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Activity induced long lasting modifications of synaptic efficacy have been extensively
studied in excitatory synapses, however, long term plasticity is also a property
of inhibitory synapses. Inhibitory neurons in the hippocampal CA1 region can be
subdivided according to the compartment they target on the pyramidal cell. Some
interneurons preferentially innervate the perisomatic area and axon hillock of the
pyramidal cells while others preferentially target dendritic branches and spines. Another
characteristic feature allowing functional classification of interneurons is cell type specific
expression of different neurochemical markers and receptors. In the hippocampal
CA1 region, nearly 90% of the interneurons expressing cannabinoid type 1 receptors
(CB1R) also express cholecystokinin (CCK). Therefore, the functional presence of CB1
receptors can be used for identification of the inhibitory input from CCK positive (CCK+)
interneurons to CA1 pyramidal cells. The goal of this study was to explore the nature of
long term plasticity at the synapses between interneurons expressing CB1Rs (putative
CCK+) and pyramidal neurons in the CA1 region of the hippocampus in vitro. We
found that theta burst stimulation triggered robust long-term depression (LTD) at this
synapse. The locus of LTD induction was postsynaptic and required activation of GABAB

receptors. We also showed that LTD at this synaptic connection involves GABABR-
dependent suppression of adenylyl cyclase and consequent reduction of PKA activity.
In this respect, CB1+ to pyramidal cell synapses differ from the majority of the other
hippocampal inhibitory connections where theta burst stimulation results in long-term
potentiation.

Keywords: inhibition, perisomatic, GABAAR, plasticity, interneurons

INTRODUCTION

Long-term plasticity at hippocampal excitatory synapses has been extensively examined. However,
much less is known about long lasting changes in GABAergic inhibitory transmission. It is
commonly accepted that cooperative action of GABAergic interneurons differentially controls
inputs and outputs of hippocampal pyramidal cells (Freund and Buzsaki, 1996; Freund and
Gulyas, 1997) and orchestrates coherent oscillations in cortical circuits (Klausberger et al., 2005;
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Klausberger and Somogyi, 2008). Therefore, long term
modulation of efficacy at inhibitory synapses may have a
major impact on hippocampal function.

Although the number of studies of long-term plasticity
at hippocampal GABAergic synapses is growing, the findings
are rather contradictory, reporting both long-term potentiation
(LTP) and depression in response to the same induction
protocol (Gaiarsa et al., 2002). A possible explanation for
this variety is synapse specific recruitment of distinct pre- or
postsynaptic signaling cascades. For instance, the same protein
kinase (PK) can have different effects on GABAAR mediated
inhibitory postsynaptic currents (IPSCs) in different cell types
(Poisbeau et al., 1999). Within one postsynaptic neuron, the
subunit composition of GABAARs varies between synapses
from different presynaptic interneurons. Therefore, the same
stimulation paradigm might have distinct effects on different
GABAergic synapses.

One of the potential candidates which may be involved
in the long lasting changes of GABAergic synaptic efficacy is
the GABABR dependent signaling cascade. GABABRs activate
Gαi/o-type G proteins leading to inhibition of adenylyl cyclase,
reduced levels of cyclic AMP (cAMP) and lower activity of
cAMP- dependent protein kinase A (PKA). This will shift the
phosphorylation balance of PKA targets, including GABAARs,
toward the dephosphorylated state (Heuschneider and Schwartz,
1989; Tehrani et al., 1989; Leidenheimer et al., 1991; Moss et al.,
1992; Browning et al., 1993; Poisbeau et al., 1999). Depending
on subunit composition, PKA phosphorylation can either
potentiate or depress GABAAR-mediated currents (Feigenspan
and Bormann, 1994; McDonald et al., 1998; Vithlani et al., 2011).
Involvement of GABABRs in induction of long-term plasticity
via PKA signaling has already been demonstrated for inhibitory
synapses (Kawaguchi and Hirano, 2002). In the hippocampus, for
instance, GABABR activation upon theta-burst stimulation (TBS)
results in LTP of IPSCs in the local inhibitory circuit between
stratum lacunosum-moleculare interneurons and CA1 pyramidal
cells (Patenaude et al., 2003).

The aim of this study was to explore the possible role of the
GABABR in the induction of long-term plasticity at perisomatic
synapses between CB1+ putative basket cells and CA1 pyramidal
neurons. In the hippocampal CA1 region nearly 90% of the CB1+
interneurons also express cholecystokinin (CCK; Marsicano and
Lutz, 1999). The input from CB1+/CCK+ interneurons to
pyramidal cells is a powerful inhibitory connection that has
unique molecular properties and serves specific functions within
the hippocampal network (Armstrong and Soltesz, 2012). In vivo
data suggest that CB1+/CCK+ basket interneurons are involved
in the formation of the theta rhythm (Klausberger and Somogyi,
2008). Postsynaptically, synapses betweenCB1+/CCK+ cells and
pyramidal neurons contain a unique composition of GABAARs
which are mainly assembled from alpha2/beta3 subunits (Nyiri
et al., 2001; Kasugai et al., 2010). Therefore, long-term
modulation of this connection may have specific mechanisms
and important consequences for hippocampal network behavior.

We report that TBS induces robust long-term depression
(LTD) at CB1+-Pyr synapses, and induction of this LTD requires
activation of GABABRs, this is in contrast to other hippocampal

inhibitory synapses. We show that LTD at this connection
involves GABABR-dependent suppression of adenylyl cyclase
and consequent reduction of PKA activity.

MATERIALS AND METHODS

Transverse hippocampal 300 μm slices were prepared from
the brains of 14–21 day-old WT (C57Bl6) mice, killed
by cervical dislocation. The slicing chamber contained an
oxygenated ice-cold solution (modified from Dugue et al., 2005)
composed of (in mM): K-Gluconate, 140; N-(2-hydroxyethyl)
piperazine-N ′-ethanesulfonic acid (HEPES), 10; Na-Gluconate,
15; ethylene glycol-bis (2-aminoethyl)-N,N,N′,N ′-tetraacetic acid
(EGTA), 0.2; and NaCl, 4 (pH 7.2). Slices were incubated
for 30 min at 35◦C before being stored at room temperature
in artificial CSF (ACSF) containing (in mM): NaCl, 125;
NaHCO3, 25; KCl, 2.5; NaH2PO4, 1.25; MgCl2, 1; CaCl2,
2; and D-glucose, 25; bubbled with 95% O2 and 5% CO2.
During experiments, slices were continuously perfused with
the same ACSF. Patch electrodes were pulled from hard
borosilicate capillary glass (Sutter Instruments flaming/brown
micropipette puller). Electrodes for the postsynaptic pyramidal
cells were filled with a solution which consisted of (in mM)
Cs-gluconate, 100; CsCl, 40; HEPES, 10; NaCl, 8; MgATP,
4; MgGTP, 0.3; phosphocreatine, 10 (pH 7.3 with CsOH).
The solution for the presynaptic interneurons consisted of
(in mM) K-gluconate, 100; KCl, 40; HEPES, 10; NaCl, 8;
MgATP, 4; MgGTP, 0.3; phosphocreatine, 10 (pH 7.3 with
KOH).

CA1 pyramidal cells were identified visually using IR