние, и опишем структуру всех его возможных решений, иными сло-
вами, получим представление общего решения уравнения (1.1).

Пусть x1, x2 — решения уравнения (1.1) при одной и той же пра-
вой части y. Тогда, очевидно, A(x1 − x2) = 0, т. е. x1 − x2 ∈ Ker(A).
Отсюда вытекает, что если фиксировать некоторое решение уравне-
ния (1.1) (обозначим его через x0 и будем называть частным реше-
нием неоднородного уравнения), то любое другое решение (1.1) имеет
вид x = x0 + x̃, где x̃ ∈ Ker(A). Пусть φ1, φ2, . . . , φp — некий базис
в Ker(A). Тогда

x = x0 +

p∑
k=1

ckφ
k. (1.2)

Таким образом, представление общего решения уравнения (1.1)
получено. Меняя в (1.2) коэффициенты c1, c2, . . . , cp, можно получить
любое решение этого уравнения.

Векторы φ1, φ2, . . . , φp принято называть фундаментальной си-
стемой решений однородного уравнения

Ax = 0, (1.3)

а x̃ =
p∑

k=1

ckφ
k — общим решением однородного уравнения. Итак, об-

щее решение уравнения (1.1) есть сумма какого-либо частного реше-
ния уравнения (1.1) и общего решения однородного уравнения (1.3).
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§ 2. Исследование разрешимости систем линейных
алгебраических уравнений

1. При фактическом построении решений уравнения

Ax = y (2.1)

нужно ввести некоторые базисы En = {ek}nk=1, Qm = {qk}mk=1 в про-
странствах Xn, Ym и перейти к системе линейных алгебраических
уравнений относительно коэффициентов ξ разложения вектора x по
базису En, считая известными коэффициенты η разложения вектора y
по базису Qm. В результате (см. п. 2, с. 162), получим

Aeqξ = η, (2.2)

где Aeq — матрица оператора A.
Более подробная запись уравнения (2.2) дает

n∑
j=1

a
(eq)
ij ξj = ηi, i = 1, 2, . . . ,m. (2.3)

Подчеркнем, что коэффициенты a
(eq)
ij этой системы уравнений (эле-

менты матрицы оператора A) и столбец правой части η1, η2, . . . , ηm
предполагаются известными, а числа ξ1, ξ2, . . . , ξn требуется найти.

В отличие от рассматривавшихся ранее систем линейных алгеб-
раических уравнений (см. § 5, гл. 5) у системы уравнений (2.3) коли-
чество уравнений и число неизвестных, вообще говоря, различны.

Задачи (2.1), (2.2) эквивалентны в том смысле, что если ξ —
решение уравнения (2.2), то x = Enξ — решение уравнения (2.1)
при y = Qmη, и наоборот, если x — решение уравнения (2.1), то ко-
эффициенты разложения векторов x, y по соответствующим базисам
связаны соотношением (2.2).

2. Получим необходимые и достаточные условия разрешимости
системы линейных алгебраических уравнений

Ax = b, (2.4)

где A = A(m,n) — заданная прямоугольная матрица с комплексны-
ми, вообще говоря, элементами, b — заданный вектор из Cm.

Обозначим через (A, b) матрицу размера m× (n+1), получающу-
юся присоединением к матрице A столбца b. Матрицу (A, b) принято
называть расширенной матрицей системы (2.4).
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3. Теорема Кронекера — Капелли1). Для того, чтобы си-
стема уравнений (2.4) имела решение, необходимо и достаточно,
чтобы ранги матриц A и (A, b) совпадали.

Доказательство. Добавление столбца не уменьшает ранга
матрицы, и очевидно, что ранг сохраняется тогда и только тогда,
когда b есть линейная комбинация столбцов матрицы A. Последнее
эквивалентно тому, что существует вектор x ∈ Cn, являющийся ре-
шением системы (2.4). �

4. Теорема (матричная теорема Фредгольма2)). Для того,
чтобы система линейных уравнений (2.4) имела решение, необходи-
мо и достаточно, чтобы для любого решения однородной системы
уравнений zA = 0 выполнялось равенство zb = 0.

Поясним, что здесь b интерпретируется как вектор столбец, а z —
как вектор строка.

Доказательство. Д о с т а т о ч н о с т ь. Пусть r = rank(A).
Не ограничивая общности рассуждений, можно считать, что первые r
строк матрицы A линейно независимы, Понятно, что тогда и пер-
вые r строк матрицы (A, b) линейно независимы. Если k-я строка
матрицы A линейно выражается через ее первые r строк, то суще-
ствует ненулевой вектор z такой, что zA = 0. Тогда по условию тео-
ремы zb = 0, но это означает, что k-я строка матрицы (A, b) линейно
выражается через ее первые r строк. Таким образом, ранги матриц A
и (A, b) совпадают, и по теореме Кронекера — Капелли система (2.4)
имеет решение. Н е о б х о д и м о с т ь. Пусть система уравнений (2.4)
имеет решение, т. е. существует вектор x ∈ Cn такой, что Ax = b. То-
гда для любого z ∈ Cm справедливо равенство zAx = zb. Очевидно,
что если zA = 0, то zb = 0. �

4.1. Приведем пример использования матричной теоремы Фред-
гольма. Дана симметричная матрица

A =



1 −1 0 · · · · · · · · · 0
−1 2 −1 0 · · · · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 · · · −1 2 −1 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 −1 2 −1
0 0 · · · · · · 0 −1 1


1)Альфредо Капелли (Alfredo Capelli; 1858 — 1916) — итальянский математик.
2)Эрик Ивар Фредгольм (Erik Ivar Fredholm; 1866 — 1927) — шведский математик.
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порядка n. Требуется найти ранг матрицы A и описать условия на
вектор b ∈ Rn, необходимые и достаточные для разрешимости систе-
мы линейных уравнений

Ax = b. (2.5)
Будем трактовать матрицу A как линейный оператор, действующий
в пространстве Rn. Опишем его ядро. Рассматривая однородную си-
стему уравнений

Ax = 0, (2.6)
заметим, что ее i-е уравнение, i = 2, 3, . . . , n − 1, записывается
так: −xi−1+2xi−xi+1 = 0, или xi−xi−1 = xi+1−xi. Отсюда, очевидно,
вытекает, что если вектор x — решение системы (2.6), то

x1 = x2 = · · · = xn,

т. е. ядро оператора A — одномерное подпространство простран-
ства Rn векторов вида x1 = c(1, . . . , 1), где c — произвольное ве-
щественное число. Отсюда вследствие теоремы 4, с. 161, получаем,
что rank(A) = n − 1. Далее, поскольку матрица A симметрична, то,
применяя матичную теорему Фредгольма, получаем, что для разре-
шимости системы (2.5) необходимо и достаточно выполнения усло-
вия (x1)T b = 0, где x1 — любое решение уравнения (2.6). Таким об-
разом, необходимым и достаточным условием разрешимости системы
уравнений (2.5) является равенство b1 + b2 + · · ·+ bn = 0.

§ 3. Построение общего решения системы линейных
алгебраических уравнений

Опишем элементарный способ, который можно применять для по-
строения общего решения системы линейных алгебраических уравне-
ний1)

Ax = b. (3.1)
Будем опираться при этом на результаты § 1. В дальнейшем будем
предполагать, что система (3.1) разрешима и обозначать через r ранг
расширенной матрицы этой системы.

1. Построение частного решения уравнения (3.1). Используя опи-
санные в пункте 3, с. 171, приемы вычисления ранга матрицы, при-
ведем матрицу (A, b) к такому виду, что главный минор порядка r

1)В реальной вычислительной практике обычно применяют методы основанные на построе-
нии так называемых сингулярных базисов оператора (см. с. 238).



178 Глава 10. Линейные уравнения

этой матрицы отличен от нуля, а все строки преобразованной матри-
цы (A, b), начиная с (r + 1)-й, есть линейные комбинации первых r
строк.

Выполняемые указанным способом преобразования приводят,
очевидно, к системе линейных уравнений, эквивалентной систе-
ме (3.1), т. е. каждое решение системы (3.1) — решение преобразован-
ной системы, и, наоборот, каждое решение преобразованной системы
есть решение системы (3.1). При этом последние m − r уравнений
преобразованной системы — следствия первых r уравнений.

Отбросим эти последние уравнения, а в оставшихся r уравнениях
перенесем слагаемые, содержащие переменные с (r+1)-й до n-й (эти
переменные принято называть свободными), в правую часть.

Придадим свободным переменным xr+1, . . . , xn любые значе-
ния (чаще всего нет никаких причин не брать их равными нулю).
В результате получим систему из r уравнений с r неизвестными, опре-
делитель которой по построению отличен от нуля. Решив эту краме-
ровскую систему уравнений, найдем x1, x2, . . . , xr. Таким образом
будет построен вектор x = (x1, x2, . . . , xr, xr+1, . . . , xn), являющийся
решением системы (3.1).

Пример. Найдем частное решение системы уравнений

x1 − x2 + x3 − x4 = 4, (3.2)
x1 + x2 + 2x3 + 3x4 = 8, (3.3)

2x1 + 4x2 + 5x3 + 10x4 = 20. (3.4)

Определитель

∆2 =

∣∣∣∣1 −1
1 1

∣∣∣∣ ,
находящийся в левом верхнем углу матрицы системы уравнений, не равен нулю. Опре-
делители ∣∣∣∣∣∣

1 −1 1
1 1 2
2 4 5

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 −1 −1
1 1 3
2 4 10

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 −1 4
1 1 8
2 4 20

∣∣∣∣∣∣ ,
окаймляющие определитель ∆2, — нули. Поэтому ранг основной матрицы системы урав-
нений равен двум, и ранг расширенной матрицы системы уравнений равен двум. Си-
стема совместна, причем последнее уравнение — следствие первых двух уравнений си-
стемы. Таким образом, чтобы найти частное решение системы (3.2) – (3.4), достаточно
решить систему двух уравнений (3.2) – (3.3), придавая x3, x4 произвольные значения.
Полагая x3 = x4 = 0, находим x1 = 6, x2 = 2, следовательно, вектор x = (6, 2, 0, 0) —
решение системы (3.2) – (3.4).

2. Обратимся теперь к задаче построения фундаментальной си-
стемы решений однородной системы уравнений

Ax = 0 (3.5)
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с матрицей размера m × n. Пусть rank(A) = r. Вследствие теоре-
мы 4, с. 161, достаточно построить любые n−r линейно независимых
решений однородной системы уравнений (3.5). Будем, естественно,
предполагать, что n > r.

Выполнив те же действия, что и в п. 1, приведем систему уравне-
ний (3.5) к эквивалентной системе вида

A(r, r)x(r, 1) +B(r, n− r)y(n− r, 1) = 0. (3.6)

Здесь A(r, r) — невырожденная матрица, столбец y((n − r), 1) соот-
ветствует свободным переменным. Выберем векторы

y1((n− r), 1), y2((n− r), 1), . . . , yn−r((n− r), 1) (3.7)

так, чтобы они были линейно независимы (проще всего их взять как
векторы стандартного базиса пространства Cn−r). По этим векторам
из уравнений

A(r, r)xk(r, 1) +B(r, (n− r))yk((n− r), 1) = 0,

k = 1, 2, . . . , n− r, однозначно определятся векторы

x1(r, 1), x2(r, 1), . . . , xn−r(r, 1).

Образуем теперь векторы zk(n, 1), приписывая к компонентам векто-
ров xk(r, 1) компоненты векторов yk((n− r), 1):

zk(n, 1) = (xk(r, 1), yk((n− r), 1)), k = 1, 2, . . . , n− r.

По построению Azk = 0 для k = 1, . . . , n− r, кроме того, очевидно,
векторы zk, k = 1, . . . , n − r, линейно независимы, так как векто-
ры системы (3.7) линейно независимы. Таким образом, векторы zk,
k = 1, 2, . . . , n − r, образуют фундаментальную систему решений
однородной системы уравнений (3.5).

Пример. Найдем фундаментальную систему решений однородной системы урав-
нений

x1 − x2 + x3 − x4 = 0, (3.8)
x1 + x2 + 2x3 + 3x4 = 0, (3.9)
2x1 + 4x2 + 5x3 + 10x4 = 0, (3.10)

соответствующей системе (3.2)–(3.4). Ранг матрицы этой системы, как было показано
при решении предыдущего примера, равен двум. Поэтому нужно построить два линей-
но независимых (непропорциональных) решения системы (3.8) – (3.10). Как уже было
установлено, последнее уравнение системы — следствие первых двух. Полагая x3 = 1,
x4 = 0 в уравнениях (3.8), (3.9), получим

x1 − x2 + 1 = 0, (3.11)
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x1 + x2 + 2 = 0, (3.12)

откуда x1 = −3/2, x2 = −1/2. Полагая же x3 = 0, x4 = 1 в уравнениях (3.8), (3.9), будем
иметь x1 = −1, x2 = −2. Поэтому векторы x1 = (−3/2,−1/2, 1, 0), x2 = (−1,−2, 0, 1)
образуют фундаментальную систему решений системы уравнений (3.8) – (3.10). Любой
вектор

x = c1(−3/2,−1/2, 1, 0) + c2(−1,−2, 0, 1), (3.13)

где c1, c2 — произвольные числа, — решение системы (3.8) – (3.10), и наоборот, любое
решение системы уравнений (3.8) – (3.10) представимо в виде (3.13) при некоторых c1, c2.
Таким образом, общее решение системы (3.2)–(3.4) можно представить в виде

x = (6, 2, 0, 0) + c1(−3/2,−1/2, 1, 0) + c2(−1,−2, 0, 1),

где c1, c2 — произвольные вещественные числа.



Глава 11
Строение линейного оператора

§ 1. Инвариантные подпространства

1. Пусть A : X → X — линейный оператор. Подпростран-
ство L ⊂ X называется инвариантным подпространством операто-
ра A, если оператор A отображает всякий вектор x из L в вектор,
также принадлежащий подпространству L.

Тривиальные подпространства, т. е. L = {0} и L = X, являются
инвариантными подпространствами любого оператора A : X → X.

Пусть пространство X — прямая сумма подпространств L и M ,
P — оператор проектирования на подпространство L параллельно
подпространству M. Тогда Px = x для любого x ∈ L и Px = 0
для любого x ∈ M , т. е. L и M — инвариантные подпространства
оператора P .

Приведем пример оператора, не имеющего нетривиальных инва-
риантных подпространств.

Пусть X2 — двумерное вещественное евклидово пространство.
Нетрудно убедиться, что если L — нетривиальное подпростран-
ство X2, то L — множество векторов вида αe, где e — фиксиро-
ванный ненулевой вектор, а α пробегает все множество веществен-
ных чисел (можно сказать, что L — прямая на плоскости, проходя-
щая через начало координат). Введем в X2 ортонормированный ба-
зис e1, e2. Пусть Q : X2 → X2 — оператор, отображающий каждый
вектор x = ξ1e

1 + ξ2e
2 в вектор y = −ξ2e1 + ξ1e

2. Векторы x, y орто-
гональны, и поэтому ясно, что если L — нетривиальное подпростран-
ство X2, то для x ∈ L вектор Qx ∈ L⊥ и, следовательно, Qx /∈ L,
если x ̸= 0, т. е. оператор Q не имеет нетривиальных инвариантных
подпространств.

2. Если известен базис инвариантного подпространства, то вид
матрицы оператора может быть упрощен. Именно, пусть {ek}nk=1 —
базис пространства Xn, L — подпространство Xn, инвариантное от-
носительно оператора A и имеющее размерность m. Пусть векто-
ры {ek}mk=1 принадлежат L. Тогда {ek}mk=1 — базис подпространства L
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(докажите!) и

Aek =
m∑
j=1

a
(e)
jk e

j, k = 1, . . . ,m, Aek =
n∑
j=1

a
(e)
jk e

j, k = m+ 1, . . . , n.

Эти равенства показывают, что элементы матрицы Ae, стоящие на
пересечении первых m столбцов и последних (n−m) строк, — нули,
следовательно, матрица Ae может быть записана как блочная 2 × 2
треугольная матрица:

Ae =

(
A11 A12

0 A22

)
, (1.1)

где A11 — квадратная матрица размера m, A22 — квадратная матрица
размера n − m, 0 — нулевая матрица размера (n − m) × m, A12 —
матрица размера m× (n−m).

Еще большее упрощение матрицы Ae достигается, когда про-
странство Xn представимо в виде прямой суммы инвариантных под-
пространств L и M оператора A, т. е. Xn = L uM и базис {ek}nk=1
пространства Xn выбран так, что векторы {ek}mk=1 — базис подпро-
странства L. Тогда, как нетрудно видеть, в представлении (1.1) мат-
рица A12 будет нулевой, т. е. матрица Ae принимает блочно диаго-
нальный вид

Ae =

(
A11 0
0 A22

)
. (1.2)

2.1. Очевидно, верно и обратное, а именно, если матрица опе-
ратора в некотором базисе {ek}nk=1 имеет блочную структуру ви-
да (1.2), то пространство Xn представимо как прямая сумма двух
подпространств, базисами этих подпространств будут векторы бази-
са {ek}nk=1 с номерами, совпадающими с номерами строк соответству-
ющих блоков.

2.2. Вообще говоря, и подпространства L иM могут распадаться
на прямые суммы инвариантных подпространств меньшей размерно-
сти. Тогда количество блоков, стоящих на диагонали матрицы Ae,
будет увеличиваться, а их размеры будут уменьшаться.

2.3. Наиболее простым является случай, когда пространство Xn

может быть представлено в виде прямой суммы n одномерных инва-
риантных подпространств оператора A. Тогда матрица Ae становится
диагональной. Однако такое представление возможно лишь для неко-
торых специальных классов операторов.
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3. Лемма. Пусть A : Xn → Xn — невырожденный оператор.
Пусть L ⊂ Xn — инвариантное подпространство оператора A.
Тогда для любого x ∈ L найдется, и при том только один, век-
тор y ∈ L такой, что Ay = x1).

Доказательство. Подпространство L инвариантно относи-
тельно оператора A, поэтому можно ввести в рассмотрение опера-
тор AL : L → L, полагая ALx = Ax для x ∈ L. Оператор AL

не вырожден, так как если ALx = Ax = 0, то x = 0, поскольку A
не вырожден (см. теорему 5, с. 167). Отсюда вытекает, что уравне-
ние ALy = x при любом x ∈ L имеет единственное решение y ∈ L. �

Оператор AL, определенный в ходе доказательства леммы 3, на-
зывают сужением оператора A на его инвариантное подпростран-
ство L.

§ 2. Собственные числа и собственные векторы

В пункте 2 предыдущего параграфа была показана особая роль
одномерных инвариантных подпространств оператора. С понятием
одномерного инвариантного подпространства тесно связано понятие
собственного вектора оператора.

1. Будем говорить, что вектор x ∈ X — собственный вектор
оператора A : X → X, если x ̸= 0 и существует число λ такое, что

Ax = λx. (2.1)

Число λ при этом называется собственным числом оператора A. Го-
ворят, что собственный вектор x соответствует (отвечает) собственно-
му числу λ. Собственный вектор и соответствующее ему собственное
число называют также собственной парой оператора A.

2. Пусть x, λ — собственная пара оператора A. Тогда Aαx=λαx
для любого α ∈ C, т. е. одномерное подпространство пространства X,
натянутое на собственный вектор оператора A, инвариантно относи-
тельно оператора A.

3. Пусть λ — собственное число оператора A. Ядро операто-
ра A − λI будем обозначать через Lλ и называть собственным под-
пространством оператора A. Понятно, что Lλ ̸= {0}. Всякий нену-
левой вектор из Lλ — собственный вектор оператора A, отвечающий
собственному числу λ.

1)Можно сказать, таким образом, что невырожденный оператор осуществляет взаимно од-
нозначное отображение любого своего инвариантного подпространства на это же подпростран-
ство.
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4. Приведем простые примеры операторов, имеющих собствен-
ные векторы.

1) Для нулевого оператора всякий ненулевой вектор простран-
ства Xn — собственный вектор, отвечающий собственному числу, рав-
ному нулю.

2) Для оператора αI, где α ∈ C, всякий ненулевой вектор про-
странства есть собственный вектор, отвечающий собственному числу,
равному α.

3) Пусть пространство X — прямая сумма подпространств L и M ,
и пусть P — оператор проектирования пространства X на подпро-
странство L параллельно M . Тогда Px = x для любого вектора x
из L, и Px = 0 для любого x ∈M , т. е. все ненулевые векторы из L —
собственные векторы оператора P , и все они отвечают собственному
числу, равному единице, тогда как все ненулевые векторы из M —
собственные векторы оператора P , отвечающие собственному числу,
равному нулю.

В вещественном пространстве Xn не у всякого оператора есть соб-
ственные векторы. Так, например, оператор Q, построенный в пунк-
те 1, с. 181, не имеет собственных векторов в вещественном простран-
стве X2. Это сразу следует из того, что у оператора Q нет нетриви-
альных инвариантных подпространств.

5. Теорема. Всякий оператор A, действующий в комплексном
пространстве Xn, имеет собственные векторы.

Доказательство. Достаточно убедиться, что существует λ ∈ C
такое, что линейное уравнение

(A− λI)x = 0 (2.2)

имеет нетривиальное решение. Фиксируем в пространстве Xn неко-
торый базис En. Пусть Ae — матрица оператора A в этом базисе.
Рассмотрим уравнение

det(Ae − λI) = 0. (2.3)

Нетрудно проверить, что det(Ae − λI) — полином порядка n отно-
сительно λ. Поэтому уравнение (2.3) имеет n корней λ1, λ2, . . . , λn.
Всякий корень λk уравнения (2.3) — собственное число оператора A.
В самом деле,

(Ae − λkI)ξ = 0 (2.4)
есть однородная система линейных уравнений с вырожденной мат-
рицей, следовательно, она имеет нетривиальное решение. Обозначим
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это решение через ξk. Тогда вектор xk = Enξk, очевидно, будет не
равен нулю и будет решением уравнения (A− λkI)x

k = 0. �
Упражнение. Пусть A — оператор, действующий в комплекс-

ном пространстве Xn, L ̸= {0} — инвариантное подпространство опе-
ратора A. Показать, что у оператора A есть собственный вектор,
принадлежащий L.

6. Операторы A и B, действующие в линейном пространстве X,
называются перестановочными, если AB = BA.

6.1. Лемма. Пусть A,B — перестановочные преобразования
линейного пространства X, и пусть Lλ ⊂ X — собственное подпро-
странство оператора A. Тогда Lλ — инвариантное подпростран-
ство оператора B.

Доказательство. Пусть x ∈ Lλ. Тогда Ax = λx, следователь-
но, BAx = λBx, но BA = AB, поэтому ABx = λBx. Это означает,
что вектор Bx принадлежит подпространству Lλ. �

§ 3. Характеристический полином и характеристические
числа

1. Полином det(A− λI) называется характеристическим поли-
номом матрицы A. Корни характеристического полинома называ-
ются характеристическими (собственными) числами матрицы A.
Множество всех характеристических чисел матрицы A называется ее
спектром и обозначается через σ(A). Как установлено в ходе дока-
зательства теоремы 5, с. 184, для любого числа λ ∈ σ(A) существует
вектор x ∈ Cn, не равный нулю, и такой, что

Ax = λx.

Вектор x называется собственным вектором матрицы A, соответ-
ствующим характеристическому числу λ этой матрицы.

2. Теорема. Характеристические полиномы, а следовательно,
и спектры подобных матриц совпадают.

Доказательство. Пусть T — невырожденная матрица, матри-
ца B = T−1AT подобна матрице A. Тогда для любого λ из C

B − λI = T−1AT − λI = T−1(A− λI)T.

Поскольку det(T−1) = 1/ det(T ), то det(B − λI) = det(A− λI). �
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2.1. Матрицы оператора в различных базисах подобны (см. п. 10,
с. 166), поэтому характеристический полином матрицы оператора и
его корни не зависят от выбора базиса в пространстве Xn. Характе-
ристический полином матрицы оператора естественно называть по-
этому характеристическим полиномом оператора.

Характеристические числа матрицы оператора называются ха-
рактеристическими числами этого оператора. Они, таким образом,
являются инвариантами оператора.

Множество всех характеристических чисел оператора A (часто
называемое его спектром) будем обозначать через σ(A).

Из доказательства теоремы 5 вытекает, что для оператора, дей-
ствующего в комплексном пространстве Xn, понятия характеристиче-
ского и собственного числа, фактически, не различаются, и примени-
тельно к таким операторам соответствующие термины используются
как синонимы.

§ 4. Признак линейной независимости собственных
векторов

1. Любой оператор, действующий в пространстве Xn, имеет не
более чем n различных собственных чисел.

2. Теорема. Пусть λ1, λ2, . . . , λp — собственные числа опе-
ратора A : Xn → Xn. Пусть все они попарно различны. Пусть,
далее, x1, x2, . . . , xp — собственные векторы оператора A, при-
чем Axk = λkx

k, k = 1, 2, . . . , p. Тогда векторы x1, x2, . . . , xp ли-
нейно независимы.

Доказательство. Предположим, что вопреки утверждению
теоремы система векторов x1, x2, . . . , xp линейно зависима. Не огра-
ничивая общности рассуждений, можно считать, что ее макси-
мальную линейно независимую подсистему образуют векторы x1,
x2, . . . , xr, r < p. Обозначим через Lr подпространство простран-
ства Xn, натянутое на векторы x1, x2, . . . , xr. Оно имеет размер-
ность r и инвариантно относительно оператора A. Пусть ALr

— суже-
ние оператора A на Lr. Тогда числа λ1, . . . , λr — собственные чис-
ла оператора ALr

. Все они попарно различны. Ненулевой вектор xr+1

принадлежит Lr и ALr
xr+1 = Axr+1 = λr+1x

r+1, т. е. λr+1 — собствен-
ное число оператора ALr

, но оператор ALr
действует в пространстве

размерности r и потому не может иметь больше чем r различных
собственных чисел. �
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2.1. Из сказанного выше вытекает, что если у оператора A все
собственные числа оказываются различными, то соответствующие им
собственные векторы xk, k = 1, 2, . . . , n, образуют базис простран-
ства Xn. По построению

Axk = λkx
k, k = 1, 2, . . . , n,

поэтому матрица оператора A в базисе {xk}nk=1 — диагональная мат-
рица, по диагонали которой расположены числа λk, k = 1, 2 . . . , n.

Пример. Найдем все собственные числа и собственные векторы матрицы

A =

 4 −5 7
1 −4 9

−4 0 5

 .

Характеристическое уравнение имеет вид∣∣∣∣∣∣
4− λ −5 7
1 −4− λ 9

−4 0 5− λ

∣∣∣∣∣∣ = 0.

Вычисляя определитель, получим

λ3 − 5λ2 + 17λ− 13 = 0. (4.1)

Очевидно, λ = 1 — корень этого уравнения. Нетрудно проверить, что

λ3 − 5λ2 + 17λ− 13 = (λ− 1)(λ2 − 4λ+ 13).

Корни уравнения λ2 − 4λ+ 13 = 0 есть 2± 3i. Таким образом,

λ1 = 1, λ2 = 2 + 3i, λ3 = 2− 3i

есть собственные числа матрицы A.
Координаты собственного вектора, отвечающего λ1, есть решение однородной си-

стемы уравнений

3x1 − 5x2 + 7x3 = 0, (4.2)
x1 − 5x2 + 9x3 = 0, (4.3)

−4x1 + 4x3 = 0. (4.4)

Определитель
∣∣∣∣3 −5
1 −5

∣∣∣∣ ̸= 0. Поэтому ранг матрицы системы уравнений (4.2) – (4.4) равен

двум и, следовательно, эта система уравнений может иметь лишь одно линейно незави-
симое решение. Положим x3 = 1 и найдем x1, x2, решая систему уравнений (4.2) – (4.3).
Получим x1 = 1, x2 = 2. Таким образом, вектор (1, 2, 1) — решение системы урав-
нений (4.2)– (4.4). Отсюда вытекает, что множество всех собственных векторов, отве-
чающих собственному числу λ1 = 1, есть множество векторов вида c(1, 2, 1), где c —
произвольное комплексное число, не равное нулю.

Координаты собственного вектора, отвечающего λ2, есть решение однородной си-
стемы уравнений

(2− 3i)x1 − 5x2 + 7x3 = 0, (4.5)
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x1 − (6 + 3i)x2 + 9x3 = 0, (4.6)
−4x1 + (3− 3i)x3 = 0. (4.7)

Определитель
∣∣∣∣2− 3i −5

1 −(6 + 3i)

∣∣∣∣ ̸= 0. Поэтому координаты собственного вектора най-

дем, решая систему уравнений (4.5) – (4.6) при x3 = 1. Получим x1 = (3 − 3i)/4,
x2 = (5 − 3i)/4. Таким образом, множество всех собственных векторов, отвечающих
собственному числу λ2, есть множество векторов вида c(3− 3i, 5− 3i, 4), где c — произ-
вольное комплексное число, не равное нулю.

Аналогичные вычисления показывают, что множество всех собственных векторов,
отвечающих собственному числу λ3, есть множество векторов вида c(3 + 3i, 5 + 3i, 4),
где c — произвольное комплексное число, не равное нулю.

В рассматриваемом примере все собственные числа различны. Соответствующие
им собственные векторы образуют базис пространства C3. Это видно и из того, что
определитель ∣∣∣∣∣∣

1 2 1
3− 3i 5− 3i 4
3 + 3i 5 + 3i 4

∣∣∣∣∣∣ ,
составленный из их координат, не равен нулю.

В случае, когда характеристический полином оператора A имеет
кратные корни, соответствующих им линейно независимых векторов
может оказаться меньше, чем n, и они не будут базисом простран-
ства Xn.

Пример. Найдем все собственные числа и собственные векторы матрицы

A =

 2 −1 2
5 −3 3

−1 0 −2

 .

Характеристическое уравнение есть λ3 + 3λ2 + 3λ+ 1 = 0. Корни этого уравнения есть
λ1 = λ2 = λ3 = −1. Система уравнений для отыскания координат собственного вектора
имеет, следовательно, вид

3x1 − x2 + 2x3 = 0, (4.8)
5x1 − 2x2 + 3x3 = 0, (4.9)

−x1 − x3 = 0. (4.10)

Определитель
∣∣∣∣3 −1
5 −2

∣∣∣∣ не равен нулю. Поэтому ранг матрицы этой системы равен двум,

и линейное пространство решений системы (4.8) – (4.10) одномерно. Нетрудно видеть,
что вектор x = (1, 1,−1) — решение системы (4.8) – (4.10). Следовательно, множество
всех собственных векторов матрицы — это множество векторов вида c(1, 1,−1), где c —
произвольное не равное нулю число. Понятно, что собственные векторы матрицы в
рассматриваемом случае не образуют базиса в пространстве C3.
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§ 5. Геометрическая и алгебраическая кратности
собственных чисел

1. Размерность собственного подпространства оператора A, от-
вечающего собственному числу λ этого оператора, называется гео-
метрической кратностью собственного числа λ.

Кратность числа λ как корня характеристического уравнения опе-
ратора A называется алгебраической кратностью собственного чис-
ла λ.

2. Теорема. Для любого оператора A, действующего в конеч-
номерном пространстве Xn, геометрическая кратность любого соб-
ственного числа не превосходит его алгебраической кратности.

Доказательство. Пусть Lλ0 — собственное подпространство
оператора A, отвечающее его собственному числу λ0, dim(Lλ0) = m,
и векторы f 1, f 2, . . . , fm образуют базис этого подпространства. До-
полним произвольно указанный базис векторами gm+1, gm+2, . . . , gn
до базиса пространства Xn. Поскольку Afk = λ0f

k, k = 1, 2, . . . , m,
то матрицу оператора A в полученном базисе можно представить в
блочном виде (см. п. 2 с. 181)(

Λ0 A12

0 A22

)
, (5.1)

где Λ0 — диагональная матрица порядка m с элементами λ0 на диа-
гонали и, следовательно, характеристический полином оператора A
можно представить так:

det(A− λI) = (λ− λ0)
mQn−m(λ),

где Qn−m(λ) — некоторый полином порядка n−m. Теперь совершен-
но очевидно, что m не может превосходить кратности λ0 как корня
уравнения det(A− λI) = 0. �

§ 6. Операторы простой структуры

Говорят, что оператор A : Xn → Xn есть оператор простой
структуры, если можно указать базис En пространства Xn, все век-
торы которого — собственные векторы оператора A. Матрицу опера-
тора A в этом базисе можно записать в виде

Ae = diag(λ1, . . . , λ1, λ2, . . . , λ2, . . . , λk, . . . , λk),
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где каждое собственное число оператора A повторяется столько раз,
какова его алгебраическая кратность.

Отметим также, что если A : Xn → Xn — оператор простой
структуры, λ1, λ2, . . . , λk, k 6 n, — все попарно различные собствен-
ные числа этого оператора, Lλi, i = 1, 2, . . . , k, — соответствующие
собственные подпространства оператора A, то

Xn = Lλ1 u Lλ2 u · · ·u Lλk.

Пусть Pi — оператор проектирования пространства Xn на Lλi,
i = 1, 2, . . . , k. Тогда, как нетрудно убедиться,

Ax = λ1P1x+ λ2P2x+ · · ·+ λkPkx ∀x ∈ Xn,

т. е.
A = λ1P1 + λ2P2 + · · ·+ λkPk. (6.1)

Равенство (6.1) определяет так называемое спектральное пред-
ставление оператора A. Вследствие (1.4), с. 157, для любого целого
неотрицательного j отсюда имеем Aj = λj1P1 + λj2P2 + · · · + λjkPk и,
вообще, если Qm — произвольный полином степени m > 0, то

Qm(A) = Qm(λ1)P1 +Qm(λ2)P2 + · · ·+Qm(λk)Pk. (6.2)

Поскольку все числа λ1, λ2, . . . , λk попарно различны, то можно
определить базисные функции Лагранжа (см. с. 86, с. 126)

Φj(λ) =
(λ− λ1)(λ− λ2) · · · (λ− λj−1)(λ− λj+1) · · · (λ− λk)

(λj − λ1)(λj − λ2) · · · (λj − λj−1)(λj − λj+1) · · · (λj − λk)
,

j = 1, 2, . . . , k. Из (6.2) тогда, очевидно, получаем

Pj = Φj(A), j = 1, 2, . . . , k. (6.3)

Формулу (6.3) называют формулой Сильвестра1). Она показывает,
что каждый из операторов Pj, j = 1, 2, . . . , k, есть полином степе-
ни k − 1 от оператора A, причем коэффициенты этого полинома за-
висят лишь от собственных чисел оператора A.

1. Теорема. Для того, чтобы оператор A был оператором про-
стой структуры, необходимо и достаточно, чтобы геометрическая
кратность каждого собственного числа оператора A совпадала с его
алгебраической кратностью.

1)Джеймс Джозеф Сильвестр (James Joseph Sylvester, 1814 — 1897) — английский математик.
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Доказательство теоремы предоставляется читателю.
Упражнение. Пусть операторы A,B, действующие в простран-

стве Xn, есть операторы простой структуры, и пусть их характеристи-
ческие полиномы совпадают. Доказать, что тогда существует невы-
рожденный оператор Q : Xn → Xn такой, что B = QAQ−1.

§ 7. Инварианты оператора

В этом параграфе существенно используется

1. Лемма. Для любого x ∈ C справедливо разложение

d(x) =

∣∣∣∣∣∣∣
a11 + x a12 . . . a1n
a21 a22 + x . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann + x

∣∣∣∣∣∣∣ =
= xn + c1x

n−1 + c2x
n−2 + · · ·+ cn−1x+ cn, (7.1)

где

ck =
∑

16p1<p2<···<pk6n

∣∣∣∣∣∣∣
ap1,p1 ap1,p2 . . . ap1,pk
ap2,p1 ap2,p2 . . . ap2,pk
. . . . . . . . . . . .
apk,p1 apk,p2 . . . apk,pk

∣∣∣∣∣∣∣ , (7.2)

k = 1, 2, . . . , n. Суммирование в (7.2) распространяется на все Ck
n

определителей порядка k указанного вида.
Определители, входящие в правую часть равенства (7.2), называ-

ются диагональными минорами порядка k матрицы

A =

 a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . .
an1 an2 . . . ann

 .

Отметим, что

c1 = a11 + a22 + · · ·+ ann, cn =

∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

∣∣∣∣∣∣∣ .
Доказательство леммы 1. Обозначим через a1, a2, . . . , an

столбцы матрицы A и будем трактовать определитель матрицы A
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как функцию ее столбцов, т. е. detA = ∆(a1, a2, . . . , an). Тогда функ-
цию d(x) можно представить в виде

d(x) = ∆(a1 + xi1, a2 + xi2, . . . , an + xin),

где, как обычно, через i1, i2, . . . , in обозначены единичные векторы
пространства Cn. Как мы знаем, определитель линеен по каждому
из своих столбцов, поэтому, проводя элементарные вычисления, по-
лучим

d(x) = ∆(a1, a2, . . . , an)+

+x(∆(i1, a2, . . . , an)+∆(a1, i2, . . . , an)+· · ·+∆(a1, a2, . . . , an−1, in))+

+ x2(∆(i1, i2, a3 . . . , an) + · · ·+∆(a1, a2, . . . , an−2, in−1, in))+

+ · · ·+ xn∆(i1, i2, . . . , in). (7.3)

Поясним, что множителем при xk является сумма Ck
n определи-

телей, каждый из которых получается заменой k столбцов опре-
делителя ∆(a1, a2, . . . , an) на соответствующие единичные векто-
ры. Для завершения доказательства леммы остается заметить,
что ∆(i1, i2, . . . , in) = 1, a заменяя k столбцов в определите-
ле ∆(a1, a2, . . . , an) на единичные векторы с теми же номерами, мы
получаем соответствующий диагональный минор порядка n− k мат-
рицы A. �

2. Характеристический полином матрицы Ae оператора A с точ-
ностью до знака совпадает с det(λI −Ae). Записывая этот определи-
тель в виде разложения по степеням λ, получим

det(λI − Ae) = Pn(λ) = λn − I1λn−1 + I2λn−2 + · · ·+ (−1)nIn. (7.4)

Как уже отмечалось, коэффициенты полинома Pn являются ин-
вариантами оператора A. Все они выражаются через элементы мат-
рицы оператора, но при этом важно помнить, что никакое преобра-
зование базиса их значений не меняет. В связи этим приняты обозна-
чения Ik = Ik(A), k = 1, 2, . . . , n. Используя формулы (7.1), (7.2),
нетрудно получить следующие выражения для инвариантов Ik(A)
оператора A через элементы матрицы Ae:

Ik(A) =
∑

16i1<i2<···<ik6n

∣∣∣∣∣∣∣∣
aei1,i1 aei1,i2 . . . aei1,ik
aei2,i1 aei2,i2 . . . aei2,ik
. . . . . . . . . . . .
aeik,i1 aeik,i2 . . . aeik,ik

∣∣∣∣∣∣∣∣ , (7.5)
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k = 1, 2, . . . , n, в частности,

I1(A) = ae11 + ae22 + · · ·+ aenn, In(A) = detAe, (7.6)

причем вследствие формул Вьета (см. п. 5, с. 25)

ae11 + ae22 + · · ·+ aenn = λ1 + λ2 + · · ·+ λn, detAe = λ1λ2 · · ·λn, (7.7)

где λ1, λ2, . . . , λn — характеристические числа оператора A. Вооб-
ще, Ik(A) есть сумма всевозможных произведений k различных ха-
рактеристических чисел оператора A.

3. Полезно отметить, что, поскольку всякая квадратная мат-
рица A = {aij}ni,j=1 порождает линейный оператор (умножения на
вектор), действующий в пространстве Cn, ей можно отнести величи-
ны Ik(A), k = 1, 2, . . . , n, вычисляемые по формулам вида (7.5) с
заменой aeij на aij. Понятно, что эти величины не меняются ни при
каком подобном преобразовании матрицы A и потому называются
инвариантами матрицы A.

4. Теорема. Пусть A — оператор, действующий в конечномер-
ном пространстве Xn. Тогда существует положительное число ε0
такое, что если |ε| < ε0 и ε ̸= 0, то оператор A+ εI обратим.

Доказательство этой теоремы поручается читателю в качестве
упражнения.

5. Величину I1(A) = ae11 + ae22 + · · · + aenn = λ1 + λ2 + · · · + λn
называют следом оператора A и обозначают через tr(A). Отметим
следующие полезные формулы:

tr(αA+ βB) = α tr(A) + β tr(B), (7.8)

tr(AB) = tr(BA). (7.9)
Здесь A,B — произвольные линейные операторы, действующие в ко-
нечномерном линейном пространстве, α, β — произвольные числа.

Равенство (7.8) непосредственно вытекает из определения следа
оператора. Равенство (7.9) легко проверяется переходом к матрицам
операторов и прямыми вычислениями величин, записанных в его пра-
вой и левой частях.
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§ 8. Инвариантные функции операторного аргумента

1. Функцию f , ставящую в соответствие каждому оператору
A : Xn → Xn число, назовем инвариантной скалярной функцией
операторного аргумента на операторе A, если

f(QAQ−1) = f(A) (8.1)

для любого невырожденного оператора Q : Xn → Xn.

1.1. Теорема. Для того, чтобы скалярная функция f опера-
торного аргумента была инвариантной на любом операторе про-
стой структуры, необходимо и достаточно, чтобы она зависела
только от инвариантов оператора.

Доказательство. Характеристические полиномы операторов
QAQ−1 и A при любом невырожденном операторе Q совпадают. По-
этому, если скалярная функция зависит только от инвариантов опера-
тора, то она инвариантна. Обратно, пусть все инварианты операторов
простой структуры A и B совпадают. Тогда (см. упражнение, с. 191)
существует невырожденный оператор Q такой, что B = QAQ−1 и,
если функция f инвариантна, то f(B) = f(A). �

Упражнение. Приведите примеры инвариантных скалярных
функций операторного аргумента.

2. Операторную функцию f , т. е. функцию, отображающую ли-
нейное пространство операторов в себя, назовем инвариантной на
операторе A, если

f(QAQ−1) = Qf(A)Q−1

для любого невырожденного оператора Q : Xn → Xn.

2.1. Теорема. Операторная функция f инвариантна на любом
операторе A простой структуры тогда и только тогда, когда для
любого оператора A : Xn → Xn простой структуры имеет место
представление:

f(A) = φ0I + φ1A+ φ2A2 + . . .+ φn−1An−1, (8.2)

где φi = φi(A), φi, i = 0, 1, . . . , n−1, есть инвариантные скалярные
функции операторного аргумента.

Доказательство. При любом невырожденном операторе Q
характеристические полиномы, а значит, и инварианты операторов
QAQ−1 и A совпадают. Очевидно также, что (QAQ−1)p = QApQ−1
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при любом целом неотрицательном p. Поэтому любая функция ви-
да (8.2) инвариантна.

Докажем обратное утверждение. Пусть A — оператор простой
структуры, {ek}nk=1 — его собственные векторы, образующие базис
пространства Xn, Aek = λkek, k = 1, 2, . . . , n. Определим оператор Q
равенствами Qe1 = −e1, Qek = ek, k = 2, 3, . . . , n. Нетрудно видеть,
что Q−1 = Q. Очевидно также, что QAQ−1ek = Aek, k = 1, 2, . . . , n,
т. е. QAQ−1 = A. Положим D = f(A). Тогда QDQ−1 = Qf(A)Q−1.
По условию теоремы Qf(A)Q−1 = f(A), значит, QDQ−1 = D, или
QD = DQ. Следовательно,

QDe1 = −De1. (8.3)

С другой стороны, если

De1 = d1e1 + d2e2 + · · ·+ dnen, (8.4)

то
QDe1 = −d1e1 + d2e2 + · · ·+ dnen. (8.5)

Из равенств (8.3)–(8.5), очевидно, вытекает, что d2, d3, . . . , dn = 0, а
это означает, что De1 = d1e1, т. е. e1 — собственный вектор операто-
ра D. Аналогично доказывается, что и все остальные векторы систе-
мы {ek}nk=1 — собственные векторы оператора D, т. е. f(A)ek = dkek,
k = 1, . . . , n.

Заметим теперь, что для любого обратимого оператора Q спра-
ведливы равенства Qf(A)Q−1gk = dkgk, где gk = Qek, k = 1, 2, . . . , n,
следовательно, f(QAQ−1)gk = dkgk, k = 1, 2, . . . , n. Таким образом,
все собственные числа операторов f(A) и f(QAQ−1) совпадают. Это
означает, что все собственные числа оператора f(A) — инвариантные
скалярные функции оператора A и потому зависят только от инва-
риантов оператора A.

Пусть e1, e2 — собственные векторы оператора A, соответствую-
щие одному и тому же собственному числу: Ae1 = λe1, Ae2 = λe2.
Тогда и собственные числа оператора D, отвечающие собственным
векторам e1, e2, также совпадают: De1 = de1, De2 = de2. Для дока-
зательства этого утверждения введем в рассмотрение оператор Q,
определяемый равенствами Qe1 = e2, Qe2 = e1, Qe3 = e3, . . . ,
Qen = en. Нетрудно убедиться, что оператор Q−1 существует и
QAQ−1ek = Aek, k = 1, 2, . . . , n, т. е. QAQ−1 = A, а значит, и

QDQ−1 = D. (8.6)
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Пусть теперь e = β1e1 + β2e2, где β1, β2 — произвольные числа, не
равные нулю одновременно. В силу (8.6) имеем QDe = DQe, или

Q(d1β1e1 + d2β2e2) = D(β1e2 + β2e1),

поэтому
d1β1e2 + d2β2e1 = β1d2e2 + β2d1e1,

откуда вытекает, что d1β1=β1d2, d2β2=β2d1, следовательно, d1=d2.
Как нетрудно убедиться, это означает, что кратности всех собствен-
ных чисел операторов A и D совпадают и, таким образом, установ-
лено, что если

A = λ1P1 + λ2P2 + · · ·+ λsPs, (8.7)
s 6 n, есть спектральное представление оператора A (см. (6.1),
с. 190), то спектральное представление оператора D имеет вид

D = d1P1 + d2P2 + · · ·+ dsPs. (8.8)

При этом существенно, что операторы проектирования Pk, k = 1,
2, . . . , s, в равенстве (8.7) те же самые, что и в равенстве (8.8). Как
показано в § 6, с. 189, каждый из операторов Pk, k = 1, 2, . . . , s, есть
полином степени не выше s − 1 от оператора A с коэффициентами,
зависящими лишь от собственных чисел оператора A. Отсюда, оче-
видно, следует справедливость представления (8.2). �

3. Теорема. Для того, чтобы функция f была линейной и ин-
вариантной на любом операторе простой структуры, необходимо и
достаточно, чтобы она имела вид

f(A) = λ tr(A)I + 2µA, (8.9)

где λ, µ — числа.
Доказательство этой теоремы поручается читателю в качестве

упражнения.

§ 9. Инвариантные подпространства оператора
в вещественном пространстве

1. Пусть теперь оператор A действует в вещественном простран-
стве Xn. Матрица Ae оператора A в любом базисе En вещественна.
Уравнение (2.3), с. 184, т. е. характеристическое уравнение матри-
цы Ae, — алгебраическое уравнение с вещественными коэффициента-
ми. Оно, вообще говоря, имеет как вещественные, так и комплексные
корни.
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Если λ — вещественный корень уравнения (2.3), то система урав-
нений

(Ae − λI)ξ = 0 (9.1)
имеет нетривиальное вещественное решение ξ, и для вектора x = Enξ
выполнено равенство Ax = λx, т. е. x — собственный вектор опера-
тора A. Таким образом, все вещественные характеристические числа
матрицы Ae — собственные числа оператора A.

Если число λ не совпадает ни с одним из вещественных корней
уравнения (2.3), то система уравнений (9.1) не может иметь нетри-
виальных вещественных решений, поэтому, если все корни уравне-
ния (2.3) — комплексные числа, то оператор A не имеет собственных
векторов.

Таким образом, линейный оператор, действующий в веществен-
ном пространстве, может не иметь одномерных инвариантных под-
пространств.

2. Каждому комплексному характеристическому числу матри-
цы Ae соответствует двумерное инвариантное подпространство опе-
ратора A.

Действительно, если λ = α + iβ — комплексное характеристиче-
ское число матрицы Ae, то det(Ae − λI) = 0, и система уравнений

(Ae − λI)ξ = 0 (9.2)

имеет нетривиальное комплексное решение ξ = ζ+iη. Поясним, что ζ
и η — векторы из Rn. Более подробная запись системы (9.2), с учетом
того, что Ae — вещественная матрица, дает

Aeζ + iAeη = (α+ iβ)(ζ + iη) = αζ − βη + i(βζ + αη),

откуда, приравнивая вещественные и мнимые части, получаем

Aeζ = αζ − βη,

Aeη = βζ + αη.

Полагая x = Enζ, y = Enη, будем иметь

Ax = αx− βy, (9.3)

Ay = βx+ αy. (9.4)
Образуем подпространство L, натянутое на векторы x, y. Пусть век-
тор z ∈ L. Это означает, что z = γx + δy для некоторых γ, δ ∈ R.
Тогда Az ∈ L. В самом деле,
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Az = γAx+ δAy = γ(αx− βy) + δ(βx+ αy) =

= (αγ + βδ)x+ (αδ − βγ)y ∈ L.

Таким образом, L — инвариантное подпространство оператора A.
Упражнения.

1) Показать, что векторы x, y, удовлетворяющие соотношени-
ям (9.3), (9.4), линейно независимы, т. е подпространство L двумерно.

2) Пусть Xn — вещественное пространство. Показать, что в любом
подпространстве Lm ⊂ Xn размерностиm > 2, инвариантном относи-
тельно оператора A : Xn → Xn, оператор A имеет либо одномерное,
либо двумерное инвариантное подпространство.

§ 10. Приведение матрицы оператора к треугольной форме

1. Теорема. Для любого оператора A, действующего в ком-
плексном пространстве Xn, можно указать такой базис, что мат-
рица оператора A в этом базисе треугольна, причем по ее диагонали
расположены все собственные числа оператора A.

В основе доказательства этого утверждения лежит

2. Теорема Шура1). Пусть A — квадратная матрица поряд-
ка n, λ1, λ2, . . . , λn — характеристические числа матрицы A, за-
нумерованные в некотором порядке. Существует унитарная мат-
рица U такая, что

U ∗AU = T, (10.1)
где T — верхняя треугольная матрица вида

T =

 λ1 t12 . . . t1n
0 λ2 . . . t2n
. . . . . . . . . tn−1,n

0 0 . . . λn

 . (10.2)

Доказательство. Пусть u1 — собственный вектор матрицы A,
отвечающий собственному числу λ1. Собственные векторы матрицы
определяются с точностью до скалярного множителя, поэтому можно
считать, что |u1| = 1 2).

1)Исай Шур (Issai Schur; 1875 — 1941) — немецкий математик.
2)Здесь и далее на протяжение этого параграфа под скалярным произведением понимается

стандартное скалярное произведение в пространстве Cn.
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Построим в пространстве Cn ортонормированный базис {uk}nk=1
(см. п. 2, с. 137) и обозначим через U1 матрицу, столбцами которой
служат элементы векторов {uk}nk=1.

Вычислим матрицу U ∗
1AU1. Учтем при этом, что Au1 = λ1u

1,
а (uk, u1) = 0 для k = 2, 3, . . . , n. В результате, получим, что

U ∗
1AU1 =

(
λ1 ∗
0 A1

)
. (10.3)

Справа в этом равенстве — блочная 2 × 2 матрица. Первый диаго-
нальный блок состоит из одного элемента, равного λ1. Второй диа-
гональный блок — квадратная матрица размера n − 1. Блок в пози-
ции (2,1) — нулевой столбец длины n − 1. Блок в позиции (1,2) —
строка длины n − 1 с ненулевыми, вообще говоря, элементами. Обо-
значения, аналогичные использованным здесь, будут применяться и
в дальнейшем.

Матрица U ∗
1AU1 подобна матрице A, поэтому (см. теорему 2,

с. 185)
σ(U ∗

1AU1) = σ(A).

С другой стороны, из (10.3) вытекает, что σ(U ∗
1AU1) = λ1∪σ(A1). Для

того, чтобы убедиться в этом, нужно разложить по первому столбцу
определитель det(λI − U∗

1AU1). Таким образом,

σ(A1) = {λ2, . . . , λn}.

Рассуждая точно так же, как при построении матрицы U1, можно
построить унитарную матрицу U2 порядка n− 1 такую, что

U ∗
2A1U2 =

(
λ2 ∗
0 A2

)
. (10.4)

Положим
V2 =

(
1 0
0 U2

)
.

Матрица V2, как нетрудно убедиться, есть унитарная матрица поряд-
ка n. Проводя элементарные вычисления, получим

V ∗
2 U

∗
1AU1V2 =

λ1 ∗ ∗
0 λ2 ∗
0 0 A2

 .

Понятно, что, продолжая этот процесс, можно построить унитар-
ные матрицы V3, . . . , Vn−1 такие, что матрица

V ∗
n−1 · · ·V ∗

2 U
∗
1AU1V2 · · ·Vn−1
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есть верхняя треугольная матрица, на главной диагонали которой по-
следовательно стоят числа λ1, λ2, . . . , λn. Положим U = U1V2 · · ·Vn−1.
Матрица U унитарна как произведение унитарных матриц (см. п. 6,
с. 108), причем U ∗ = V ∗

n−1 · · ·V ∗
2 U

∗
1 , поэтому для матрицы T = U ∗AU

справедливо равенство (10.2). �
3. Совершенно аналогично доказывается, что существует уни-

тарная матрица V такая, что
V ∗AV = L,

где L — нижняя треугольная матрица, по диагонали которой распо-
ложены характеристические числа матрицы A.

4. Из доказательства теоремы Шура видно, что если матрица A
вещественна и все ее характеристические числа (а, следовательно,
и собственные векторы) вещественны, то матрица U в (10.1) может
быть выбрана вещественной и унитарной, иными словами, ортого-
нальной.

5. Доказательство теоремы 1. Пусть A — произвольный ли-
нейный оператор, действующий в пространстве Xn, Fn = {fk}nk=1 —
произвольно фиксированный базис в Xn. Тогда AFn = FnAf ,
где Af — матрица оператора A в этом базисе (см. (6.3), с. 162). По тео-
реме Шура существует унитарная матрица U такая, что Af = UTU ∗,
где T — матрица вида (10.2), λ1, λ2, . . . , λn — характеристические
числа матрицы Af , или, что все равно, собственные числа операто-
ра A, следовательно, AFn = FnUTU

∗, или AFnU = FnUT . Поло-
жим En = FnU . Тогда AEn = EnT . Таким образом, T — матрица
оператора A в базисе En. �

§ 11. Нильпотентный оператор

1. Оператор A, действующий в конечномерном пространстве Xn,
называется нильпотентным, если существует целое число q > 1 та-
кое, что Aq = 0. Наименьшее q, для которого выполнено указанное
равенство, называется индексом нильпотентоности оператора A. Ана-
логичным образом вводится понятие нильпотентности квадратной
матрицы.

Вследствие (6.8), с. 163, имеем Aq
e = E−1AqE , поэтому, если A —

нильпотентный оператор, то и его матрица в любом базисе нильпо-
тентна с тем же индексом нильпотентности и, наоборот, если матрица
оператора в некотором базисе нильпотентна, то и оператор нильпо-
тентен с тем же индексом нильпотентности.
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2. Лемма. Пусть A — треугольная матрица порядка n, все
диагональные элементы которой равны нулю. Тогда A — нильпо-
тентная матрица, индекс ее нильпотентности не превосходит n.

Доказательство. Для определенности будем считать, что A —
нижняя треугольная матрица. В случае верхней треугольной мат-
рицы рассуждения повторяются, практически, дословно. Пусть x —
произвольный вектор из Cn. Тогда, как нетрудно видеть, первая ком-
понента вектора Ax равна нулю. Аналогично проверяется, что пер-
вые две компоненты вектора A(Ax) = A2x равны нулю. Продол-
жая эти вычисления, получим, что все компоненты вектора Anx рав-
ны нулю. Вследствие произвольности вектора x отсюда вытекает,
что An = 0. �

3. Теорема. Для того, чтобы оператор A был нильпотент-
ным, необходимо и достаточно, чтобы все его собственные числа
были равны нулю.

Доказательство. Пусть оператор A нильпотентен и q — индекс
его нильпотентности. Пусть λ, x — собственная пара оператора A. То-
гда Ax = λx, следовательно, Aqx = λqx. По сделанному предполо-
жению Aqx = 0, поэтому λqx = 0, но x ̸= 0, значит, λ = 0. Обратно,
пусть все собственные числа оператора A равны нулю. По теореме 1,
с. 198, существует базис, в котором матрица оператора A треугольна,
причем вследствие сделанного предположения все ее диагональные
элементы — нули, значит, по лемме 2 она нильпотентна. �

Укажем на очевидное

3.1. Следствие. Индекс нильпотентности оператора, дей-
ствующего в n-мерном пространстве, не может превосходить n.

4. Пусть A : Xn → Xn — нильпотентный оператор индекса q.
Тогда, очевидно, существует вектор x0 ∈ Xn такой, что Aq−1x0 ̸= 0.

Упражнение. Докажите, что векторы x0, Ax0, . . . , Aq−1x0 ли-
нейно независимы.

§ 12. Приведение матрицы оператора к жордановой форме

В этом параграфе будет показано, что для любого линейного опе-
ратора, действующего в комплексном пространстве Xn, можно ука-
зать базис, в котором матрица оператора имеет очень простую форму.
Она двухдиагональна. Причем по ее главной диагонали расположены
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все собственные числа оператора. На ближайшей сверху параллель-
ной диагонали располагаются элементы, которые могут принимать
значения нуль или единица. Матрица такого вида называется жор-
дановой 1). Для того, чтобы получить жорданово представление опе-
ратора, нужно взять его матрицу в произвольно выбранном базисе,
а затем преобразованием подобия привести ее к жордановой форме.
Указанная программа и будет реализована в настоящем параграфе.

Естественно, возникает вопрос, а нельзя ли любую матрицу при-
вести подобным преобразованием к диагональному виду. Простейшие
примеры показывают, что это невозможно. Так, если потребовать,
чтобы матрица SAS−1, где

A =

(
0 1
0 0

)
,

при некоторой невырожденной матрице S была диагональной, то мы
получим противоречивые равенства.

1. Нам потребуется следующее определение. Жордановым бло-
ком или жордановой клеткой называется верхняя треугольная мат-
рица Jk(λ), имеющая вид

Jk(λ) =


λ 1 0

λ 1
. . . . . .

λ 1
0 λ

 . (12.1)

Поясним, что k — порядок матрицы Jk(λ), все элементы ее глав-
ной диагонали равны λ, параллельно главной диагонали располага-
ется k − 1 единиц. Все остальные элементы матрицы Jk(λ) равны
нулю.

2. Полезно отметить, что если матрица оператора A :Xk → Xk

в базисе {ei}ki=1 есть клетка Жордана Jk(0), то векторы этого базиса,
очевидно, связаны соотношениями

Ae1 = 0, Ae2 = e1, . . . , Aek = ek−1.

Обозначая вектор ek через f , получим, что базис {ei}ki=1 образован
векторами f , Af , A2f , . . . , Ak−1f 1), причем Akf = 0.

Сформулируем теперь основной результат настоящего параграфа.
1)Мари Энмон Камиль (Камилл) Жордан (Marie Ennemond Camille Jordan; 1838 — 1922) —

французский математик.
1)Взятыми в обратном порядке.
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3. Теорема. Для произвольной матрицы A порядка n суще-
ствует невырожденная матрица S такая, что

S−1AS = J, (12.2)

где

J =


Jn1(λ1) 0

Jn2(λ2)
. . .

0 Jnk(λk)

 . (12.3)

Здесь n1+n2+ · · ·+nk = n. Числа λi, i = 1, 2, . . . , k, не обязательно
различные, исчерпывают все множество характеристических чи-
сел матрицы A (с учетом их кратности).

3.1. Теорема 3, очевидно, эквивалентна следующему утвержде-
нию. Для любого оператора A, действующего в конечномерном ком-
плексном пространстве Xn, можно указать базис En, в котором мат-
рица оператора A принимает вид (12.3), т. е.

AEn = EnJ. (12.4)

Базис, в котором матрица оператора принимает жорданову фор-
му, называется жордановым базисом.

4. Наиболее просто доказательство существования жорданова
базиса проводится для нильпотентного оператора. Отметим, что в
соответствии с теоремой 3, с. 201, и теоремой Шура для того, чтобы
оператор был нильпотентным, необходимо и достаточно, чтобы мат-
рица этого оператора в некотором базисе была верхней треугольной
с нулевыми элементами на главой диагонали.

4.1. Теорема. Пусть Xn — комплексное линейное простран-
ство, A : Xn → Xn — нильпотентный оператор. Тогда существует
базис пространства Xn, в котором матрица оператора A принима-
ет жорданову форму

Jn1(0) 0
Jn2(0)

. . .
0 Jnm(0)

 . (12.5)

Здесь n1 + n2 + · · ·+ nm = n.
Доказательство. Принимая во внимание сказанное в п. 2,

нетрудно убедиться, что доказываемое утверждение эквивалентно
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следующему: для любого нильпотентного оператора A : Xn → Xn

существуют векторы f 1, f 2, . . . fm такие, что

f 1,Af 1,A2f 1, . . . ,An1−1f 1, f 2,Af 2,A2f 2, . . . ,An2−1f 2, . . . ,

fm,Afm,A2fm, . . . ,Anm−1fm (12.6)

есть базис пространства Xn, причем

An1f 1 = An2f 2 = · · · = Anmfm = 0. (12.7)

Существование искомого базиса докажем индукцией по размер-
ности пространства. Для случая нильпотентного оператора, действу-
ющего в одномерном пространстве, доказываемое утверждение вы-
полняется тривиальным образом. Предположим, что оно верно для
любого пространства размерности меньше n, и покажем, что тогда
это утверждение справедливо и для пространства размерности рав-
ной n.

Оператор A нильпотентен, следовательно, def(A) > 1, поэтому
(см. (5.1), с. 161) rank(A) < n. Подпространство Im(A), очевидно,
инвариантно относительно оператора A, поэтому в силу предположе-
ния индукции существуют векторы u1, u2, . . . , uk такие, что векторы

u1,Au1,A2u1, . . . ,Ap1−1u1, u2,Au2,A2u2, . . . ,Ap2−1u2, . . . ,

uk,Auk,A2uk, . . . ,Apk−1uk (12.8)

образуют базис подпространства Im(A), причем,

Ap1u1 = Ap2u2 = · · · = Apkuk = 0. (12.9)

Для i = 1, 2, . . . , k векторы ui принадлежат Im(A), следовательно,
существуют векторы vi ∈ Xn такие, что

ui = Avi. (12.10)

Векторы
Api−1ui, i = 1, 2, . . . , k, (12.11)

принадлежат базису (12.8), следовательно, они линейно независи-
мы. Соотношения (12.9) показывают, что эти векторы принадле-
жат Ker(A). Отсюда вытекает, что можно построить векторы w1,
w2, . . . , wl, дополняющие векторы (12.11) до базиса подпростран-
ства Ker(A).

Если мы покажем теперь, что векторы
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v1,Av1, . . . ,Ap1v1, v2,Av2, . . . ,Ap2v2, . . . , vk,Avk, . . . ,Apkvk,

w1, w2, . . . , wl (12.12)

образуют базис пространства Xn, то, очевидно, это и будет искомым
базисом Жордана оператора A. Система (12.12) содержит n векторов.
В самом деле, в этой системе p1 + · · ·+ pk + k + l элементов, причем
p1 + · · ·+ pk = rank(A), и k + l = def(A), а для любого оператора A
справедливо равенство rank(A) + def(A) = n. Далее, пусть

α1,0v
1+α1,1Av1+ · · ·+α1,p1Ap1v1+α2,0v

2+α2,1Av2+ · · ·+α2,p2Ap2v2+

+ · · ·+ αk,0v
k + αk,1Avk + · · ·+ αk,pkApkvk+

+ β1w
1 + β2w

2 + · · ·+ βlw
l = 0. (12.13)

Подействуем на обе части этого равенства оператором A, учтем со-
отношения (12.9), (12.10) и тот факт, что w1, w2, . . . , wl ∈ Ker(A).
Получим

α1,0u
1 + α1,1Au1 + · · ·+ α1,p1−1Ap1−1u1+

+ α2,0u
2 + α2,1Au2 + · · ·+ α2,p2−1Ap2−1u2+

+ · · ·+ αk,0u
k + αk,1Auk + · · ·+ αk,pk−1Apk−1uk = 0. (12.14)

Векторы (12.8) линейно независимы, следовательно, все коэффици-
енты линейной комбинации в левой части (12.14) — нули, и равен-
ство (12.13) принимает вид

α1,p1Ap1v1 + α2,p2Ap2v2 + · · ·+ αk,pkApkvk+

+ β1w
1 + β2w

2 + · · ·+ βlw
l = 0. (12.15)

В левой части (12.15) — линейная комбинация базисных векторов под-
пространства Ker(A), поэтому все коэффициенты этой линейной ком-
бинации равны нулю. Таким образом, показано, что все коэффициен-
ты линейной комбинации в правой части равенства (12.13) могут быть
только нулями, т. е. система векторов (12.12) линейно независима, со-
держит n векторов и потому является базисом пространства Xn. �

Непосредственным обобщением теоремы 4.1 является

4.2. Теорема. Пусть оператор A, действующий в комплекс-
ном пространстве Xn, имеет вид A = A0 + λI, где A0 — нильпо-
тентный оператор, λ — произвольное число. Тогда в базисе Жордана
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оператора A0 матрица оператора A имеет жорданову форму
Jn1(λ) 0

Jn2(λ)
. . .

0 Jnm(λ)

 . (12.16)

Справедливость этого утверждения следует из того, что линей-
ным операциям над операторами соответствуют линейные операции
над их матрицами, а матрица тождественного оператора в любом ба-
зисе — единичная матрица.

5. Теорема. Пусть A — произвольная квадратная матрица
порядка n, λ1, λ2, . . . , λk — попарно различные характеристические
числа матрицы A кратностей n1, n2, . . . , nk, n1+n2+ · · ·+nk = n.
Существует невырожденная матрица S такая, что

S−1AS =


T1 0

T2
. . .

0 Tk

 (12.17)

есть блочно диагональная матрица, каждый диагональный блок Ti —
верхняя треугольная матрица порядка ni, все диагональные элемен-
ты матрицы Ti равны λi.

Доказательство. Сначала, используя теорему Шура, приве-
дем унитарным подобием матрицу A к верхнему треугольному ви-
ду T . При этом характеристические числа матрицы A будем упоря-
дочивать так, как это сделано в формулировке настоящей теоремы,
т. е. сначала на диагонали треугольной матрицы будут расположе-
ны n1 чисел λ1, затем n2 чисел λ2 и т. д.

Для того, чтобы завершить доказательство теоремы, нужно по-
строить преобразование подобия, которое ≪уничтожит лишние≫ нену-
левые элементы верхней треугольной матрицы и приведет ее к ви-
ду (12.17).

Искомое преобразование будет получено как результат последо-
вательных элементарных преобразований подобия, основанных на ис-
пользовании матриц вида I + αErs, где, напомним, Ers — матрица, у
которой элемент в позиции (r, s) равен единице, а все остальные эле-
менты — нули. Нетрудно убедиться, что если r ̸= s, то при любом
α справедливо равенство (I + αErs)(I − αErs) = I, т. е. матри-
цы (I + αErs), (I − αErs) взаимно обратны.
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Проводя элементарные вычисления, нетрудно проверить, что для
любой верхней треугольной матрицы T матрица

(I − αErs)T (I + αErs) (12.18)

при r < s отличается от T только элементами, стоящими в r-й стро-
ке правее s-го столбца, и элементами, стоящим в s-м столбце вы-
ше r-й строки, а также элементом в позиции (r, s), который при-
нимает значение, равное trs + α(trr − tss). Если trr ̸= tss, то, пола-
гая α = −trs/(trr − tss), преобразованием подобия (12.18) получим
матрицу, которая, как и T , — верхняя треугольная матрица, ее диа-
гональные элементы такие же, как у T , а элемент в позиции (r, s)
равен нулю.

Обратимся теперь к верхней треугольной матрице T , полученной,
как уже говорилось, из матрицыA при помощи теоремы Шура. Будем
перебирать элементы матрицы T по строкам в следующем порядке:
(n−1, n); (n−2, n−1), (n−2, n); (n−3, n−2), (n−3, n−1), (n−3, n); . . .
Если при этом окажется, что соответствующие элементы trr и tss раз-
личны, то элемент trs превратим в нулевой при помощи описанного
выше преобразования подобия (12.18). Важно подчеркнуть, на каж-
дом шаге такого преобразования нули, полученные на предыдущих
шагах, не будут ≪портиться≫. В результате будет построена матрица,
подобная матрице A и имеющая вид (12.17). �

Упражнение. Опираясь на теорему 5, докажите, что для любо-
го оператора A, действующего в пространстве Xn, существуют такие
его инвариантные подпространстваM иN , что Xn =MuN , сужение
оператора A на подпространство M есть нильпотентный оператор,
сужение оператора A на подпространство N — обратимый оператор.

6. Доказательство теоремы 3. Представление (12.2) получа-
ется как результат последовательного выполнения следующих шагов.

1) Опираясь на теорему Шура, находим верхнюю треугольную
матрицу T , унитарно подобную матрице A.

2) Используя метод, описанный в доказательстве теоремы 5, при-
ведем матрицу T к блочно диагональному виду. Каждый блок здесь
будет верхней треугольной матрицей, у которой все диагональные
элементы равны между собой и совпадают с некоторым характери-
стическим числом матрицы A.

3) Применяя теоремы 4.1, 4.2, каждый блок, полученный на вто-
ром этапе, независимо приведем к виду (12.16). �

При исследовании единственности жордановой формы нам потре-
буется
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7. Лемма. Для жордановой клетки Jk(0) справедливы следую-
щие соотношения:

(Jk(0))
k = 0, (12.19)

(Jk(0))
j ̸= 0, j = 1, 2, . . . , k − 1. (12.20)

Доказательство. Справедливость (12.19) сразу следует из
леммы 2, с. 201, (12.20) легко проверяется непосредственными вы-
числениями. При этом полезно отметить, что при последовательном
увеличении степени матрицы Jk(0) ее ненулевые столбцы ≪вытесня-
ются≫ вправо. �

8. Теорема. Жорданова матрица (12.2) определяется по мат-
рице A однозначно (с точностью до перестановок жордановых кле-
ток на главной диагонали).

Доказательство. Две возможные жордановы формы матри-
цы A подобны матрице A и потому обладают одним и тем же набором
характеристических чисел (с учетом их кратностей), поэтому остает-
ся лишь доказать совпадение размеров жордановых клеток, соответ-
ствующих некоторому фиксированному характеристическому числу
матрицы A.

Стоящую перед нами задачу можно сформулировать так: убе-
диться в совпадении размеров жордановых клеток двух возможных
жордановых форм для матрицы, обладающей единственным харак-
теристическим числом. Более того, используя рассуждения из дока-
зательства теоремы 4.2, нетрудно заметить, что можно ограничиться
рассмотрением матрицы A0, которая имеет единственное характери-
стическое число, равное нулю.

Итак, пусть

J(0) =

Jn1(0) 0
. . .

0 Jnk(0)

 , J̃(0) =

Jm1
(0) 0

. . .
0 Jmr

(0)


есть две возможные жордановы формы матрицы A0. Будем считать
жордановы клетки упорядоченными по неубыванию размеров (это-
го можно добиться при помощи соответствующей нумерации бази-
сов Жордана), так что

n1 > n2 > · · · > nk, n1 + n2 + · · ·+ nk = n,

m1 > m2 > · · · > mr, m1 +m2 + · · ·+mr = n,
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n — порядок матрицы A0. Предположим, что первые l−1, l > 1 жор-
дановых клеток матриц J(0) и J̃(0) совпадают. По предположению
существует невырожденная матрица S такая, что

J(0) = SJ̃(0)S−1. (12.21)
Вследствие сделанного предположения о совпадении первых l−1 кле-
ток матрица S должна иметь следующую структуру:

S =

(
Ip 0
0 Sn−p

)
,

где Ip — единичная матрица порядка p = n1+ · · ·+nl−1. Это дает воз-
можность, фактически, считать, что рассматриваются матрицы J(0)
и J̃(0), уже первые блоки которых, т. е. Jn1(0), Jm1

(0), не совпадают.
Если мы установим, что это невозможно, то теорема будет доказа-
на. Положим для определенности, что n1 > m1 и возведем обе части
равенства (12.21) в степень m1. Получим

(J(0))m1 = S(J̃(0))m1S−1. (12.22)

По лемме 7 имеем, что (J̃(0))m1 = 0, по той же лемме (J(0))m1 ̸= 0.
Полученное противоречие завершает доказательство теоремы. �

§ 13. Корневые и циклические подпространства

1. Матрица Жордана имеет блочно диагональную структуру,
следовательно, пространство Xn можно представить в виде прямой
суммы инвариантных подпространств оператора A, соответствующих
этим блокам (см. п. 2.1, с. 182). Подпространство, отвечающее бло-
ку Jnj(λj) в представлении (12.2), называется циклическим подпро-
странством. Прямая сумма всех циклических подпространств, отве-
чающих одному и тому же собственному числу λ оператора A, назы-
вается корневым подпространством.

Исследуем подробнее структуру циклических и корневых подпро-
странств.

1.1. Пусть собственному числу λ оператора A отвечает цикличе-
ское подпространство размерности m. Пусть для определенности ему
соответствуют векторы {ek}mk=1 базиса En. Вследствие (12.4) получаем

Ae1 = λe1, Ae2 = λe2 + e1, . . . , Aem = λem + em−1. (13.1)
Отсюда сразу вытекает, что вектор e1 — собственный вектор опера-
тора A, и поскольку векторы e1, e2, . . . , em−1, конечно, не нули, то
все остальные векторы e2, e3, . . . , em не являются собственными век-
торами оператора A.
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1.2. Каждое циклическое подпространство содержит ровно один
собственный вектор оператора A. В самом деле, если предположить,
что вектор x = ξ1e

1+ξ2e
2+ · · ·+ξmem — собственный вектор операто-

ра A, то Jm(λ)ξ = λξ, где ξ = (ξ1, ξ2, . . . , ξm)
T . Последнее равенство

эквивалентно тому, что Jm(0)ξ = 0. Ранг матрицы Jm(0) равен m−1,
так как det Jm(0) = 0, а минор, получающийся при вычеркивании
первого столбца и последней строки матрицы Jm(0), равен единице.
Поэтому размерность ядра матрицы Jm(0) равна единице.

1.3. Понятно, что если корневое подпространство, отвечающее
собственному числу λ оператора A, есть прямая сумма k циклических
подпространств, то оно содержит ровно k линейно независимых соб-
ственных векторов оператора A, отвечающих собственному числу λ.

В соответствии с этим количество циклических подпространств
данного корневого подпространства совпадает с геометрической крат-
ностью собственного числа λ.

Сумма размерностей всех циклических подпространств, совпада-
ющая с кратностью λ как корня характеристического уравнения опе-
ратора A, есть алгебраическая кратность собственного числа λ.

1.4. Из (13.1) очевидным образом вытекает цепочка следующих
равенств:

(A− λI)jej = 0, j = 1, 2, . . . ,m. (13.2)
Нетрудно видеть, что (A − λI)pej ̸= 0 при p < j. Целое число j
принято в связи с этим называть высотой циклического вектора ej.
В частности, собственный вектор есть циклический вектор высоты,
равной единице.

Нетрудно догадаться, что если l — размерность корневого подпро-
странства, отвечающего собственному числу λ оператора A, то для
любого вектора x этого подпространства справедливо равенство

(A− λI)lx = 0. (13.3)

Замечание. Базис Жордана, конечно, не определяется одно-
значно по оператору A. Более того, имея некий базис Жордана, мож-
но легко построить по нему другой базис Жордана. Например, если
в базисе En заменить вектор e2 вектором ẽ2 = e2 + αe1, где α — лю-
бое число, то для такого базиса, по-прежнему, будут выполнены ра-
венства (13.1), т. е. это также будет жорданов базис оператора A.
Однако, поскольку жорданова матрица определяется по оператору A
однозначно (с точностью до перестановки диагональных блоков), то
все базисы Жордана будут иметь описанную выше структуру.
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§ 14. Теорема Кэли — Гамильтона

1. Теорема Кэли — Гамильтона1). Пусть

Pn(λ) = λn + an−1λ
n−1 + · · ·+ a0 (14.1)

есть характеристический полином оператора A. Тогда

Pn(A) = An + an−1An−1 + · · ·+ a0I = 0. (14.2)

Доказательство. Пусть λ1, λ2, . . . , λk — попарно различные
корни полинома Pn, n1, n2, . . . , nk — их кратности. Тогда (см. (2.6),
с. 24)

Pn(λ) = (λ− λ1)
n1(λ− λ2)

n2 . . . (λ− λk)
nk.

Справедливо равенство

Pn(A) = (A− λ1I)
n1(A− λ2I)

n2 . . . (A− λkI)
nk. (14.3)

Для того, чтобы убедиться в этом, нужно раскрыть скобки в пра-
вой части (14.3), привести подобные и воспользоваться затем фор-
мулами Вьета (с. 25). Пусть теперь x — произвольный вектор про-
странства Xn. Поскольку пространство Xn представимо в виде пря-
мой суммы корневых подпространств Lj оператора A, отвечающих
собственным числам λj, j = 1, 2, . . . , k, оператора A, то вектор x
можно записать в виде

x = x1 + x2 + · · ·+ xk,

где xj ∈ Lj, j = 1, 2, . . . , k. Следовательно,

Pn(A)x = Pn(A)x1 + · · ·+ Pn(A)xk.

Операторы (A − λ2I)
ns, (A − λ2I)

nt при любых s, t = 1, . . . , k явля-
ются полиномами от оператора A и поэтому, как нетрудно убедиться
непосредственными вычислениями, они перестановочны, значит, для
любого j = 1, 2, . . . , k справедливо равенство

Pn(A)xj = Qn−nj(A)(A− λ2I)
njxj.

ЗдесьQn−nj(A) — полином от A степени n−nj. Вследствие (13.3) име-
ем (A − λ2I)

njxj = 0, поэтому Pn(A)xj = 0, а значит, Pn(A)x = 0.
Поскольку x — произвольный вектор пространства Xn, получаем,
что Pn(A) = 0. �

Из теоремы 1 вытекает простое, но важное для приложений, на-
пример, в механике

1)Артур Кэли (Arthur Cayley; 1821 — 1895) — английский математик, Уильям Роуэн Гамиль-
тон (William Rowan Hamilton; 1805 — 1865) — ирландский математик и физик.
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2. Следствие. Пусть оператор A : Xn → Xn обратим. Тогда
существует полином Qn−1, степени не выше чем n−1, такой, что

A−1 = Qn−1(A).

Доказательство этого утверждения поручается читателю.
Упражнение. Докажите теорему 3, с. 201, в части достаточно-

сти, опираясь на теорему Кэли — Гамильтона.

§ 15. Сходящиеся матрицы

1. Хорошо известное читателю из курса математического ана-
лиза понятие предела последовательности вещественных чисел есте-
ственным образом обобщается на последовательности комплексных
чисел. Именно, говорят, что последовательность {zk}∞k=1 из C сходит-
ся к z из C, если |zk − z| → 0 при k → ∞. Понятно, что последова-
тельность {zk}∞k=1 сходится к z тогда и только тогда, когда {Re zk}∞k=1
сходится к Re z, а {Im zk}∞k=1 сходится к Im z.

Очевидно, что для того, чтобы lim
k→∞

qk = 0, где q — комплексное,
вообще говоря, число, необходимо и достаточно, чтобы |q| < 1.

Естественно попытаться исследовать аналогичную ситуацию для
матриц. Будем говорить, что квадратная матрица A = {aij}ni,j=1 с
комплексными, вообще говоря, элементами является сходящейся, ес-
ли Ap → 0 при p → ∞, точнее говоря, для любых i, j = 1, 2, . . . , n

выполнено предельное соотношение lim
k→∞

a
(p)
ij = 0, где через a(p)ij обо-

значены элементы матрицы Ap. Более общо, будем говорить, что по-
следовательность матриц A(k), k = 1, 2, . . . , сходится к матрице A,
если lim

k→∞
a
(k)
ij = aij для всех i, j = 1, 2, . . . , n.

Изучение условий, при которых матрица оказывается сходящей-
ся, полезно для многих приложений линейной алгебры, например,
при исследовании итерационных методов решения систем линейных
уравнений (см. гл. 17).

2. Пусть λ1, λ2, . . . , λn — все собственные числа матрицы A.
Неотрицательное число

ρ(A) = max
16j6n

|λj| (15.1)

называется спектральным радиусом матрицы A.
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3. Теорема. Для того, чтобы матрица A была сходящейся,
необходимо и достаточно, чтобы ее спектральный радиус был мень-
ше единицы.

Доказательство. На основании теоремы 3, c. 203, нетрудно
получить, что при любом целом неотрицательном p справедливо ра-
венство

Ap = S


Jpn1(λ1) 0

Jpn2(λ2) . . .
0 Jpnk(λk)

S−1, (15.2)

где каждый из блоков Jnj(λj), j = 1, 2, . . . , k, — клетка Жордана
(см. (12.1), c. 202). При этом важно помнить, что объединение элемен-
тов главных диагоналей матриц Jnj(λj), j = 1, 2, . . . , k, исчерпывает
все собственные числа матрицы A. Нетрудно видеть, что Ap → 0 при
p → ∞ тогда и только тогда, когда Jpnj(λj) → 0 при p → ∞ для всех
j = 1, 2, . . . , k. Таким образом, поведение степеней матрицы A цели-
ком определяется поведением степеней матриц вида T = λI + J(0),
где λ — собственное число матрицы A, J(0) — клетка Жордана с ну-
левыми элементами на главной диагонали. По лемме 7, с. 208, имеем
(J(0))l = 0, (J(0))j ̸= 0, j = 1, 2, . . . , l−1, где l — порядок матрицы
J(0), следовательно, для любого p > l − 11)

T p = λpI + Cp
1λ

p−1J(0) + · · ·+ Cp
l−1λ

p−l+1(J(0))l−1. (15.3)

Заметим, что каждая из матриц J(0), (J(0))2, . . . , (J(0))l−1 — тре-
угольная матрица с нулевыми диагональными элементами. Следо-
вательно, диагональные элементы матрицы T p равны λp. Отсюда,
очевидно, вытекает, что для того, чтобы матрица T была сходя-
щейся, необходимо выполнение неравенства |λ| < 1. Для любого
k = 0, 1, . . . , l − 1 имеем

Cp
k |λ|

p−k =
p(p− 1) · · · (p− k + 1)

|λ|kk!
|λ|p 6 1

|λ|kk!
pk|λ|p,

но pk|λ|p → 0 при p → ∞, если |λ| < 1. Таким образом, T — сходя-
щаяся матрица, если |λ| < 1. �

Хорошо известно, что если |q| < 1, то (1− q)−1 = 1+ q + q2 + · · ·
Аналогичное утверждение справедливо и для матриц.

1)Мы полагаем, что λ ̸= 0, так как в противном случае T p = 0 для p > l − 1.
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4. Теорема. Пусть A — сходящаяся матрица. Тогда матрица,
обратная к матрице I −A, существует и представима в виде ряда

(I − A)−1 = I + A+ A2 + · · · (15.4)

Доказательство. Нетрудно убедиться, что если λ — собствен-
ное число матрицы I − A, то 1− λ — собственное число матрицы A.
Из теоремы 3 вытекает, что ни одно собственное число матрицы A не
равно единице, значит, среди собственных чисел матрицы I − A нет
нулевых, поэтому ее определитель не нуль, и, следовательно, матри-
ца (I−A)−1 существует. Фиксируем некоторое целое k > 1 и запишем
очевидное равенство (I−A)(I+A+· · ·+Ak) = I−Ak+1. Отсюда полу-

чаем, что
k∑
i=0

Ai = (I−A)−1−(I−A)−1Ak+1. Поскольку A — сходящая-

ся матрица, то предел правой части последнего равенства при k → ∞
существует и равен (I − A)−1, но тогда и предел правой части этого
равенства существует, т. е. соотношение (15.4) доказано. �



Глава 12
Операторы в евклидовом пространстве

§ 1. Линейные функционалы

1. Линейное отображение пространства X в одномерное про-
странство Y = C называется линейным функционалом (линейной
формой). Подчеркнем, что линейный функционал ставит в соответ-
ствие каждому вектору x ∈ X число.

2. Теорема Рисса1). Пусть l — линейный функционал, задан-
ный на конечномерном евклидовом пространстве Xn. Тогда суще-
ствует и притом только один вектор u ∈ Xn такой, что

l(x) = (x, u) ∀x ∈ Xn. (1.1)

Доказательство. Убедимся сначала, что вектор u определяет-
ся по функционалу l однозначно. Действительно, если предположить,
что существует еще один вектор u1 ∈ Xn такой, что

l(x) = (x, u1) ∀x ∈ Xn, (1.2)

то, вычитая равенства (1.1), (1.2) почленно, получим, что

(x, u1 − u) = 0 ∀x ∈ Xn.

В частности, в последнем равенстве можно положить x = u1 − u, и
тогда (u1 − u, u1 − u) = 0, т. е. u1 = u.

Для доказательства существования вектора u, определяемого
тождеством (1.1), фиксируем в пространстве Xn некоторый ортонор-

мированный базис {ek}nk=1, и пусть x =
n∑
k=1

ξke
k. Тогда вследствие

линейности функционала l получаем

l(x) =
n∑
k=1

ξkl(e
k).

Положим u =
n∑
k=1

l(ek)ek. Применяя формулу (8.2), с. 139, будем

иметь, что l(x) = (x, u) для любого x ∈ Xn. �
1)Рисс Фридьеш (Frigyes Riesz; 1880 — 1956) — венгерский математик.
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§ 2. Сопряженный оператор

1. Пусть Xn, Ym — евклидовы пространства, A : Xn → Ym —
линейный оператор. Оператор A∗ : Ym → Xn называется сопряжен-
ным к оператору A, если

(Ax, y) = (x,A∗y) для любых x ∈ Xn и y ∈ Ym. (2.1)

Конечно, в левой части равенства здесь имеется в виду скалярное
произведение в пространстве Ym, а в правой части — в простран-
стве Xn.

2. Для любого оператора A : Xn → Ym сопряженный оператор
существует. В самом деле, фиксируем вектор y ∈ Ym и будем рас-
сматривать скалярное произведение (Ax, y) как функционал на про-
странстве Xn. Из линейности оператора A и линейности скалярного
произведения по первому аргументу вытекает, что этот функционал
линеен. Значит, по теореме Рисса существует и притом только один
вектор g ∈ Xn такой, что

(Ax, y) = (x, g) ∀x ∈ Xn.

Таким образом, определено отображение, ставящее в соответствие
каждому вектору y ∈ Ym вектор g ∈ Xn. Обозначим это отображение
через A∗. Тогда можно написать, что

(Ax, y) = (x,A∗y) ∀x ∈ Xn, y ∈ Ym. (2.2)

Осталось доказать, что отображение A∗ линейно. Пусть y1, y2 ∈ Ym,
α, β ∈ C. Тогда

(Ax, αy1 + βy2) = ᾱ(Ax, y1) + β̄(Ax, y2) =
= ᾱ(x,A∗y1) + β̄(x,A∗y2) = (x, αA∗y1 + βA∗y2). (2.3)

С другой стороны, по определению отображения A∗ имеем

(Ax, αy1 + βy2) = (x,A∗(αy1 + βy2)). (2.4)

Сравнивая (2.3), (2.4) и используя произвольность вектора x ∈ Xn,
получаем

A∗(αy1 + βy2) = αA∗y1 + βA∗y2.

Из определения сопряженного оператора, очевидно, вытекает,
что (A∗)∗ = A.
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Упражнения.

1) Докажите, что каждому оператору соответствует только один
сопряженный оператор.

2) Докажите, что если A,B : Xn → Ym — линейные операторы,
то (αA+ βB)∗ = ᾱA∗ + β̄B∗ для любых α, β ∈ C.

3) Покажите, что (AB)∗ = B∗A∗ для любых операторов A,B.
4) Докажите, что если линейный оператор A : Xn → Ym обратим,

то оператор A∗ также обратим, причем (A∗)−1 = (A−1)∗.

§ 3. Вычисление матрицы оператора в евклидовом
пространстве

1. Если пространство Ym евклидово, можно указать полезную
формулу для вычисления матрицы оператора A : Xn → Ym. Именно,
пусть En — базис пространства Xn, Qm — базис пространства Ym,
Gq = {(qj, qi)}mi,j=1 — матрица Грама, соответствующая базису Qm,
матрица GA определяется равенством

GA =


(Ae1, q1) (Ae2, q1) . . . (Aen, q1)
(Ae1, q2) (Ae2, q2) . . . (Aen, q2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Ae1, qm) (Ae2, qm) . . . (Aen, qm)

 .

Тогда
GA = GqAeq. (3.1)

Действительно, умножая скалярно обе части уравнения (6.1), с. 161,
на ql, получим

(Aei, ql) =
m∑
j=1

a
(eq)
ji (qj, ql), i = 1, 2, . . . , n, l = 1, 2, . . . ,m. (3.2)

Формула (3.1) — это матричная запись равенств (3.2). Матрица Гра-
ма Gq невырождена, так как Qm — базис, следовательно,

Aeq = G−1
q GA. (3.3)

В случае, когда базис Qm ортонормирован, т. е. матрица Gq единич-
ная,

Aeq = GA. (3.4)
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2. Если и пространство Xn евклидово, A∗ : Ym → Xn — сопря-
женный к оператору A, то точно так же, как в предыдущем пункте,
получаем, что

GA∗ = GeA
∗
qe, (3.5)

где A∗
qe — матрица оператора A∗ относительно базисов Qm, En, Ge —

матрица Грама базиса En, матрица GA∗ определяется равенством

GA∗ =


(A∗q1, e1) (A∗q2, e1) . . . (A∗qm, e1)
(A∗q1, e2) (A∗q2, e2) . . . (A∗qm, e2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(A∗q1, en) (A∗q2, en) . . . (A∗qm, en)

 .

Поскольку (A∗qi, ej) = (qi,Aej) = (Aej, qi), то матрицы GA и GA∗

взаимно сопряжены. Поэтому из (3.1) получаем GA∗ = (Aeq)
∗Gq, от-

куда вследствие (3.5) вытекает, что

A∗
qe = G−1

e (Aeq)
∗Gq. (3.6)

Формула (3.6) устанавливает связь между матрицами операторов A
и A∗. В частности, если базисы En и Qm ортонормированы, то матри-
цы операторов A и A∗ взаимно сопряжены.

§ 4. Линейные уравнения в евклидовом пространстве

1. Теорема. Пусть Xn,Ym — евклидовы пространства. Для
любого линейного оператора A : Xn → Ym пространство Ym допус-
кает следующее ортогональное разложение:

Ym = Ker(A∗)⊕ Im(A). (4.1)

Доказательство. Пусть y ∈ Im(A), y1 ∈ Ker(A∗). Тогда суще-
ствует x ∈ Xn такой, что y = Ax, следовательно,

(y, y1) = (Ax, y1) = (x,A∗y1) = 0,

т. е. y ортогонален Ker(A∗). Если же вектор y ∈ Ym ортогона-
лен Im(A), то (y,Ax) = 0 для любого x ∈ Xn, и тогда (A∗y, x) = 0
для любого x ∈ Xn, поэтому A∗y = 0, т. е. y ∈ Ker(A∗). Эти рассуж-
дения показывают, что Im(A) — ортогональное дополнение Ker(A∗),
следовательно, по теореме 2, с. 153, равенство (4.1) выполнено. �

Очевидно, что имеет место и следующее представление:

Xn = Ker(A)⊕ Im(A∗). (4.2)
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2. Теорема. Пусть оператор A действует из конечномерного
евклидова пространства Xn в конечномерное евклидово простран-
ство Ym. Тогда

rank(A) = rank(A∗). (4.3)
Доказательство. Оператор A осуществляет изоморфизм про-

странств Im(A∗) и Im(A). Действительно, вследствие (4.2) для лю-
бого x ∈ Xn имеем Ax = Ax1, где x1 ∈ Im(A∗), т. е. любой эле-
мент Im(A) — образ некоторого элемента из Im(A∗). Предполагая,
что Ax′ = Ax′′ для несовпадающих x′, x′′ из Im(A∗), получим,
что A(x′ − x′′) = 0, следовательно, (x′ − x′′) ∈ Ker(A). Посколь-
ку Im(A∗) — линейное подпространство, то (x′−x′′) ∈ Im(A∗). Вновь
используя (4.2), получаем, что x′ − x′′ = 0. Таким образом, конеч-
номерные пространства Im(A) и Im(A∗) изоморфны, поэтому (см.
теорему 3, с. 159) их размерности совпадают. �

Непосредственным следствием теоремы 1 является

3. Теорема Фредгольма. Пусть Xn, Ym — евклидовы про-
странства, A : Xn → Ym — линейный оператор. Для того, чтобы
уравнение Ax = y имело решение, необходимо и достаточно, чтобы
его правая часть была ортогональна любому решению однородного
уравнения A∗z = 0.

Задача. Докажите теоремы 3, 4, § 2, гл. 10, опираясь на теоре-
му Фредгольма.

§ 5. Псевдорешение линейного уравнения

1. Пусть оператор A действует из евклидова пространства Xn в
евклидово пространство Ym, y — фиксированный вектор из Ym, x —
произвольный вектор из Xn. Вектор Ax − y называется невязкой,
соответствующей уравнению

Ax = y. (5.1)
Вещественная функция

F (x) = |Ax− y|2,
определенная на пространстве Xn, называется функцией (функцио-
налом) невязки. Если Ax ̸= y, т. е. вектор x не является решением
уравнения (5.1), то F (x) > 0. Естественно попытаться найти вектор x,
который доставляет минимальное значение функции невязки.

Вектор x ∈ Xn, минимизирующий функцию невязки, называют
псевдорешением уравнения (5.1). Если уравнение (5.1) разрешимо, то
любое его решение является псевдорешением.
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2. Псевдорешение существует при любой правой части уравне-
ния (5.1). В самом деле, в соответствии с разложением (4.1), с. 218,
представим вектор y в виде y = y1+y0, где y1 ∈ Im(A), y0 ∈ Ker(A∗).
Тогда для любого x ∈ Xn вектор Ax − y1 принадлежит Im(A), и,
следовательно,

F (x) = |Ax− y1|2 + |y0|2.
Очевидно, что минимальное значение функции F равно |y0|2 и дости-
гается на векторе x, являющемся решением уравнения

Ax = y1. (5.2)

Поскольку y1 ∈ Im(A), уравнение (5.2) разрешимо.

3. При любом y ∈ Ym уравнение

A∗Ax = A∗y (5.3)

разрешимо. Всякое его решение — псевдорешение уравнения (5.1).
Действительно, так как A∗y0 = 0, то уравнение (5.3) эквивалентно
уравнению

A∗(Ax− y1) = 0. (5.4)
Уравнение (5.4) разрешимо, так как каждое решение уравнения (5.2)
есть решение уравнения (5.4). Обратно, если x — решение уравне-
ния (5.4), то вектор Ax − y1 ∈ Ker(A∗) и, следовательно (см. (4.1),
с. 218), ортогонален Im(A), но, с другой стороны, Ax − y1 ∈ Im(A),
значит Ax− y1 = 0, т. е. x — решение уравнения (5.2).

Уравнение (5.3) называют трансформацией Гаусса уравнения (5.1).
Трансформация Гаусса любого линейного уравнения приводит к раз-
решимому уравнению.

§ 6. Самосопряженный и косоэрмитов операторы

1. Оператор A : Xn → Xn называется самосопряженным (эр-
митовым), если A∗ = A, иными словами, если

(Ax, y) = (x,Ay) ∀x, y ∈ Xn. (6.1)

Оператор A : Xn → Xn называется косоэрмитовым, если A∗ = −A,
то есть

(Ax, y) = −(x,Ay) ∀x, y ∈ Xn. (6.2)

Упражнение. Показать, что если оператор A самосопряжен,
то скалярное произведение (Ax, x) вещественно для любого x ∈ Xn;
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если оператор A косоэрмитов, то скалярное произведение (Ax, x) —
мнимое число для любого x ∈ Xn.

Поскольку в любом ортонормированном базисе матрицы взаимно
сопряженных операторов взаимно сопряжены (см. п. 2, с. 218), то
матрица самосопряженного оператора в любом ортонормированном
базисе эрмитова, матрица косоэрмитова оператора косоэрмитова.

Упражнение. Показать, что если матрица оператора A в неко-
тором ортонормированном базисе эрмитова, то оператор A самосо-
пряжен, если матрица оператора A в некотором ортонормированном
базисе косоэрмитова, то оператор A косоэрмитов.

1.1. Примером самосопряженного оператора является оператор
ортогонального проектирования1). Действительно, пусть P — опера-
тор ортогонального проектирования евклидова пространства X на
подпространство L ⊂ X, x, y — произвольные векторы из X. По опре-
делению оператора ортогонального проектирования можем написать,
что y = Py+y2, x = Px+x2, где x2, y2 — векторы, ортогональные L.
Поэтому (Px, y) = (Px,Py). Точно так же (x,Py) = (Px,Py), сле-
довательно, (Px, y) = (y,Px).

1.2. Рассуждая точно так же, как в п. 3, с. 107, нетрудно убедить-
ся, что любой оператор A, действующий в евклидовом пространстве,
однозначно представим в виде

A = H1 + iH2, (6.3)

где i — мнимая единица,

H1 =
1

2
(A+A∗), H2 =

1

2i
(A−A∗)

есть самосопряженные операторы.

1.3. Теорема. Пусть A — линейный оператор, действующий
в евклидовом пространстве Xn. Если

(Ax, x) = 0 ∀x ∈ Xn, (6.4)

то A = 0.
Доказательство. Предположим сначала, что A — самосопря-

женный оператор. Тогда для любых x, y ∈ Xn справедливо равенство

(A(x+ y), x+ y) = (Ax, x) + (Ay, y) + 2Re(Ax, y).
1)См. определение на с. 156.
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Отсюда, используя условие (6.4), получаем, что Re(Ax, y) = 0. По-
следнее равенство выполнено для любого y ∈ Xn. Поэтому можно
заменить y, на iy, но Re(Ax, iy) = Im(Ax, y). Таким образом, по-
лучаем, что (Ax, y) = 0 для любых x, y ∈ Xn. Полагая y = Ax,
будем иметь, что |Ax| = 0 для любого x ∈ Xn, т. е. A = 0. Итак,
в случае самосопряженного оператора A утверждение теоремы дока-
зано. Пусть теперь A — произвольный оператор. Если (Ax, x) = 0,
то вследствие (6.3) с учетом самосопряженности операторов H1, H2

получаем, что (H1x, x) = 0, (H2x, x) = 0 для любого x ∈ Xn, отку-
да, вновь учитывая самосопряженность операторов H1, H2, получим,
что H1,H2 = 0. �

1.4. Лемма. Если для оператора A, действующего в евклидо-
вом пространстве Xn, скалярное произведение (Ax, x) вещественно
при любом x ∈ Xn, то оператор A самосопряжен.

Доказательство. Если (Ax, x) — вещественное число, то
из (6.3) следует, что ((A∗ − A)x, x) = 0, откуда по теореме 1.3 по-
лучаем, что A∗ −A = 0. �

Совершенно аналогично доказывается

1.5. Лемма. Если для оператора A, действующего в евкли-
довом пространстве Xn, скалярное произведение (Ax, x) при лю-
бом x ∈ Xn — мнимое число, то оператор A косоэрмитов.

Таким образом, справедлива

1.6. Теорема. Для того, чтобы оператор A, действующий в
евклидовом пространстве Xn, был самосопряжен, необходимо и до-
статочно, чтобы скалярное произведение (Ax, x) было веществен-
ным при любом x ∈ Xn. Для того, чтобы оператор A, действующий
в евклидовом пространстве Xn, был косоэрмитов, необходимо и до-
статочно, чтобы скалярное произведение (Ax, x) было мнимым при
любом x ∈ Xn.

§ 7. Неотрицательный и положительно определенный
операторы

Самосопряженный оператор A называется неотрицательным, ес-
ли

(Ax, x) > 0 ∀ x ∈ Xn. (7.1)
Самосопряженный оператор A называется положительно опре-

деленным, если
(Ax, x) > 0 ∀x ̸= 0 из Xn. (7.2)
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Эрмитова матрица A порядка n называется неотрицательной,
если

(Ax, x) =
n∑

i,j=1

aijxjx̄i > 0 ∀x ∈ Cn. (7.3)

Эрмитова матрица A порядка n называется положительно опре-
деленной, если

(Ax, x) =
n∑

i,j=1

aijxjx̄i > 0 ∀x ̸= 0 из Cn. (7.4)

В двух последних определениях скобками обозначено стандартное
скалярное произведение в пространстве Cn.

Упражнения.

1) Покажите что, если A : Xn → Xn — положительно определен-
ный оператор, то равенство (x, y)A = (Ax, y) определяет скалярное
произведение на пространстве Xn.

2) Покажите, что для любого оператора A : Xn → Xn опера-
тор A∗A самосопряжен и неотрицателен. Если оператор A : Xn → Xn

обратим, то оператор A∗A положительно определен.
3) Пусть оператор A действует в евклидовом пространстве Xn.

Докажите, что если оператор A + A∗ положительно определен, то
оператор A невырожден.

4) Покажите, что матрица положительно определенного операто-
ра в любом ортонормированном базисе положительно определена.

5) Покажите, что все элементы главной диагонали положительно
определенной матрицы положительны.

6) Покажите, что матрица Грама любой системы векторов в ев-
клидовом пространстве неотрицательна.

7) Покажите, что линейная независимость системы векторов эк-
вивалентна положительной определенности матрицы Грама этой си-
стемы векторов.

§ 8. Унитарный оператор

1. Оператор A : Xn → Xn называется унитарным, если

AA∗ = A∗A = I. (8.1)
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Упражнения.

1) Покажите, что для того, чтобы оператор был унитарным, необ-
ходимо и достаточно, чтобы его матрица в любом ортонормированном
базисе пространства Xn была унитарна (см. с. 108).

2) Покажите, что определитель унитарного оператора по модулю
равен единице.

3) Покажите, что произведение унитарных операторов — унитар-
ный оператор.

2. Если оператор A унитарен, то для любых x, y ∈ Xn име-
ем (Ax,Ay) = (x,A∗Ay) = (x, y), т. е. унитарный оператор не меняет
скалярного произведения векторов, и, следовательно, унитарный опе-
ратор не меняет длин векторов.

3. Обратно, если линейный оператор не меняет скалярного про-
изведения любых двух векторов из Xn, то он унитарен. В самом де-
ле, из равенства (Ax,Ay) = (x, y) вытекает, что (x,A∗Ay) = (x, y).
Нетрудно убедиться, что, поскольку последнее равенство выполнено
для любых x, y ∈ Xn, то

A∗A = I. (8.2)
Докажем, что равенство AA∗ = I также выполняется. Из равен-
ства (8.2) вытекает, что det(A) ̸= 0, следовательно, оператор A име-
ет обратный. Умножая обе части равенства (8.2) слева на A, а затем
справа на A−1, получим, что AA∗ = I.

Упражнение. Покажите, что если для любого x ∈ Xn выпол-
нено равенство |Ax| = |x|, то A — унитарный оператор.

4. Таким образом, оператор A : Xn → Xn является унитарным
тогда и только тогда, когда он не меняет длины никакого вектора
пространства Xn.

§ 9. Нормальный оператор

1. Оператор A, действующий в евклидовом пространстве Xn, на-
зывается нормальным, если AA∗ = A∗A. Самосопряженный, косоэр-
митов и унитарный операторы, очевидно, — нормальные операторы.

Для того, чтобы оператор A был нормальным, необходимо и до-
статочно, чтобы его матрица в любом ортонормированном базисе про-
странства Xn была нормальной (см. определение на с. 109).
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2. Теорема. Пусть A : Xn → Xn — нормальный оператор.
Тогда Ker(A) = Ker(A∗).

Доказательство. Пусть Ax = 0. Тогда

0 = (Ax,Ax) = (A∗Ax, x) = (AA∗x, x) = (A∗x,A∗x),

следовательно, A∗x = 0. Эти же выкладки показывают, что ес-
ли A∗x = 0, то Ax = 0. �

Из теоремы 2 и теоремы 1, с. 218, немедленно вытекает

3. Следствие. Пусть A : Xn → Xn — нормальный оператор.
Тогда Xn = Ker(A)⊕ Im(A) = Ker(A∗)⊕ Im(A∗), Im(A) = Im(A∗).

4. Теорема. Пусть A : Xn → Xn — нормальный оператор, x,
λ — собственная пара оператора A, т. е. Ax = λx. Тогда x, λ̄ —
собственная пара оператора A∗.

Доказательство. Нетрудно убедиться, что если A — нормаль-
ный оператор, то при любом λ ∈ C оператор A − λI — также
нормальный оператор, причем (A − λI)∗ = A∗ − λ̄I, следователь-
но, Ker(A− λI) = Ker(A∗ − λ̄I). �

5. Все собственные числа самосопряженного оператора веще-
ственны. Все собственные числа косоэрмитова оператора чисто мни-
мые. Действительно, всякий самосопряженный оператор A является
нормальным, поэтому, если x, λ — собственная пара оператора A,
то Ax = λx и Ax = λ̄x, следовательно, (λ − λ̄)x = 0, но вектор x,
как собственный вектор, не равен нулю, значит, λ = λ̄. Аналогично,
если x, λ — собственная пара косоэрмитова оператора A, то выпол-
няются равенства Ax = λx, Ax = −λ̄x, следовательно, λ = −λ̄.

6. Все собственные числа унитарного оператора по модулю рав-
ны единице. В самом деле, если Ax=λx, x ̸= 0, то поскольку для уни-
тарного оператора |Ax| = |x| (см. п. 4, с. 224), то |λ||x| = |Ax| = |x|,
т. е. |λ| = 1.

Укажем на очевидное, но полезное

7. Следствие. У всякой эрмитовой матрицы все характери-
стические числа вещественны; у всякой косоэрмитовой матрицы
все характеристические числа чисто мнимые; у всякой унитарной
матрицы все характеристические числа по модулю равны единице.

Упражнение. Покажите, что определитель самосопряженного
оператора — вещественное число (см. также п. 2, с. 107).
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8. Теорема. Собственные векторы нормального оператора, от-
вечающие различным собственным числам, ортогональны.

Доказательство. Действительно, пусть A — нормальный опе-
ратор, Ax = λx, Ay = µy, λ ̸= µ. Тогда λ(x, y) = (Ax, y) = (x,A∗y).
По теореме 4 имеем A∗y = µ̄y, следовательно, (x,A∗y) = µ(x, y),
значит, λ(x, y) = µ(x, y). Поскольку λ ̸= µ, то (x, y) = 0. �

9. Теорема. Пусть A — линейный оператор, действующий в
пространстве Xn. Для того, чтобы существовал ортонормирован-
ный базис {ek}nk=1 ⊂ Xn такой, что Aek = λke

k, k = 1, 2, . . . , n,
необходимо и достаточно, чтобы оператор A был нормальным.

Доказательство. Н е о б х о д и м о с т ь. Матрицы вза-
имно сопряженных операторов в ортонормированном базисе взаимно
сопряжены (см. п. 2, с. 218). Поэтому, если

Ae = diag(λ1, λ2, . . . , λn)

есть матрица оператора A в ортонормированном базисе {ek}nk=1, то
матрицей оператора A∗ в этом же базисе будет матрица

A∗
e = diag(λ̄1, λ̄2, . . . , λ̄n).

Матрица произведения операторов есть произведение их матриц (см.
п. 7, с. 163), диагональные матрицы, очевидно, перестановочны, сле-
довательно,

(A∗A)e = A∗
eAe = AeA

∗
e = (AA∗)e,

откуда вытекает, что A∗A = AA∗, т. е. A — нормальный оператор.
Д о с т а т о ч н о с т ь. Пусть e1, λ1 — собственная пара опе-

ратора A. Будем считать, что |e1| = 1. По теореме 4 e1, λ̄1 — соб-
ственная пара оператора A∗. Обозначим через Ln−1 подпространство
всех векторов из Xn, ортогональных e1. Подпространство Ln−1 инва-
риантно относительно оператора A. Действительно, если x ∈ Ln−1,
т. е. (x, e1) = 0, то и (Ax, e1) = (x,A∗e1) = λ1(x, e

1) = 0. Точно
так же доказывается, что подпространство Ln−1 инвариантно относи-
тельно оператора A∗. Поэтому (см. упражнение на с. 185) существует
нормированный вектор e2 ∈ Ln−1 и число λ2 такие, что Ae2 = λ2e

2,
A∗e2 = λ̄2e

2. Пусть теперь Ln−2 — подпространство пространства Xn,
состоящее из векторов, ортогональных одновременно e1 и e2. Точ-
но так же, как и раньше, покажем, что существует нормированный
вектор e3 ∈ Ln−2 и число λ3 такие, что Ae3 = λ3e

3, A∗e3 = λ̄3e3.
Продолжая этот процесс, мы построим ортонормированную систе-
му векторов {ek}nk=1 ⊂ Xn такую, что Aek = λke

k, A∗ek = λ̄ke
k,

k = 1, 2, . . . , n. �
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Замечания.
1) В теореме 9, фактически, утверждается, что для каждого нор-

мального оператора существует ортонормированный базис, в кото-
ром его матрица принимает диагональный вид, причем на диагонали
матрицы расположены все собственные числа этого оператора. Таким
образом, всякий нормальный оператор есть оператор простой струк-
туры (см. §6, с. 189).

2) Часто оказывается полезной следующая эквивалентная фор-
мулировка указанного результата: пусть λ1, λ2, . . . , λk, k 6 n,
есть все попарно различные собственные числа нормального операто-
ра A :Xn→Xn, Lλi, i = 1, 2, . . . , k, — соответствующие собственные
подпространства оператора A. Тогда

Xn = Lλ1 ⊕ Lλ2 ⊕ · · · ⊕ Lλk, (9.1)

A = λ1P1 + λ2P2 + · · ·+ λkPk, (9.2)
где Pi — оператор ортогонального проектирования пространства Xn

на подпространство Lλi, i = 1, 2, . . . , k.

10. Упражнения.
1) Пусть A — вещественная квадратная матрица порядка n та-

кая, что ATA = AAT . Опираясь на теорему 9, показать, что суще-
ствует система векторов {ξk}nk=1 ⊂ Cn, ортонормированная в смыс-
ле стандартного скалярного произведения пространства Cn, и такие
числа λ1, λ2, . . . , λn, что Aξk = λkξ

k, k = 1, 2, . . . , n. Причем, если
число λk вещественно, то и вектор ξk можно выбрать вещественным.

2) Докажите, что если у нормального оператора все собственные
числа вещественны, то он — самосопряженный оператор; если у нор-
мального оператора все собственные числа чисто мнимые, то он —
косоэрмитов оператор; если у нормального оператора все собствен-
ные числа по модулю равны единице, то он — унитарный оператор.

3) Пусть A, B — нормальные операторы, характеристические по-
линомы которых совпадают. Докажите, что тогда существует унитар-
ный оператор Q такой, что B = QAQ∗.

4) Пусть A — нормальный оператор, Q — унитарный оператор.
Докажите, что оператор Ã = QAQ∗ нормальный и справедливо пред-
ставление

Ã = λ1P̃1 + λ2P̃2 + · · ·+ λkP̃k, (9.3)
где λ1, λ2, . . . , λk — все попарно различные собственные числа опе-
ратора A, P̃i = QPiQ∗ — оператор ортогонального проектирования
пространства Xn на подпространство QLλi, i = 1, 2, . . . , k.
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11. Теорема. Для того, чтобы нормальные операторы A, B
были перестановочными, необходимо и достаточно, чтобы у них
был общий ортонормированный базис собственных векторов.

Доказательство. Д о с т а т о ч н о с т ь. Пусть {ej}nk=1 —
общий базис собственных векторов операторов A,B, т. е. Aek = λke

k,
Bek = µke

k, k = 1, 2, . . . , n. Тогда BAek=λkµkek, ABek= λkµke
k для

k = 1, 2, . . . , n, т. е. на векторах базиса операторы AB, BA совпадают,
но тогда они совпадают и на любом векторе пространства Xn.

Н е о б х о д и м о с т ь. Воспользуемся представлением про-
странства Xn в виде ортогональной суммы (9.1) собственных под-
пространств оператора A, отвечающих попарно различным собствен-
ным числам этого оператора. По лемме 6.1, с. 185, каждое из подпро-
странств Lλi инвариантно относительно оператора B. Поскольку B —
нормальный оператор, то в этом подпространстве существует орто-
нормированный базис собственных векторов оператора B. Объеди-
нение всех указанных базисов, очевидно, образует базис простран-
ства Xn, причем по построению все векторы этого базиса — собствен-
ные векторы оператора A. �

§ 10. Некоторые свойства собственных чисел
самосопряженного оператора

1. Напомним, что оператор A : Xn → Xn называется самосопря-
женным, если

(Ax, y) = (x,Ay) ∀x, y ∈ Xn. (10.1)
Напомним также, что все собственные числа самосопряженного
оператора вещественны, существует ортонормированный базис про-
странства Xn, составленный из собственных векторов оператора A,
собственные векторы самосопряженного оператора, отвечающие раз-
личным собственным числам, ортогональны.

2. Пусть A : Xn → Xn — самосопряженный оператор, а λ1,
λ2, . . . , λn — его собственные числа, {ek}nk=1 — ортонормированный
базис собственных векторов. Будем считать, что собственные числа
упорядочены по возрастанию, т. е.

λ1 6 λ2 · · · 6 λn. (10.2)

Подчеркнем, что мы рассматриваем как собственные числа опера-
тора все характеристические числа его матрицы, т. е. кратные харак-
теристические числа повторяются столько раз, какова их кратность,
поэтому, вообще говоря, неравенства в (3.5) являются нестрогими.
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Пусть p, q — целые числа такие, что 1 6 p 6 q 6 n. Обозна-
чим через Lpq подпространство пространства Xn, натянутое на век-
торы {ek}qk=p . Очевидно, L1n = Xn.

2.1. Лемма. Для любого x ∈ Lpq справедливы неравенства

λp(x, x) 6 (Ax, x) 6 λq(x, x), (10.3)

более того,

λp = min
x∈Lpq, x̸=0

(Ax, x)
(x, x)

, λq = max
x∈Lpq, x̸=0

(Ax, x)
(x, x)

. (10.4)

Доказательство. Для любого x ∈ Lpq

(Ax, x) =
(
A

q∑
k=p

ξke
k,

q∑
k=p

ξke
k
)
=

=
( q∑
k=p

λkξke
k,

q∑
k=p

ξke
k
)
=

q∑
k=p

λk|ξk|2. (10.5)

Очевидно, что

λp

q∑
k=p

|ξk|2 6
q∑

k=p

λk|ξk|2 6 λq

q∑
k=p

|ξk|2,
q∑

k=p

|ξk|2 = (x, x),

следовательно, (10.3) доказано, и для любого x ̸= 0 из Lpq справед-
ливы неравенства

λp 6
(Ax, x)
(x, x)

6 λq.

Заметим теперь, что

(Aep, ep)
(ep, ep)

= λp,
(Aeq, eq)
(eq, eq)

= λq,

поэтому равенства (10.4) также доказаны. �
Очевидным следствием леммы 2.1 является

2.2. Теорема. Для любого k = 1, 2, . . . , n

λk = min
x∈Lkn, x̸=0

(Ax, x)
(x, x)

, λk = max
x∈L1k, x̸=0

(Ax, x)
(x, x)

. (10.6)
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Использование формул (10.6) затруднено тем, что при отыскании
собственного числа с номером k нужно знать все собственные векто-
ры оператора A, отвечающие всем собственным числам с меньшими
номерами, или — все собственные векторы оператора A, отвечающие
всем собственным числам с большими номерами.

Следующие две теоремы дают независимое описание каждого соб-
ственного числа самосопряженного оператора A.

2.3. Теорема. Для любого k = 1, 2, . . . , n

λk = max
Rn−k+1

min
x∈Rn−k+1, x̸=0

(Ax, x)
(x, x)

. (10.7)

Здесь Rn−k+1 ⊂ Xn — подпространство размерности n−k+1. Мак-
симум берется по всем подпространствам пространства Xn раз-
мерности n− k + 1.

Доказательство. Ясно, что dim(Rn−k+1)+dim(L1k) = n+1, по-
этому (см. следствие 3, с. 148) существует вектор x ̸= 0, принадлежа-
щий Rn−k+1∩L1k. Таким образом (см. (10.6)), в каждом подпростран-
стве Rn−k+1 найдется вектор x, для которого (Ax, x)/(x, x) 6 λk. Сле-
довательно, для любого подпространства Rn−k+1

min
x∈Rn−k+1, x̸=0

(Ax, x)
(x, x)

6 λk.

Если мы укажем подпространство Rn−k+1, для которого

min
x∈Rn−k+1, x̸=0

(Ax, x)
(x, x)

= λk,

то это будет означать выполнение равенства (10.7). По теореме 2.2
искомым подпространством Rn−k+1 является Lkn. �

2.4. Теорема. Для любого k = 1, 2, . . . , n

λk = min
Rk

max
x∈Rk, x̸=0

(Ax, x)
(x, x)

. (10.8)

Здесь Rk ⊂ Xn — подпространство размерности k. Минимум бе-
рется по всем подпространствам пространства Xn размерности k.

Доказательство. Очевидно, что dim(Rk) + dim(Lkn) = n + 1
для любого подпространства Rk, значит Rk ∩ Lkn ̸= {0}. По теоре-
ме 2.2

min
x∈Lkn, x̸=0

(Ax, x)
(x, x)

= λk,
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поэтому для любого подпространства Rk

max
x∈Rk, x̸=0

(Ax, x)
(x, x)

> λk.

Для завершения доказательства теоремы осталось указать такое под-
пространство Rk размерности k, для которого

max
x∈Rk, x̸=0

(Ax, x)
(x, x)

= λk.

По теореме 2.2 таким подпространством является L1k. �

3. Из (10.3) сразу же следует, что для того, чтобы самосопряжен-
ный оператор A был неотрицателен (см. (7.1), с. 222), необходимо и
достаточно, чтобы все его собственные числа были неотрицательны-
ми, а для того, чтобы самосопряженный оператор A был положитель-
но определен (см. (7.2), с. 222), необходимо и достаточно, чтобы все
его собственные числа были положительны.

Упражнения.
1) Доказать, что если оператор положительно определен, то его

определитель положителен.
2) Доказать неравенство Коши — Буняковского (см. теорему 2,

с. 131), используя матрицу Грама (см. (4.1), с. 133) системы, состоя-
щей из двух векторов x, y евклидова пространства.

§ 11. Применения вариационного описания собственных
чисел

1. Пусть A,B, C : Xn → Xn — самосопряженные операторы, а

λ1(A) 6 λ2(A) 6 · · · 6 λn(A),

λ1(B) 6 λ2(B) 6 · · · 6 λn(B),
λ1(C) 6 λ2(C) 6 · · · 6 λn(C)

есть их собственные числа. Пусть A = B + C. Тогда

λ1(C) 6 λk(A)− λk(B) 6 λn(C), k = 1, 2, . . . , n. (11.1)

Для доказательства этого утверждения достаточно заметить, что,
фиксируя произвольное подпространство Rk ⊂ Xn, получаем, что

(Ax, x)
(x, x)

=
(Bx, x)
(x, x)

+
(Cx, x)
(x, x)

∀ x ∈ Rk, x ̸= 0.
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Вследствие (10.3)

(Cx, x)
(x, x)

6 λn(C) ∀x ∈ Xn, x ̸= 0,

поэтому

min
x∈Rk, x̸=0

(Ax, x)
(x, x)

6 min
x∈Rk, x̸=0

(Bx, x)
(x, x)

+ λn(C),

но тогда и

max
Rk

min
x∈Rk, x̸=0

(Ax, x)
(x, x)

6 max
Rk

min
x∈Rk, x̸=0

(Bx, x)
(x, x)

+ λn(C).

Последнее неравенство по теореме 2.3, с. 230, равносильно тому, что

λk(A)− λk(B) 6 λn(C). (11.2)

Заметим теперь, что B = A+ (−C). Собственными числами операто-
ра −C являются числа −λk(C). Максимальным из них будет −λ1(C).
Поэтому, повторяя предыдущие рассуждения, получим

λk(B)− λk(A) 6 −λ1(C). (11.3)

Объединяя (11.2), (11.3), приходим к (11.1).
Оценки (11.1) полезны тем, что они показывают, как могут из-

мениться собственные числа самосопряженного оператора B, если к
нему добавить самосопряженный оператор C. Видно, что если соб-
ственные числа оператора C малы, то собственные числа оператора B
мало меняются.

2. Используем полученный результат для оценки возмущений
собственных чисел эрмитовой матрицы.

Пусть A = {aij}ni,j=1, E = {εij}ni,j=1 — эрмитовы матрицы. Пред-
положим, что |εij| 6 ε, i, j = 1, 2, . . . , n. Тогда

|λk(A)− λk(A+ E)| 6 nε, k = 1, 2, . . . , n, (11.4)

т. е. малые возмущения элементов самосопряженной матрицы приво-
дят к малым возмущениям ее собственных чисел.

Из (11.1) вытекает, что для доказательства оценки (11.4) доста-
точно установить, что

|λk(E)| 6 nε, k = 1, 2, . . . , n. (11.5)
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Вследствие (10.4) нужная оценка сводится к оценке |(Ex, x)|. Под
скалярным произведением здесь понимается стандартное скалярное
произведение в Cn. Запишем сначала очевидное неравенство

|(Ex, x)| =

∣∣∣∣∣
n∑

i,j=1

εijxix̄j

∣∣∣∣∣ 6
n∑

i,j=1

|εij||xi||xj|.

Используя теперь неравенство Коши — Буняковского (применитель-
но к стандартному скалярному произведению в пространстве Rm раз-
мерности m = n2), получим

|(Ex, x)| 6
(

n∑
i,j=1

|εij|2
)1/2( n∑

i,j=1

|xi|2|xj|2
)1/2

=

=

(
n∑

i,j=1

|εij|2
)1/2( n∑

i=1

|xi|2
n∑
j=1

|xj|2
)1/2

=

(
n∑

i,j=1

|εij|2
)1/2

(x, x) 6

6 nε(x, x).

Последнее неравенство, очевидно, обеспечивает выполнение (11.5).
Нетрудно убедиться, что если A = I, а все элементы матрицы E

равны ε > 0, то max
16k6n

|λk(A) − λk(A + E)| = nε, т. е. оценка (11.4)
неулучшаема на множестве всех эрмитовых матриц.

3. Полученная оценка возмущений собственных чисел эрмито-
вой матрицы не распространяется на произвольные матрицы. Сле-
дует, тем не менее, иметь в виду, что и у произвольной матрицы ха-
рактеристические числа непрерывно зависят от ее элементов. Точнее,
справедлива

3.1. Теорема1). Пусть A = {aij}ni,j=1, B = {bij}ni,j=1 — произ-
вольные квадратные матрицы, и пусть

M(A) = max
16i,j6n

|aij|, M(B) = max
16i,j6n

|bij|, M = max{M(A),M(B)},

δ =
1

nM

n∑
i,j=1

|aij − bij|.

Тогда можно так пронумеровать характеристические числа мат-
риц A, B, что

|λk(A)− λk(B)| 6 2(n+ 1)2Mδ1/n, k = 1, 2, . . . , n. (11.6)
1)Островский А.М. Решение уравнений и систем уравнений, М.: ИЛ, 1963, с. 206.
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Известные примеры (см. [17] по списку дополнительной литерату-
ры) показывают, что наличие множителя δ1/n в оценке (11.6) необхо-
димо. Это означает, что даже у очень близких матриц при больших n
характеристические числа могут сильно различаться.

3.2. Иллюстрируем сказанное.

Рис. 1. К примеру неустойчивой задачи на собственные значения: ◦ — характеристиче-
ские числа матрицы A, � — характеристические числа матрицы Aε

Пусть A — вещественная двухдиагональная матрица десятого по-
рядка. По диагонали этой матрицы расположены в порядке убыва-
ния целые числа 10, 9, 8, . . . , 1, все элементы на ближайшей сверху
параллельной диагонали равны десяти. Понятно, что все характери-
стические числа этой матрицы есть числа, стоящие на ее диагонали.
Наряду с матрицей A рассмотрим матрицу

Aε =


10 10 0 · · · 0
0 9 10 · · · 0
0 0 8 · · · 0

. . . 10
ε 0 0 · · · 1

 ,

отличающуюся от A только одним элементом, стоящим в пози-
ции (10,1) и равным ε. На рисунке 1 показано расположение на ком-
плексной плоскости характеристических чисел матрицы A и матри-
цы Aε при ε = 10−5. Видно, что малому по сравнению с элемента-
ми матрицы A значению ε отвечают существенные отклонения ха-
рактеристических чисел. Результат, впрочем, ожидаемый, поскольку,
как нетрудно убедиться, разлагая определитель по первому столб-
цу, detA = 10!, а detAε = 10! − ε109, и, поскольку определитель
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матрицы есть произведение ее характеристических чисел, то даже
при малых ε характеристические числа матриц A и Aε различаются
значительно.

4. Теорема. Пусть An+1 = {aij}n+1
i,j=1 — произвольная эрмитова

матрица порядка n+1, An = {aij}ni,j=1 — матрица, соответствую-
щая ее главному минору порядка n. Пусть λ̂1 6 λ̂2 6 · · · 6 λ̂n+1 —
собственные числа матрицы An+1, λ1 6 λ2 6 · · · 6 λn — собствен-
ные числа матрицы An. Тогда

λ̂1 6 λ1 6 λ̂2 6 λ2 6 · · · 6 λn 6 λ̂n+1, (11.7)

т. е., как говорят, собственные числа матриц An и An+1 переме-
жаются.

Доказательство. В ходе последующих рассуждений под ска-
лярным произведением понимается стандартное скалярное произве-
дение в пространстве Cn.

Пусть 1 6 k 6 n. В соответствии с теоремой 2.4, с. 230,

λ̂k+1 = min
Rk+1

max
x∈Rk+1, x̸=0

(An+1x, x)

(x, x)
. (11.8)

Здесь минимум берется по всевозможным подпространствам Rk+1

пространства Cn+1 размерности k + 1.
Обозначим через Rk ⊂ Cn множество векторов из Rk+1, (n+ 1)-я

компонента которых в естественном базисе равна нулю. Тогда

max
x∈Rk+1, x̸=0

(An+1x, x)

(x, x)
> max

x∈Rk, x̸=0

(Anx, x)

(x, x)
.

Для обоснования этого неравенства достаточно заметить, что слева
максимум берется по более широкому множеству векторов, чем спра-
ва. Таким образом, из (11.8) получаем

λ̂k+1 = min
Rk+1

max
x∈Rk+1, x̸=0

(An+1x, x)

(x, x)
> min

Rk

max
x∈Rk, x̸=0

(Anx, x)

(x, x)
,

но правая часть этого неравенства по теореме 2.4 равна λk. Итак,
λ̂k+1 > λk для всех k = 1, 2, . . . , n.

Обратимся теперь к теореме 2.3, с. 230, в соответствии с которой

λ̂k = max
Rn+2−k

min
x∈Rn+2−k, x̸=0

(An+1x, x)

(x, x)
. (11.9)
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Здесь максимум берется по всевозможным подпространствам Rn+2−k
пространства Cn+1 размерности n + 2 − k. При сужении множества
векторов, по которому вычисляется минимум, последний не может
уменьшиться, поэтому по аналогии с предыдущим случаем можем
написать, что

λ̂k = max
Rn+2−k

min
x∈Rn+2−k, x̸=0

(An+1x, x)

(x, x)
6

6 max
Rn+1−k

min
x∈Rn+1−k, x̸=0

(Anx, x)

(x, x)
= λk. (11.10)

Таким образом, неравенства (11.7) доказаны. �

§ 12. Корень из самосопряженного неотрицательного
оператора

1. Теорема. Пусть A — самосопряженный неотрицательный
оператор, k > 2 — целое число. Тогда существует единственный са-
мосопряженный неотрицательный оператор T такой, что T k= A.

Оператор T называют корнем порядка k из оператора A и обо-
значают через A1/k или через k

√
A.

Доказательство. Поскольку оператор A самосопряжен, суще-
ствует ортонормированный базис {ej}nk=1 его собственных векторов.
Обозначим через λ1, λ2, . . . , λn соответствующие им собственные чис-
ла и определим оператор T действием на векторы базиса:

T ei = k
√
λi ei, i = 1, . . . , n.

Все собственные числа неотрицательного оператора неотрицательны,
поэтому можно считать, что все числа k

√
λi, i = 1, . . . , n, неотри-

цательны. Очевидно, что оператор T самосопряжен, неотрицателен
и T k = A, т. е. T = A1/k.

Осталось доказать единственность корня порядка k из операто-
ра A. С этой целью установим предварительно, что существует по-
лином Pm, степени m 6 n − 1, такой, что T = Pm(A). Действитель-
но, пусть λ1, . . . , λr, r 6 n, — все попарно различные собственные
числа оператора A. Найдется (и притом только один) полином Pr−1,
степени r − 1, такой, что Pr−1(λi) = k

√
λi, i = 1, . . . , r 1). Действуя

1)Полином Pr−1 можно записать в явном виде, используя, например, интерполяционную фор-
мулу Лагранжа (cм. с. 86).
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оператором Pr−1(A) на векторы базиса ei, получим

Pr−1(A)ei = Pr−1(λi)ei =
k
√
λi ei, i = 1, . . . , n,

т. е. Pr−1(A) = T . Пусть теперь U — произвольный самосопряженный
неотрицательный оператор такой, что Uk = A. Тогда

T U = Pr−1(A)U = Pr−1(Uk)U = UPr−1(Uk) = UT ,

т. е. операторы T и U перестановочны, по теореме 11, с. 228, у них
существует общий ортонормированный базис собственных векторов
(обозначим его вновь через e1, . . . , en)

T ei = µiei, Uei = µ̃iei, µi, µ̃i > 0, i = 1, 2, . . . , n.

Следовательно,

T kei = µki ei, Ukei = µ̃ki ei, i = 1, 2, . . . , n,

но T k=Uk, поэтому µ̃ki = µki , откуда вытекает, что µ̃i = µi, i = 1, . . . , n.
Таким образом, U = T . �

§ 13. Обобщенная проблема собственных значений

1. Пусть A, B — произвольные операторы, действующие в про-
странстве Xn. Ненулевой вектор x ∈ Xn называется собственным
вектором обобщенной проблемы собственных значений, если суще-
ствует число λ такое, что

Ax = λBx; (13.1)

число λ называется при этом собственным числом обобщенной про-
блемы собственных значений. Если оператор B невырожден, то зада-
ча (13.1), очевидно, эквивалентна задаче на собственные значения

B−1Ax = λx (13.2)

для оператора C = B−1A.
Наиболее просто обобщенная проблема собственных значений ис-

следуется в случае самосопряженных операторов A, B.

2. Теорема. Пусть A — самосопряженный оператор, B —
положительно определенный оператор, действующие в евклидовом
пространстве Xn. Тогда существуют векторы {ek}nk=1, образующие
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базис пространства Xn, и вещественные числа λ1, λ2, . . . , λn та-
кие, что

Aek = λkBek, k = 1, 2, . . . , n, (13.3)
(Bek, el) = δkl, k, l = 1, 2, . . . , n. (13.4)

Доказательство. Каждой паре элементов x, y ∈ Xn поста-
вим в соответствие число (x, y)B = (Bx, y). Это соответствие опре-
деляет скалярное произведение на пространстве Xn (см. упраж-
нение 1, с. 223). Оператор C = B−1A самосопряжен относитель-
но этого нового скалярного произведения. Действительно, для лю-
бых x, y ∈ Xn имеем

(Cx, y)B = (BCx, y) = (Ax, y) = (x,Ay) = (x,BB−1Ay) = (x, Cy)B.

Поэтому по теореме 9, с. 226, существуют векторы {ek}nk=1, образу-
ющие базис пространства Xn, и вещественные числа λ1, λ2, . . . , λn
(см. п. 5, с. 225) такие, что

Cek = λke
k, k = 1, 2, . . . , n, (13.5)

(ek, el)B = δkl, k, l = 1, 2, . . . , n. (13.6)
Равенства (13.5), (13.6) эквивалентны соответствующим равенствам
(13.3), (13.4). �

§ 14. Сингулярные базисы и сингулярные числа оператора

1. В этом параграфе будет показано, что для любого опера-
тора A, действующего из евклидова пространства Xn в евклидово
пространство Ym, можно указать такие ортонормированные бази-
сы {ek}nk=1 ⊂ Xn и {qk}mk=1 ⊂ Ym, что матрица оператора A при-
нимает очень простой вид, а именно,

Aek =

{
ρkq

k, k 6 r,

0 , k > r,
(14.1)

где ρk > 0, k = 1, 2, . . . , r. Числа ρk называют сингулярными числа-
ми оператора A. Базисы {ek}nk=1, {qk}mk=1, обеспечивающие выполне-
ние соотношений (14.1), называются сингулярными базисами опера-
тора A.

Как показывает (14.1), ненулевыми элементами матрицы Aeq опе-
ратора A относительно сингулярных базисов являются только чис-
ла ρ1, ρ2, . . . , ρr, расположенные на диагонали главного (базисного)
минора матрицы Aeq.
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2. Построим сингулярные базисы оператора A. Оператор A∗A
самосопряжен и неотрицателен (см. упражнение 2 на с. 223), следо-
вательно (см. теорему 9, с. 226, и п. 3, § 10, с. 231), существуют орто-
нормированные собственные векторы {ek}nk=1 оператора A∗A, все его
собственные числа неотрицательны. Таким образом,

A∗Aek = ρ2ke
k, k = 1, 2, . . . , n. (14.2)

Здесь ρ2k > 0 — собственные числа оператора A∗A. Будем нумеро-
вать их так, чтобы ρ1 > ρ2 > · · · > ρr > 0, ρr+1 = · · · = ρn = 0.
Положим zk = Aek для k = 1, . . . , r и заметим, что

(zp, zq) = (Aep,Aeq) = (A∗Aep, eq) = ρ2p(e
p, eq).

Поэтому

(zp, zq) =

{
0, p ̸= q,

ρ2p, p = q,
(14.3)

следовательно, векторы

qk = ρ−1
k Aek, k = 1, 2, . . . , r, (14.4)

образуют ортонормированную систему в пространстве Ym. Если ока-
жется, что r < m, дополним ее произвольно векторами qk, k = r + 1,
r + 2, . . . ,m, до ортонормированного базиса пространства Ym. Из
определения векторов {ek}nk=1, {qk}mk=1 сразу же вытекает справедли-
вость (14.1).

3. Из (14.1) получаем, что векторы {qk}rk=1 образуют базис
в Im(A), но тогда из теоремы 1, с. 218, вытекает, что векто-
ры {qk}mk=r+1 образуют базис в Ker(A∗), следовательно,

A∗qk = 0 для k = r + 1, . . . ,m. (14.5)

Для k = 1, 2, . . . , r из (14.4), (14.2) получаем

A∗qk = ρ−1
k A∗Aek = ρke

k. (14.6)

4. Сопоставляя (14.6), (14.4), (14.5), будем иметь, что

AA∗qk = ρ2kq
k, k = 1, . . . , r, AA∗qk = 0, k = r + 1, . . . ,m. (14.7)

Из (14.2), (14.7) вытекает, что ненулевые собственные числа опера-
торов A∗A и AA∗ совпадают, т. е. спектры этих операторов могут
отличаться лишь кратностью нулевого собственного числа.
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5. Из предыдущих рассуждений также следуют равенства

rank(A) = rank(A∗A) = rank(AA∗),

def(A∗A) = n− rank(A), def(AA∗) = m− rank(A).

6. Понятно, что ранг r оператора A равен количеству ненулевых
сингулярных чисел оператора A. Это наблюдение открывает реаль-
ную возможность вычисления ранга оператора A: нужно решить за-
дачу на собственные значения для самосопряженного неотрицатель-
ного оператора A∗A и определить количество ненулевых собственных
чисел. Именно таким способом обычно пользуются в вычислительной
практике. Ясно также, что собственные векторы {ei}ni=r+1 операто-
ра A∗A образуют ортонормированный базис ядра оператора A.

7. Если сингулярные числа и сингулярные базисы оператора A
найдены, то построение псевдорешения (см. § 5, с. 219) уравнения

Ax = y (14.8)

не вызывает затруднений. В самом деле, как было показано в п. 3,
с. 220, любое решение уравнения

A∗Ax = A∗y (14.9)

есть псевдорешение уравнения (14.8). Представляя векторы x и y в ви-

де разложений по сингулярным базисам, x =
n∑
k=1

ξke
k, y =

m∑
k=1

ηkq
k, и

используя затем соотношения (14.2), (14.5), (14.6), получим как след-
ствие уравнения (14.9), что

r∑
k=1

(ρ2kξk − ρkηk)e
k = 0, (14.10)

откуда вытекает, что ξk = ηk/ρk для k = 1, 2, . . . , r. Таким образом,
любой вектор

x =
r∑

k=1

(ηk/ρk)e
k +

n∑
k=r+1

ξke
k, (14.11)

где ξr+1, . . . , ξn — произвольные числа, есть псевдорешение уравне-
ния (14.8).
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Если y ∈ Im(A), т. е. уравнение (14.8) разрешимо, то форму-
ла (14.11) дает общее решение (см. § 1, с. 174) уравнения (14.8). Дей-

ствительно, в этом случае вектор x0 =
r∑

k=1

(ηk/ρk)e
k есть частное реше-

ние уравнения (14.8), а
n∑

k=r+1

ξke
k — общее решение соответствующего

однородного уравнения.

8. Для любого псевдорешения x уравнения (14.8) имеем

|x|2 =
r∑

k=1

(ηk/ρk)
2 +

n∑
k=r+1

ξ2k.

Полагая ξr+1, . . . , ξn = 0, получим псевдорешение с минимальной
длиной. Такое псевдорешение принято называть нормальным. Оно
ортогонально ядру оператора A.

Упражнения.

1) Покажите, что модуль определителя любого оператора, дей-
ствующего в конечномерном пространстве, равен произведению всех
сингулярных чисел этого оператора.

2) Пусть A — произвольная прямоугольная матрица ранга r. По-
кажите, что существуют унитарные матрицы U , V такие, что

A = UDV, (14.12)

где

D =

(
R O1,2

O2,1 O2,2

)
есть блочная 2 × 2 матрица, R = diag(ρ1, ρ2, . . . ρr), все элементы
диагонали R положительны, все элементы матриц O1,2, O2,1, O2,2 —
нули.

Формула (14.12) определяет так называемое сингулярное разло-
жение прямоугольной матрицы.

9. Сингулярные числа оператора характеризуют чувствитель-
ность решения линейного уравнения по отношению к изменению его
правой части. Пусть A — невырожденный оператор, действующий в
евклидовом пространстве Xn. Рассмотрим наряду с уравнением

Ax = y (14.13)

уравнение
Ax = ỹ. (14.14)
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Поскольку оператор A невырожден, оба уравнения однозначно раз-
решимы. Пусть x — решение уравнения (14.13), x̃ — решение уравне-
ния (14.14). Величину δx = |x − x̃|/|x| называют величиной относи-
тельного изменения решения при изменении правой части. Выясним,
как она зависит от δy = |y − ỹ|/|y| — величины относительного из-
менения правой части. Представим векторы y, ỹ в виде разложений

по сингулярному базису: y =
n∑
k=1

ηkq
k, ỹ =

n∑
k=1

η̃kq
k. Тогда вслед-

ствие (14.1) получим x = A−1y =
n∑
k=1

ηk
ρk
ek, x̃ = A−1ỹ =

n∑
k=1

η̃k
ρk
ek,

поэтому, используя неравенства ρ1 > ρ2 > · · · > ρn > 0, будем иметь,
что

δ2x =

n∑
k=1

|ηk − η̃k|2

ρ2k
n∑
k=1

|ηk|2

ρ2k

6 ρ21
ρ2n

n∑
k=1

|ηk − η̃k|2

n∑
k=1

|ηk|2
=
ρ21
ρ2n
δ2y. (14.15)

Таким образом,
δx 6

ρ1
ρn
δy. (14.16)

Величина ρ1/ρn, характеризующая устойчивость решения уравне-
ния (14.13) по отношению к изменению его правой части, называется
числом обусловленности оператора A и обозначается через cond(A).
Очевидно, cond(A) > 1 для любого оператора A.

Упражнения.

1) Покажите, что при определенном выборе y и ỹ неравен-
ство (14.16) превращается в равенство, и в этом смысле оценка (14.16)
неулучшаема.

2) Приведите примеры операторов, для которых число обуслов-
ленности равно единице.

§ 15. Полярное разложение оператора

1. Пусть A : Xn → Xn — произвольный оператор. Определим,
как в п. 1, § 14, сингулярные базисы {ek}nk=1, {qk}nk=1 оператора A, а
затем операторы U , T , S, задав их действием на векторы базисов:

Uek = qk, T qk = ρkq
k, Sek = ρke

k, k = 1, 2, . . . , n. (15.1)
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Оператор U унитарный, так как переводит ортонормированный ба-
зис в ортонормированный базис. Операторы T , S — самосопряжен-
ные неотрицательные операторы. Для того, чтобы убедиться в этом,
достаточно заметить, что числа (T x, x), (Sx, x) неотрицательны для
любого x ∈ Xn.

Далее, учитывая (14.1), (15.1), получим

USek = ρkq
k = Aek, T Uek = ρkq

k = Aek, k = 1, 2, . . . , n,

следовательно,
A = US = T U . (15.2)

Формулы (15.2) определяют так называемое полярное разложе-
ние оператора A. Они показывают, что любое линейное преобразова-
ние есть результат последовательного выполнения унитарного преоб-
разования, не меняющего длин векторов, и самосопряженного неот-
рицательного преобразования, выполняющего растяжения простран-
ства в n попарно ортогональных направлениях.

Оператор S называют правым оператором растяжения, а опера-
тор T — левым оператором растяжения.

2. Из (15.2) непосредственно получаем A∗A = S2, AA∗ = T 2.
Поскольку операторы S, T — самосопряженные неотрицательные
операторы, то эти равенства показывают, что S, T однозначно опре-
деляются по оператору A, а именно

S =
√
A∗A, T =

√
AA∗. (15.3)

В случае, когда оператор A невырожден, оператор A∗A также невы-
рожден, следовательно, невырожден и оператор S, поэтому опера-
тор U = AS−1 также определяется однозначно.

Из формул (15.2), (15.3) непосредственно вытекает

3. Теорема. Для того, чтобы оператор A был нормальным,
необходимо и достаточно, чтобы операторы T и S в представле-
нии (15.2) совпадали, иными словами, чтобы операторы U и S были
перестановочны.

§ 16. Евклидово пространство операторов

1. Определим на пространстве линейных операторов, действую-
щих в конечномерном евклидовом пространстве Xn, скалярное про-
изведение по формуле (A,B) = tr(AB∗), Пусть Ae, Be — матрицы
операторов A, B в произвольном ортонормированном базисе. Тогда,
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как нетрудно подсчитать, (A,B) =
n∑

i,j=1

aeij b̄
e
ij. Из этой формулы оче-

видным образом вытекает справедливость аксиом скалярного произ-
ведения.

Упражнение. Покажите, что для любого оператора A, действу-
ющего в евклидовом пространстве Xn,

|A|2 =
n∑
k=1

ρ2k,

где ρk, k = 1, 2, . . . , n, — сингулярные числа оператора A.

2. Построим некоторые часто используемые в различных при-
ложениях базисы евклидова пространства операторов. Каждой паре
векторов a, b евклидова пространства Xn поставим в соответствие ли-
нейный оператор, обозначаемый через a ⊗ b и определяемый равен-
ством

a⊗ b x = (x, b)a ∀x ∈ Xn. (16.1)
Оператор a⊗ b называют тензорным произведением или диадой век-
торов a, b. Пусть En = {ek}nk=1 — базис пространства Xn. Образуем
линейные операторы

ek ⊗ el, k, l = 1, 2, . . . , n. (16.2)

Количество операторов вида (16.2) равно n2, т. е. совпадает с размер-
ностью пространства всех линейных операторов, действующих в Xn

(см. § 8, с. 167). Совокупность операторов (16.2) линейно независима.

Действительно, пусть
n∑

k,l=1

ckle
k⊗ el = 0. Тогда для любого вектора ẽj

взаимного базиса Ẽn ⊂ Xn (см. § 9, с. 139), используя (16.1), получим

0 =
n∑

k,l=1

ckl(e
k ⊗ el)ẽj =

n∑
k=1

ckje
k, j = 1, 2, . . . , n. (16.3)

Отсюда вследствие линейной независимости векторов En вытекает,
что ckl = 0 для всех k, l = 1, 2, . . . , n.

Таким образом, система (16.2) есть базис, и каждый оператор A,
действующий в пространстве Xn, однозначно представим в виде

A =
n∑

k,l=1

αkle
k ⊗ el. (16.4)
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Аналогично доказывается, что каждый оператор A : Xn → Xn

однозначно представим в одной из следующих форм при помощи век-
торов основного и взаимного базисов:

A =
n∑

k,l=1

α̃klẽ
k ⊗ ẽl, (16.5)

A =
n∑

k,l=1

α̂kle
k ⊗ ẽl, (16.6)

A =
n∑

k,l=1

α̌klẽ
k ⊗ el. (16.7)

Коэффициенты разложения (16.4) называются контравариант-
ными компонентами оператора A, коэффициенты разложения (16.5)
называются ковариантными компонентами оператора A, а коэффи-
циенты разложений (16.6), (16.7) — смешанными компонентами.

Упражнения.

1) Покажите, что для любых a, b ∈ Xn справедливо равенство

a⊗ b = (b⊗ a)∗. (16.8)

2) Опираясь на (16.8), докажите, что любых a, b ∈ Xn оператор

a ∧ b = a⊗ b− b⊗ a, (16.9)

называемый внешним произведением векторов a, b, косоэрмитов.
3) Опишите ядро оператора a ∧ b. Специально рассмотрите слу-

чай n = 3.
4) Докажите, что матрица оператора a ⊗ b относительно ба-

зиса {ek}nk=1 есть {akb̃l}nk,l=1, где ak, k = 1, 2, . . . , n, — контрава-
риантные компоненты вектора a относительного этого базиса, b̃k,
k = 1, 2, . . . , n, — ковариантные компоненты вектора b.

5) Докажите, что коэффициенты разложений (16.4)–(16.7) можно
вычислить по следующим формулам:

αkl = (Aẽl, ẽk), α̃kl = (Ael, ek), α̂kl = (Ael, ẽk), α̌kl = (Aẽl, ek),

k, l = 1, 2, . . . , n.
Покажите также, что числа α̂kl, α̌kl, k, l = 1, 2, . . . , n, есть эле-

менты матрицы оператора A в основном и взаимном базисах соответ-
ственно.
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6) Пусть A : Xn → Xn — нормальный оператор, {ek}nk=1 — орто-
нормированный базис пространства Xn, составленный из собствен-
ных векторов оператора A, λ1, λ2, . . . , λn — соответствующие соб-

ственные числа оператора A. Покажите, что A =
n∑
i=1

λie
i ⊗ ei.



Глава 13
Операторы в вещественном евклидовом

пространстве

§ 1. Общие сведения

Отметим некоторые особенности, связанные с рассмотрением ли-
ненйных операторов, действующих в вещественном евклидовом про-
странстве Xn.

В любом ортонормированном базисе пространства Xn матрицы
операторов A и A∗ взаимно транспонированы.

Для того, чтобы оператор был самосопряжен, необходимо и до-
статочно, чтобы в любом ортонормированном базисе пространства Xn

его матрица была симметрична.
Косоэрмитов оператор, действующий в вещественном евклидовом

пространстве, обычно называют кососимметричным. Для того, что-
бы оператор был кососимметричным, необходимо и достаточно, что-
бы в любом ортонормированном базисе пространства Xn его матрица
была кососимметрична.

Любой оператор A однозначно представим в виде A = A1 + A2,
где A1 — самосопряженный, A2 — кососимметричный операторы,
причем

A1 =
1

2
(A+A∗), A2 =

1

2
(A−A∗).

Аналогичные рассуждения для матриц см. на с. 107, 108.

1. Теорема1). Для того, чтобы оператор A был кососиммет-
ричным, необходимо и достаточно выполнения условия

(Ax, x) = 0 ∀x ∈ Xn. (1.1)

Доказательство. Действительно, если A = −A∗, то

(Ax, x) = (x,A∗x) = −(x,Ax),

т. е. (Ax, x) = 0. Достаточность условия (1.1) вытекает из очевидного
тождества (A(x+ y), x+ y) = (Ax, x) + (Ay, y) + (Ax+A∗x, y). �

1)Сравните с теоремой 1.3 с. 221.
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2. Унитарный оператор, т. е. оператор A, удовлетворяющий усло-
вию AA∗ = I, действующий в вещественном евклидовом простран-
стве, называется ортогональным. Для того, чтобы оператор был ор-
тогональным, необходимо и достаточно, чтобы его матрица была ор-
тогональной (см. п. 7 на с.108) в любом ортонормированном базисе
пространства Xn.

Из определения ортогонального оператора сразу же вытекает, что
он не меняет длин векторов и углов между векторами. Определитель
ортогонального оператора равен плюс или минус единице.

Собственным числом ортогонального оператора может быть толь-
ко плюс или минус единица.

3. Напомним, что оператор A называется нормальным, ес-
ли AA∗ = A∗A. Самосопряженный, кососимметричный и ортогональ-
ный операторы — нормальные операторы. В любом ортонормирован-
ном базисе En пространства Xn матрица Ae нормального оператора A
является нормальной, т. е. удовлетворяет условию

AeA
T
e = AT

eAe. (1.2)

Справедливо и обратное: если в некотором ортонормированном бази-
се En пространства Xn матрица Ae оператора A удовлетворяет усло-
вию (1.2), то A — нормальный оператор.

§ 2. Вещественное евклидово пространство операторов

1. Вводя на вещественном линейном пространстве всех опера-
торов, действующих в вещественном евклидовом пространстве Xn,
скалярное произведение по формуле (A,B) = tr(AB∗), получим ве-
щественное евклидово пространство операторов. Все факты, уста-
новленные в § 16, с. 243, очевидным образом переносятся и на этот
случай.

Упражнения

1) Покажите, что множество всех самосопряженных операторов,
действующих в вещественном евклидовом пространстве Xn, есть под-
пространство евклидова пространства операторов, действующих в ве-
щественном пространстве Xn, и определите его размерность.

2) Покажите, что множество всех кососимметричных операторов,
действующих в вещественном евклидовом пространстве Xn, есть под-
пространство евклидова пространства операторов, действующих в ве-
щественном пространстве Xn, и определите его размерность.
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3) Пусть {ek}nk=1 — базис вещественного евклидова простран-
ства Xn. Докажите, что операторы ek ⊗ el + el ⊗ ek — базис про-
странства всех самосопряженных операторов, действующих в Xn, а
операторы ek ∧ el, k, l = 1, 2, . . . , n, k < l — базис пространства всех
кососимметричных операторов, действующих в Xn.

2. Изотропные функции операторного аргумента. В этом пункте
описывается класс операторных функций, находящих многочислен-
ные применения в механике.

2.1. Функция f , отображающая вещественное евклидово про-
странство операторов на R, называется изотропной скалярной функ-
цией, если

f(QAQ∗) = f(A)

для любого любого самосопряженного оператора A и любого ортого-
нального оператора Q. Практически дословно повторяя рассуждения
п. 1, с. 194, нетрудно убедиться, что для того, чтобы функция f была
скалярной и изотропной, необходимо и достаточно, чтобы она зави-
села только от инвариантов оператора A.

2.2. Функция f , отображающая вещественное евклидово про-
странство операторов в себя, называется симметричной и изотропной,
если

f(QAQ∗) = Qf(A)Q∗

для любого самосопряженного оператора A и любого ортогонального
оператора Q.

Аналогично теоремам 2.1, с. 194, 3, с. 196, доказываются

2.3. Теорема. Операторная функция f симметрична и изо-
тропна тогда и только тогда, когда для любого самосопряженного
оператора A имеет место представление:

f(A) = φ0I + φ1A+ φ2A2 + . . .+ φn−1An−1, (2.1)

где φi = φi(A), φi, i = 0, 1, . . . , n − 1, есть изотропные скалярные
функции операторного аргумента.

2.4. Теорема. Для того, чтобы функция f была линейной си-
метричной и изотропной, необходимо и достаточно, чтобы она
имела вид

f(A) = λ tr(A)I + 2µA, (2.2)
где λ, µ — вещественные числа.

Замечание. Теоремы 2.3, 2.4 часто используются в механике
сплошной среды. Множитель два во втором слагаемом правой части
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равенства (2.2) обусловлен традиционно применяемыми обозначени-
ями в этой области механики.

§ 3. Структура нормального оператора

В этом параграфе все операторы — операторы, действующие в
вещественном евклидовом пространстве Xn.

1. Теорема. Для того, чтобы оператор A, действующий в ве-
щественном евклидовом пространстве Xn, был нормальным опера-
тором, необходимо и достаточно существования ортонормирован-
ного базиса En пространства Xn, в котором матрица оператора A
блочно диагональна:

Ae =


A1

A2
. . .

Ak

 . (3.1)

Диагональные блоки этой матрицы могут иметь размеры ли-
бо 1×1, либо 2× 2; блоки размера 1× 1 — это вещественные числа,
блоки размера 2× 2 есть матрицы вида

Ap =

(
αp −βp
βp αp

)
, (3.2)

где αp, βp — вещественные числа.
Доказательство. Д о с т а т о ч н о с т ь. Непосредствен-

ными вычислениями легко проверяется, что матрица Ae описанной в
теореме структуры удовлетворяет условию (1.2), с. 248.

Н е о б х о д и м о с т ь. Пусть Ae — матрица нормального опе-
ратора A в произвольно выбранном ортонормированном базисе En.
Тогда Ae удовлетворяет условию (1.2). Как было установлено ранее
(см. упражнение 1 на с. 227), по матрице Ae можно построить орто-
нормированный базис Fn = {fk}nk=1 пространства Cn такой, что

Aefk = λkfk, k = 1, 2, . . . , n, (3.3)

где λ1, λ2, . . . , λn — характеристические числа матрицы Ae, причем
если λk — вещественное число, то и вектор fk можно считать веще-
ственным. Будем нумеровать характеристические числа матрицы Ae

так, что λ1 = α1, λ2 = α2, . . . , λm = αm, 0 6 m 6 n, веществен-
ны, а λm+j = αm+j + iβm+j, λ̄m+j = αm+j − iβm+j, j = 1, 2, . . . , p,
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p = (n−m)/2, — комплексные числа. Тогда собственные векторы fk,
k = 1, 2, . . . ,m, будут вещественными, остальные — комплексными,
т. е. fk = gk + ihk, где gk, hk ∈ Rn, k > m. Отметим также, что,
поскольку Ae — вещественная матрица, то если λk — комплексное ха-
рактеристическое число матрицы Ae и Aefk = λkfk, то Aef̄k = λ̄kf̄k.
По теореме 8, с. 226, собственные векторы, соответствующие различ-
ным собственным числам нормального оператора, ортогональны, сле-
довательно, (fk, f̄k) = 0, откуда вытекает, что (gk, gk) = (hk, hk),
(gk, hk) = 0. Кроме того, (fk, fk) = 1. Отсюда легко получается,
что (gk, gk) = (hk, hk) = 1/2. Пусть, далее, fk, fl ∈ Fn есть ком-
плексные векторы k ̸= l, fk ̸= f̄l. Тогда (fk, fl) = 0, и (fk, f̄l) = 0,
откуда при помощи элементарных выкладок получаем, что (gk, gl),
(hk, hl), (gk, hl), (hk, gl) = 0. Напомним (см. п. 2, с. 197), что если
Aefk = λkfk, λk = αk + iβk, fk = gk + ihk, то Aegk = αkgk − βkhk,
Aehk = αkgk + βkhk. Поставим теперь в соответствие каждому веще-
ственному характеристическому числу λk матрицы Ae вещественный
вектор fk ∈ Fn, а каждой паре комплексно сопряженных характери-
стических чисел λk, λ̄k матрицыAe вещественные векторы g̃k =

√
2 gk,

h̃k =
√
2hk. В результате получим систему

F̃n = {f1, f2, . . . , fm, g̃1, h̃1, g̃2, h̃2, . . . , g̃p, h̃p},

состоящую из n векторов пространства Rn и по доказанному выше
ортонормированную. Для векторов системы F̃n выполнены равенства

Aefk = αkfk, k = 1, 2, . . . ,m, (3.4)

Aeg̃j = αj g̃j − βjh̃j

Aeh̃j = βj g̃j + αjh̃j,
(3.5)

j = 1, 2, . . . , p, из которых, очевидно, вытекает, что в ортонормиро-
ванном базисе Ẽn = EF̃n пространства Xn оператор A будет иметь
матрицу вида (3.1). Блоки этой матрицы образованы соответствую-
щим элементами матрицы Ae. �

Остановимся на некоторых важных частных случаях. При этом
мы будем опираться на следствие 7, с. 225.

2. Самосопряженный оператор. Матрица самосопряженного опе-
ратора A в любом ортонормированном базисе симметрична, следо-
вательно, (см. п. 7, с. 225), все ее характеристические числа веще-
ственны. Поэтому все числа βj, j = 1, 2, . . . , p, в равенствах (3.5)
равны нулю. Таким образом, существует ортонормированный базис
пространства Xn, в котором матрица оператора A диагональна.
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3. Кососимметричный оператор. Матрица кососимметричного
оператора A в любом ортонормированном базисе кососимметрична,
следовательно, (см. п. 7, с. 225), все ее характеристические числа чи-
сто мнимые. Поэтому все числа αj, в равенствах (3.4), (3.5) равны ну-
лю, значит, существует ортонормированный базис пространства Xn,
в котором матрица оператора A имеет вид (3.1). При этом все диа-
гональные блоки первого порядка нулевые, а блоки второго порядка
кососимметричны:

Aj =

(
0 −βj
βj 0

)
,

j = 1, 2, . . . , p.

§ 4. Структура ортогонального оператора

1. Матрица ортогонального оператора в любом ортонормирован-
ном базисе ортогональна, следовательно (см. п. 7, с. 225), все ее харак-
теристические числа по модулю равны единице. Поэтому числа αk,
k = 1, 2, . . . ,m, в соотношениях (3.4) могут быть равны только плюс
единице или минус единице, а числа αj, βj, j = 1, 2, . . . , p, в равен-
ствах (3.5) таковы, что α2

j + β2
j = 1, следовательно, существуют углы

φj ∈ [0, 2π) такие, что αj = cosφj, βj = sinφj. Таким образом, суще-
ствует ортонормированый базис пространства Xn, в котором матрица
ортогонального оператора принимает вид (3.1). При этом все диаго-
нальные блоки первого порядка — это числа, равные плюс единице
или минус единице, а блоки второго порядка имеют вид(

cosφj − sinφj
sinφj cosφj

)
.

Всякому ортогональному преобразованию вещественного евкли-
дова пространства можно придать отчетливый геометрический смысл.

2. Начнем с двумерного случая. Как следует из вышеизложенно-
го, для любого ортогонального преобразования евклидова простран-
ства X2 существует ортонормированный базис e1, e2, в котором его
матрица будет либо

Ae =

(
−1 0
0 1

)
,

либо
Ae =

(
cosφ − sinφ
sinφ cosφ

)
.
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В первом случае всякий вектор x = ξ1e
1 + ξ2e

2 ∈ X2 переводится
оператором A в вектор Ax = −ξ1e1+ ξ2e2, т. е. оператор A осуществ-
ляет зеркальное отражение относительно координатной оси ξ2.

Во втором случае (Ax, x) = |x||Ax| cosφ, т. е. оператор A осу-
ществляет поворот каждого вектора x ∈ X2 на угол φ. Направление
поворота (при φ > 0) совпадает с направлением кратчайшего пово-
рота от e1 к e2.

3. В трехмерном случае у любого ортогонального оператора A
существует хотя бы одно собственное число, поскольку соответству-
ющее характеристическое уравнение есть алгебраическое уравнение
третьего порядка с вещественными коэффициентами. Поэтому с точ-
ностью до перенумерации векторов ортонормированного базиса e1, e2,
e3 ∈ X3 матрица Ae может принять одну из следующих форм:

Ae =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 , (4.1)

Ae =

−1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 . (4.2)

Поясним, что если оператор A имеет одно собственное число, ука-
занные представления непосредственно следуют из теоремы 1, а ес-
ли оператор A имеет три собственных числа, то представления (4.1)
или (4.2) получаются за счет специального выбора угла φ.

Рассуждая по аналогии с двумерным случаем, нетрудно убедить-
ся, что оператор A с матрицей (4.1) осуществляет поворот простран-
ства X3 вокруг оси ξ1 на угол φ, а оператор A с матрицей (4.2) осу-
ществляет поворот пространства X3 вокруг оси ξ1 на угол φ с после-
дующим отражением относительно плоскости, ортогональной векто-
ру e1. В первом случае определитель оператора A равен единице, во
втором — минус единице.

Определитель оператора, как мы знаем, не зависит от выбора ба-
зиса пространства. Поэтому все ортогональные преобразования трех-
мерного пространства можно разбить на два класса: собственные вра-
щения — это преобразования с положительным определителем, они
осуществляют поворот пространства вокруг некоторой оси; и несоб-
ственные вращения — это преобразования с отрицательным опреде-
лителем, они осуществляют поворот пространства вокруг некоторой
оси с последующим отражением относительно плоскости, ортогональ-
ной этой же оси.
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4. Евклидово пространство Xn произвольной размерности в со-
ответствии с теоремой 1, § 3, можно представить в виде ортогональ-
ной суммы некоторого количества одномерных инвариантных под-
пространств и некоторого количества двумерных инвариантных под-
пространств ортогонального оператора A. В двумерных инвариант-
ных подпространствах оператор A выполняет поворот, в каждом, во-
обще говоря, на свой угол, а в одномерных инвариантных подпро-
странствах может измениться лишь направление координатной оси.

5. Упражнения.

1) Опираясь на результаты § 15, с. 242, описать линейные отобра-
жения трехмерного вещественного евклидова пространства с положи-
тельным определителем и линейные отображения с отрицательным
определителем.

2) Показать, что всякая вещественная симметричная матрица A
ортогонально подобна диагональной, т. е. QTAQ = Λ, где Λ — диаго-
нальная, Q — ортогональная матрицы. Столбцы матрицы Q — соб-
ственные векторы матрицы A, по диагонали матрицы Λ расположены
все собственные числа матрицы A.

3) Пусть A — симметричная, B — положительно определенная
вещественные матрицы одного и того же порядка. Опираясь на тео-
рему 2, с. 237, показать, что существует невырожденная матрица T
такая, что T TAT = Λ, где Λ — диагональная матрица, а T TBT = I.

§ 5. Матрицы вращения и отражения

Остановимся на двух часто используемых в приложениях типах
ортогональных матриц.

1. Матрица вращения. Вещественная матрица

Qst(φ) = {qij(φ)}ni,j=1, 1 6 s < t 6 n,

называется матрицей вращения, если qss(φ) = qtt(φ) = cosφ,
qii(φ) = 1 при i ̸= s, t, qst(φ) = − sinφ, qts(φ) = sinφ, а все остальные
элементы матрицы Qst(φ) — нули.

Нетрудно видеть, что матрица Q = Qst(φ) ортогональна. Порож-
даемое этой матрицей преобразование евклидова пространства Rn со
стандартным скалярным произведением есть поворот на угол φ в
двумерном подпространстве (плоскости), натянутом на векторы is, it
естественного базиса пространства Rn. Матрица QT , обратная к Q,
выполняет поворот в той же плоскости в обратном направлении.
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Пусть x — произвольный вектор пространства Rn. Ясно, что
(Qx)i = xi при i ̸= s, t,

(Qx)s = xs cosφ− xt sinφ,

(Qx)t = xs sinφ+ xt cosφ.

Положим ρ = (x2s + x2t )
1/2. Пусть φ = 0, если ρ = 0, и cosφ = xs/ρ,

sinφ = −xt/ρ, если ρ > 0. Тогда (Qx)s = ρ, (Qx)t = 0.
Теперь совершенно ясно, что если x — произвольный нену-

левой вектор пространства Rn, то выбирая последовательно углы
φn, φn−1, . . . , φ2, можно построить матрицы вращения Q1,n(φn),
Q1,n−1(φn−1), . . . , Q1,2(φ2) такие, что Qx = |x| i1. Здесь

Q = Q1,2(φ2) · · ·Q1,n−1(φn−1)Q1,n(φn).

Таким образом, любой ненулевой вектор при помощи ортогональ-
ной матрицы можно преобразовать в вектор, совпадающий по направ-
лению с вектором i1 естественного базиса.

Пусть теперь x, y — два произвольных ненулевых вектора про-
странства Rn. Как только что было показано, существуют ортого-
нальные матрицы Qx и Qy такие, что Qxx = |x|i1, Qyy = |y|i1. От-
сюда вытекает, что Qx = (|x|/|y|)y, где Q = QT

yQx, т. е. для любой
пары ненулевых векторов найдется ортогональная матрица, преобра-
зующая первый вектор в вектор, совпадающий по направлению со
вторым.

2. Матрица отражения. Пусть w = {wi}ni=1 — произвольно вы-
бранный вектор единичной длины пространства Rn. Матрица

R = I − 2wwT

называется матрицей отражения. Поясним, что w трактуется здесь
как вектор столбец, так что R = {δij − 2wiwj}ni,j=1.

Матрица R симметрична. Покажем, что она ортогональна. Дей-
ствительно,

RTR = R2 = I − 4wwT + 4wwTwwT = I,

так как wTw = |w|2 = 1.
Заметим, далее, что

Rw = w − 2wwTw = −w, Rz = z − 2wwTz = z, (5.1)

если wTz = (w, z) = 0, т. е. векторы w и z ортогональны1).
1)В смысле стандартного скалярного произведения в пространстве Rn.
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Пусть теперь x — произвольный вектор. По теореме 3, с. 153,
он однозначно представим в виде x = αw + z, где α некоторое чис-
ло, z — некоторый вектор, ортогональный w. Из равенств (5.1) выте-
кает, что Rx = −αw + z.

Можно сказать, таким образом, что матрица R выполняет отра-
жение вектора x относительно (n− 1)-мерной гиперплоскости, орто-
гональной вектору w. Это свойство матрицы R и позволяет называть
ее матрицей отражения.

2.1. Рассмотрим следующую задачу. Даны ненулевой вектор a
и вектор единичной длины e. Требуется построить матрицу отраже-
ния R, такую, что Ra = µe, где µ — число (ясно, что |µ| = |a|,
поскольку матрица R ортогональна).

Нетрудно видеть (сделайте рисунок!), что решение задачи — мат-
рица отражения, определяемая вектором

w = (a− |a|e)/|a− |a|e| (5.2)

или вектором w = (a+ |a|e)/|a+ |a|e|. При вычислениях для ми-
нимизации погрешностей округления следует выбрать вектор w с
бо́льшим знаменателем.

Полезно отметить, что если a — произвольный ненулевой вектор,
то матрица отражения R может быть построена так, что для любого
вектора x ∈ Rn

(a,Rx) = |a|xk, (5.3)
где k — заданное целое число, лежащее в пределах от 1 до n. Для
этого, очевидно, в формуле (5.2) нужно положить e = ik.



Глава 14
Квадратичные формы и квадратичные функции

§ 1. Канонический вид квадратичной формы

1. Квадратичной формой будем называть вещественную функ-
цию F от n вещественных переменных x1, x2, . . . , xn вида

F (x1, x2, . . . , xn) =
n∑

i,j=1

aijxixj. (1.1)

Заданные вещественные числа aij называют коэффициентами квад-
ратичной формы. Их можно считать удовлетворяющими условиям
симметрии aij = aji, i, j = 1, 2, . . . , n, поскольку слагаемые в квад-
ратичной форме, содержащие коэффициенты aij, aji, можно предста-
вить так:

aijxixj + ajixjxi =
aij + aji

2
xixj +

aij + aji
2

xjxi.

Запишем квадратичную форму в более компактном виде. Пусть
A — симметричная матрица с элементами aij, i, j = 1, 2, . . . , n. Век-
тор x = (x1, x2, . . . , xn) будем считать элементом пространства Rn.
Тогда F (x) = (Ax, x). Здесь и всюду на протяжении данной главы
скобки обозначают стандартное скалярное произведение в простран-
стве Rn.

2. Пусть в квадратичной форме выполнена линейная замена пе-
ременных, т. е. введены новые переменные y = (y1, y2, . . . , yn), свя-
занные со старыми переменными x = (x1, x2, . . . , xn) соотношением

x = Qy, (1.2)

где Q — невырожденная матрица, называемая матрицей преобразо-
вания переменных. Выполнив замену переменных (1.2), получим

F (Qy) = (AQy,Qy) = (QTAQy, y) = (By, y) =
n∑

i,j=1

bijyiyj,

где через B обозначена матрица QTAQ. Очевидно, матрица B сим-
метрична. Чаще всего, матрицу Q стремятся подобрать так, чтобы
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квадратичная форма в новых переменных приобрела наиболее про-
стой вид.

Говорят, что преобразование переменных (1.2) приводит квадра-
тичную форму (1.1) к каноническому виду, если матрица B = QTAQ
диагональна, т. е.

F (Qy) =
n∑
i=1

biiy
2
i . (1.3)

Можно сказать также, что квадратичная форма (1.1) преобразовани-
ем переменных (1.2) приведена к сумме квадратов.

3. Всякую квадратичную форму невырожденным преобразова-
нием переменных можно привести к каноническому виду. Действи-
тельно, поскольку A — симметричная матрица, то существует орто-
гональная матрица Q такая, что (см. упражнение 2 на с. 254)

QTAQ = Λ,

где Λ — диагональная матрица, по диагонали которой расположе-
ны все собственные числа матрицы A. При указанном выборе матри-
цы Q преобразование переменных (1.2) приводит квадратичную фор-
му (1.1) к виду

F (Qy) =
n∑
i=1

λiy
2
i , (1.4)

где λ1, λ2, . . . , λn — собственные числа матрицы A.

4. Известны и другие способы приведения квадратичной формы
к каноническому виду. Опишем, например, метод Лагранжа, или ме-
тод выделения полных квадратов, приведения квадратичной формы
к каноническому виду. В ходе описания этого метода, фактически,
будет дано еще одно, независимое, доказательство возможности при-
ведения любой квадратичной формы к каноническому виду.

Будем различать два случая: 1) в квадратичной форме (1.1) коэф-
фициент при квадрате какой-либо переменной отличен от нуля, 2) ко-
эффициенты при квадратах всех переменных — нули.

Рассмотрим сначала первый случай, и пусть a11 ̸= 0. Если это не
так, придется ввести другую нумерацию неизвестных.

Запишем квадратичную форму (1.1) в виде

F = a−1
11 (a11x1 + a12x2 + · · ·+ a1nxn)

2 +G, (1.5)

где G = F − a−1
11 (a11x1 + a12x2 + · · · + a1nxn)

2. Нетрудно убедиться,
что G не содержит x1, а является квадратичной формой только от
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переменных x2, x3, . . . , xn. Положим

y1 = a11x1 + a12x2 + · · ·+ a1nxn, y2 = x2, . . . , yn = xn. (1.6)

Тогда
F = a−1

11 y
2
1 +G(y2, . . . , yn), (1.7)

где G(y2, . . . , yn) — квадратичная форма от переменных y2, . . . , yn.
Матрица замены переменных (1.6) невырождена, так как ее опре-

делитель равен a11, а по предположению a11 ̸= 0.
Пусть теперь все коэффициенты при квадратах переменных

в (1.1) равны нулю. Тогда будем считать, что хотя бы один коэффи-
циент при произведениях переменных отличен от нуля, иначе квад-
ратичная форма тождественно равна нулю, и она имеет тривиальный
канонический вид: все коэффициенты при квадратах неизвестных —
нули. Итак, примем для определенности, что a12 ̸= 0, и выполним
преобразование переменных по формулам

x1 = z1 − z2, x2 = z1 + z2, x3 = z3, . . . , xn = zn. (1.8)

Заметим, во-первых, что определитель матрицы преобразования (1.8)
равен двум, а во-вторых, что 2a12x1x2 = 2a12z

2
1 −2a12z

2
2, следователь-

но, в квадратичной форме появились слагаемые, содержащие квад-
раты переменных, поэтому, повторяя рассуждения предыдущего слу-
чая, при помощи невырожденной замены переменных приведем квад-
ратичную форму к виду

F = αy21 +G(y2, . . . , yn). (1.9)

Таким образом, выполняя одно или два последовательных невы-
рожденных преобразования переменных, квадратичную форму (1.1)
можно привести к виду (1.9).

Аналогичными преобразованиями переменных выделим полный
квадрат в квадратичной форме G(y2, . . . , yn). Продолжая преобразо-
вания, в конце концов приведем квадратичную форму (1.1) к сумме
квадратов.

Пример. Приведем к каноническому виду квадратичную форму

F (x1, x2, x3) = 2x1x2 − 6x2x3 + 2x3x1. (1.10)

Поскольку в этой форме отсутствуют квадраты переменных, выполним сначала преоб-
разование переменных

x1 = y1 − y2, x2 = y1 + y2, x3 = y3.

Получим
F = 2y21 − 4y1y3 − 2y22 − 8y2y3.
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Положим теперь
z1 = y1 − y3, z2 = y2, z3 = y3.

Тогда
F = 2z21 − 2z22 − 8z2z3 − 2z23 = 2z21 − 2(z22 + 4z2z3)− 2z23 .

Отсюда после замены переменных

t1 = z1, t2 = z2 + 2z3, t3 = z3

получаем
F = 2t21 − 2t22 + 6t23, (1.11)

т. е. в переменных t1, t2, t3 квадратичная форма принимает канонический вид. Очевид-
но, каждое из выполненных нами преобразований переменных имеет невырожденную
матрицу. Результирующее преобразование переменных, как нетрудно проверить, имеет
вид

t1 =
1

2
x1 +

1

2
x2 − x3, t2 = −1

2
x1 +

1

2
x2 + 2x3, t3 = x3,

откуда x1x2
x3

 =

1 −1 3
1 1 −1
0 0 1

t1t2
t3

 . (1.12)

Непосредственной проверкой нетрудно убедиться, что матрица преобразования пере-
менных (1.12) невырождена, и эта замена переменных приводит квадратичную фор-
му (1.10) к каноническому виду (1.11).

§ 2. Закон инерции квадратичных форм

Среди коэффициентов bii канонического вида (1.3) квадратичной
формы (1.1) могут быть положительные, отрицательные числа, а так-
же — нули. Нумеруя соответствующим образом переменные, запи-
шем (1.3) так:

F (Qy) = (By, y) =

n+∑
i=1

biiy
2
i +

n++n−∑
i=n++1

biiy
2
i . (2.1)

Считаем при этом, что числа bii положительны при i = 1, 2, . . . , n+
и отрицательны при i = n+ + 1, . . . , n+ + n−.

Как мы уже убедились, приведение квадратичной формы к кано-
ническому виду может быть выполнено различными способами. По-
этому естественно поставить вопрос: зависят ли числа n+, n− от спо-
соба приведения квадратичной формы к каноническому виду?

При исследовании этого вопроса будут использованы следующие
определения.

Симметричные матрицы A и B называют конгруэнтными, если
существует невырожденная матрица C такая, что B = CTAC.
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С каждой симметричной матрицей A свяжем три целых чис-
ла: n0(A) — количество нулевых характеристических чисел матри-
цы A, n+(A) — количество положительных характеристических чи-
сел, n−(A) — количество отрицательных характеристических чисел
(характеристические числа подсчитываются с учетом их кратности).
Тройка чисел n0(A), n+(A), n−(A) называется инерцией матрицы A,
или инерцией соответствующей ей квадратичной формы.

1. Теорема. Для того, чтобы матрицы A и B были конгру-
энтными, необходимо и достаточно, чтобы их инерции совпадали.

Доказательство. Д о с т а т о ч н о с т ь. Как было показано
выше, для всякой симметричной матрицы A можно указать ортого-
нальную матрицу Q такую, что

F (Qy) = (QTAQy, y) =
n∑
i=1

λiy
2
i , (2.2)

где λ1, λ2, . . . , λn — собственные числа матрицы A. Заметим, что

n∑
i=1

λiy
2
i =

n∑
i=1

sgn(λi)|λi|y2i =
n∑
i=1

sgn(λi)(
√

|λi|yi)2 =

=
n∑
i=1

sgn(λi)t
2
i =

n+(A)∑
i=1

t2i −
n+(A)+n−(A)∑
i=n+(A)+1

t2i . (2.3)

Эти преобразования можно трактовать как невырожденную замену
переменных: ti =

√
|λi|yi, если λi ̸= 0, и ti = yi, если λi = 0.

Таким образом, установлено, что всякая симметричная матрицаA
конгруэнтна диагональной матрице, у которой на диагонали n+(A)
единиц, n−(A) минус единиц, остальные элементы главной диагона-
ли — нули. Если симметричная матрица B имеет инерцию, равную
инерции матрицы A, то она конгруэнтна точно такой же диагональ-
ной матрице. Отношение конгруэнтности, как нетрудно убедиться,
транзитивно, следовательно, матрицы A и B конгруэнтны.

Н е о б х о д и м о с т ь. Заметим, прежде всего, что у конгруэнтных
матриц ранги, очевидно, совпадают. Кроме того, для любой симмет-
ричной матрицы A справедливо равенство rank(A) = n+(A)+n−(A).
Действительно, всякая симметричная матрица A подобна диагональ-
ной матрице, у которой по диагонали расположены все собственные
числа матрицы A. Из этих рассуждений вытекает, что если матри-
цы A и B конгруэнтны, то n+(A) + n−(A) = n+(B) + n−(B).
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Таким образом, для завершения доказательства теоремы доста-
точно установить, что если матрицы A, B конгруэнтны, то

n+(A) = n+(B). (2.4)

Пусть λn > λn−1 > · · · > λn−n++1 — положительные собствен-
ные числа матрицы A, en−n++1, . . . , en — соответствующие им ор-
тонормированные собственные векторы матрицы A. По предполо-
жению теоремы B = CTAC, где C — невырожденная матрица,
или A = DTBD, где D = C−1. Поскольку матрица D невырож-
дена, векторы Den−n++1, . . . , Den линейно независимы, и подпро-
странство Sn+, натянутое на эти векторы, имеет размерность n+.
Пусть x ∈ Sn+. Тогда x = αn−n++1De

n−n++1 + · · · + αnDe
n = Dy,

где y = αn−n++1e
n−n++1 + · · · + αne

n, и, используя лемму 2.1, с. 229,
получим

(Bx, x) = (DTBDy, y) = (Ay, y) > λn−n++1(y, y). (2.5)

Заметим теперь, что (y, y) = (Cx,Cx) = (CTCx, x). Матрица C
невырождена, поэтому матрица CTC положительно определена (см.
упражнение 2 на с. 223), следовательно,

(y, y) > λ1(C
TC)(x, x), (2.6)

причем λ1(C
TC) > 0 (здесь вновь использована лемма 2.1, с. 229).

Из (2.5), (2.6) вытекает, что

min
x∈Sn+ , x̸=0

(Bx, x)

(x, x)
> λn−n++1λ1(C

TC) > 0,

поэтому, применяя теорему 2.3, с. 230, получим, что λn−nn++1(B) > 0.
Это означает, что у матрицы B не меньше чем n+ положительных ха-
рактеристических чисел, иначе говоря, n+(B) > n+(A). В выполнен-
ных рассуждениях матрицы A и B можно поменять местами. Таким
образом, n+(A) = n+(B). �

2. Следствие (закон инерции квадратичных форм). Ко-
личества положительных и отрицательных слагаемых в (2.1) не
зависят от способа приведения невырожденным линейным преоб-
разованием переменных квадратичной формы (1.1) к каноническому
виду.

Доказательство. Коэффициенты bii в (2.1) — это характери-
стические числа диагональной матрицы B = QTAQ, конгруэнтной
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матрице A, поэтому количества положительных и отрицательных
слагаемых в (2.1) определяются инерцией матрицы A и не зависят
от способа приведения невырожденным линейным преобразованием
переменных квадратичной формы (1.1) к каноническому виду. �

§ 3. Положительно определенные квадратичные формы

1. Квадратичная форма (1.1) называется положительно опре-
деленной, если соответствующая ей матрица A положительно опре-
делена, т. е.

(Ax, x) > 0 для всех не равных нулю x ∈ Rn. (3.1)

Как известно (см. п. 3, с. 231), для того, чтобы матрица A бы-
ла положительно определена, необходимо и достаточно, чтобы все ее
собственные числа были положительны.

Полезный признак положительной определенности квадратичной
формы дает

1.1. Теорема (критерий Сильвестра). Для того, чтобы
квадратичная форма (1.1), с. 257, была положительно определена,
необходимо и достаточно, чтобы все главные миноры матрицы A
были положительны.

Доказательство. Н е о б х о д и м о с т ь. Фиксируем некото-
рое целое k, 1 6 k 6 n. Выберем в качестве вектора x в (3.1) вектор
вида x = (x1, . . . , xk, 0, . . . , 0) = (y, 0, . . . , 0), где y можно считать
произвольным вектором пространства Rk. Тогда (Ax, x) = (Aky, y),
где Ak — матрица, соответствующая главному минору порядка k мат-
рицы A. Из условия (3.1), очевидно, вытекает, что (Aky, y) > 0 для
любого ненулевого вектора y из Rk, т. е. матрица Ak положительно
определена, следовательно, ее определитель (главный минор поряд-
ка k матрицы A) положителен (см. упражнение 1 на с. 231).

Д о с т а т о ч н о с т ь. Покажем, что если все главные миноры мат-
рицы A положительны, то положительны все ее собственные числа.
Тогда положительная определенность матрицы A будет установлена.
На самом деле, мы докажем большее, а именно, мы установим, что
собственные числа всех главных миноров матрицы A положительны.
Для минора первого порядка, т. е. для a11, это выполняется триви-
альным образом. Предположим, что у матрицы Ak, соответствующей
главному минору порядка k, все собственные числа λ1 6 · · · 6 λk по-
ложительны и покажем, что тогда и у матрицы Ak+1 все собственные
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числа λ̂1 6 · · · 6 λ̂k+1 положительны. В соответствии с теоремой 4,
с. 235, выполнены неравенства

λ̂1 6 λ1 6 λ̂2 6 λ2 6 · · · 6 λk 6 λ̂k+1,

откуда вытекает, что λ̂2, . . . , λ̂k+1 > 0. Поскольку по условию
det(Ak+1) > 0, а det(Ak+1) = λ̂1λ̂2 · · · λ̂k+1 (см. (7.7), с. 193), то
и λ̂1 > 0. �

1.2. Одновременное приведение двух квадратичных форм к ка-
ноническому виду.

Упражнение. Пусть (Ax, x) — произвольная квадратичная
форма, (Bx, x) — положительно определенная квадратичная форма.
Показать, что существует невырожденное преобразование перемен-
ных y = Tx, которое одновременно приводит эти квадратичные фор-
мы к каноническому виду, а именно

(T TATy, y) =
n∑
i=1

diiy
2
i , (T TBTy, y) =

n∑
i=1

y2i .

Указание. Используйте результаты упражнения 3, с. 254.

§ 4. Квадратичная функция и ее инварианты

1. Пусть A — вещественная квадратная матица порядка n, a —
заданный фиксированный вектор пространства Rn, a0 — веществен-
ное число. Определенная на пространстве Rn вещественная функция
вида

F (x) = (Ax, x) + 2(a, x) + a0 (4.1)
называется квадратичной. Множитель два перед вторым слагаемым
поставлен ради удобства записи формул в дальнейшем. Не ограни-
чивая общности (см. п. 1, с. 257), можно считать, что матрица A
симметрична.

Понятно, что теория квадратичных функций может строиться
как некоторое обобщение теории квадратичных форм.

Свяжем с каждой квадратичной функцией F симметричную мат-
рицу

B =

(
A a
aT a0

)
. (4.2)

Здесь a трактуется как вектор столбец.
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2. Выполним так называемое аффинное преобразование перемен-
ных, т. е. положим

x = x0 + Ty, (4.3)
где x0 — фиксированный вектор пространства Rn, T — невырожден-
ная матрица. Иногда замену переменных (4.3) удобнее записывать в
виде x = T (x̂0 + y), где x̂0 = T−1x0.

Выполняя элементарные преобразования, нетрудно получить, что

F (x0 + Ty) ≡ F̂ (y) = (Ây, y) + 2(â, y) + â0, (4.4)

где
Â = T TAT, (4.5)

â = T Ta+ Âx̂0, â0 = a0 + 2(T Ta, x̂0) + (Âx̂0, x̂0). (4.6)
Таким образом, любое аффинное преобразование переменных пе-

реводит квадратичную функцию в квадратичную.
Введем в рассмотрение квадратные матрицы

Q =

(
T 0
0T 1

)
, U =

(
I x̂0

0T 1

)
(4.7)

порядка n + 1. Здесь 0 — вектор столбец длины n, I — единичная
матрица порядка n. Ясно, что det(Q) = det(T ), det(U) = 1, т. е.
матрицы Q, U невырождены.

Простые выкладки показывают, что

B̂ ≡
(
Â â
âT â0

)
= (QU)TB(QU). (4.8)

Из соотношений (4.5), (4.8) вытекает, что матрицы A и Â, B и B̂
соответственно конгруэнтны, поэтому их инерции совпадают (см. тео-
рему 1, с. 261). Можно сказать, таким образом, что инерции мат-
риц A, B являются аффинными инвариантами квадратичной функ-
ции, определенной равенством (4.1).

3. Будем считать теперь, что матрица T ортогональна, т. е.
T T = T−1. Тогда матрица Q, очевидно, также ортогональна. Из (4.5)
в этом случае вытекает, что матрицы A и Â подобны, следователь-
но, их собственные числа совпадают. Из (4.8), очевидно, вытекает,
что det(B̂) = det(B).

Таким образом, собственные числа матрицы A, инерция, а сле-
довательно, и ранг матрицы B, а также определитель матрицы B
могут быть названы ортогональными инвариантами квадратичной
функции (4.1). Они не меняются при любом преобразовании перемен-
ных (4.3) с ортогональной матрицей T .
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§ 5. Приведенная форма квадратичной функции

1. Покажем, что, выбирая в (4.3) соответствующим образом ор-
тогональную матрицу T и вектор x0, любую квадратичную функцию
можно преобразовать к простейшему так называемому приведенному
виду.

Матрица A симметрична, поэтому существует ортонормирован-
ный базис e1, e2, . . . , en пространства Rn, составленный из собствен-
ных векторов матрицы A. Обозначим через λ1, λ2, . . . , λn соответ-
ствующие им собственные числа матрицы A.

Будем считать что первые r собственных чисел матрицы A от-
личны от нуля, остальные — нули.

Обозначим через T ортогональную матрицу, столбцы которой об-
разованы векторами e1, e2, . . . , en. Отметим, что последние n − r
столбцов матрицы T принадлежат ядру матрицы A.

Выполним замену переменных в функции (4.1), полагая

x = Tu. (5.1)

В соответствии с формулами (4.4)–(4.6) (см. также упражнение 2 на
с. 254) получим

F (Tu) = λ1u
2
1 + λ2u

2
2 + · · ·+ λru

2
r + 2(â1u1 + â2u2 + · · ·+ ârur)+

+ 2(âr+1ur+1 + âr+2ur+2 + · · ·+ ânun) + a0. (5.2)

Заметим, что

λku
2
k + 2âkuk = λk(uk + âk/λk)

2 − â2k/λk

для k = 1, 2, . . . , r. Поэтому

F (Tu) = λ1y
2
1 + λ2y

2
2 + · · ·+ λry

2
r + 2(b, ỹ) + â0, (5.3)

где

yk = uk + âk/λk, k = 1, 2, . . . , r, ỹ = (ur+1, ur+2, . . . , un) ∈ Rn−r,

b = (âr+1, âr+2, . . . , ân) ∈ Rn−r, â0 = a0 −
r∑

k=1

â2k/λk. (5.4)

Далее будем различать два случая. Предположим сначала, что
вектор b равен нулю, и пусть

x̂0k = −âk/λk, k = 1, 2, . . . , r, x̂0k = 0, k = r + 1, r + 2, . . . , n. (5.5)
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Тогда u = y + x̂0,
Tu = Ty + T x̂0, (5.6)

и равенство (5.3) принимает вид
F (x0 + Ty) = λ1y

2
1 + λ2y

2
2 + · · ·+ λry

2
r + â0, (5.7)

где
x0 = T x̂0. (5.8)

Пусть теперь b ̸= 0. Следуя построениям п. 2.1, с. 256, сконстру-
ируем симметричную ортогональную матрицу R порядка n− r (мат-
рицу отражения) такую, что Rb = |b|(1, 0, . . . , 0). Выполним в (5.3)
замену переменных

y = R̃v, (5.9)
где

R̃ =

(
Ir 0
0T R

)
,

Ir — единичная матрица порядка r. Тогда (5.3) примет вид
F (Tu) = λ1v

2
1 + λ2v

2
2 + · · ·+ λrv

2
r + 2br+1vr+1 + â0, (5.10)

где br+1 = |b|. Заметим, наконец, что
2br+1vr+1 + â0 = 2br+1(vr+1 + â0/(2br+1)).

Поэтому, полагая
w = v + x1, (5.11)

где
x1r+1 = â0/(2br+1), x1i = 0 при i = 1, 2, . . . , n, i ̸= r + 1, (5.12)

получим
F (Tu) = λ1w

2
1 + λ2w

2
2 + · · ·+ λrw

2
r + 2br+1wr+1. (5.13)

Из (5.6), (5.8), (5.9), (5.11) вытекает, что Tu = x̃0 + T̃w, где

T̃ = TR̃, x̃0 = x0 − T̃ x1, (5.14)
следовательно,

F (x̃0 + T̃w) = λ1w
2
1 + λ2w

2
2 + · · ·+ λrw

2
r + 2br+1wr+1. (5.15)

Матрица T̃ ортогональна, поскольку является произведением ор-
тогональных матриц. Нетрудно убедиться также, что первые r столб-
цов матрицы T̃ совпадают с соответствующими столбцами матри-
цы T , а последние n − r столбцов матрицы T̃ являются линейны-
ми комбинациями последних n − r столбцов матрицы матрицы T и
потому принадлежат ядру матрицы A.
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2. Таким образом, доказано, что для любой квадратичной функ-
ции вида (4.1) найдутся матрица T , столбцы которой есть векторы ор-
тонормированного базиса пространства Rn, образованного собствен-
ными векторами матрицы A, и вектор x0 такие, что либо

F (x0 + Ty) = λ1y
2
1 + λ2y

2
2 + · · ·+ λry

2
r + â0, (5.16)

либо

F (x0 + Ty) = λ1y
2
1 + λ2y

2
2 + · · ·+ λry

2
r + 2br+1yr+1. (5.17)

Здесь λ1, λ2, . . . , λr — все ненулевые собственные числа матрицы A,
br+1 > 0. Представления (5.16), (5.17) называются приведенными фор-
мами квадратичной функции.

Ранг матрицы B (см. (4.2)), соответствующей квадратичной
функции (5.16), очевидно, равен r, если â0 = 0, и равен r + 1, ес-
ли â0 ̸= 0. Ранг матрицы B, соответствующей квадратичной функ-
ции (5.17), равен r + 2 (докажите!).

Собственные числа матрицыA и ранг матрицыB инвариантны по
отношению к замене переменных (4.3) с любой ортогональной матри-
цей T и любым вектором x0. Поэтому любой квадратичной функции
однозначно соответствует либо приведенная форма вида (5.16), либо
приведенная форма вида (5.17).

3. В этом пункте будет показано, что коэффициенты приведен-
ной формы квадратичной функции F однозначно определяются по
элементам матрицы B (см. (4.2)). Они не зависят от выбора векто-
ра x0 и ортогональной матрицы T в преобразовании переменных (4.3),
дающем приведенную форму квадратичной функции.

Нам потребуются в дальнейшем некоторые вспомогательные ре-
зультаты.

3.1. Лемма. Пусть

B =

(
A a
aT a0

)
, (5.18)

где A = diag(a11, a22, . . . , ann) — диагональная матрица порядка n,
a = (a1, a2, . . . , an) — вектор столбец. Предполагается, что лишь
элементы a11, a22, . . . ,arr, r 6 n − 1, матрицы A отличны от
нуля. Тогда

Ir+2(B) = −a11a22 · · · arr(a2r+1 + · · ·+ a2n)
1). (5.19)

1)Напомним, что Ik(B), k = 1, 2, . . . , n, — инвариант матрицы B, определяемый по ее эле-
ментам при помощи формулы вида (7.5), с. 192.
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Доказательство. Нетрудно убедиться, что среди диагональных
миноров порядка r + 2 матрицы B лишь миноры вида

∆r,m =

∣∣∣∣D11 D12

DT
12 D22

∣∣∣∣ , (5.20)

где
D11 = diag(a11, a22, . . . , arr), (5.21)

D12 =


0 a1
0 a2
... ...
0 ar

 , D22 =

(
0 am
am a0

)
,

m = r + 1, r + 2, . . . , n, отличны от нуля. Все остальные диагональ-
ные миноры порядка r+2 содержат хотя бы одну нулевую строку (и
столбец). Используя формулу (11.11), с. 111, нетрудно получить, что
∆r,m = −a11a22 · · · arra2m. Суммируя теперь все миноры вида (5.20),
приходим к (5.19). �

3.2. Лемма. Пусть выполнены условия леммы 3.1,

rank(B) = r + 1. (5.22)

Тогда
Ir+1(B) =

∣∣∣∣D11 d
dT a0

∣∣∣∣ , (5.23)

где матрица D11 определена равенством (5.21), d = (a1, a2, . . . , ar) —
вектор столбец.

Доказательство. Вследствие условия (5.22) все миноры поряд-
ка r+2 матрицы B равны нулю. Поэтому Ir+2(B) = 0, откуда вслед-
ствие (5.19) вытекает, что ar+1, ar+2, . . . , an=0. Тогда, как нетрудно
убедиться, все диагональные миноры порядка r+1 матрицы B, кроме
минора вида (5.23), содержат хотя бы одну нулевую строку. �

3.3. Лемма. Пусть выполнены условия леммы 3.1, матрица U
определена равенством (4.7), B̃ = UTBU . Тогда

Ir+2(B̃) = Ir+2(B). (5.24)

Если выполнены условия леммы 3.2, то Ir+1(B̃) = Ir+1(B).
Доказательство. Заметим, что

BU =

(
A ã
aT ã0

)
,
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где
ãi = ai + x̂0iaii, i = 1, 2, . . . , r, (5.25)
ãi = ai, i = r + 1, . . . , n, (5.26)

ã0 = a0 +
n∑
i=1

aix̂
0
i . (5.27)

Вследствие (5.19), (5.26) справедливо равенство Ir+2(BU) = Ir+2(B).
Точно так же проверяется, что умножение матрицы вида BU слева
на матрицу UT не меняет инварианта Ir+2(BU). Отсюда, очевидно,
вытекает равенство (5.24). Второе утверждение леммы с использова-
нием соотношений (5.25)–(5.27) доказывается аналогично. При этом
надо учесть, что определитель (5.23) не меняется при переходе от
матрицы B к матрице B̃. �

3.4. Теорема. Пусть ранг матрицы A квадратичной функ-
ции F равен r, ранг матрицы B не превосходит r + 1. Пусть при
помощи замены переменных x = x0 + Ty с ортогональной матри-
цей T квадратичная функция F приведена к виду

F̂ (y) = α1y
2
1 + α2y

2
2 + · · ·+ αmy

2
m + â0. (5.28)

Тогда: 1) m = r, αi = λi, где λi, i = 1, 2, . . . , r, — все ненулевые
собственные числа матрицы A; 2) справедливо равенство

â0 = Ir+1(B)/Ir(A). (5.29)

Доказательство. Используем формулы (4.4)–(4.8), связываю-
щие исходную и приведенную формы квадратичной функции. В рас-
сматриваемом случае T TAT = Â = diag(α1, α2, . . . , αm). Поскольку
матрица T ортогональна, то матрицы A, Â подобны, откуда выте-
кает справедливость утверждения 1). Используем теперь тот факт,
что в рассматриваемом случае â = 0. Поэтому по лемме 3.2 полу-
чаем, что Ir+1(B̂) = λ1λ2 · · ·λrâ0. Матрица A имеет ровно r нену-
левых собственных чисел, следовательно, Ir(A) = λ1λ2 · · ·λr (см.
п. 2, с. 192). Таким образом, â0 = Ir+1(B̂)/Ir(A). Матрица QTBQ
подобна матрице B. Поэтому все их инварианты совпадают. С дру-
гой стороны, матрица QTBQ удовлетворяет условиям леммы 3.3, зна-
чит, Ir+1(Q

TBQ) = Ir+1(B̂), т. е. Ir+1(B̂) = Ir+1(B), и утвержде-
ние 2) также доказано. �
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3.5. Теорема. Пусть ранг матрицы A квадратичной функ-
ции F равен r, r 6 n − 1, ранг матрицы B равен r + 2. Пусть
при помощи замены переменных x = x0 + Ty с ортогональной мат-
рицей T квадратичная функция F приведена к виду

F̂ (y) = α1y
2
1 + α2y

2
2 + · · ·+ αmy

2
m + 2bym+1. (5.30)

Тогда: 1) m = r, αi = λi, где λi, i = 1, 2, . . . , r, — все ненулевые
собственные числа матрицы A; 2) выполнено равенство

b2 = −Ir+2(B)/Ir(A). (5.31)

Доказательство. Справедливость утверждения 1) обосновы-
вается точно так же, как и при доказательстве теоремы 3.4. В рас-
сматриваемом случае лишь одна компонента вектора â отлична от
нуля. Поэтому по лемме 3.1 получаем, что b2 = −Ir+2(B̂)/Ir(A).
Равенство Ir+2(B̂) = Ir+2(B) получаем аналогично доказательству
предыдущей теоремы, используя подобие матриц B и QTBQ, а так-
же лемму 3.3. �



Глава 15
Кривые второго порядка

§ 1. Приведение уравнения кривой к простейшему виду

1. Как и в § 6, гл. 4, будем рассматривать плоскость, отнесен-
ную к декартовой системе координат x1, x2.

Множество всех точек x = (x1, x2) плоскости, удовлетворяющих
уравнению

a11x
2
1 + 2a12x1x2 + a22x

2
2 + 2a1x1 + 2a2x2 + a0 = 0, (1.1)

называют кривой второго порядка. Здесь aij, i, j = 1, 2, ai, i = 0,
1, 2, — вещественные числа, называемые коэффициентами уравнения.

Для сокращения записей, как и в предыдущей главе, введем в
рассмотрение симметричную ненулевую матрицу

A =

(
a11 a12
a12 a22

)
(1.2)

и вектор a = (a1, a2). Тогда уравнение (1.1) запишется в виде1)

(Ax, x) + 2(a, x) + a0 = 0. (1.3)

2. В соответствии с общей теорией квадратичных функций
(см. § 4, § 5, гл. 14) упрощение этого уравнения мы будем выполнять
с помощью замены переменных

x = x0 + Ty, (1.4)

где T — ортогональная матрица вида

T =

(
cosφ − sinφ
sinφ cosφ

)
. (1.5)

Геометрически эта замена переменных может быть интерпретирована
как поворот координатных осей против часовой стрелки на угол φ,
если считать при этом, что исходная декартова система координат
правая, т. е. поворот от оси x1 к оси x2 — поворот против часовой

1)В этой главе под скалярным произведением всюду понимается стандартное скалярное про-
изведение в пространстве R2.
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стрелки (см. п. 2, с. 252), и последующий перенос начала системы
координат в точку x0.

Выполним сначала поворот координатных осей, т. е. замену пере-
менных

x = Tz (1.6)
в уравнении (1.3). Проводя элементарные выкладки, получим

(T TATz, z) + 2(â, z) + a0 = 0, (1.7)

где â = T Ta.
Построим ортогональное преобразование T так, чтобы матри-

ца T TAT приняла диагональный вид (см. упражнение 2 на с. 254).
С этой целью решим характеристическое уравнение

|A− λI| = 0.

Корни его легко выписываются в явном виде:

λ1,2 =
a11 + a22 ±

√
(a11 − a22)2 + 4a212
2

. (1.8)

Если a12 = 0, то λ1 = a11, λ2 = a22. Положим в этом случае T = I.
Уравнение (1.7) принимает вид

λ1z
2
1 + λ2z

2
2 + 2â1z1 + 2â2z2 + a0 = 0 (1.9)

(здесь â1 = a1, â2 = a2).
Если a12 ̸= 0, то, очевидно, λ1 ̸= λ2. Найдя λ1, λ2, определим

соответствующие им единичные собственные векторы

ek = (cosφk, sinφk), k = 1, 2,

как решения уравнений

Aek = λke
k, k = 1, 2,

или, более подробно,

(a11 − λk) cosφk + a12 sinφk = 0,

a12 cosφk + (a22 − λk) sinφk = 0,

откуда получаем уравнения для определения углов φ1, φ2:

tgφk = −a11 − λk
a12

, k = 1, 2. (1.10)
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Будем считать, что φ1, φ2 ∈ (−π/2, π/2). Причем, поскольку соб-
ственные векторы симметричной матрицы, отвечающие различным
собственным числам, ортогональны (см. теорему 8, с. 226), то обяза-
тельно

φ1 − φ2 = ±π/2.
Элементарные вычисления дают

tgφ1 − tgφ2 =
λ1 − λ2
a12

=

√
(a11 − a22)2 + 4a212

a12
. (1.11)

В соответствии со знаком a12 занумеруем собственные числа (и
соответствующие им углы) так, чтобы tgφ1 6 tgφ2, т. е.

φ2 = φ1 + π/2.

Используя общие построения (см. упражнение 2 на с. 254), мат-
рицу T составим из собственных векторов e1, e2:

T =

(
cosφ1 cosφ2

sinφ1 sinφ2

)
=

(
cosφ1 − sinφ1

sinφ1 cosφ1

)
. (1.12)

При указанном выборе матрицы T получаем

T TAT =

(
λ1 0
0 λ2

)
, (1.13)

и уравнение (1.7) вновь принимает вид (1.9).

3. Дальнейшие упрощения уравнения (1.3) используют перенос
начала системы координат. Будем различать два случая: det(A) ̸= 0
и det(A) = 0.

3.1. Предположим сначала, что det(A) ̸= 0. Это условие эквива-
лентно тому, что λ1, λ2 ̸= 0. При выполнении этого условия, выделяя
полные квадраты, т. е. полагая y = x̂0+z, где x̂01 = â1/λ1, x̂02 = â2/λ2,
уравнение (1.9) можно записать в виде

λ1y
2
1 + λ2y

2
2 + â0 = 0. (1.14)

Здесь â0 = a0 − â21/λ1 − â22/λ2.

3.2. Пусть теперь det(A) = 0. Напомним, что мы считаем,
что A ̸= 0. Понятно, что в этом случае либо λ1 = 0, либо λ2 = 0.
Одновременно λ1 и λ2 не могут равняться нулю (почему?). Предпо-
ложим для определенности, что λ1 ̸= 0. Тогда уравнение (1.9) можно
представить в виде

λ1(z1 + â1/λ1)
2 + 2â2z2 + â0 = 0, (1.15)



§ 1. Приведение уравнения кривой к простейшему виду 275

где â0 = a0 − â21/λ1. Здесь опять надо различать два случая.
1) Если â2 = 0, положим y = x̂0+ z, где x̂01 = â1/λ1, x̂02 = 0. Такая

замена переменных приведет уравнение (1.15) к виду

λ1y
2
1 + â0 = 0. (1.16)

2) Если â2 ̸= 0, представим уравнение (1.15) в форме

λ1(z1 + â1/λ1)
2 + 2â2(z2 + â0/(2â2)) = 0

и положим y = x̂0+z, x̂01 = â1/λ1, x̂02 = â0/2â2. Тогда уравнение (1.15)
примет вид

λ1y
2
1 + 2â2y2 = 0. (1.17)

Предполагая, что λ1 = 0, а λ2 ̸= 0, можно точно так же преобра-
зовать уравнение (1.9) либо к уравнению

λ2y
2
2 + â0 = 0, (1.18)

либо к уравнению
λ2y

2
2 + 2â1y1 = 0. (1.19)

4. Таким образом, полагая, что z в (1.6) равно −x̂0 + y, где в
зависимости от свойств собственных чисел матрицы A вектор x̂0 вы-
бирается по одной из выше приведенных формул, а T — матрица
вида (1.5) такова, что выполнено (1.13), получим, что общее уравне-
ние (1.1) кривой второго порядка при помощи замены переменных
x = x0 + Ty, где x0 = −T x̂0, можно преобразовать к одной из следу-
ющих форм:

λ1y
2
1 + λ2y

2
2 + â0 = 0, λ1, λ2 ̸= 0, (1.20)

λ2y
2
2 + 2â1y1 = 0, λ2 ̸= 0, λ1 = 0, (1.21)

λ2y
2
2 + â01 = 0, λ2 ̸= 0, λ1 = 0, (1.22)

λ1y
2
1 + 2â2y2 = 0, λ1 ̸= 0, λ2 = 0, (1.23)

λ1y
2
1 + â01 = 0, λ1 ̸= 0, λ2 = 0. (1.24)

Важно подчеркнуть, что угол φ и вектор x0 определяются по ко-
эффициентам уравнения (1.1) при помощи простых явных формул.
В соответствии с общей теорией квадратичных функций каждое урав-
нение (1.1) при помощи преобразования вида (1.4) может быть одно-
значно приведено лишь к одной из форм (1.20)–(1.24).
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5. Из общих результатов, полученных при изучении квадратич-
ных функций, следует, что коэффициенты уравнений (1.20)–(1.24)
однозначно определяются при помощи простых формул по коэффи-
циентами уравнения (1.1). Таким образом, построение преобразова-
ния (1.4), фактически, требуется лишь для того, чтобы установить,
как располагается исследуемая кривая по отношению к исходной де-
картовой системе координат.

Наряду с матрицей A, определяемой соотношением (1.2), введем
в рассмотрение матрицу

B =

a11 a12 a1
a12 a22 a2
a1 a2 a0

 ,

соответствующую квадратичной функции, определяемой левой ча-
стью уравнения (1.1), и выпишем выражения для коэффициентов
уравнений (1.20)–(1.24) (см. теоремы 3.4, 3.5, с. 270):

â0 = I3(B)/I2(A), â1 = â2 =
√
−I3(B)/I1(A), â01 = I2(B)/I1(A).

Здесь (см. общие формулы для инвариантов оператора, с. 191)

I3(B) = det(B) =

∣∣∣∣∣∣
a11 a12 a1
a12 a22 a2
a1 a2 a0

∣∣∣∣∣∣ , I2(A) = det(A) =

∣∣∣∣a11 a12
a12 a22

∣∣∣∣ ,
I1(A) = tr(A) = a11 + a22, I2(B) =

∣∣∣∣a11 a1
a1 a0

∣∣∣∣+ ∣∣∣∣a22 a2
a2 a0

∣∣∣∣ .
По сравнению с (7.5), с. 192, в выражении I2(B) на одно слагаемое
меньше, поскольку в рассматриваемом случае detA = 0.

§ 2. Геометрические свойства кривых второго порядка

Опираясь на уравнения (1.20) – (1.24), исследуем геометрические
свойства кривых второго порядка.

Для упрощения записей в дальнейшем изменим очевидным обра-
зом обозначения декартовых координат и коэффициентов уравнений.
В результате получим, что нам предстоит исследовать три различных
типа уравнений

λ1x
2 + λ2y

2 + d = 0, λ1, λ2 ̸= 0, (2.1)

y2 = 2px, (2.2)
y2 + d = 0. (2.3)
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1. Начнем с уравнения (2.3). Возможны три случая: d = 0, кри-
вая совпадает с осью y; d < 0, кривая распадается на две параллель-
ные прямые y =

√
−d, y = −

√
−d; d > 0, множество точек плоскости,

удовлетворяющих уравнению (2.3), пусто; говорят, что в этом случае
кривая распадается на две мнимые параллельные прямые.

2. Исследуем уравнение (2.1). Здесь нужно различать такие слу-
чаи:

1) знаки собственных чисел λ1, λ2 матрицы A совпадают, при
этом, не ограничивая общности, можно считать, что λ1, λ2 > 0;

2) знаки собственных чисел λ1, λ2 различны.
Кривые, соответствующие первому случаю, называют эллипсами.

Здесь опять нужно различать три случая: d = 0, кривая вырожда-
ется в точку, совпадающую с началом координат; d > 0, уравнение
определяет так называемый мнимый эллипс; d < 0, в этом случае
уравнение (2.1) запишем в виде

x2

a2
+
y2

b2
= 1, (2.4)

где

a =

√
−d
λ1
, b =

√
−d
λ2
.

Кривую, описываемую уравнением (2.4), называют эллипсом.
Кривые, соответствующие случаю, когда λ1, λ2 имеют различные

знаки, называют гиперболами. Будем для определенности считать,
что λ1 > 0, λ2 < 0 и рассмотрим три случая. Если d = 0, то уравне-
ние (2.1) можно записать в виде√

λ1x = ±
√
−λ2y,

т. е. в данном случае кривая распадается на две прямые, пересекаю-
щиеся в начале координат. Случаи d < 0, d > 0, фактически, можно
не различать, так как они сводятся один к другому за счет переиме-
нования осей координат.

Будем для определенности считать, что d < 0. Тогда уравне-
ние (2.1) можно записать в виде

x2

a2
− y2

b2
= 1, (2.5)

где

a =

√
−d
λ1
, b =

√
−d
−λ2

.

Кривую, описываемую уравнением (2.5), называют гиперболой.



278 Глава 15. Кривые второго порядка

3. Опишем геометрические свойства эллипса (см. рис. 1). Непо-
средственно из уравнения (2.4) вытекает, что для всех точек эллипса
справедливы неравенства: |x| 6 a, |y| 6 b, т. е. эллипс — ограничен-
ная кривая, расположенная в соответствующем прямоугольнике.

Рис. 1. К описанию геометрических свойств эллипса

Точками пересечения этой кривой с осями координат являются
точки (±a, 0), (0,±b). Они называются вершинами эллипса. Оси ко-
ординат — оси симметрии эллипса, так как если точка (x, y) при-
надлежит эллипсу, то точки (−x, y), (x,−y) также лежат на эллипсе.
Начало координат — центр симметрии эллипса, так как если точ-
ка (x, y) принадлежит эллипсу, то и точка (−x,−y) лежит на эллипсе.

Числа a, b называют длинами полуосей эллипса. Будем для опре-
деленности считать, что a > b. Понятно, что при a = b эллипс пре-
вращается в окружность (радиуса a). Положим c =

√
a2 − b2. Величи-

на e = c/a =
√

1− b2/a2 ∈ [0, 1) характеризует степень вытянутости
эллипса вдоль большой полуоси и называется эксцентриситетом эл-
липса.

Точки (−c, 0), (c, 0) называются фокусами эллипса. Пусть (x, y) —
произвольная точка эллипса. Тогда, как ниже будет показано,√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a. (2.6)

Равенство (2.6) означает, что сумма расстояний от точки эллипса
до фокусов одна и та же для всех точек эллипса (см. рис. 2). Это
свойство эллипса можно принять за его определение, так как, исходя
из (2.6), очевидно, можно получить уравнение эллипса.

Докажем справедливость равенства (2.6) для точек, принадлежа-
щих эллипсу. Используя равенства c2 = a2 − b2, y2 = b2 − b2x2/a2,
можем написать

(x+ c)2 + y2 = x2 + 2cx+ a2 − b2 + b2 − b2x2/a2 =
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Рис. 2. К определению эллипса и гиперболы

= x2(1− b2/a2) + 2cx+ a2 = x2c2/a2 + 2cx+ a2 =

= (xc/a+ a)2. (2.7)
Точно так же

(x− c)2 + y2 = (−xc/a+ a)2.

Заметим, что c < a. Учтем также, что |x| 6 a для любой точки
эллипса. Поэтому справедливы неравенства

xc/a+ a > 0, −xc/a+ a > 0,

следовательно,√
(x+ c)2 + y2 = xc/a+ a,

√
(x− c)2 + y2 = −xc/a+ a,

откуда непосредственно вытекает (2.6).

4. Опишем геометрические свойства гиперболы (см. рис. 3). Из
уравнения (2.5) непосредственно вытекает, что если точка (x, y) ле-
жит на гиперболе, то x2 > a2, y2 6 b2x2/x2, т. е. кривая, описываемая
уравнением (2.5), лежит вне полосы |x| < a и внутри соответству-
ющих (вертикальных) углов, образованных прямыми y = ±(b/a)x.

Как и в случае эллипса, проверяется, что кривая симметрична
относительно осей координат. Начало координат — центр симмет-
рии кривой. Точки (−a, 0), (a, 0) пересечения с осью x называются
вершинами гиперболы.

Прямые y = ±(b/a)x — асимптоты соответствующих ветвей ги-
перболы (рис. 3). Покажем это применительно к ветви, определяемой
уравнением

y =
b

a

√
x2 − a2, x > a, (2.8)

и прямой y = (b/a)x. Для остальных ветвей выкладки полностью
аналогичны. В соответствии с определением асимптоты (см. курс ма-
тематического анализа) достаточно проверить справедливость следу-
ющих равенств:

lim
x→∞

b
a

√
x2 − a2

x
=
b

a
, lim

x→∞

(
b

a

√
x2 − a2 − b

a
x

)
= 0.



280 Глава 15. Кривые второго порядка

Рис. 3. К описанию геометрических свойств гиперболы

Проверка первого из этих равенств элементарна. При проверке вто-
рого полезно заметить, что√

x2 − a2 − x = − a2√
x2 − a2 + x

→ 0

при x→ ∞.
Положим c =

√
a2 + b2. Точки (−c, 0), (c, 0) называются фокусами

гиперболы.
Для любой точки (x, y), лежащей на гиперболе,∣∣∣√(x+ c)2 + y2 −

√
(x− c)2 + y2

∣∣∣ = 2a, (2.9)

т. е. модуль разности расстояний от точки гиперболы до фокусов по-
стоянен (см. рис. 2). Это свойство гиперболы можно было бы принять
за ее определение.

Проверим справедливость равенства (2.9), считая, что выполнены
соотношения (2.8). Для остальных ветвей гиперболы все рассуждения
полностью аналогичны. Следуя выкладкам, выполненным в преды-
дущем пункте (см. (2.7)), получаем

(x+ c)2 + y2 = (cx/a+ a)2, (x− c)2 + y2 = (cx/a− a)2.

Для рассматриваемой ветви гиперболы, как нетрудно убедиться,
справедливы неравенства

cx/a+ a > 0, cx/a− a > 0.

Поэтому√
(x+ c)2 + y2 −

√
(x− c)2 + y2 = cx/a+ a− (cx/a− a) = 2a,

т. е. (2.9) доказано.
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Рис. 4. К описанию геометрических свойств параболы (a). К определению параболы (b)

5. Кривая, задаваемая уравнением (2.2), называется параболой.
Опишем ее геометрические свойства (см. рис. 4, a). Большинство из
них хорошо известны читателю из школьного курса математики. Бу-
дем считать, что p > 0. Рассмотрение случая p < 0 требует очевидных
изменений.

Непосредственно из уравнения (2.2) вытекает, что парабола рас-
положена в правой полуплоскости, симметрична относительно оси x.
Единственной точкой пересечения с осями координат является нача-
ло координат. Эта точка называется вершиной параболы. Парабола
не имеет асимптот (докажите!).

Точка (p/2, 0) называется фокусом параболы. Прямая x = −p/2
называется директрисой параболы (см. рис. 4, a). Для любой точ-
ки (x, y), принадлежащей параболе,√

(x− p/2)2 + y2 = x+ p/2, (2.10)

т. е. расстояние от любой точки параболы до фокуса равно расстоя-
нию этой точки до директрисы (см. рис. 4, b). Это свойство параболы
можно было бы принять за ее определение.

Докажем равенство (2.10). Имеем

(x− p/2)2 + y2 = x2 − px+ p2/4 + 2px = (x+ p/2)2,

причем, очевидно, x + p/2 > 0 для любой точки параболы, следова-
тельно, (2.10) выполнено.

6. Пример. Привести к простейшему виду уравнение

3x21 + 10x1x2 + 3x22 − 2x1 − 14x2 − 13 = 0 (2.11)

и построить кривую в исходной декартовой системе координат x1x2.
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Рис. 5. К примеру исследования уравнения кривой второго порядка

Решение. В данном случае a11 = a22 = 3, a12 = 5, a1 = −1, a2 = −7, a0 = −13.
По формуле (1.8), с. 273, имеем λ1 = 8, λ2 = −2, по формуле (1.10), с. 273, полу-
чаем tgφ1 = 1, tgφ2 = −1. Далее действуем в соответствии с предписаниями § 1, т. е.
нумеруем углы и соответствующие им собственные числа так, чтобы выполнялись усло-
вия −π/2 6 φ1 < φ2 6 π/2. Таким образом, получаем λ1 = −2, φ1 = −π/4, λ2 = 8,
φ2 = π/4. По формуле (1.12), с. 274,

T =

(
1/

√
2 1/

√
2

−1/
√
2 1/

√
2

)
. (2.12)

Выполнив замену переменных
x = Tz, (2.13)

в соответствии с (1.7), с. 273, получаем

−2z21 + 8z22 +
12√
2
z1 −

16√
2
z2 − 13 = 0.

Используя теперь формулы пункта 3.1, с. 274, приходим к уравнению

−2y21 + 8y22 − 8 = 0, (2.14)

или

−y
2
1

4
+
y22
1

= 1, (2.15)

где
y1 = z1 − 3/

√
2, y2 = z2 − 1/

√
2. (2.16)

Из (2.13), (2.16) получаем, что x = x0 + Ty, где x0 = (2,−1). Таким образом, кривая,
задаваемая уравнением (2.11), есть гипербола, описываемая уравнением (2.15) в декар-
товой системе координат y1y2, оси которой повернуты на угол −π/4 против часовой
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стрелки (π/4 — по часовой стрелке) по отношению к осям декартовой системы коорди-
нат x1x2, а начало системы координат y1y2 расположено в точке (2,−1) относительно
системы координат x1x2 (см. рис. 5).

Отметим, что если оставить в стороне вопрос о расположении кривой по отноше-
нию к исходной системе координат, то уравнение (2.14) может быть выписано непосред-
ственно по формулам п. 5, с. 276. Для этого учтем, что уравнению (2.11) соответствуют
матрицы

A =

(
3 5
5 3

)
, B =

 3 5 −1
5 3 −7

−1 −7 −13

 .

Поскольку det(A) = −16 ̸= 0, собственные числа матрицы A есть λ1 = −2, λ2 = 8,
det(B) = 128, то приведенной формой уравнения (2.11) будет уравнение (2.14).



Глава 16
Поверхности второго порядка

§ 1. Приведение уравнения поверхности к простейшему
виду

1. Отнесем трехмерное евклидово пространство V3 к декартовой
системе координат (см. п. 1, с. 43). Поверхностью второго порядка
называется множество всех точек x = (x1, x2, x3) ∈ R3, удовлетворя-
ющих уравнению1)

(Ax, x) + 2(a, x) + a0 = 0, (1.1)

где

A =

 a11 a12 a13
a12 a22 a23
a13 a23 a33

 (1.2)

есть заданная симметричная ненулевая матрица, a = (a1, a2, a3) —
заданный вектор, a0 — заданное число.

Простейший пример: уравнение сферы радиуса R с центром в
точке x0 = (x01, x

0
2, x

0
3), как известно (см. с. 57), имеет вид

(x1 − x01)
2 + (x2 − x02)

2 + (x3 − x03)
2 −R2 = 0.

После элементарных преобразований получаем

(x, x)− 2(x0, x) + |x0|2 −R2 = 0,

т. е. в данном случае A = I, a = −x0, a0 = |x0|2 −R2.
Упрощение уравнения (1.1) опирается на общую теорию квадра-

тичных функций и проводится по той же схеме, что и для кривых
второго порядка. Оно основано на замене переменных

x = x0 + Ty, (1.3)

где T — некоторая ортогональная матрица. Геометрически эта за-
мена переменных состоит в переносе начала координат в точку x0,

1)В этой главе под скалярным произведением всюду понимается стандартное скалярное про-
изведение в пространстве R3.
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повороте системы координат вокруг некоторой оси и, возможно, по-
следующем изменении направления этой координатной оси (см. п. 3,
с. 253). Однако построение матрицы T не может быть выполнено в
общем случае с той же степенью подробности, как для кривых вто-
рого порядка, поскольку задача приведения симметричной матрицы
третьего порядка ортогональным преобразованием подобия к диаго-
нальному виду не допускает решения по простым явным формулам.

2. Из общей теории квадратичных функций вытекает, что, выби-
рая соответствующим образом начало x0 новой декартовой системы
координат и ортогональную матрицу T , уравнение (1.1) поверхности
второго порядка можно преобразовать к одному из следующих пяти
видов:

λ1x
2
1 + λ2x

2
2 + λ3x

2
3 + â0 = 0, λ1, λ2, λ3 ̸= 0, (1.4)

λ1x
2
1 + λ2x

2
2 + 2â3x3 = 0, λ1, λ2 ̸= 0, λ3 = 0, (1.5)

λ1x
2
1 + λ2x

2
2 + â0,1 = 0, λ1, λ2 ̸= 0, λ3 = 0, (1.6)

λ1x
2
1 + 2â2x2 = 0, λ1 ̸= 0, λ2, λ3 = 0, (1.7)

λ1x
2
1 + â0,2 = 0, λ1 ̸= 0, λ2, λ3 = 0. (1.8)

3. Аналогично случаю кривых второго порядка коэффициенты
уравнений (1.4)–(1.8) могут быть однозначно выражены через коэф-
фициенты исходного уравнения (1.1). Введем в рассмотрение наряду
с матрицей A, определенной равенством (1.2), матрицу

B =

(
A a
aT a0

)
=

a11 a12 a13 a1
a12 a22 a23 a2
a13 a23 a33 a3
a1 a2 a3 a0


и выпишем, используя теоремы 3.4, 3.5, с. 270, выражения для коэф-
фициентов уравнений (1.4)–(1.8):

â0 = I4(B)/I3(A) = det(B)/ det(A), â3 =
√

− det(B)/I2(A)

â0,1 = I3(B)/I2(A), â2 =
√

−I3(B)/I1(A), â0,2 = I2(B)/I1(A).
Здесь (см. формулы (7.5), с. 192)

I2(A) =
∣∣∣∣a11 a12
a12 a22

∣∣∣∣+ ∣∣∣∣a11 a13
a13 a33

∣∣∣∣+ ∣∣∣∣a22 a23
a23 a33

∣∣∣∣ , I1(A) = a11 + a22 + a33,

I3(B) =

∣∣∣∣∣∣
a11 a12 a1
a12 a22 a2
a1 a2 a0

∣∣∣∣∣∣+
∣∣∣∣∣∣
a22 a23 a2
a23 a33 a3
a2 a3 a0

∣∣∣∣∣∣+
∣∣∣∣∣∣
a11 a13 a1
a13 a33 a3
a1 a3 a0

∣∣∣∣∣∣ ,
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I2(B) =

∣∣∣∣a11 a1
a1 a0

∣∣∣∣+ ∣∣∣∣a22 a2
a2 a0

∣∣∣∣+ ∣∣∣∣a33 a3
a3 a0

∣∣∣∣ .
Выписывая формулы для I3(B), I2(B), мы опустили нулевые слагае-
мые, учитывая, что в первом случае ранг матрицы A не превосходит
двух (см. (1.6), (1.7)) и, следовательно, ее определитель равен нулю, а
во втором случае ранг матрицы A равен единице (см. (1.8)) и, следо-
вательно, все ее миноры второго порядка — нули.

§ 2. Геометрические свойства поверхностей второго порядка

Опираясь на уравнения (1.4) – (1.8), исследуем геометрические
свойства поверхностей второго порядка. Для удобства записей в даль-
нейшем изменим очевидным образом обозначения для декартовых ко-
ординат и некоторых коэффициентов. Таким образом, нам предстоит
исследовать поверхности, описываемые следующими уравнениями:

λ1x
2 + λ2y

2 + λ3z
2 + d = 0, λ1, λ2, λ3 ̸= 0, (2.1)

λ1x
2 + λ2y

2 + 2b3z = 0, λ1, λ2 ̸= 0, (2.2)
λ1x

2 + λ2y
2 + d = 0, λ1, λ2 ̸= 0, (2.3)
y2 = 2px, (2.4)
y2 + d = 0. (2.5)

1. Начнем с уравнения (2.5). Здесь возможны три случая: d < 0,
поверхность распадается на две параллельные плоскости y =

√
−d,

y = −
√
−d; d = 0, поверхность представляет собой плоскость y = 0;

d > 0, нет ни одной точки пространства, удовлетворяющей уравне-
нию. В последнем случае говорят, что уравнение описывает пару па-
раллельных мнимых плоскостей.

2. Как показано в предыдущей главе, уравнение (2.4) описывает
параболу на плоскости переменных (x, y), поэтому соответствующая
поверхность есть так называемый параболический цилиндр с образу-
ющей, параллельной оси z. Любое сечение этой поверхности плоско-
стью z = const — парабола (см. рис. 1).

3. Уравнение (2.3) в зависимости от знаков λ1, λ2, d может описы-
вать эллипс или гиперболу в декартовой плоскости x, y. Соответству-
ющие поверхности — эллиптический или гиперболический цилиндр
(см. рис. 1). Понятно, что здесь возможны случаи вырождения, ана-
логичные изученным в пункте 2, с. 277.
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Рис. 1. Цилиндры

4. Обратимся к уравнению (2.2). Здесь нужно различать два
случая: 1) числа λ1, λ2 имеют одинаковые знаки, 2) знаки чисел λ1, λ2
различны.

Пусть числа λ1, λ2 имеют одинаковые знаки. Для определенности
будем считать, что они положительны. Будем считать, что b3 < 0.
Если принять, что b3 > 0, то получим, очевидно, такую же поверх-
ность, но симметричную относительно плоскости x, y. Если b3 = 0,
то мы приходим к одной из поверхностей, рассмотренных в предыду-
щих пунктах. При сделанных предположениях уравнение (2.2) можно
записать в виде

x2

a2
+
y2

b2
= z. (2.6)

Здесь a2 = 2|b3|/λ1, b2 = 2|b3|/λ2. При z < 0 уравнение (2.2) противо-
речиво, т. е. вся поверхность расположена в полупространстве z > 0.
Единственная точка плоскости z = 0, принадлежащая поверхности, —
начало координат. Координатные плоскости x = 0, y = 0 являются
плоскостями симметрии, ось z является осью симметрии, так как
если точка (x, y, z) принадлежит поверхности, то точки (−x, y, z),
(x,−y, z), (−x,−y, z) также принадлежат поверхности. Записывая
уравнение (2.2) при z > 0 в виде

x2

za2
+
y2

zb2
= 1, (2.7)

получаем, что сечения этой поверхности плоскостями z = const > 0 —
эллипсы, полуоси которых увеличиваются с ростом z (см. рис. 2).
Сечения этой поверхности плоскостям x = const или y = const, как
нетрудно убедиться, — параболы (см. рис. 2). Описанную поверхность
называют эллиптическим параболоидом.

Пусть числа λ1, λ2 имеют разные знаки. Будем считать, что

λ1 > 0, λ2 < 0, b3 < 0.
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Рис. 2. Эллиптический параболоид

Любое другое допустимое сочетание знаков рассматривается анало-
гично. Уравнение (2.2) можно записать в виде

x2

a2
− y2

b2
= z. (2.8)

Здесь a2 = 2|b3|/λ1, b2 = 2|b3|/|λ2|. Вновь координатные плоско-
сти x = 0, y = 0 являются плоскостями симметрии, ось z является
осью симметрии.

Проанализируем сечения этой поверхности плоскостями, парал-
лельными координатной плоскости x, y (см. рис. 3, b). При z = 0
из (2.2) получаем

b2x2 − a2y2 = 0,

т. е. сечение поверхности плоскостью z = 0 — пара прямых (см.
рис. 3, b)

y = ± b
a
x.

При z = h ̸= 0 запишем уравнение (2.2) в виде

x2

ha2
− y2

hb2
= 1. (2.9)

При h > 0 уравнение (2.9) — уравнение гиперболы, ветви которой
вытянуты вдоль оси x. При h < 0 получаем гиперболу, ветви которой
вытянуты вдоль оси y (см. рис. 3, b).

Пересекая поверхность плоскостью x = h, получаем параболу

h2

a2
− y2

b2
= z, (2.10)

ветви которой направлены противоположно оси z. Пересекая поверх-
ность плоскостью y = h, очевидно, получим параболу, ветви которой
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Рис. 3. Гиперболический параболоид (a). Сечения гиперболического параболоида плос-
костями z = h при различных значениях h (b)

направлены вдоль оси z. Описанную седлообразную поверхность на-
зывают гиперболическим параболоидом (см. рис. 3, a).

5. Обратимся, наконец, к уравнению

λ1x
2 + λ2y

2 + λ3z
2 + d = 0, λ1, λ2, λ3 ̸= 0, (2.11)

Не ограничивая общности, здесь можно различать два случая:
1) λ1, λ2, λ3 > 0, это условие эквивалентно условию положитель-

ной определенности матрицы A (см. с. 222);
2) λ1, λ2 > 0, λ3 < 0.
В случае 1) возможны три ситуации: d = 0, единственная точка,

удовлетворяющая (2.11), — начало координат; d > 0, нет ни одной
точки пространства, удовлетворяющей этому уравнению; d < 0. При
выполнении последнего условия уравнение (2.11) запишем в виде

x2

a2
+
y2

b2
+
z2

c2
= 1. (2.12)

Здесь a2 = −d/λ1, b2 = −d/λ2, c2 = −d/λ3. Поверхность, описывае-
мая уравнением (2.12), называется эллипсоидом (см. рис. 4, a).

Эллипсоид, очевидно, симметричен относительно всех трех коор-
динатных плоскостей и относительно начала координат. Вся поверх-
ность заключена в параллелепипеде

|x| 6 a, |y| 6 b, |z| 6 c

и, следовательно, ограничена.
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Рис. 4. Эллипсоид (a). Сечения эллипсоида плоскостями z = h при различных значе-
ниях h (b)

Изучим сечения эллипсоида плоскостями, параллельными ко-
ординатным. Вследствие симметрии поверхности достаточно огра-
ничиться, например, плоскостями, параллельными плоскости x, y.
Нетрудно убедиться, что кривая, получающаяся при пересечении эл-
липсоида с плоскостью z = h, где |h| ≤ c, является эллипсом с полу-
осями

a1 = a

√
1− h2

c2
, b1 = b

√
1− h2

c2
.

При возрастании h от 0 до c полуоси a1, b1 убывают. При h = ±c
эллипс вырождается в точку (см. рис. 4, b).

Полезно отметить, что сечение эллипсоида любой плоскостью да-
ет эллипс. В самом деле, это сечение — кривая второго порядка. Она
ограничена, так как эллипсоид ограничен, но единственной ограни-
ченной кривой второго порядка (см. § 2 настоящей главы) являет-
ся эллипс.

Обратимся к случаю 2). Пусть при этом d = 0. Запишем уравне-
ние (2.11) в виде

x2

a2
+
y2

b2
− z2

c2
= 0. (2.13)

Здесь a2 = 1/λ1, b2 = 1/λ2, c2 = −1/λ3. Поверхность, описываемая
уравнением (2.13), называется эллиптическим конусом. Поверхность
симметрична относительно всех трех координатных плоскостей и от-
носительно начала координат. Ее сечение плоскостью z = h — эллипс
с полуосями a1 = a|h|/c, b1 = b|h|/c (см. рис. 5).
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Рис. 5. Эллиптический конус

При a = b получаем прямой круговой конус с вершиной в начале
координат.

Заметим, что если точка (x, y, z) лежит на конусе, то и точ-
ка (tx, ty, tz) при любом t ∈ (−∞,∞) лежит на конусе, т. е. вместе с
любой точкой (x, y, z), лежащей на конусе, конусу принадлежит и вся
прямая, проходящая через эту точку и начало координат (см. рис. 5).

Можно сказать, таким образом, что эллиптический конус полу-
чается при движении прямой (образующей), закрепленной в одной
точке, по эллиптической направляющей.

Пусть теперь d < 0. Запишем уравнение (2.11) в виде
x2

a2
+
y2

b2
− z2

c2
= 1. (2.14)

Здесь a2 = −d/λ1, b2 = −d/λ2, c2 = −d/|λ3|. Поверхность, опи-
сываемая уравнением (2.14), называется однополостным гиперболои-
дом (см. рис. 6, a). Поверхность симметрична относительно всех трех
координатных плоскостей и относительно начала координат. Сечение
поверхности плоскостями x = h, y = h дает гиперболы.

Сечением поверхности плоскостью z = h является эллипс с полу-
осями

a1 = a

√
1 +

h2

c2
, b1 = b

√
1 +

h2

c2
.

При h = 0 получаем так называемый горловой эллипс (см. рис. 6, b).
Рассмотрим, наконец, случай d > 0. Уравнение (2.11) представим

в следующей форме:
x2

a2
+
y2

b2
− z2

c2
= −1, (2.15)
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Рис. 6. Однополостный гиперболоид (a). Сечения однополостного гиперболоида плос-
костями z = h при различных значениях h (b)

где a2 = d/λ1, b2 = d/λ2, c2 = d/|λ3|. Уравнение (2.15) описывает
двуполостный гиперболоид (см. рис. 7, a).

Поверхность симметрична относительно всех трех координат-
ных плоскостей и относительно начала координат. Заметим, что при
|z| < c не существует вещественных x, y, удовлетворяющих уравне-
нию (2.15). При |z| = c уравнению (2.15) удовлетворяют лишь x = 0,
y = 0, т. е. вся поверхность лежит вне плоского слоя |z| < c. Сечени-
ями поверхности плоскостями z = ±h при h > c являются эллипсы
(см. рис. 7, b) с полуосями

a1 = a

√
h2

c2
− 1, b1 = b

√
h2

c2
− 1.

Сечение поверхности плоскостями x = h, y = h дает гиперболы.

6. Однополостный гиперболоид представляет собой линейчатую
поверхность, т. е. через каждую точку, лежащую на однополостном
гиперболоиде, можно провести две различные прямые, целиком при-
надлежащие этому же однополостному гиперболоиду (см. рис. 8, a).
Аналогичным свойством обладает гиперболический параболоид (см.
рис. 8, b).

Проведем доказательство этого утверждения применительно к
случаю однополостного гиперболоида. Определим прямую l как ре-
зультат пересечения двух плоскостей, задаваемых уравнениями

α
(x
a
+
z

c

)
= β

(
1− y

b

)
, β

(x
a
− z

c

)
= α

(
1 +

y

b

)
, (2.16)
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Рис. 7. Двуполостный гиперболоид (a). Сечения двуполостного гиперболоида плоско-
стями z = h при различных значениях h (b)

где a, b, c — параметры однополостного гиперболоида Γ, описываемо-
го уравнением (2.14). Пусть точка (x0, y0, z0) лежит на Γ. Подберем
α, β так, чтобы точка (x0, y0, z0) принадлежала прямой l. Для этого
нужно, чтобы числа α, β удовлетворяли системе линейных уравнений

α
(x0
a

+
z0
c

)
= β

(
1− y0

b

)
, β

(x0
a

− z0
c

)
= α

(
1 +

y0
b

)
. (2.17)

Понятно, что если (x0, y0, z0) ∈ Γ, то определитель системы урав-
нений (2.17) равен нулю, значит, существует нетривиальное реше-
ние α0, β0 этой системы. Нетрудно убедиться также, что при любых
α, β, не равных нулю одновременно, плоскости, описываемые урав-
нениями (2.16), не параллельны. Поэтому прямая l по найденным
значениям α0, β0 определяется однозначно. Пусть теперь (x, y, z) —
произвольная точка прямой l. Очевидно, ее координаты должны удо-
влетворять системе уравнений

α0

(x
a
+
z

c

)
= β0

(
1− y

b

)
, β0

(x
a
− z

c

)
= α0

(
1 +

y

b

)
, (2.18)

и, поскольку среди чисел α0, β0 хотя бы одно не нуль, то определитель
системы (2.18) равен нулю, следовательно (x, y, z) ∈ Γ.

Аналогичные рассуждения показывают, что через точку (x0, y0, z0)
можно провести прямую l′, определяемую как пересечение плоско-
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Рис. 8. Однополостный гиперболоид (a) и гиперболический параболоид (b) как линей-
чатые поверхности

стей, описываемых уравнениями вида

ν
(x
a
+
z

c

)
= λ

(
1 +

y

b

)
, λ

(x
a
− z

c

)
= ν

(
1− y

b

)
,

и целиком лежащую на Γ. Используя результаты п. 6, с. 69, нетрудно
убедиться, что прямые l и l′ не параллельны.

Упражнение. Показать, что через каждую точку гиперболиче-
ского параболоида, описываемого уравнением (2.8), можно провести
две различные прямые, целиком лежащие на этом параболоиде и за-
даваемые как пересечение плоскостей

αz = β
(x
a
+
y

b

)
, β =

(x
a
− y

b

)
и νz = λ

(x
a
− y

b

)
, λ = ν

(x
a
+
y

b

)
.

Линейчатость поверхностей широко используется в инженерной
практике, так как позволяет создавать соответствующие конструкции
в виде простых стержневых систем. Такова, например, знаменитая
телевизионная шуховская башня в Москве1).

7. Приведем в заключение сводку уравнений и названий поверх-
ностей второго порядка:

1)
x2

a2
+
y2

b2
+
z2

c2
= 1 — эллипсоид,

1)Владимир Григорьевич Шухов (1853 — 1939) — русский, советский инженер. Ему принад-
лежит идея использования однополостных гиперболоидов в строительстве.
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2)
x2

a2
+
y2

b2
− z2

c2
= 0 — эллиптический конус,

3)
x2

a2
+
y2

b2
− z2

c2
= 1 — однополостный гиперболоид,

4)
x2

a2
+
y2

b2
− z2

c2
= −1 — двуполостный гиперболоид,

5)
x2

a2
+
y2

b2
= z — эллиптический параболоид,

6)
x2

a2
− y2

b2
= z — гиперболический параболоид,

7)
x2

a2
+
y2

b2
= 1 — эллиптический цилиндр,

8)
x2

a2
− y2

b2
= 1 — гиперболический цилиндр,

9) y2 = 2px — параболический цилиндр.

8. Примеры.

1) Привести к простейшему виду уравнение

4x21 + 8x22 + 4x23 + 2x1x2 + 6x1x3 + 2x2x3 − 2x1 + 6x2 + 2x3 = 0 (2.19)

и построить поверхность, описываемую этим уравнением в декартовой системе коорди-
нат x1x2x3.

Решение. В обозначениях п. 1, § 1, имеем

A =

4 1 3
1 8 1
3 1 4

 , a = (−1, 3, 1), a0 = 0.

Будем опираться на описанный в § 5, с. 266, способ построения приведенной формы
квадратичной функции. Характеристическое уравнение матрицы A, как нетрудно убе-
диться, имеет вид

P3(λ) ≡ λ3 − 16λ2 + 69λ− 54 = 0.
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Очевидно λ1 = 1 — корень этого уравнения. Далее, поделив полином P3(λ) на λ − 1,
получим P3(λ) = (λ− 1)(λ2− 15λ+54). Корнями уравнения λ2− 15λ+54 = 0 являются
числа λ2 = 6, λ3 = 9.

Таким образом, все собственные числа матрицы A отличны от нуля, и они по-
парно различны. Соответствующие им собственные векторы матрицы A по теореме 8,
с. 226, образуют ортогональную систему в евклидовом пространстве R3 со стандартным
скалярным произведением.

Вычислим собственные векторы матрицы A. Собственный вектор, соответствую-
щий собственному числу λ1 = 1, есть решение однородной системы линейных алгебра-
ических уравнений (A− I)x = 0. Записывая эту систему подробнее, получим

3x1 + x2 + 3x3 = 0,

x1 + 7x2 + x3 = 0,

3x1 + x2 + 3x3 = 0.

Определитель матрицы этой системы по построению равен нулю. Главный минор вто-

Рис. 9. К примеру 1) исследования уравнения поверхности второго порядка

рого порядка матрицы этой системы отличен от нуля, поэтому последнее уравнение
системы — следствие первых двух уравнений, и искомый собственный вектор можно
вычислить, полагая x3 = 1 и определяя затем x1, x2 из первых двух уравнений систе-
мы. В результате получим, что собственному числу λ1 = 1 соответствует собственный
вектор x1 = (−1, 0, 1). Точно так же находим, что собственному числу λ2 соответствует
собственный вектор x2 = (1,−1, 1), собственному числу λ3 соответствует собственный
вектор x3 = (1, 2, 1). Нормируя эти векторы, получим столбцы ортогональной матри-
цы T :

T =

−1/
√
2 1/

√
3 1/

√
6

0 −1/
√
3 2/

√
6

1/
√
2 1/

√
3 1/

√
6

 .

Используя теперь формулу (4.6), с. 265, найдем

â = T Ta = (
√
2,−

√
3,

√
6),

по формуле (5.4), с. 266, вычисляем â0 = a0−
3∑

k=1

â2k/λk = −19/6. Затем по формуле (5.5),

с. 266, находим x̂0 = (−
√
2, 1/6

√
3,−1/9

√
6) и, наконец, по формуле (5.8), с. 267,

x0 = T x̂0 = (19/18,−7/18,−17/18).
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Таким образом, замена переменных x = x0 + Ty приводит уравнение (2.19) к виду

y21 + 6y22 + 9y23 − 19/6 = 0,

откуда получаем, что

(6/19)y21 + (36/19)y22 + (54/19)y23 = 1. (2.20)

Уравнение (2.20) — это уравнение эллипсоида с полуосями
√

19/6,
√
19/6,

√
19/6/3,

отнесенного к декартовой системе координат y1y2y3, которая получается из исходной
системы координат x1x2x3 переносом начала в точку x0 и поворотом таким, что оси yk
оказываются направленными вдоль векторов xk, k = 1, 2, 3, соответственно (см. рис. 9).

Рис. 10. К примеру 2) исследования уравнения поверхности второго порядка

2) Привести к простейшему виду уравнение

x21 + x22 + 2x1x2 + 4x1 − 2x2 + 6x3 + 183 = 0 (2.21)

и построить поверхность, описываемую этим уравнением в декартовой системе коорди-
нат x1x2x3.

Решение. В обозначениях п. 1, § 1, имеем

A =

1 1 0
1 1 0
0 0 0

 , a = (2,−1, 3), a0 = 183.

Собственные числа матрицы A, как нетрудно убедиться, есть λ1 = 2, λ2 = λ3 = 0. Ранг
матрицы

A− 2I =

−1 1 0
1 −1 0
0 0 −2


равен двум. Все ненулевые решения системы уравнений (A−2I)x = 0, очевидно, пропор-
циональны вектору e1 = (1, 1, 0). Ранг матрицы A равен единице. Поэтому размерность
фундаментальной системы решений однородного уравнения Ax = 0 равна двум. Пола-
гая сначала x2 = 1, x3 = 0, а затем x2 = 0, x3 = 1, получим, что векторы e2 = (−1, 1, 0),
e2 = (0, 0, 1) образуют базис собственного подпространства матрицы A, отвечающего
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нулевому собственному числу. Векторы e1, e2, e3 попарно ортогональны. Нормируя их,
получаем ортогональную матрицу T собственных векторов матрицы A:

T =

√1/2 −
√

1/2 0√
1/2

√
1/2 0

0 0 1

 .

Нетрудно убедиться, что â = T Ta = (
√

1/2,−3
√

1/2, 3), поэтому, выполняя замену
переменных x = Tu в уравнении (2.21), получим

2(u21 +
√
1/2u1) + 2(−3

√
1/2u2 + 3u3) + 183 = 0. (2.22)

В соответствии с методикой, описанной в п. 1, §5, гл. 14 (см. с. 266, 267), построим
матрицу отражения R, преобразующую вектор b = (−3

√
1/2, 3) в вектор, параллельный

вектору e = (1, 0). Для этого (см. п. 2, п. 2.1, с. 255) сначала вычислим вектор

w = (b− |b|e)/|b− |b|e| = ((1 +
√
3)/(6 + 2

√
3), 1/

√
3 +

√
3 ),

затем матрицы

R = I − 2wwT =

(
−
√

1/3
√

2/3√
2/3

√
1/3

)
, R̃ =

(
1 0
0 R

)
и выполним в уравнении (2.23) замену переменных u = R̃v. В результате, получим

2(v21 +
√

1/2 v1) + 3
√
6 v2 + 183 = 0, (2.23)

или
2(v1 +

√
1/2/2)2 + 3

√
6(v2 + (183− 1/4)/(3

√
6)) = 0. (2.24)

Наконец, полагая y1 = v1 +
√

1/2/2, y2 = v2 + (183 − 1/4)/(3
√
6), y3 = v3, приходим к

уравнению
y21 = −3

√
3/2 y2. (2.25)

Переменные x, y связаны соотношением x = x̃0 + T̃ y. Вектор x̃0 и ортогональная
матрица T̃ могут быть найдены при помощи последовательных вычислений по фор-
мулам (5.4), (5.5), (5.8), (5.12), (5.14), гл. 14: â0 = 183 − 1/4, x̂0 = (1/2

√
2, 0, 0),

x0 = T x̂0 = (1/4, 1/4, 0), x1 = (0, 2(183− 1/4)/(3
√
6), 0),

T̃ = TR̃ =

√1/2
√

1/6 −
√

1/3√
1/2 −

√
1/6

√
1/3

0 2
√

1/6
√

1/3

 ,

x̃0 = x0−T̃ x1 = (−361/18, 185/9,−731/18). Таким образом, уравнение (2.25) — это урав-
нение параболического цилиндра, отнесенного к декартовой системе координат y1y2y3,
которая получается из исходной системы координат x1x2x3 переносом начала в точ-
ку x̃0 и поворотом таким, что оси yk, k = 1, 2, 3, оказываются направленными вдоль
векторов, образованных столбцами матрицы T̃ (см. рис. 10).

Упражнение. Получите уравнения (2.20), (2.25) непосредствен-
но из уравнений (2.19), (2.21), используя формулы п. 3, с. 285.
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§ 3. Гиперповерхности второго порядка в пространстве Rn

и их классификация

1. Гиперповерхностью второго порядка в пространстве Rn на-
зывается множество всех точек пространства Rn, удовлетворяющих
уравнению

F (x) ≡ (Ax, x) + 2(a, x) + a0 = 0. (3.1)
Здесь A — заданная симметричная матрица порядка n, a — заданный
вектор из Rn, a0 — фиксированное число, под скалярным произведе-
нием понимается стандартное скалярным произведение в простран-
стве Rn.

Выполним в уравнении (3.1) замену переменных, полагая

x = x0 + Ty. (3.2)

В дальнейшем на протяжении данного параграфа будем предпола-
гать, что T — ортогональная матрица.

Замена переменных (3.2) может быть интерпретирована как за-
мена естественного базиса пространства Rn на ортонормированный
базис, образованный столбцами матрицы T , и перенос начала отсче-
та в точку x0.

Как показано в § 5 гл. 14, матрица T и вектор x0 могут быть
выбраны так, что уравнение (3.1) примет одну и только одну из сле-
дующих приведенных форм:

λ1y
2
1 + λ2y

2
2 + · · ·+ λry

2
r + â0 = 0, (3.3)

λ1y
2
1 + λ2y

2
2 + · · ·+ λry

2
r + 2br+1yr+1 = 0. (3.4)

Здесь, как и раньше, λ1, λ2, . . . , λr — все ненулевые собственные
числа матрицы A, br+1 > 0. Условимся в дальнейшем считать, что
числа λ1, λ2, . . . , λk положительны, λk+1, λk+2, . . . , λr отрицательны.

2. Приведенные формы гиперповерхностей позволяют выпол-
нить их классификацию. Мы будем при этом использовать резуль-
таты п. 3, § 4, гл. 14, об ортогональных инвариантах квадратичных
функций. Как и в главе 14, через B будем обозначать квадратную
матрицу порядка n+ 1, определенную равенством (4.2), с. 264.

2.1. Пусть r = n (это условие эквивалентно тому, что
det(A) ̸= 0). Форма (3.4) в этом случае, очевидно, невозможна. Та-
ким образом, в рассматриваемом случае возможны лишь следующие
ситуации:



300 Глава 16. Поверхности второго порядка

1) Определитель матрицы B не нуль, и â0 = det(B)/ det(A) < 0.
Тогда уравнение (3.3) можно записать в виде

y21
α2
1

+
y22
α2
2

+ · · ·+ y2k
α2
k

−
y2k+1

α2
k+1

−
y2k+2

α2
k+2

− · · · − y2n
α2
n

= 1. (3.5)

2) Определитель матрицы B не нуль, â0 = det(B)/ det(A) > 0.
Уравнение (3.3) принимает вид

−y
2
1

α2
1

− y22
α2
2

− · · · − y2k
α2
k

+
y2k+1

α2
k+1

+
y2k+2

α2
k+2

+ · · ·+ y2n
α2
n

= 1. (3.6)

3) Определитель матрицы B равен нулю. Уравнение (3.3) можно
записать в виде

y21
α2
1

+
y22
α2
2

+ · · ·+ y2k
α2
k

−
y2k+1

α2
k+1

−
y2k+2

α2
k+2

− · · · − y2n
α2
n

= 0. (3.7)

Коэффициенты αi, i = 1, 2, . . . , n, в уравнениях (3.5)–(3.7) оче-
видным образом выражаются через собственные числа матрицы A и
определитель матрицы B.

Гиперповерхность, описываемая уравнением (3.5) при k = n
(уравнением (3.6) при k = 0), называется эллипсоидом.

Гиперповерхность, описываемая уравнением (3.5) при k = 0
(уравнением (3.6) при k = n), называется мнимым эллипсоидом. Нет
ни одной точки пространства Rn, удовлетворяющей этому уравнению.

Уравнения (3.5), (3.6) при 1 < k < n описывают гиперповерхно-
сти, называемые гиперболоидами.

Гиперповерхности, описываемые уравнением (3.7) при 1 < k < n,
называются конусами. При k = 0 и k = n уравнение (3.7) вырожда-
ется. Ему удовлетворяет единственная точка x = 0 пространства Rn.

2.2. Пусть r = n−1. В этом случае det(A) = 0. Ранг матрицы B,
очевидно, может принимать при этом следующие значения: n− 1, n,
n+ 1.

Если rank(B) = n−1, то приведенная форма уравнения гиперпо-
верхности принимает вид (3.3) c â0 равным нулю, и ее можно пред-
ставить так:

y21
α2
1

+
y22
α2
2

+ · · ·+ y2k
α2
k

−
y2k+1

α2
k+1

−
y2k+2

α2
k+2

− · · · −
y2n−1

α2
n−1

= 0. (3.8)

Если rank(B) = n, то â0 ̸= 0, и в зависимости от знака â0 прихо-
дим либо к уравнению вида

y21
α2
1

+
y22
α2
2

+ · · ·+ y2k
α2
k

−
y2k+1

α2
k+1

−
y2k+2

α2
k+2

− · · · −
y2n−1

α2
n−1

= 1, (3.9)
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либо к уравнению вида

−y
2
1

α2
1

− y22
α2
2

− · · · − y2k
α2
k

+
y2k+1

α2
k+1

+
y2k+2

α2
k+2

+ · · ·+
y2n−1

α2
n−1

= 1, (3.10)

Если rank(B) = n + 1, то реализуется приведенная форма (3.4),
которую можно представить в виде

y21
α2
1

+
y22
α2
2

+ · · ·+ y2k
α2
k

−
y2k+1

α2
k+1

−
y2k+2

α2
k+2

−· · ·−
y2n−1

α2
n−1

= 2pyn, p > 0. (3.11)

2.3. Пусть, наконец, 0 < r < n− 1. Ранг матрицы B может при
этом принимать значения: r , r + 1, r + 2. Аналогично предыдущему
случаю приходим к уравнениям вида

y21
α2
1

+
y22
α2
2

+ · · ·+ y2k
α2
k

−
y2k+1

α2
k+1

−
y2k+2

α2
k+2

− · · · − y2r
α2
r

= 0, (3.12)

y21
α2
1

+
y22
α2
2

+ · · ·+ y2k
α2
k

−
y2k+1

α2
k+1

−
y2k+2

α2
k+2

− · · · − y2r
α2
r

= 1, (3.13)

или

−y
2
1

α2
1

− y22
α2
2

− · · · − y2k
α2
k

+
y2k+1

α2
k+1

+
y2k+2

α2
k+2

+ · · ·+ y2r
α2
r

= 1, (3.14)

y21
α2
1

+
y22
α2
2

+ · · ·+ y2k
α2
k

−
y2k+1

α2
k+1

−
y2k+2

α2
k+2

−· · ·− y2r
α2
r

= 2pyr+1, p > 0. (3.15)

Уравнения (3.8)–(3.10), (3.12)–(3.15) описывают гиперповерхно-
сти, называемые цилиндрами, уравнение (3.11) описывает параболоид.

Уравнения (3.5)–(3.15) исчерпывают все так называемые канони-
ческие формы уравнения гиперповерхности второго порядка. Геомет-
рическая интерпретация этих уравнений может быть выполнена ана-
логично тому, как это делалось для поверхностей в трехмерном про-
странстве.



Глава 17
Итерационные методы

§ 1. Итерационные методы решения систем линейных
уравнений

1. В этом параграфе изучаются простейшие итерационные мето-
ды решения систем линейных алгебраических уравнений вида

Ax = b. (1.1)

Матрица A = {aij}ni,j=1 предполагается невырожденной и, вообще го-
воря, комплексной. Под скалярным произведением векторов x, y ∈ Cn

понимается стандартное скалярное произведение (x, y) =
n∑
j=1

xj ȳj, со-

ответственно |x| = (x, x)1/2.
Читателю из курса математического анализа хорошо известно по-

нятие предела последовательности векторов из пространства Rn. Это
определение, фактически, без изменений переносится на последова-
тельности векторов из пространства Cn, а именно, будем говорить,
что вектор x ∈ Cn является пределом последовательности векто-
ров {xk} ⊂ Cn, если lim

k→∞
|xk − x| = 0. Из очевидных неравенств

max
16j6n

|xj − xkj | 6 |x− xk| 6
√
n max

16j6n
|xj − xkj |

вытекает, что последовательность векторов {xk} сходится к вектору x
тогда и только тогда, когда для любого j = 1, 2, . . . , n

lim
k→∞

|xj − xkj | = 0,

т. е. xkj → xj при k → ∞ для всех j = 1, 2, . . . , n.
Отметим, что если lim

k→∞
xk = x, то lim

k→∞
Axk = Ax для любой мат-

рицы A (проверьте!).

2. Все методы решения систем линейных алгебраических уравне-
ний можно разбить на два класса: прямые и итерационные. Прямые
методы характеризуются тем, что если пренебречь ошибками округ-
ления, то решение системы может быть получено за конечное число
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арифметических операций (зависящее лишь от порядка системы). Та-
ков, например, метод Гаусса (см. § 8, с. 99).

При реализации прямых методов важно, чтобы все данные распо-
лагались в оперативной (быстрой) памяти компьютера. Если порядок
системы настолько велик, что ее матрица может быть сохранена толь-
ко с использованием внешней (медленной) памяти, например, жестко-
го диска, то время, затрачиваемое на решение системы, существенно
увеличивается.

Для больших систем предпочтительнее оказываются итерацион-
ные методы. Основная идея этих методов состоит в построении по-
следовательности векторов xk, k = 1, 2, . . . , сходящейся к решению x
системы (1.1). За приближенное решение принимается вектор xk при
достаточно большом k. Всюду в дальнейшем через zk будем обозна-
чать вектор xk − x, т. е. погрешность приближения с номером k.

При реализации итерационных методов обычно достаточно уметь
вычислять вектор Ax при любом заданном векторе x.

3. Метод Якоби1). Будем считать, что все диагональные элемен-
ты матрицы A отличны от нуля. Перепишем систему (1.1), разрешая
каждое уравнение относительно переменной, стоящей на диагонали:

xi = −
i−1∑
j=1

aij
aii
xj −

n∑
j=i+1

aij
aii
xj +

bi
aii
, i = 1, 2, . . . , n. (1.2)

Выберем некоторое начальное приближение x0 = (x01, x
0
2, . . . , x

0
n) и

построим последовательность векторов x1, x2, . . . , определяя век-
тор xk+1 по уже найденному вектору xk при помощи соотношений:

xk+1
i = −

i−1∑
j=1

aij
aii
xkj −

n∑
j=i+1

aij
aii
xkj +

bi
aii
, i = 1, 2, . . . , n. (1.3)

Формулы (1.3) определяют итерационный метод решения систе-
мы (1.1), называемый методом Якоби.

Укажем легко проверяемое достаточное условие сходимости это-
го метода. Будем говорить, что для матрицы A выполнено условие
диагонального преобладания, если

q = max
16i6n

n∑
j=1, j ̸=i

|aij|
|aii|

< 1. (1.4)

1)Карл Густав Якоб Яко́би (Carl Gustav Jacob Jacobi; 1804 — 1851) — немецкий математик.
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3.1. Теорема. Пусть матрица A системы (1.1) — матрица
с диагональным преобладанием. Тогда итерационный метод Якоби
сходится при любом начальном приближении x0; справедлива сле-
дующая оценка скорости сходимости:

max
16j6n

|zkj | 6 qk max
16j6n

|z0j |. (1.5)

Доказательство. Пусть x — решение системы уравнений (1.1).
Вычитая почленно из равенства (1.3) равенство (1.2), получим

zk+1
i = −

i−1∑
j=1

aij
aii
zkj −

n∑
j=i+1

aij
aii
zkj , i = 1, 2, . . . , n,

следовательно,

|zk+1
i |6

i−1∑
j=1

|aij|
|aii|

|zkj |+
n∑

j=i+1

|aij|
|aii|

|zkj |6
(
i−1∑
j=1

|aij|
|aii|

+
n∑

j=i+1

|aij|
|aii|

)
max
16j6n

|zkj |=

= q max
16j6n

|zkj |,

i = 1, 2, . . . , n, откуда вытекает, что

max
16j6n

|zk+1
j | 6 q max

16j6n
|zkj |

для любого k = 0, 1, . . . , поэтому

max
16j6n

|zkj | 6 qk max
16j6n

|z0j | → 0

при k → ∞, поскольку 0 < q < 1, а это и означает, что xk → x. �
Оценка (1.5) показывает, что, чем меньше q, т. е. чем выше диаго-

нальное преобладание матрицыA, тем быстрее сходится метод Якоби.

4. Метод Зейделя. Формулы (1.3) допускают естественную мо-
дификацию. Именно, при вычислении xk+1

i будем использовать уже
найденные компоненты вектора xk+1, т. е. xk+1

1 , xk+1
2 , . . . xk+1

i−1 . В ре-
зультате приходим к итерационному методу Зейделя1):

xk+1
i = −

i−1∑
j=1

aij
aii
xk+1
j −

n∑
j=i+1

aij
aii
xkj +

bi
aii
, i = 1, 2, . . . , n, k = 0, 1, . . .

(1.6)
1)Филипп Людвиг Зейдель (Philipp Ludwig von Seidel; 1821 — 1896) — немецкий математик

и астроном.
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Метод Зейделя позволяет более экономно расходовать память
компьютера, поскольку в данном случае вновь получаемые компонен-
ты вектора xk+1 можно размещать на месте соответствующих компо-
нент вектора xk, в то время как при реализации метода Якоби все
компоненты векторов xk, xk+1 должны одновременно находиться в
памяти компьютера.

Достаточное условие сходимости и оценку скорости сходимости
метода Зейделя дает

4.1. Теорема. Пусть матрица A — матрица с диагональным
преобладанием. Тогда метод Зейделя сходится при любом началь-
ном приближении x0; справедлива оценка скорости сходимости:

max
16j6n

|zkj | 6 qk max
16j6n

|z0j |. (1.7)

Доказательство. Вычитая почленно из равенства (1.6) равен-
ство (1.2), получим

zk+1
i = −

i−1∑
j=1

aij
aii
zk+1
j −

n∑
j=i+1

aij
aii
zkj , i = 1, 2, . . . , n. (1.8)

Пусть max
16j6n

|zk+1
j | = |zk+1

l |. Из l-того уравнения системы (1.8) выте-
кает, что

|zk+1
l | 6 αl max

16j6n
|zk+1
j |+ βl max

16j6n
|zkj |,

где

αl =
l−1∑
j=1

|alj|
|all|

, βl =
n∑

j=l+1

|alj|
|all|

,

следовательно,

max
16j6n

|zk+1
j | 6 βl

1− αl
max
16j6n

|zkj |.

Из условия (1.4) получаем, что αl+βl 6 q < 1, но тогда и qαl+βl 6 q,
таким образом, βl/(1 − αl) 6 q, поэтому max

16j6n
|zk+1
j | 6 q max

16j6n
|zkj |.

Дальнейшие рассуждения совпадают с соответствующими рассужде-
ниями из доказательства предыдущей теоремы. �

5. Метод релаксации. Зачастую существенного ускорения сходи-
мости можно добиться за счет введения в расчетные формулы число-
вого параметра. В качестве примера приведем итерационный процесс

xk+1
i =(1− ω)xki + ω

(
−

i−1∑
j=1

aij
aii
xk+1
j −

n∑
j=i+1

aij
aii
xkj +

bi
aii

)
, (1.9)
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i = 1, 2, . . . , n, k = 0, 1, . . . Этот метод называется методом релак-
сации, число ω — релаксационным параметром. При ω = 1 метод
переходит в метод Зейделя.

Ясно, что по затратам памяти и объему вычислений на каждом
шаге итераций метод релаксации не отличается от метода Зейделя.

§ 2. Элементы общей теории итерационных методов

1. Придадим итерационным методам, рассмотренным в преды-
дущих пунктах, матричные формулировки. Начнем с метода Якоби.
Нетрудно видеть, что равенства (1.3) можно записать в матричном
виде

D(xk+1 − xk) + Axk = b, (2.1)
где D = diag(a11, a22, . . . , ann). Для того, чтобы придать матрич-
ную форму записи методам Зейделя и релаксации, обозначим через L
нижнюю треугольную матрицу, поддиагональные элементы которой
совпадают с соответствующими элементами матрицы A, а все диа-
гональные элементы равны нулю. Через R обозначим верхнюю тре-
угольную матрицу такую, что A = L+D +R. Равенства (1.9) могут
быть переписаны тогда в следующем виде:

1

ω
(D + ωL)(xk+1 − xk) + Axk = b. (2.2)

Будем рассматривать общий класс итерационных методов, опре-
деляемых соотношениями

1

τ
B(xk+1 − xk) + Axk = b, k = 0, 1, . . . (2.3)

Здесь B — невырожденная матрица, τ > 0 — число, называемое ите-
рационным параметром. Для того, чтобы найти вектор xk+1 по уже
известному вектору xk, нужно решить систему линейных уравнений

Bxk+1 = fk, (2.4)

где fk = Bxk − τ(Axk − b).
Очевидно, при построении итерационного метода (2.3) матрица B

должна выбираться так, чтобы решение системы уравнений вида (2.4)
выполнялось намного быстрее, чем решение исходной системы урав-
нений (1.1).

Итерационные методы Якоби, Зейделя и релаксации являются
частными случаями метода (2.3). Например, в случае метода Яко-
би B = D, τ = 1.
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Наша ближайшая цель — получить условия на матрицу B и па-
раметр τ , обеспечивающие сходимость метода (2.3).

Если x — решение системы (1.1), то, очевидно,
1

τ
B(x− x) + Ax = b. (2.5)

Вычитая почленно равенства (2.3), (2.5), получим
1

τ
B(zk+1 − zk) + Azk = 0, (2.6)

откуда zk+1 = Szk, где
S = I − τB−1A. (2.7)

и, следовательно,
zk = Skz0, (2.8)

Понятно, что сходимость итерационного метода (2.3) определяет-
ся свойствами матрицы S.

2. Теорема. Для того, чтобы итерационный метод (2.3) схо-
дился при любом начальном приближении x0, необходимо и доста-
точно, чтобы спектральный радиус ρ(S) матрицы S был меньше
единицы.

Доказательство. Н е о б х о д и м о с т ь. Пусть λ — собствен-
ное число матрицы S такое, что |λ| > 1, e — соответствующий этому
собственному числу нормированный собственный вектор матрицы S.
Выберем в качестве начального приближения в итерационном мето-
де (2.3) вектор x0 = x + e, где x — решение уравнения (1.1). Тогда в
соответствии с (2.8) имеем zk = λke, следовательно, |zk| = |λ|k. Оче-
видно, либо |zk| → ∞ при k → ∞, либо |zk| = 1 для всех k = 1, 2, . . . ,
т. е. метод (2.3) не сходится.

Д о с т а т о ч н о с т ь. Из теоремы 3, с. 213, вытекает, что, если
спектральный радиус матрицы S меньше единицы, то она — сходя-
щаяся матрица, т. е. Sk → 0 при k → ∞, и тогда из (2.8) вытекает,
что zk → 0 при k → ∞. �

Опираясь на теорему 2, получим часто используемое условие схо-
димости итерационного процесса (2.3).

3. Теорема Самарского1). Пусть матрица A положительно
определена и пусть для любого не равного нулю вектора x из Cn

выполнено неравенство
(B1x, x) > (τ/2)(Ax, x), (2.9)

1)Александр Андреевич Самарский (1919 — 2008) — советский, российский математик.
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где B1 = (1/2)(B + B∗). Тогда матрица B невырождена, и ите-
рационный процесс (2.3) сходится при любом начальном приближе-
нии x0. Обратно, если матрица A положительно определена и ите-
рационный процесс (2.3) сходится при любом начальном приближе-
нии x0, то выполнено условие (2.9).

Доказательство. Невырожденность матрицы B сразу же сле-
дует из условия (2.9) и положительной определенности матрицы A
(см. упражнение 3 на с. 223). Покажем, что если выполнено усло-
вие (2.9), то ρ(S) < 1, где S — матрица, определенная равен-
ством (2.7). Вследствие теоремы 2 отсюда будет вытекать сходимость
итерационного метода (2.3). Пусть λ, x — собственная пара матри-
цы S. Тогда Bx− τAx = λBx, поэтому

λ =
(Bx, x)− τ(Ax, x)

(Bx, x)
.

Используя формулу (10.1), с. 107, представим матрицу B в виде

B = B1 + iB2, (2.10)

где B1 = (1/2)(B +B∗), B2 — эрмитовы матрицы. Тогда

λ =
(B1x, x)− τ(Ax, x) + i(B2x, x)

(B1x, x) + i(B2x, x)
,

следовательно,

|λ|2 = ((B1x, x)− τ(Ax, x))2 + (B2x, x)
2

(B1x, x)2 + (B2x, x)2
.

Запишем последнее равенство в виде

|λ|2 = (1− a)2 + b2

1 + b2
, (2.11)

где a = τ(Ax, x)/(B1x, x), b = (B2x, x)/(B1x, x). Из условия (2.9) по-
лучаем, что 0 < a < 2, поэтому |1−a| < 1, откуда, очевидно, вытека-
ет, что |λ| < 1. Для доказательства второй части теоремы достаточно
заметить, что если итерационный процесс (2.3) сходится при любом
начальном приближении, то по теореме 2 все собственные числа мат-
рицы S по модулю строго меньше единицы, и тогда из представле-
ния (2.11) получаем, что 0 < a < 2, следовательно, условие (2.9)
выполнено. �
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4. Теорема. Пусть выполнены условия теоремы 3. Тогда для
погрешностей итерационного процесса (2.3) при любом k > 0 выпол-
нено неравенство

(Azk+1, zk+1) < (Azk, zk), (2.12)
если zk ̸= 0.

Доказательство. Используя тривиальное тождество

zk = (1/2)(zk+1 + zk)− (1/2)(zk+1 − zk),

перепишем уравнение (2.6) в виде

1

τ
(B − (τ/2)A)(zk+1 − zk) + (1/2)A(zk+1 + zk) = 0.

Умножая теперь скалярно обе части последнего равенства на век-
тор 2(zk+1−zk) и используя представление (2.10), после элементарных
преобразований получим

2

τ
((B1 − (τ/2)A)(zk+1 − zk), zk+1 − zk)+

+ i
2

τ
(B2(z

k+1 − zk), zk+1 − zk)+

+ (Azk+1, zk+1)− (Azk, zk) + i Im(Azk, zk+1) = 0,

поэтому

2

τ
((B1 − (τ/2)A)(zk+1 − zk), zk+1 − zk)+

+ (Azk+1, zk+1)− (Azk, zk) = 0. (2.13)

Если zk ̸= 0, то вследствие невырожденности оператора B из (2.6)
вытекает, что zk+1 − zk ̸= 0. Тогда на основании условия (2.9) из
равенства (2.13) получаем, что (Azk+1, zk+1)− (Azk, zk) < 0. �

5. Если матрица A положительно определена, то уравнение (1.1),
с. 302, эквивалентно задаче минимизации функции (функционала)

F (x) = (Ax, x)− 2Re(x, b) 1). (2.14)

Действительно, пусть x̂ — решение уравнения (1.1), с. 302. Тогда

F (x) = (Ax, x)− 2Re(x,Ax̂) =

1)Функционал F часто называют энергетическим. Это связано с задачами физики, в которых
возникают уравнения с положительно определенными матрицами.
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= (Ax, x)− 2Re(x,Ax̂) + (Ax̂, x̂)− (Ax̂, x̂) =

= (A(x− x̂), x− x̂)− (Ax̂, x̂), (2.15)

следовательно, функции F (x) и F0(x) = (A(x− x̂), x− x̂) отличаются
на постоянное слагаемое. Поскольку матрица A положительно опре-
делена, то единственной точкой минимума функции F0, а стало быть,
и функции F является x̂. Вследствие (2.15) неравенство (2.12) можно
записать в виде

F (xk+1) < F (xk). (2.16)
Таким образом, можно сказать, что при выполнении условий тео-

ремы 3 итерационный процесс (2.3) является релаксационным2): каж-
дое последующее приближение уменьшает значение функционала F .

6. Используя полученные в предыдущем пункте общие резуль-
таты, исследуем сходимость метода релаксации (2.2).

6.1. Теорема. Пусть матрица A положительно определена,

0 < ω < 2. (2.17)

Тогда итерационный метод (2.2) сходится при любом начальном
приближении x0.

Доказательство. Будем опираться на теорему 3. В рассмат-
риваемом случае B = D + ωL, τ = ω, B1 = D + (ω/2)(L + L∗),
A = D+L+L∗, и условие (2.9) принимает вид (Dx, x) > (ω/2)(Dx, x)
для любого x ̸= 0. Все диагональные элементы положительно опреде-
ленной матрицы положительны (см. упражнение 3 на с. 223), поэтому
матрица D положительно определена, и условие (2.9) выполнено, ес-
ли выполнено условие (2.17). �

6.2. Теорема. Условие (2.17) необходимо для сходимости ите-
рационного процесса (1.9).

Доказательство. Запишем равенство (2.7) в виде

(D + ωL)S = (D + ωL)− ωA = (1− ω)D − ωR. (2.18)

Поскольку L и R — строго треугольные матрицы, а D — диагональ-
ная матрица, все диагональные элементы которой отличны от нуля,
то, вычисляя определители левой и правой частей равенства (2.18),
получим, что det(S) = (1− ω)n, следовательно (см. (7.7), с. 193),

n∏
k=1

|λk| = |1− ω|n, (2.19)

2)Релаксация (лат. relaxatio) — уменьшение напряжения, ослабление.



§ 2. Элементы общей теории итерационных методов 311

где λ1, λ2, . . . ,λn — характеристические числа матрицы S. Если усло-
вие (2.17) нарушено, то |1 − ω| > 1, и среди собственных чисел λk
матрицы S есть хотя бы одно, модуль которого больше единицы, но
тогда по теореме 2 найдется начальное приближение x0, при котором
итерационный процесс (1.9) не сходится. �

7. Пример решения задачи об оптимальном выборе итерационно-
го параметра. Из доказательства теоремы 2 видно, что итерационный
процесс (2.3) сходится тем быстрее, чем меньше спектральный радиус
матрицы S = I− τB−1A. В связи с этим возникает задача отыскания
такого (оптимального) значения итерационного параметра τ , при ко-
тором величина ρ(S) принимает минимальное значение.

Наиболее просто эта задача решается в случае, когда матри-
цы A, B положительно определены. Поскольку в рассматриваемом
случае B = B∗, т. е. в представлении (2.10) матрица B2 равна нулю,
то из (2.11) получаем, что для любой собственной пары λ, x матри-
цы S справедливо равенство

|λ| =
∣∣∣∣1− τ

(Ax, x)

(Bx, x)

∣∣∣∣ . (2.20)

Нетрудно видеть, что если x — собственный вектор матрицы S,
то x — собственный вектор матрицы B−1A и, следовательно (см. § 13,
с. 237), x — собственный вектор обобщенной проблемы собственных
значений

Ax = λBx. (2.21)
Очевидно, справедливо и обратное: любой собственный вектор зада-
чи (2.21) есть собственный вектор оператора S.

Для любой собственной пары x, λ задачи (2.21) справедливо ра-
венство (Ax, x) = λ(Bx, x). Поэтому все собственные числа зада-
чи (2.21) положительны. Пустьm — минимальное, аM максимальное
из этих чисел. Тогда для любого собственного вектора x оператора S
справедливы неравенства

m 6 (Ax, x)

(Bx, x)
6M. (2.22)

Полученные оценки являются точными, поскольку соответствующие
неравенства (2.22) превращаются в равенства, если в качестве x взять
собственный вектор, отвечающий m или M .

Нетрудно видеть, что функция g(µ) = |1 − τµ| вещественного
переменного µ на любом ограниченном отрезке вещественной оси до-
стигает максимального значения на одном из концов этого отрезка.
Поэтому, используя соотношения (2.20), (2.22), получаем, что
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Рис. 1. К выбору оптимального итерационного параметра

ρ(S) = φ(τ) = max{|1− τm|, |1− τM |}. (2.23)
График функции φ(τ) при τ > 0 изображен на рис. 1. Нетрудно
убедиться, что

min
τ> 0

φ(τ) = φ(τ0) = (1− ξ)/(1 + ξ), (2.24)

где τ0 = 2/(M +m), ξ = m/M .
Таким образом, итерационный процесс (2.3) при оптимальном

значении итерационного параметра τ = τ0 сходится тем быстрее,
чем больше m/M , т. е. чем меньше разброс собственных чисел за-
дачи (2.21).

§ 3. Метод Якоби решения задач на собственные значения

В этом параграфе излагается приближенный метод Якоби, ко-
торый можно применять для приближенного отыскания собственных
чисел и собственных векторов эрмитовых матриц. Как и все мето-
ды, используемые в настоящее время для приближенного решения за-
дач на собственные значения, метод Якоби является итерационным.
В самых общих чертах, идея его состоит в следующем. Пусть A —
диагональная матрица. Тогда собственные числа матрицы A есть ее
диагональные элементы. Метод Якоби для любой эрмитовой матри-
цы A дает способ построения последовательности матриц A1, A2, . . . ,
Ak, . . . таких, что каждая из матриц этой последовательности эрми-
това, подобна матрице A и с увеличением номера k становится все
более близкой к диагональной. В качестве приближенных значений
собственных чисел матрицы A берутся диагональные элементы мат-
рицы Ak, как только все ее внедиагональные элементы оказываются
достаточно малыми.

1. Итак, пустьA— эрмитова матрица порядка n,Q = {qij}ni,j=1 —
матрица, отличающаяся от единичной лишь четырьмя элементами:

qk,k = cosφ, qll = cosφ, qkl = −q sinφ, qlk = q̄ sinφ, (3.1)
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где 1 6 k < l 6 n, φ — вещественное число, q — вообще говоря,
комплексное число, |q| = 1. Очевидно, Q — унитарная матрица.

Образуем по матрице A матрицу Â = QTAQ и попытаемся вы-
брать параметры матрицы Q, т. е. числа k, l, φ, q, так, чтобы мат-
рица Â была максимально близка к диагональной.

Нетрудно убедиться, что матрица Ã = QTA отличается от мат-
рицы A лишь элементами строк с номерами k, l, причем

ãk,j = akj cosφ+ alj q̄ sinφ,

ãl,j = −akjq sinφ+ alj cosφ, j = 1, . . . , n. (3.2)

Аналогично, матрица Â = ÃQ отличается от матрицы Ã лишь эле-
ментами столбцов с номерами k, l, причем

âj,k = ãjk cosφ+ ãjlq sinφ,

âj,l = −ãjkq̄ sinφ+ ãjl cosφ, j = 1, . . . , n. (3.3)
Из (3.2), (3.3) сразу же следует, что

|ãk,j|2 + |ãl,j|2 = |ak,j|2 + |al,j|2, |âj,k|2 + |âj,l|2 = |aj,k|2 + |aj,l|2,
j = 1, . . . , n, (3.4)

âkl = q̄(all − akk) cosφ sinφ+ akl cos
2 φ− q̄2alk sin

2 φ. (3.5)
Вычислим сумму квадратов модулей внедиагональных элементов
матрицы Â. Используя соотношения (3.2) – (3.4), нетрудно получить,
что ∑

i̸=j

|âij|2 =
∑
i̸=j

|aij|2 − 2|akl|2 + |âkl|2. (3.6)

Определим теперь числа k, l из условия

|akl| = max
i̸=j

|aij|. (3.7)

Поскольку A — эрмитова матрица, то alk = ākl, и из (3.5) с учетом
того, что 1/q̄ = q, будем иметь, что

âkl = q̄

(
all − akk

2
sin 2φ+ qakl cos

2 φ− q̄ākl sin
2 φ

)
.

Будем считать, что akl ̸= 0. В противном случае матрица диагональ-
на, и ее собственные числа определяются тривиальным образом. По-
ложим

q = |akl|/akl. (3.8)
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Тогда

âkl = q̄

(
all − akk

2
sin 2φ+ |akl| cos 2φ

)
. (3.9)

Выберем затем угол φ так, чтобы

|akl| cos 2φ+
1

2
(all − akk) sin 2φ = 0,

или
tg 2φ =

2|akl|
akk − all

. (3.10)

При указанном выборе параметров, определяющих матрицу Q, сумма
квадратов модулей внедиагональных элементов матрицы Â принима-
ет наименьшее значение.

Теперь можно описать метод Якоби. Пусть A0 = A. Образуем по-
следовательность матриц A1, A2, . . . при помощи рекуррентной фор-
мулы

Ap+1 = QT
pApQp, p = 0, 1, . . . , (3.11)

где параметры матрицы Qp определяются так, чтобы сделать сум-
му квадратов внедиагональных элементов матрицы Ap+1 минимально
возможной, т. е. по формулам вида (3.7), (3.8), (3.10).

Вычисления проводят до тех пор, пока все внедиагональные эле-
менты матрицы Ap не станут достаточно малыми. Тогда в качестве
приближений к собственным числам матрицы A принимают диаго-
нальные элементы матрицы Ap, а столбцы матрицы Q0Q1 · · ·Qp счи-
тают приближениями к собственным векторам матрицы A.

§ 4. Исследование сходимости метода Якоби

1. Лемма. Пусть параметры матрицы Q определяются со-
гласно формулам (3.7), (3.8), (3.10). Тогда∑

i ̸=j

|âij|2 6 ρ
∑
i̸=j

|aij|2, (4.1)

где
0 < ρ = 1− 2

n(n− 1)
< 1

при n > 2.
Доказательство. Вследствие (3.10) из (3.6) получаем∑

i̸=j

|âij|2 =
∑
i̸=j

|aij|2 − 2|akl|2, (4.2)
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а на основании (3.7) ∑
i̸=j

|aij|2 6 |akl|2n(n− 1). (4.3)

Здесь учтено, что матрица порядка n имеет n2 − n внедиагональных
элементов. Из (4.2), (4.3) очевидным образом следует (4.1). �

Докажем сходимость метода Якоби. Пусть Ap = {a(p)ij }ni,j=1. Из
рекуррентной формулы (3.11) и леммы 1 вытекает, что∑

i̸=j

|a(p)ij |
2 6 ρ

∑
i̸=j

|a(p−1)
ij |2 6 ρp

∑
i̸=j

|aij|
2 → 0 при p→ ∞.

Это означает, что по любому заданному ε > 0 можно указать целое
положительное число p такое, что

|a(p)ij | 6 ε/n, i ̸= j, i, j = 1, 2, . . . , n. (4.4)

Обозначим через Λp диагональную матрицу, на диагонали которой
расположены диагональные элементы матрицы Ap. В соответствии с
оценками (4.4), а также (11.4), с. 232, можем написать:

|λk(Ap)− λ
(p)
k | 6 ε, k = 1, 2, . . . , n,

где λ(p)k , k = 1, . . . , n, — диагональные элементы матрицы Λp, упо-
рядоченные по неубыванию, λk(Ap) — так же упорядоченные соб-
ственные числа матрицы Ap. Вследствие (3.11) имеем Ap = T Tp ATp,
где Tp = Q0Q1 . . . Qp, т. е. матрицы Ap и A подобны, а значит, их
собственные числа совпадают, поэтому

|λk(A)− λ
(p)
k | 6 ε, k = 1, 2, . . . , n. (4.5)

Таким образом, выполнив определенное количество итераций, мы
получим приближенные значения собственных чисел матрицы A с
любой наперед заданной точностью.

2. Применяя метод Якоби для приближенного отыскания соб-
ственных чисел и собственных векторов симметричной вещественной
матрицы, в формулах (3.1) параметр q следует положить равным еди-
нице. Соответственно в формуле (3.10) нужно заменить |akl| на akl.
Все выше полученные оценки при этом сохраняются. Матрица Q,
определенная на с. 312, при q = 1 есть матрица, осуществляющая по-
ворот на угол φ в двумерной плоскости, натянутой на векторы ik, il
естественного базиса пространства Rn. Поэтому метод Якоби часто
называют методом вращений.



Глава 18
Нормы векторов и матриц

§ 1. Основные неравенства

1. Вещественная функция f вещественной переменной называ-
ется выпуклой на интервале (a, b), если для любых точек x1, x2 из
этого интервала и для любого t ∈ [0, 1] выполнено неравенство

f(tx1 + (1− t)x2) 6 tf(x1) + (1− t)f(x2). (1.1)

Геометрически это означает, что любая точка графика функции f
на отрезке [x1, x2] лежит ниже хорды, стягивающей точки (x1, f(x1)),
(x2, f(x2)), или на этой же хорде.

2. Теорема. Пусть функция f непрерывна и дважды непре-
рывно дифференцируема на интервале (a, b), вторая производная f
неотрицательна на интервале (a, b). Тогда f — выпуклая функция
на интервале (a, b).

Доказательство. В соответствии с определением выпуклой
функции нужно установить, что при любых x1, x2 ∈ (a, b) функция φ
вещественной переменной t, задаваемая равенством

φ(t) = f(tx1 + (1− t)x2)− tf(x1)− (1− t)f(x2),

неположительна для всех t из отрезка [0, 1]. Нетрудно видеть, что
φ(0) = 0, φ(1) = 0, φ′′(t) = f ′′(tx1 + (1 − t)x2)(x1 − x2)

2 > 0
для всех t ∈ [0, 1] Пусть t — произвольным образом фиксированная
точка из интервала (0, 1). Используя формулу конечных прираще-
ний Лагранжа, получим φ(t) = φ(t) − φ(0) = tφ′(t1), где t1 — неко-
торая точка из интервала (0, t). Аналогично, φ(t) = −(1 − t)φ′(t2),
где t2 — точка из интервала (t, 1). Отсюда, очевидно, следует, что
φ(t) = −t(1− t)(φ′(t2)−φ′(t1)). Вновь применяя формулу Лагранжа,
получим, что φ(t) = −t(1 − t)(t2 − t1)φ

′′(t3), где t3 ∈ (t2, t1). Таким
образом, φ(t) 6 0. �

3. При помощи теоремы 2 легко доказывается, что функ-
ция − ln(x) выпукла на интервале (0,∞). Поэтому для любых по-
ложительных чисел a, b и любых p, q > 1 и таких, что 1/p+ 1/q = 1,

ln(ap/p+ bq/q) > ln(ap)/p+ ln(bq)/q = ln(ab),
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следовательно, ab 6 ap/p+bq/q. Очевидно, что последнее неравенство
верно и при ab = 0. Далее, поскольку |ab| = |a||b|, то

|ab| 6 |a|p/p+ |b|q/q (1.2)

для любых, вообще говоря, комплексных чисел a, b. Неравенство (1.2)
называют неравенством Юнга1).

4. Теорема (неравенство Гёльдера2)). Пусть x, y ∈ Cn,
p > 1, 1/p+ 1/q = 1. Тогда∣∣∣∣∣

n∑
k=1

xkyk

∣∣∣∣∣ 6
(

n∑
k=1

|xk|p
)1/p( n∑

k=1

|yk|q
)1/q

. (1.3)

Доказательство. Доказываемое неравенство выполнено, если
хотя бы один из векторов x, y равен нулю. Для ненулевых x, y, ис-
пользуя неравенство Юнга, получим при l = 1, 2, . . . , n

|xl|(
n∑
k=1

|xk|p
)1/p

|yl|(
n∑
k=1

|yk|q
)1/q

6 |xl|p

p
n∑
k=1

|xk|p
+

|yl|q

q
n∑
k=1

|yk|q
.

Суммируя все эти неравенства, будем иметь

n∑
k=1

|xk||yk| 6
(

n∑
k=1

|xk|p
)1/p( n∑

k=1

|yk|q
)1/q

,

откуда, очевидно, следует (1.3). �
При p = 2 неравенство (1.3) называют неравенством Коши.

5. Теорема (неравенство Минковского). Пусть x, y ∈ Cn,
p > 1. Тогда(

n∑
k=1

|xk + yk|p
)1/p

6
(

n∑
k=1

|xk|p
)1/p

+

(
n∑
k=1

|yk|p
)1/p

. (1.4)

Доказательство. Будем считать x, y такими, что левая часть
неравенства (1.4) положительна, так как в противном случае нера-
венство (1.4) выполняется очевидным образом. Ясно, что

1)Уильям Генри Юнг (William Henry Young; 1863 — 1942) — английский математик.
2)Отто Людвиг Гёльдер (Otto Ludwig Hölder; 1859 — 1937) — немецкий математик.
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n∑
k=1

|xk + yk|p =
n∑
k=1

|xk + yk|p−1|xk + yk| 6

6
n∑
k=1

|xk + yk|p−1|xk|+
n∑
k=1

|xk + yk|p−1|yk|. (1.5)

Оценим суммы в правой части последнего неравенства, используя
неравенство Гёльдера:

n∑
k=1

|xk + yk|p−1|xk| 6
(

n∑
k=1

|xk + yk|(p−1)q

)1/q( n∑
k=1

|xk|p
)1/p

, (1.6)

n∑
k=1

|xk + yk|p−1|yk| 6
(

n∑
k=1

|xk + yk|(p−1)q

)1/q( n∑
k=1

|yk|p
)1/p

, (1.7)

где 1/p+1/q = 1 и, следовательно, (p−1)q = p. Поэтому из (1.5)–(1.7)
вытекает, что

n∑
k=1

|xk+yk|p 6
(

n∑
k=1

|xk + yk|p
)1/q

( n∑
k=1

|xk|p
)1/p

+

(
n∑
k=1

|yk|p
)1/p

 ,

откуда, учитывая равенство 1− 1/q = 1/p, получим (1.4). �

§ 2. Нормы на пространстве Cn

1. В этом и последующем параграфах мы будем широко ис-
пользовать понятие сходимости последовательности векторов из про-
странства Cn, введенное в § 1, гл. 17.

Мы будем рассматривать также в дальнейшем вещественные
функции, определенные на Cn, иначе говоря, вещественные функ-
ции n комплексных переменных. При этом, аналогично случаю функ-
ции, определенной на Rn (см. курс математического анализа), функ-
ция f называется непрерывной в точке x ∈ Cn, если из сходимости
последовательности {xk} к x вытекает сходимость f(xk) к f(x).

Читатель может без труда убедиться, что все используемые в
дальнейшем свойства непрерывных вещественных функций многих
комплексных переменных доказываются точно так же, как и для
непрерывных функций на пространстве Rn.
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2. Наряду с введенным выше понятием длины (или модуля) век-
тора x ∈ Cn во многих случаях оказывается удобным использовать
более общее понятие, а именно, понятие нормы вектора.

Будем говорить, что на пространстве Cn введена норма, если каж-
дому вектору x ∈ Cn однозначно поставлено в соответствие веще-
ственное число ∥x∥ (читается: норма x). При этом должны быть вы-
полнены следующие условия (аксиомы нормы):

1) ∥x∥ > 0 для любого x ∈ Cn, равенства ∥x∥=0 и x=0 эквива-
лентны;

2) ∥αx∥ = |α|∥x∥ для любых x ∈ Cn, α ∈ C;
3) ∥x+ y∥ 6 ∥x∥+ ∥y∥ для любых x, y ∈ Cn.

Условие 3) обычно называют неравенством треугольника.
Отметим неравенство
4)
∣∣∥x∥ − ∥y∥

∣∣ 6 ∥x− y∥ ∀ x, y ∈ Cn,
которое вытекает из аксиомы 3). В самом деле,

∥x∥ = ∥x− y + y∥ 6 ∥x− y∥+ ∥y∥.

Аналогично,
∥y∥ 6 ∥x− y∥+ ∥x∥.

Неравенство 4) есть просто более краткая запись этих неравенств.

3. Приведем примеры норм на пространстве Cn.

1) Пусть p > 1. Равенство ∥x∥p =
( n∑
k=1

|xk|p
)1/p

определяет нор-

му. Действительно, аксиомы 1), 2) выполнены очевидным образом, а
неравенство 3) при p = 1 непосредственно вытекает из свойств моду-
ля, а при p > 1 совпадает с неравенством Минковского (1.4). Отме-
тим, что ∥x∥2 = |x| = (x, x)1/2 для любого x ∈ Cn. Здесь и далее в
этой главе (·, ·) — стандартное скалярное произведение на простран-
стве Cn.

2) Положим ∥x∥∞ = max
16k6n

|xk|. Элементарно проверяется, что это
равенство определяет норму.

3) Пусть A — эрмитова положительно определенная матри-
ца. Функция ∥x∥A = (Ax, x)1/2 есть норма на пространстве Cn.
Для обоснования этого факта достаточно вспомнить, что соотноше-
ние (x, y)A = (Ax, y) определяет скалярное произведение на про-
странстве Cn (см. упражнение 1, с. 223, а также п. 3, с. 132).



320 Глава 18. Нормы векторов и матриц

4. Любая норма непрерывна на всем пространстве Cn. В самом
деле, пусть x, y — произвольные точки Cn. Представим их в виде

разложений по естественному базису пространства Cn: x =
n∑
k=1

xki
k,

y =
n∑
k=1

yki
k. Используя теперь неравенство треугольника, получим

∥x − y∥ 6
n∑
k=1

∥ik∥|xk − yk|, откуда, очевидно, вытекает, что если x

стремится к y, то ∥x− y∥ стремится к нулю.

5. Будем говорить, что последовательность {xk} ⊂ Cn сходится
к вектору x ∈ Cn по норме, если lim

k→∞
∥x − xk∥ = 0. В п. 4, фак-

тически, показано, что если последовательность векторов сходится
покомпонентно, то она сходится и по любой норме, введенной на про-
странстве Cn. Ниже будет установлено, что справедливо и обратное
утверждение.

Говорят, что нормы ∥·∥(1) и ∥·∥(2) эквивалентны, если существуют
положительные постоянные c1 и c2 такие, что

c1∥x∥(1) 6 ∥x∥(2) 6 c2∥x∥(1) ∀x ∈ Cn. (2.1)

5.1. Теорема. Любые две нормы на пространстве Cn эквива-
лентны.

Доказательство. Отношение эквивалентности норм, очевид-
но, транзитивно. Поэтому достаточно показать, что любая норма ∥ ·∥
эквивалентна норме ∥ · ∥2 = | · |, т. е. показать, что существуют поло-
жительные постоянные c1, c2 такие, что

c1|x| 6 ∥x∥ 6 c2|x| ∀x ∈ Cn. (2.2)

Пусть S1(0) — множество всех векторов из пространства Cn, удовле-
творяющих условию |x| = 1 (S1(0) — сфера единичного радиуса с
центром в нуле). Это множество ограничено и замкнуто в простран-
стве Cn. Функция φ(x1, x2 . . . , xn) = ∥x∥, как показано в п. 4, непре-
рывна на Cn. Поэтому по теореме Вейерштрасса (см. курс математи-
ческого анализа) существуют точки x1, x2, принадлежащие S1(0), и
такие, что ∥x1∥ = min

x∈S1(0)
∥x∥, ∥x2∥ = max

x∈S1(0)
∥x∥. Положим c1 = ∥x1∥,

c2 = ∥x2∥. Ясно, что 0 6 c1 6 c2. Причем c1 не может равняться нулю,
так как в противном случае x1 = 0, но, с другой стороны, x1 ∈ S1(0),
поэтому |x1| = 1, и, стало быть, x1 ̸= 0. Итак, для любого x ∈ S1(0)
выполнены неравенства 0 < c1 6 ∥x∥ 6 c2. Пусть теперь x —
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произвольный вектор из Cn, не равный нулю. Тогда, очевидно, век-
тор (1/|x|)x принадлежит S1(0), следовательно, c1 6 ∥(1/|x|)x∥ 6 c2,
откуда вытекает, что для вектора x выполнены неравенства (2.2).
Если x равен нулю, то неравенства (2.2) выполняются очевидным
образом. �

5.2. Из теоремы 5.1 вытекает, что всякая норма на простран-
стве Cn эквивалентна норме ∥ · ∥2, поэтому из сходимости последо-
вательности векторов по любой норме вытекает ее покомпонентная
сходимость.

6. Важно иметь в виду, что постоянные c1, c2, вообще говоря,
зависят от n, т. е. от размерности пространства Cn. Приведем, напри-
мер, следующие оценки:

∥x∥∞ 6 ∥x∥p ∀ x ∈ Cn при любом p > 1; (2.3)

∥x∥p 6 ∥x∥q ∀x ∈ Cn, если p > q > 1; (2.4)

∥x∥p 6 n1/p−1/q∥x∥q ∀x ∈ Cn, если q > p > 1; (2.5)

∥x∥p 6 n1/p∥x∥∞ ∀x ∈ Cn при любом p > 1. (2.6)
Прежде чем доказывать эти неравенства заметим, что они явля-

ются точными, т. е. для каждого из них можно указать такой нену-
левой вектор x, на котором неравенство превращается в равенство.
Именно, первые два неравенства обращаются в равенства, например,
при x = (1, 0, . . . , 0), а последние два — при x = (1, 1, . . . , 1).

Приведем теперь соответствующие доказательства.
1) Пусть ∥x∥∞ ≡ max

16k6n
|xk| = |xi|. Очевидно, что

|xi| = (|xi|p)1/p 6
(

n∑
k=1

|xk|p
)1/p

= ∥x∥p.

2) Выполнив очевидные выкладки, получим

∥x∥p =

(
n∑
k=1

|xk|q|xk|p−q
)1/p

6 ∥x∥(p−q)/p∞ ∥x∥q/pq ,

откуда, используя (2.3), приходим к (2.4).
3) Представим |xk|p в виде |xk|p · 1 и используем для оценки ∥x∥p

неравенство Гёльдера с показателями t = q/p > 1 и r = t/(t− 1) =
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= q/(q − p). Получим

∥x∥p =

(
n∑
k=1

|xk|p
)1/p

6
(

n∑
k=1

|xk|q
)1/q( n∑

k=1

1

)(q−p)/(pq)

= n1/p−1/q∥x∥q.

Доказательство неравенства (2.6) читатель легко выполнит само-
стоятельно.

Упражнение. Показать, что для любого x ∈ Cn выполнено пре-
дельное соотношение ∥x∥∞ = lim

p→∞
∥x∥p.

7. Норма вектора называется абсолютной, если она зависит
только от модулей компонент вектора. Например, норма ∥ · ∥p при
любом p > 1 абсолютна, норма на пространстве C2, определяемая
равенством ∥x∥ = (x21 + x22 − Re(x1x̄2)

1/2, не абсолютна.

7.1. Пусть D = diag(d1, d2, . . . , dn), 0 6 di 6 1, i = 1, 2, . . . , n,
x ∈ Cn. Тогда для любой абсолютной нормы ∥Dx∥ 6 ∥x∥. Очевидно,
достаточно убедиться в этом, когда D = diag(1, . . . , 1, dk, 1, . . . , 1),
dk ∈ [0, 1]. Имеем

Dx =
1

2
(1− dk)(x1, x2, . . . ,−xk, . . . , xn) +

1

2
(1− dk)x+ dkx,

следовательно, ∥Dx∥ 6 1
2(1− dk)∥x∥+ 1

2(1− dk)∥x∥+ dk∥x∥ = ∥x∥.
7.2. Норма на пространстве Cn называется монотонной, если из

неравенств |xk| 6 |yk|, k = 1, 2, . . . , n, следует, что ∥x∥ 6 ∥y∥. Всякая
монотонная норма является абсолютной. Действительно, если норма
монотонна, то для любого вектора x выполнены неравенства

∥(|x1|, |x2|, . . . , |xn|)∥ 6 ∥(x1, x2, . . . , xn)∥ 6 ∥(|x1|, |x2|, . . . , |xn|)∥.

Обратно, всякая абсолютная норма монотонна. В самом деле, если
для векторов x, y имеем, что |xk| 6 |yk|, k = 1, 2, . . . , n, то суще-
ствует матрица D = diag(d1q1, d2q2, . . . , dnqn), qk = cosφk + i sinφk,
0 6 dk 6 1, k = 1, 2, . . . , n, такая, что x = Dy. Используя теперь
определение абсолютной нормы и неравенство, установленное в п. 7.1,
нетрудно убедиться, что ∥x∥ 6 ∥y∥.

§ 3. Нормы на пространстве матриц

1. Обозначим через Mn множество всех квадратных матриц по-
рядка n с комплексными, вообще говоря, элементами. Определив на
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множестве Mn обычным образом операции сложения двух матриц и
умножения матрицы на число, мы превратим его в линейное про-
странство Cn2. На этом линейном пространстве введем норму, т. е.
поставим в соответствие каждой матрице A ∈ Mn число ∥A∥ так,
что:

1) ∥A∥ > 0 для любой матрицы A ∈ Mn, равенства ∥A∥ = 0
и A = 0 эквивалентны;

2) ∥αA∥ = |α|∥A∥ для любой матрицы A ∈Mn и любого α ∈ C;
3) ∥A+B∥ 6 ∥A∥+ ∥B∥ для любых матриц A,B ∈Mn.
Говорят в этом случае, что на пространстве матриц Mn введена

векторная норма. Понятно, что она обладает всеми свойствами, кото-
рые были изучены в предыдущем параграфе применительно к норме
векторов.

Чаще на пространстве Mn вводят так называемую матричную
норму. При этом дополнительно к 1)–3) должна выполняться аксиома

4) ∥AB∥ 6 ∥A∥∥B∥ для любых матриц A,B ∈Mn.
Не всякая векторная норма на Mn является матричной. Пусть,

например, ∥A∥ = max
16i,j6n

|aij|. Очевидно, это — векторная норма, но

она не является матричной. Действительно, пусть

A =

(
1 1
1 1

)
, тогда AA =

(
2 2
2 2

)
,

причем ∥A∥ = 1, ∥AA∥ = 2, и неравенство ∥AA∥ 6 ∥A∥∥A∥ не вы-
полнено.

Упражнение. Пусть ∥ ·∥ — матричная норма на Mn, S ∈ Mn —
произвольная невырожденная матрица. Покажите, что формула
∥A∥(s) = ∥SAS−1∥ ∀A ∈Mn определяет матричную норму на Mn.

2. Приведем примеры матричных норм.

1) Положим ∥A∥1 =
n∑

i,j=1

|aij|. Очевидно, три первых аксиомы нор-

мы выполнены. Проверим аксиому 4). По определению дляA,B ∈Mn

имеем

∥AB∥1 =
n∑

i,j=1

∣∣∣∣∣
n∑
k=1

aikbkj

∣∣∣∣∣ ,
следовательно,

∥AB∥1 6
n∑

i,j,k=1

|aik||bkj|.



324 Глава 18. Нормы векторов и матриц

Добавляя к сумме в правой части последнего неравенства неотрица-
тельные слагаемые, усилим неравенство:

∥AB∥1 6
n∑

i,j,k,m=1

|aik||bmj|.

Осталось заметить, что
n∑

i,j,k,m=1

|aik||bmj| =
n∑

i,k=1

|aik|
n∑

j,m=1

|bmj| = ∥A∥1∥B∥1.

2) Положим ∥A∥E =

(
n∑

i,j=1

|aij|2
)1/2

. Эта норма порождается

естественным скалярным произведением на пространстве Cn2, поэто-
му три первых аксиомы для нее выполняются. Норму ∥A∥E обыч-
но называют евклидовой нормой или нормой Фробениуса1). Дока-
жем справедливость четвертой аксиомы для этой нормы, опираясь
на неравенство Коши (см. с. 317):

∥AB∥2E =
n∑

i,j=1

∣∣∣∣∣
n∑
k=1

aikbkj

∣∣∣∣∣
2

6
n∑

i,j=1

n∑
k=1

|aik|2
n∑
k=1

|bkj|2 =

=
n∑

i,k=1

|aik|2
n∑

m,j=1

|bmj|2 = ∥A∥2E∥B∥2E.

Упражнение. Доказать, что норма ∥A∥ = n max
16i,j6n

|aij| является
матричной.

3. Пусть A ∈ Mn — произвольная квадратная матрица, ∥ · ∥ —
некоторая норма на пространстве Cn. Тогда существует неотрица-
тельное число NA такое, что

∥Ax∥ 6 NA∥x∥ ∀ x ∈ Cn. (3.1)

Действительно, поскольку всякая норма на Cn эквивалентна норме
∥ · ∥∞, т. е. c1∥x∥∞ 6 ∥x∥ 6 c2∥x∥∞ для любого x ∈ Cn, где c1,
c2 — положительные не зависящие от x постоянные, то справедлива
следующая цепочка неравенств:

1)Фердинанд Георг Фробениус (Ferdinand Georg Frobenius; 1849 — 1917) — немецкий матема-
тик.
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∥Ax∥ 6 c2∥Ax∥∞ = c2 max
16i6n

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣ 6 c2∥x∥∞ max
16i6n

n∑
j=1

|aij| 6

6 (c2/c1) max
16i6n

n∑
j=1

|aij|∥x∥.

Обозначим через ν(A) точную нижнюю грань всех чисел NA, для
которых выполнено (3.1). Очевидно, что можно дать и другое, экви-
валентное, определение функции ν на пространстве Mn

ν(A) = sup
x∈Cn, x̸=0

∥Ax∥
∥x∥

= sup
x∈Cn, ∥x∥=1

∥Ax∥. (3.2)

Очевидно, что
∥Ax∥ 6 ν(A)∥x∥ ∀x ∈ Cn.

Упражнение. Докажите, что для функции ν выполнены все
аксиомы матричной нормы.

Итак, всякая норма, заданная на пространстве Mn при помощи
равенства ∥A∥ = ν(A), определяет матричную норму на простран-
стве Mn. Матричную норму, сконструированную таким образом, на-
зывают подчиненной норме векторов.

Упражнение. Докажите, что при любом определении нормы на
пространстве Cn существует вектор x0 ∈ Cn такой, что ∥x0∥ = 1 и

∥Ax0∥ = sup
x∈Cn, ∥x∥=1

∥Ax∥,

т. е. в определении (3.2) символ точной верхней грани можно заменить
на символ максимума.

4. Приведем примеры вычисления подчиненных матричных
норм.

1) Пусть норма на пространстве Cn определена, как в п. 3, с. 319,

равенством ∥x∥1 =
n∑
k=1

|xk|. Тогда подчиненная норма матрицы есть

∥A∥1 = max
x∈Cn, ∥x∥1=1

∥Ax∥1.

Нетрудно видеть, что для любого вектора x ∈ Cn, ∥x∥1 = 1,
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∥Ax∥1 =
n∑
i=1

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣ 6
n∑
i=1

n∑
j=1

|aij||xj| =
n∑
j=1

|xj|
n∑
i=1

|aij| 6

6 max
16j6n

n∑
i=1

|aij|
n∑
j=1

|xj| = max
16j6n

n∑
i=1

|aij|.

Предположим, что max
16j6n

n∑
i=1

|aij| =
n∑
i=1

|aik|, и положим, что x̃ есть

вектор естественного базиса пространства Cn такой, что x̃k = 1, а все
остальные координаты вектора x̃ равны нулю. Ясно, что ∥x̃∥1 = 1, а

∥Ax̃∥1 =
n∑
i=1

|aik|. Таким образом, доказано, что

∥A∥1 = max
x∈Cn, ∥x∥1=1

∥Ax∥1 = max
16j6n

n∑
i=1

|aij|.

Поэтому норму ∥A∥1 часто называют столбцовой нормой матрицы A.
2) Определим норму на Cn равенством ∥x∥∞ = max

k616n
|xk|. Тогда

для любого x ∈ Cn такого, что ∥x∥∞ = 1,

∥Ax∥∞ = max
16i6n

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣ 6 max
16i6n

n∑
j=1

|aij||xj| 6

6 max
16j6n

|xj| max
16i6n

n∑
j=1

|aij| = max
16i6n

n∑
j=1

|aij|.

Положим, что max
16i6n

n∑
j=1

|aij| =
n∑
j=1

|akj| и определим вектор x̃ ∈ Cn при

помощи соотношений

x̃j =

{
ākj/|akj|, akj ̸= 0,

1, akj = 0,

где j = 1, 2, . . . , n, черта, как обычно, есть знак комплексного сопря-
жения. Ясно, что ∥x̃∥∞ = 1, причем элементарные выкладки показы-
вают, что для любого i = 1, 2, . . . , n выполнено неравенство∣∣∣∣∣

n∑
j=1

aijx̃j

∣∣∣∣∣ 6
n∑
j=1

|aij| 6
n∑
j=1

|akj|,
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а для i = k ∣∣∣∣∣
n∑
j=1

aijx̃j

∣∣∣∣∣ =
n∑
j=1

|akj|,

т. е. ∥Ax̃∥∞ = max
16i6n

n∑
j=1

|aij|. Таким образом,

∥A∥∞ = max
x∈Cn, ∥x∥∞=1

∥Ax∥∞ = max
16i6n

n∑
j=1

|aij|.

Норму ∥A∥∞ часто называют строчной нормой матрицы A.
3) Введем теперь на пространстве Cn норму, согласованную со

стандартным скалярным произведением, т. е. положим ∥x∥2 = |x|.
Для любого x ∈ Cn имеем ∥Ax∥22 = (Ax,Ax) = (A∗Ax, x). Матри-
ца A∗A эрмитова и неотрицательна. Поэтому существует ортонорми-
рованный базис {ek}nk=1 такой, что A∗Aek = ρ2ke

k, ρk = ρk(A) — неот-
рицательные числа, сингулярные числа матрицы A, k = 1, 2, . . . , n
(см. по этому поводу п. 2, с. 239, и приводимые там ссылки). Пред-

ставим вектор x в виде разложения по базису x =
n∑
k=1

ξke
k и предполо-

жим, что ∥x∥2 = 1. Тогда
n∑
k=1

|ξk|2 = 1, ∥Ax∥22 =
n∑
k=1

ρ2k|ξk|2 6 max
16k6n

ρ2k.

Пусть ρj = max
16k6n

ρk. Полагая x̃ = ej, получим ∥Ax̃∥22 = ρ2j . Таким

образом, доказано, что max
x∈Cn, ∥x∥2=1

∥Ax∥2 = max
16k6n

ρk, т. е.

∥A∥2 = max
16k6n

ρk(A).

4.1. Отметим следующий интересный для многих приложений
частный случай. Будем считать, что матрицаA эрмитова, т. е.A =A∗.
Тогда очевидно, что ρk(A) = |λk(A)|, k = 1, 2, . . . , n, где через λk(A)
обозначены собственные числа матрицыA. Таким образом, для любой
эрмитовой матрицы

∥A∥2 = max
16k6n

|λk(A)| = max
x∈Cn, x̸=0

|(Ax, x)|
(x, x)

= ρ(A),

где ρ(A) — спектральный радиус матрицы A (см. с. 212). Норму ∥A∥2
в связи с этим часто называют спектральной.
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4.2. Вычисление сингулярных чисел матрицы, вообще гово-
ря, — довольно сложная задача. Поэтому полезно получить неко-
торую оценку величины ∥A∥2, просто выражаемую через элементы
матрицы A. Докажем, что для любой квадратной матрицы A спра-
ведливо неравенство ∥A∥2 6 ∥A∥E. С этой целью заметим, что эле-

ментарные выкладки приводят к равенству1) tr(A∗A) =
n∑

i,j=1

|aij|2.

С другой стороны, tr(A∗A) =
n∑
k=1

ρ2k(A) > max
16k6n

ρ2k(A), следовательно,

∥A∥2 = max
16k6n

ρk(A) 6
(

n∑
i,j=1

|aij|2
)1/2

= ∥A∥E. (3.3)

Упражнение. Докажите, что для любой матрицы A: 1) нор-
мы ∥A∥2 и ∥A∥E не меняются при умножении A на любую унитарную
матрицу; 2) ∥A∥2 = ∥A∗∥2.

5. Знание матричной нормы матрицы оказывается, в частности,
полезным при оценке ее спектрального радиуса, а именно, для любой
квадратной матрицы A справедливо неравенство

ρ(A) 6 ∥A∥, (3.4)

где ∥A∥ — любая матричная норма матрицы A. В самом деле, пусть
λ, x — собственная пара матрицы A, а X — квадратная матрица,
столбцами (одинаковыми) которой служит вектор x. Тогда, очевид-
но, AX = λX и

|λ|∥X∥ = ∥AX∥ 6 ∥A∥∥X∥
для любой матричной нормы, причем ∥X∥ ̸= 0, так как вектор x
по определению собственного вектора не равен нулю. Таким обра-
зом, для любого собственного числа λ матрицы A верно неравен-
ство |λ| 6 ∥A∥, а это эквивалентно (3.4).

Из теоремы 3, с. 213, и оценки (3.4) очевидным образом вытекает

5.1. Следствие. Если некоторая матричная норма матрицы A
меньше единицы, то A — сходящаяся матрица.

6. Теорема. Для любой матричной нормы, определенной на
пространстве Mn, и для любой матрицы A ∈ Mn справедливо ра-
венство

ρ(A) = lim
k→∞

∥Ak∥1/k. (3.5)

1)Здесь след матрицы вычисляется как сумма элементов ее главной диагонали, см. п. 5, с. 193.
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Доказательство. Если λ — собственное число матрицы A,
то λk для любого целого положительного k есть собственное чис-
ло матрицы Ak. Поэтому, применяя неравенство (3.4), получим
(ρ(A))k = ρ(Ak) 6 ∥Ak∥, следовательно, ρ(A) 6 ∥Ak∥1/k для лю-
бого целого положительного k. Далее, пусть ε — произвольное поло-
жительное число. Тогда матрица (ρ(A) + ε)−1A сходящаяся, так как
все ее собственные числа по модулю меньше единицы. Следователь-
но, (ρ(A)+ε)−kAk → 0 при k → ∞. Поскольку любая норма — непре-
рывная функция (см. п. 4, с. 320, п. 1, с. 322), то ∥(ρ(A)+ε)−kAk∥ → 0
при k → ∞. Отсюда вытекает, что можно указать такое N > 0, что
для всех k > N выполнено неравенство ∥(ρ(A) + ε)−kAk∥ 6 1, или
∥Ak∥1/k 6 ρ(A) + ε. Таким образом, при любом ε > 0 для всех доста-
точно больших k справедливы оценки ρ(A) 6 ∥Ak∥1/k 6 ρ(A) + ε, а
это утверждение эквивалентно (3.5). �

Упражнение. Опираясь на формулу (3.5), докажите, что

ρ(A+B) 6 ρ(A) + ρ(B), ρ(AB) 6 ρ(A)ρ(B)

для любых перестановочных матриц A и B.

7. Теорема. Для любой матрицы A ∈Mn

ρ(A) = inf
S∈Mn,det(S)̸=0

∥SAS−1∥1 = inf
S∈Mn,det(S)̸=0

∥SAS−1∥∞. (3.6)

Доказательство. Проведем рассуждения применительно к
норме ∥·∥1. Для нормы ∥·∥∞ все рассуждения, фактически, дословно
повторяются. Матрицы A и SAS−1 подобны. Поэтому их спектры сов-
падают, следовательно, ρ(A) = ρ(SAS−1). Отсюда, используя (3.4),
получаем, что

ρ(A) 6 ∥SAS−1∥1 ∀S ∈Mn, det(S) ̸= 0. (3.7)

По теореме Шура, с. 198, существует унитарная матрица U такая,
что

U ∗AU = T, (3.8)
где T — верхняя треугольная матрица, по диагонали которой распо-
ложены λ1, λ2, . . . , λn — все собственные числа матрицы A. Пусть

D = diag(d, d2, . . . , dn),

где d — положительное число. Положим

Q = DTD−1. (3.9)
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Нетрудно убедиться, что

Q =


λ1 d−1t12 d−2t13 . . . d−(n−2)t1,n−1 d−(n−1)t1,n
0 λ2 d−1t23 . . . d−(n−3)t2,n−1 d−(n−2)t2,n
0 0 λ3 . . . d−(n−4)t3,n−1 d−(n−3)t3,n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . λn−1 d−1tn−1,n

0 0 0 . . . 0 λn

 . (3.10)

Фиксируем теперь некоторое положительное число ε. Выбирая d до-
статочно большим, можно добиться того, что сумма модулей элемен-
тов каждого столбца матрицы Q будет не больше ρ(A) + ε. Вслед-
ствие (3.8), (3.9) получаем SAS−1 = Q, где S = DU−1, причем
∥SAS−1∥1 = ∥Q∥1 6 ρ(A) + ε. Поскольку выполнения последнего
неравенства можно добиться за счет выбора d для произвольного по-
ложительного ε, то вместе с (3.7) это обеспечивает справедливость
первого равенства в (3.6). �

Упражнения.
1) Как следствие теоремы 7 докажите, что для любой матри-

цы A ∈Mn

ρ(A) = inf
∥·∥

∥A∥. (3.11)

Поясним, что здесь точная нижняя грань берется по всем матричным
нормам на Mn.

2) Докажите, что в равенстве (3.11) символ точной нижней грани,
вообще говоря, нельзя заменить на символ минимума.

§ 4. Элементы теории возмущений

Пусть A = {aij}ni,j=1 — произвольная квадратная матрица. Поло-
жим

Ri(A) =
∑

16j6n, j ̸=i
|aij|, i = 1, 2, . . . , n,

Cj(A) =
∑

16i6n, i ̸=j
|aij|, j = 1, 2, . . . , n.

Будем говорить, что A — матрица с диагональным преобладанием по
строкам, если

|aii| > Ri(A) ∀i = 1, 2, . . . , n, (4.1)
и A — матрица с диагональным преобладанием по столбцам, если

|aii| > Ci(A) ∀i = 1, 2, . . . , n. (4.2)
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Напомним, что определение диагонального преобладания по строкам
нами уже использовалось (см. (1.4), с. 303 ).

1. Теорема. Если A — матрица с диагональным преобладанием
по строкам, то она невырождена.

Доказательство. Достаточно установить, что уравнениеAx=0
имеет только тривиальное решение. Предположим противное, и
пусть xi — максимальная по модулю компонента нетривиального ре-
шения. Запишем соответствующее уравнение исследуемой системы в
виде

aii = −
∑

16j6n, j ̸=i
aijxj/xi,

откуда, очевидно, получим, что |aii| 6 Ri(A), но это неравенство про-
тиворечит условию (4.1). �

Поскольку определители матриц A и AT совпадают, то матрица
с диагональным преобладанием по столбцам также невырождена.

Упражнение. Покажите, что если выполнено условие (4.1),
или (4.2), то все главные миноры матрицы A отличны от нуля.

2. Теорема (Гершгорин1)). Все характеристические числа
произвольной квадратной матрицы A порядка n лежат в объеди-
нении кругов

GR
i = {z ∈ C : |z − aii| 6 Ri(A)}, i = 1, 2, . . . , n. (4.3)

Доказательство. Пусть λ, x — собственная пара матрицы A, и
пусть xi — максимальная по модулю компонента вектора x. Очевид-
но, xi ̸= 0. Из определения собственной пары вытекает равенство

(aii − λ)xi = −
∑

16j6n, j ̸=i
aijxj,

следовательно, |aii − λ||xi| 6 Ri(A)|xi|, и |aii − λ| 6 Ri(A). Таким
образом, каждое характеристическое число матрицы A принадлежит
одному из кругов GR

i , i = 1, 2, . . . , n. �
Поскольку все характеристические числа матриц A, AT совпада-

ют, то все они лежат также в объединении кругов

GC
i = {z ∈ C : |z − aii| 6 Ci(A)}, i = 1, 2, . . . , n. (4.4)

Это есть так называемый столбцовый вариант теоремы Гершгорина.
1)Семён Аронович Гершгорин (1901–1933) — советский математик.
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Упражнение. Докажите теорему Гершгорина, опираясь на тео-
рему 1, и, наоборот, докажите теорему 1, опираясь на теорему Герш-
горина.

Теоремы 1, 2 можно трактовать как теоремы о возмущениях диа-
гональной матрицы D = diag(a11, a22, . . . , ann). Первая из них пока-
зывает, что достаточно малые возмущения диагональной невырож-
денной матрицы приводят также к невырожденной матрице, а вто-
рая показывает, что малые возмущения такой матрицы приводят к
малым возмущениям ее характеристических чисел.

Следующие две теоремы, называемые теоремами Бауэра — Фай-
ка, в определенном смысле, распространяют теорему Гершгорина на
более общий класс матриц, подобных диагональным, иначе говоря,
на матрицы простой структуры (см. §6, гл. 11).

3. Теорема. Пусть для квадратной матрицы A = {aij}ni,j=1

существует невырожденная матрица V такая, что

V −1AV = Λ = diag(λ1, λ2, . . . , λn), (4.5)

B = {bij}ni,j=1 — произвольная квадратная матрица. Тогда все харак-
теристические числа матрицы A+B лежат в объединении кругов

Gi = {z ∈ C : |z − λi| 6 ∥B∥∥V ∥∥V −1∥}, i = 1, 2, . . . , n. (4.6)

Под нормой матрицы здесь может пониматься любая норма, под-
чиненная абсолютной норме векторов.

Доказательство. Пусть λ, x есть собственная пара матри-
цы A+B. Тогда (λI−Λ)V −1x = V −1BV V −1x, откуда (см. п 7, с. 322)
получаем min

16i6n
|λ− λi|∥V −1x∥ 6 ∥B∥∥V −1∥∥V ∥∥V −1x∥, но V −1x ̸= 0,

следовательно, min
16i6n

|λ− λi| 6 ∥B∥∥V −1∥∥V ∥, поэтому λ ∈
n∪
i=1

Gi. �

4. Теорема. Пусть выполнены условия теоремы 3. Тогда все
характеристические числа матрицы A + B лежат в объединении
кругов

Gi = {z ∈ C : |z − λi| 6 nsi∥B∥2}, i = 1, 2, . . . , n, (4.7)

где si = ∥ui∥2∥vi∥2/|(ui, vi)|, vi — i-й столбец матрицы V , ui — i-й
столбец матрицы U = (V −1)∗.

Замечание. Ясно, что vi, λi, i = 1, 2, . . . , n, — собственные па-
ры матрицы A, ui, λ̄i, i = 1, 2, . . . , n, — собственные пары матри-
цы A∗. Каждое из чисел si, i = 1, 2, . . . , n, не меньше единицы. Их
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называют коэффициентами перекоса соответствующих собственных
векторов матрицы A. Если λ — алгебраически простое характери-
стическое число матрицы A, то, очевидно, λ̄— алгебраически простое
характеристическое число матрицы A∗. Отвечающие им собственные
подпространства одномерны и, следовательно, соответствующий ко-
эффициент перекоса определяется однозначно.

Доказательство теоремы 4. Характеристические числа мат-
риц A+B и Λ+V −1BV = Λ+ B̃, где B̃ = U ∗BV , совпадают. Исполь-
зуя столбцовую теорему Гершгорина, получим, что все собственные
числа матрицы Λ + B̃ лежат в объединении кругов

G′
i = {z ∈ C : |z − λi − b̃ii| 6 Ci(B̃)}, i = 1, 2, . . . , n.

Заметим теперь, что |z−λi− b̃ii| > |z−λi|− |b̃ii|, Ci(B̃)+ |b̃ii| = ∥b̃i∥1,
где, как обычно, b̃i — i-й столбец матрицы B̃. Отсюда вытекает, что
все собственные числа матрицы A+B лежат в объединении кругов

G′′
k = {z ∈ C : |z − λk| 6 ∥b̃k∥1}, k = 1, 2, . . . , n.

Оценим ∥b̃k∥1. Введем в рассмотрение векторы tk ∈ Cn с компонента-
ми

tkj =

{
b̃kj/|b̃kj |, b̃kj ̸= 0,

0, b̃kj = 0.

Элементарно проверяется равенство ∥b̃k∥1 = (B̃ik, tk), где ik — стол-
бец единичной матрицы. Отсюда, используя неравенство Коши — Бу-
няковского, получаем

∥b̃k∥1 = (BV ik, Utk) 6 ∥B∥2∥U∥2∥vk∥2∥tk∥2. (4.8)

Нетрудно убедиться, что ∥tk∥2 6
√
n. Далее, вследствие (3.3), с. 328,

имеем ∥U∥2 6
(

n∑
k=1

∥uk∥22
)1/2

. Столбцы матрицы U определяются,

очевидно, с точностью до постоянных ненулевых множителей. Нор-
мируем их так, чтобы ∥uk∥2 = 1 для всех k = 1, 2, . . . , n. Очевид-
но, при этом столбцы матрицы V должны быть нормированы так,
чтобы (vk, uk) = 1 для всех k = 1, 2, . . . , n. При этом будем иметь
∥vk∥2 = ∥vk∥2∥uk∥2/|(uk, vk)| = sk. Таким образом, из (4.8) получаем,
что ∥b̃k∥1 6 nsk∥B∥2. �

При сравнении оценок (4.6), (4.7) полезной оказывается
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5. Теорема. При любой нормировке столбцов матрицы V ,
определенной соотношением (4.5), выполнено неравенство

∥V ∥2∥V −1∥2 > max
16k6n

sk. (4.9)

Столбцы матрицы V можно нормировать так, что

∥V ∥2∥V −1∥2 6
n∑
k=1

sk. (4.10)

Доказательство. Очевидно, что V ik = vk для любого k = 1,
2, . . . , n. Поэтому ∥V ∥2 = sup

∥x∥2=1

∥V x∥2 > ∥vk∥2. Точно так же

∥V −1∥2 = ∥U∥2 > ∥uk∥2, и неравенство (4.9) доказано. Нормируем
теперь столбцы матрицы V так, чтобы ∥vk∥2 = s

1/2
k . Тогда вследствие

равенства (vk, uk) = 1 получаем, что ∥uk∥2 = s
1/2
k , k = 1, 2, . . . , n. От-

сюда, очевидно, вытекает, что ∥V −1∥E = ∥V ∥E =

(
n∑
k=1

sk

)1/2

. Оцен-

ка (4.10) следует теперь из неравенства (3.3), с. 328. �
Замечание. Матрица V , столбцы которой образуют базис про-

странства Cn, состоящий из собственных векторов матрицы A, не
определяется однозначно. При любом выборе V справедливо нера-
венство ∥V ∥∥V −1∥ > 1. Равенство здесь достигается, например, то-
гда, когда в качестве нормы матриц выбрана спектральная норма,
а матрица V унитарна. По теореме 9, с. 226, матрица унитарно по-
добна диагональной тогда и только тогда, когда она — нормаль-
ная матрица. Таким образом, если A — нормальная матрица, λi,
i = 1, 2, . . . , n, — ее характеристические числа, то при любой мат-
рице B все характеристические числа матрицы A + B лежат в объ-
единении кругов Gi = {z ∈ C : |z − λi| 6 ∥B∥2}, i = 1, 2, . . . , n.



Глава 19
Неотрицательные матрицы

В этой главе изучаются спектральные свойства матриц с неотри-
цательными элементами. Совокупность излагаемых здесь результа-
тов принято называть теорией Перрона — Фробениуса1).

§ 1. Простейшие свойства неотрицательных матриц

1. Вектор x = {xk}nk=1 ∈ Rn называется неотрицательным (пи-
шут x > 0), если xk > 0 для всех k = 1, 2, . . . , n. Вектор x ∈ Rn назы-
вается положительным (x > 0), если xk > 0 для всех k = 1, 2, . . . , n.
Аналогично, матрица A называется неотрицательной (A > 0), если
akl > 0 для всех k, l, положительной (A > 0), если akl > 0 для всех
k, l.

По определению x > y (x > y) для x, y ∈ Rn, если xk > yk
(xk > yk) для всех k = 1, 2, . . . , n. Для матриц A, B одинакового
порядка полагаем A > B (A > B), если akl > bkl (akl > bkl) для
всех k, l.

Аналогично понимаются неравенства противоположного смысла
для векторов и матриц.

В дальнейшем будем использовать обозначения: |x| = {|xk|}nk=1

для x ∈ Cn, |A| = {|akl|} для любой матрицы A 2).

2. Отметим некоторые простейшие свойства неотрицательных
векторов и матриц: если A > 0, x > 0, x ̸= 0, то Ax > 0; если A > 0,
x > y, то Ax > Ay; если A > 0, x > 0, Ax = 0, то A = 0.

3. Если A > 0, ρ(A) < 1, то (I − A)−1 > 0. Действительно,
если ρ(A) < 1, то (I − A)−1 = I + A+ A2 + · · · (см. с. 214).

4. Лемма. Для любой квадратной матрицы A справедливо
неравенство ρ(A) 6 ρ(|A|). Если |A| 6 B, то ρ(|A|) 6 ρ(B).

Доказательство. Нетрудно видеть, что |AB| 6 |A||B| для лю-
бых матриц A, B; ∥A∥E 6 ∥B∥E, если |A| 6 |B|. Поэтому из нера-

1)Оскар Перрон (Oskar Perron; 1880 — 1975) — немецкий математик.
2)Некоторые обозначения и термины, введенные в настоящей главе, не совпадают с исполь-

зованными в предыдущих главах.
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венства |A| 6 B вытекает, что ∥Ak∥E 6 ∥|A|k∥E 6 ∥Bk∥E для любо-
го k > 1, следовательно,

∥Ak∥1/kE 6 ∥|A|k∥1/kE 6 ∥Bk∥1/kE , k = 1, 2, . . . (1.1)

Воспользуемся теперь теоремой 6, с. 328, и перейдем к пределу в нера-
венствах (1.1). �

5. Квадратная матрица P порядка n > 1 называется матрицей
перестановок , если каждая ее строка и каждый ее столбец содержат
ровно по одному ненулевому элементу, равному единице. Ясно, что
матрица P ортогональна, т. е. P−1 = P T . Для любого x ∈ Cn векто-
ры x и Px отличаются лишь порядком следования элементов.

Квадратная матрица A называется разложимой, если найдется
такая матрица перестановок P , что

PAP T =

(
A11 A12

0 A22

)
, (1.2)

где A11, A22 — квадратные матрицы. В противном случае матрица A
называется неразложимой. Матрицы A и PAP T различаются лишь
перестановкой строк и столбцов (с одинаковыми номерами).

5.1. Лемма. Если матрица A неотрицательна и неразложима,
то ее спектральный радиус положителен.

Доказательство. Неразложимая матрица, очевидно, не может
содержать нулевых строк, поэтому Ay > 0 для любого положитель-
ного вектора y. Но тогда Apy > 0 для любого целого p > 1. Поэтому
матрица A не нильпотентна и, следовательно, среди ее характеристи-
ческих чисел есть ненулевые. �

5.2. Следствие. Спектральный радиус положительной матри-
цы положителен.

5.3. Лемма Если неотрицательная матрица A порядка n
неразложима, то (I + A)n−1 > 0.

Доказательство. Достаточно установить, что

(I + A)n−1y > 0 ∀ y > 0, y ̸= 0. (1.3)

Ясно, что если y > 0, y ̸= 0, то

z = (I + A)y (1.4)

есть ненулевой неотрицательный вектор, причем ненулевых компо-
нент у него не меньше чем у вектора y. Очевидно также, что нулевые
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компоненты вектора z имеют те же номера, что и нулевые компо-
ненты вектора y. Если матрица A такова, что для любого ненулевого
неотрицательного вектора y вектор z имеет больше ненулевых компо-
нент чем вектор y, то соотношение (1.3) доказано. В противном слу-
чае можно указать такую матрицу перестановок P , что Py = (y1, 0),
Pz = (z1, 0), где y1, z1 — положительные векторы одинаковой дли-
ны n1 < n. Из (1.4) в результате элементарных выкладок получаем(

z1

0

)
=

(
y1

0

)
+ PAP T

(
y1

0

)
. (1.5)

Представим матрицу B = PAP T в блочном виде

B =

(
B11 B12

B21 B22

)
,

где B11 — квадратная матрица размера n1. Из (1.5) следует,
что B21y

1 = 0. Поскольку y1 > 0, B21 > 0, отсюда вытекает,
что B21 = 0, т. е. матрица A разложима. �

§ 2. Положительные матрицы

1. Теорема. Пусть A > 0. Тогда ρ(A) > 0, и существует
положительный вектор x такой, что

Ax = ρ(A)x. (2.1)

Доказательство. Положительность ρ(A) непосредственно вы-
текает из положительности матрицы A (см. следствие 5.2). Оче-
видно, существует характеристическое число λ матрицы A такое,
что |λ| = ρ(A). Найдется не равный нулю вектор u ∈ Cn такой,
что Au = λu. Тогда ρ(A)|u| 6 A|u|, и y = A|u| − ρ(A)|u| > 0. Ес-
ли при этом y = 0, то ρ(A) — собственное число матрицы A, при-
чем, поскольку |u| > 0 и |u| ̸= 0, то A|u| > 0 и поэтому |u| > 0,
т. е. теорема доказана. Если принять, что y ̸= 0, то вследствие по-
ложительности матрицы A получаем, что Ay > 0. Пусть z = A|u|.
Ясно, что z > 0. С другой стороны, Ay = Az − ρ(A)z > 0. Поэто-
му существует ε > 0 такое, что Az − (ρ(A) + ε)z > 0. Последнее
неравенство можно записать в виде (I − (1/(ρ(A) + ε))A)z < 0, но
матрица (I−(1/(ρ(A)+ε))A)−1 существует и положительна (см. п. 3,
с. 335), следовательно, z<0. Получили противоречие. Остается при-
нять, что y = 0. �
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2. Теорема. Пусть A > 0. Тогда собственное подпространство
матрицы A, отвечающее ρ(A), одномерно.

Доказательство. Пусть не равные нулю векторы x, y тако-
вы, что Ax = ρ(A)x, Ay = ρ(A)y . Как следует из доказательства
предыдущей теоремы, тогда |x| > 0, |y| > 0. Положим z = y1x− x1y.
Получим z1 = 0, Az = ρ(A)z. Вектор z не может быть собственным
вектором, отвечающим ρ(A), так как имеет нулевую компоненту. Зна-
чит, z = 0, т. е. векторы x, y пропорциональны. �

3. Лемма. Пусть A > 0. Тогда все жордановы клетки жорда-
новой формы матрицы A, отвечающие ρ(A), имеют первый поря-
док.

Доказательство. Очевидно, достаточно установить, что все
жордановы клетки жордановой формы матрицы B = ρ(A)−1A, от-
вечающие ее собственному числу, равному единице, имеют первый
порядок. Предположим противное, и пусть J = SBS−1 — жорданова
форма матрицы B. Из формулы (15.3), с. 213, тогда сразу же следует,
что lim

k→∞
∥Jk∥∞ = ∞, но Jk = SBkS−1, ∥Jk∥∞ 6 ∥S∥∞∥Bk∥∞∥S−1∥∞,

поэтому lim
k→∞

∥Bk∥∞ = ∞. С другой стороны, по теореме 1 существу-

ет положительный вектор x такой, что Bx = x, и тогда Bkx = x
при любом целом неотрицательном k. Поскольку B > 0, x > 0,
то, как нетрудно убедиться, ∥x∥∞ = ∥Bkx∥∞ > min

16i6n
xi∥Bk∥∞, т. е.

∥Bk∥∞ 6 max
16i6n

xi/ min
16i6n

xi. �

Как известно (см. п. 1.3, с. 210), количество жордановых клеток,
отвечающих характеристическому числу матрицы, совпадает с его
геометрической кратностью. Поэтому из теоремы 2 и леммы 3 сразу
же следует

4. Теорема. Пусть A > 0. Тогда алгебраическая кратность
характеристического числа ρ(A) матрицы A равна единице.

5. Теорема. Положительная матрица A не может иметь
характеристических чисел, равных по модулю ρ(A) и отличных
от ρ(A).

Доказательство. Предположим противное. Тогда существу-
ет ненулевой вектор x ∈ Cn такой, что Ax = λx, |λ| = ρ(A),
λ ̸= ρ(A). Как и при доказательстве теоремы 1, получаем, что
A|x| = ρ(A)|x|, |x| > 0. Очевидно также, что |Ax| = ρ(A)|x|, следова-
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тельно, |Ax| = A|x|. В частности,

∣∣∣∣∣ n∑j=1

a1jxj

∣∣∣∣∣ = n∑
j=1

a1j|xj| =
n∑
j=1

|a1jxj|

(здесь n — порядок матрицы A). Модуль суммы ненулевых ком-
плексных чисел может быть равен сумме их модулей лишь при усло-
вии, что существуют положительные числа α2, α3, . . .αn такие, что
a1jxj = αja11x1, j = 2, 3, . . . , n 1). Следовательно,

x = x1y, (2.2)

где y = (1, y2, . . . , yn), yj = αja11/a1j > 0, j = 2, 3, . . . , n. Поэтому
Ax = x1Ay = λx = λx1y и, поскольку x1 ̸= 0, то Ay = λy. Отсю-
да вследствие положительности y получаем, что Ay = ρ(A)y. Таким
образом x и y — собственные векторы матрицы A, отвечающие раз-
личным собственным числам. Вопреки (2.2) они не могут быть про-
порциональными (см. теорему 2, с. 186). �

6. Теорема. Пусть A > 0. Если собственный вектор матри-
цы A неотрицателен, то он отвечает ее собственному числу ρ(A).

Доказательство. В самом деле, пусть x ̸= 0, x > 0 и Ax = λx.
Матрица AT положительна, поэтому существует положительный век-
тор y такой, что ATy = ρ(AT )y. Спектральные радиусы взаим-
но транспонированных матриц, очевидно, совпадают, следователь-
но,ATy = ρ(A)y. Умножим почленно это равенство скалярно2) на век-
тор x. После очевидных преобразований получим λ(x, y) = ρ(A)(x, y).
Ясно, что (x, y) > 0, поэтому λ = ρ(A). �

§ 3. Неотрицательные матрицы

1. Теорема. Пусть A > 0. Тогда существует вектор x > 0,
x ̸= 0, такой, что Ax = ρ(A)x.

Доказательство. Положим Ak = A + (1/k)B, где B — поло-
жительная матрица, k — положительное целое число. Матрица Ak

положительна. По теореме 1, с. 337, существует вектор xk > 0 та-
кой, что Akx

k = ρ(Ak)x
k. Можно считать также, что ∥xk∥2 = 1.

Множество векторов xk, k = 1, 2, . . . , ограничено в пространстве Rn.
По теореме Больцано — Вейерштрасса существует подпоследователь-
ность {xki}, сходящаяся к некоторому вектору x. Очевидно, что x > 0

1)Сделайте рисунок!
2)Здесь и далее под скалярным произведением понимается стандартное скалярное произве-

дение в пространстве Rn.
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и ∥x∥2 = 1, т. е. x ̸= 0. В силу леммы 4, с. 335, последователь-
ность {ρ(Ak)} не возрастает и ограничена снизу числом ρ(A). По-
этому lim

k→∞
ρ(Ak) = r > ρ(A). Переходя к пределу в равенствах

Akix
ki = ρ(Aki)x

ki при i → ∞, получим Ax = rx, т. е. r — харак-
теристическое число матрицы A, поэтому r 6 ρ(A), следователь-
но, r = ρ(A). �

2. Теорема. Пусть A — неотрицательная матрица порядка n.
Тогда

ρ(A) = max
x>0, x̸=0

min
16i6n, xi ̸=0

(Ax)i
xi

. (3.1)

Доказательство. Положим f(x) = min
16i6n, xi ̸=0

(Ax)i/xi для

x > 0, x ̸= 0. Нетрудно убедиться, что f(x)x 6 Ax. Тем более,

f(x)x 6 Akx, (3.2)

где Ak — матрица, определенная в доказательстве предыдущей тео-
ремы. Как мы уже знаем, существует положительный вектор y та-
кой, что AT

k y = ρ(Ak)y. Из (3.2) очевидным образом получаем, что
f(x)(x, y) 6 (Akx, y) = ρ(Ak)(x, y). Отсюда вследствие положитель-
ности (x, y) вытекает, что f(x) 6 ρ(Ak). Как было установлено при
доказательстве предыдущей теоремы, lim

k→∞
ρ(Ak) = ρ(A), поэтому

f(x) 6 ρ(A) для любого x > 0, x ̸= 0. В то же время, теорема 1
гарантирует существование неотрицательного ненулевого вектора z
такого, что Az = ρ(A)z. Очевидно, что f(z) = ρ(A). �

Упражнение. Докажите, что

ρ(A) = min
x>0, x̸=0

max
16i6n, xi ̸=0

(Ax)i
xi

.

§ 4. Неразложимые неотрицательные матрицы

1. Теорема. Пусть A — неразложимая неотрицательная
матрица. Тогда существует положительный вектор x такой,
что Ax = ρ(A)x.

Доказательство. Из теоремы 1 предыдущего параграфа вы-
текает существование ненулевого неотрицательного вектора x тако-
го, что Ax = ρ(A)x. Покажем, что на самом деле x > 0. Пусть n —
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порядок матрицы A. Для выбранного нами вектора x выполнено ра-
венство (I + A)n−1x = (1 + ρ(A))n−1x. По лемме 5.3, с. 336, матри-
ца (I + A)n−1 положительна, следовательно, вектор y = (I + A)n−1x
положителен, но тогда и вектор x = (1 + ρ(A))1−ny положителен. �

Упражнение. Докажите, что теорема 6, с. 339, справедлива и
для неотрицательных неразложимых матриц.

2. Теорема. Пусть A — неразложимая неотрицательная
матрица. Тогда алгебраическая кратность характеристического
числа ρ(A) матрицы A равна единице.

Доказательство. Пусть λ1, λ2, . . . , λn — характеристические
числа матрицы A (с учетом их кратностей). Существует невырожден-
ная матрица T такая, что A = TJT−1, где J — треугольная матрица с
диагональными элементами, равными λ1, λ2, . . . , λn (например, J —
жорданова форма A). Очевидно, (I +A)n−1 = T (I + J)n−1T−1 и, сле-
довательно, все характеристические числа матрицы (I+ A)n−1 совпа-
дают с диагональными элементами треугольной матрицы (I+ J)n−1,
т. е. вычисляются по формулам (1 + λk)

n−1, k = 1, 2, . . . , n. Нетруд-
но убедиться (сделайте рисунок!), что |1 + λk| 6 1 + ρ(A), для всех
k = 1, 2, . . . , n, причем равенство достигается тогда и только то-
гда, когда λk = ρ(A). По теореме 1 среди характеристических чисел
матрицы A есть равные ρ(A). Поэтому спектральный радиус матри-
цы (I +A)n−1 равен (1+ ρ(A))n−1. Матрица (I +A)n−1 при принятых
нами условиях положительна, следовательно, (1 + ρ(A))n−1 — ее ал-
гебраически простое характеристическое число, значит, среди всех
характеристических чисел матрицы A (с учетом их кратностей) най-
дется только одно, равное ρ(A). �

3. Через S(A) будем далее обозначать окружность с центром в
начале координат радиуса ρ(A). Окружность S(A) называют спек-
тральной окружностью матрицы A. Если матрица A неразложима
и неотрицательна, то среди ее характеристических чисел может ока-
заться несколько, лежащих на S(A). Такова, например, матрица

A =

(
0 1
1 0

)
.

Характеристические числа этой матрицы делят ее спектральную
окружность пополам.

Оказывается, что характеристические числа любой неразложи-
мой неотрицательной матрицы распределяются по ее спектральной
окружности аналогично.

Чтобы установить это, нам потребуется
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4. Теорема. Пусть A — неразложимая неотрицательная
матрица, |B| 6 A. Если при этом ρ(B) = ρ(A), и µ — характе-
ристическое число матрицы B такое, что µ = q0ρ(A), |q0| = 1, то
матрицы B и q0A подобны.

Доказательство. По условию теоремы существует не равный
нулю вектор x такой, что Bx = µx. Справедлива цепочка соотноше-
ний

ρ(A)|x| = |µx| = |Bx| 6 |B||x| 6 A|x|. (4.1)
Покажем, что z = A|x| − ρ(A)|x| = 0. Прежде всего заметим,
что z > 0. Далее, поскольку матрица AT так же, как и матрица A,
неотрицательна и неразложима, то по теореме 1 существует поло-
жительный вектор y такой, что ATy = ρ(A)y. Тогда получаем, что
(z, y) = (A|x|, y)− ρ(A)(|x|, y) = 0, а это невозможно, если z ̸= 0. Та-
ким образом, A|x| = ρ(A)|x|, и из (4.1) вытекает, что (A−|B|)|x| = 0.
Поскольку A−|B| > 0, а вследствие теорем 1, 2 справедливо неравен-
ство |x| > 0, отсюда получаем, что |B| = A. Положим qk = xk/|xk|,
k = 1, 2, . . . , n, D = diag(q1, q2, . . . , qn). Очевидно, что |qk| = 1,
k = 1, 2, . . . , n,

D|x| = x, BD|x| = Bx = q0ρ(A)x = q0DA|x|,

следовательно, (q−1
0 D−1BD − A)|x| = 0. Пусть C = q−1

0 D−1BD.
Нетрудно видеть, что |C| = |B|, значит, |C| = A, и, таким образом,
(|C| − C)|x| = 0. Отделяя вещественную и мнимую части матрицы
C − |C|, получим, что (|C| −ReC)|x| = 0. Очевидно, что ReC 6 |C|,
следовательно, |C| = ReC, т. е. C = |C|, C = A, и B = Dq0AD

−1. �
5. Теорема. Пусть A — неразложимая неотрицательная

матрица и пусть λ0, λ1, . . . , λp−1 — все характеристические чис-
ла матрицы A, принадлежащие S(A)1). Тогда все они алгебраически
простые и

λk = ρ(A)

(
cos

2πk

p
+ i sin

2πk

p

)
, k = 0, 1, 2, . . . , p− 1. (4.2)

Доказательство. При p = 1 доказываемое утверждение — оче-
видное следствие теорем 1, 2. Пусть p > 1, и пусть λ = qρ(A) ∈ S(A)
есть характеристическое число матрицы A. Используем теорему 4,
полагая B = A, µ = λ. Получим, что матрицы A и qA подобны. Зна-
чит, их характеристические числа (с учетом кратностей) совпадают.

1)Для определенности считаем их упорядоченными по неубыванию аргумента.
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Каждое характеристическое число матрицы A, принадлежащее S(A),
есть qρ(A) при соответствующем выборе q, |q| = 1. По теореме 2 чис-
ло ρ(A) — алгебраически простое характеристическое число матри-
цы A. Поэтому все характеристические числа матрицы A, лежащие
на S(A), алгебраически простые. Пусть qρ(A), q̃ρ(A) ∈ S(A) — ха-
рактеристические числа матрицы A. Тогда A = qDAD−1 = q̃D̃AD̃−1,
следовательно,

A = D̃Dq̃qAD−1D̃−1 = (D̃D)q̃qA(D̃D)−1, A = D−1q−1AD.

Отсюда вытекает, что (q̃q)ρ(A), q−1ρ(A) — характеристические чис-
ла матрицы A. Таким образом, если ρ(A), q1ρ(A), . . . , qp−1ρ(A) —
все характеристические числа матрицы A, принадлежащие S(A), то
множество чисел G = {q0 = 1, q1, . . . , qp−1} таково, что если q ∈ G,
то q−1 ∈ G, если q, q̃ ∈ G, то qq̃ ∈ G. Упорядочим все числа из G
по возрастанию аргумента. Ясно, что qk ∈ G лишь если qk/q1 = qk−1,
k = 2, 3, . . . , p − 1; qp−1q1 ∈ G лишь при условии, что qp−1q1 = 1.
Отсюда следует, что arg qk = (2π/p)k, k = 0, 1, . . . , p− 1, т. е. форму-
ла (4.2) доказана. �

Замечание 1. Из доказательства теоремы 5 следует, что ес-
ли на спектральной окружности лежат p характеристических чисел
неразложимой неотрицательной матрицы A, то матрицы A и q1A,
где q1 = cos(2π/p)+ i sin(2π/p) подобны. Поэтому вся система харак-
теристических чисел матрицы A инвариантна относительно поворота
плоскости на угол 2π/p.

Упражнение. Сделайте рисунок, показывающий расположение
всех характеристических чисел неразложимой неотрицательной мат-
рицы A. Особо разберите случай, когда матрица A невырождена, а
n — простое число.

Замечание 2. В ходе доказательства теоремы 5 установлено,
что множество G — конечная абелева группа. Обоснование на языке
теории групп того, что точки G — корни степени p из единицы см., на-
пример, в [10] (по списку дополнительной литературы), задача 1637.
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— положительная, 335
— положительно определенная, 223
— преобразования переменных, 257
— присоединенная, 97
— прямоугольная, 87
— разложимая, 336
— симметричная, 108
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уравнений, 83
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— спектр, 185
— спектральная окружность, 341
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— спектральный радиус, 212
— умножение
— — на число, 89
— характеристические числа, 185
— характеристический полином, 185
Метод
— Гаусса, 99
— Зейделя, 304
— Лагранжа (выделения полных квад-

ратов), 258
— релаксации, 306
— Якоби, 303, 312
Минор, 77
— базисный, 171
— главный, 105
— диагональный, 191
— окаймляющий, 171
Мнимая единица, 8
Многочлен, 18
— нулевой, 18
— приведенный (нормированный), 22
Многочлена
— корень, 21
— — кратный, 21
— — простой, 21
— коэффициенты, 18
— порядок, 18
Многочленов
— деление, 20
Невязка, 219
Невязки
— функция (функционал), 219
Неравенство
— Бесселя, 150
— Гёльдера, 317
— Коши, 50, 317
— Коши — Буняковского, 131
— Минковского, 128, 317
— треугольника, 50, 128, 319
— треугольника (Минковского), 132
— Юнга, 317
Норма
— на пространстве Cn, 319
— — абсолютная, 322
— — монотонная, 322
Нормы
— эквивалентные, 320
Оператор
— единичный, 156
— кососимметричный, 247
— косоэрмитов, 220

— линейный, 155
— невырожденный, 167
— неотрицательный, 222
— нильпотентный, 200
— нормальный, 224
— нулевой, 156
— обратимый, 158
— обратный, 157
— ортогональный, 248
— положительно определеннный, 222
— проектирования, 156
— — ортогонального, 156
— простой структуры, 189
— разложения по базису, 159
— растяжения
— — левый, 243
— — правый, 243
— самосопряженный (эрмитов), 220
— скалярный, 163
— сопряженный, 216
— унитарный, 223
Оператора
— дефект, 161
— жорданово представление, 202
— инвариантное подпространство, 181
— инварианты, 191
— индекс нильпотентности, 200
— компоненты
— — ковариантные, 245
— — контравариантные, 245
— — смешанные, 245
— матрица, 162
— область значений
— — образ, 160
— определитель, 167
— полярное разложение, 243
— ранг, 161
— след, 193
— собственная пара, 183
— собственное подпространство, 183
— собственное число, 183
— собственный вектор, 183
— спектр, 186
— спектральное представление , 190
— сужение, 183
— характеристические числа, 186
— характеристический полином, 186
— ядро, 160
Операторов
— линейная комбинация, 156
— линейное пространство, 168
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— — вещественное, 168
— произведение, 156
— пространство
— — евклидово, 243
— — евклидово вещественное, 248
— скалярное произведение, 243
Операторы
— перестановочные, 185
Определитель, 75
— Вандермонда, 81
Определителя
— разложение
— — по столбцу, 77
— — по строке, 77
— свойства
— — третьего порядка, 34
Отображение, 155
— линейное, 155
Парабола, 281
Параболоид, 301
— гиперболический, 289
— эллиптический, 287
Параболы
— вершина, 281
— директриса, 281
— фокус, 281
Параметр
— итерационный, 306
— релаксационный, 306
Переменные
— свободные, 178
Перестановка, 72
— нечетная, 73
— четная, 73
Перестановки
— сигнатура, 73
Поверхность
— линейчатая, 292
Поверхность второго порядка, 284
Подпространств
— пересечение, 145
— сумма, 144
— — ортогональная, 146
— — прямая, 145
Подпространства
— базис, 145
— ортогональные, 146
— размерность, 145
Подпространство, 144
— корневое, 209
— нулевое, 145

— тривиальное, 181
— циклическое, 209
Полином, 18
Полиномы
— Лежандра, 141
— Чебышева, 141
Преобразование
— переменных
— — аффинное, 265
— подобия, 166
— пространства, 155
Приближение
— наилучшее, 148
Приближения
— наилучшего элемент, 154
Проекция
— ортогональная, 150
Пространства
— изоморфные, 159
— размерность, 123
Пространство
— Cn, 114
— Rn, 112
— арифметическое, 128
— бесконечномерное, 124
— векторое, 115
— евклидово
— — вещественное, 129
— — комплексное (унитарное), 130
— конечномерное, 123
— линейное
— — вещественное, 115
— — комплексное, 115
Процесс
— ортогонализации Грама — Шмидта,

136
Псевдорешение, 219
— нормальное, 241
Разложение
— ортогональное, 153
— сингулярное (матрицы), 241
Расстояние
— между двумя точками, 56
— от точки до прямой, 61
Решение
— линейного уравнения
— — общее, 174
— — частное, 174
— однородного линейного уравнения
— — общее, 174
— тривиальное, 83
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Решений
— система фундаментальная
— — однородного уравнения, 174
Символ
— Кронекера, 42
Система координат
— декартова, 43
Система линейных алгебраических

уравнений
— крамеровская, 83
— однородная, 83
Собственного числа кратность
— алгебраическая, 189
— геометрическая, 189
Собственных значений проблема
— обобщенная, 237
Столбец, 87
Строка, 87
Схема Горнера, 20
Сходимость
— по норме, 320
— покомпонентная, 320
Теорема
— алгебры основная, 22
— Безу, 21
— Гершгорина, 331
— Грама — Шмидта, 135
— Кронекера — Капелли, 176
— Кэли — Гамильтона, 211
— Рисса, 215
— Самарского, 307
— Фредгольма, 219
— — матричная, 176
— Шура, 198
Теоремы
— Бауэра — Файка, 332
Теория Перрона — Фробениуса, 335
Тождество
— Пифагора, 131
Транспозиция, 73
Трансформация Гаусса, 220
Угол
— между векторами, 132
— между прямыми, 62
Умножение
— матрицы
— — на вектор, 90
— матриц, 92
— строки
— — на матрицу, 91
— — на столбец, 90

Уравнение
— отрезка прямой, 57
— плоскости, 63
— — нормальное, 63
— — общее, 64
— прямой, 59
— — в пространстве, 66
— — каноническое, 67
— — нормальная форма, 60
— — общая форма, 60
— сферы, 57
Форм квадратичных
— закон инерции, 262
Форма
— квадратичная, 257
— — положительно определенная, 263
— линейная, 215
Формула
— интерполяционная
— — Лагранжа, 86
— Муавра, 15
— площади треугольника, 58
— Родрига, 137
— Сильвестра, 190
Формулы
— Вьета, 25
— Крамера, 85
Формы
— квадратичной
— — инерция, 261
— — канонический вид, 258
Функции квадратичной
— инварианты
— — аффинные, 265
— — ортогональные, 265
— форма приведенная, 268
Функционал
— линейный, 215
Функция
— выпуклая, 316
— квадратичная, 264
Фурье
— коэффициенты, 138
Цилиндр, 301
— гиперболический, 286
— параболический, 286
— эллиптический, 286
Число
— комплексное, 9
— мнимое, 8
— обусловленности, 242



Предметный указатель 349

— сингулярное, 238
Эллипс, 277
Эллипса
— вершины, 278
— оси симметрии, 278

— полуоси, 278
— фокусы, 278
— центр симметрии, 278
— эксцентриситет, 278
Эллипсоид, 289, 300
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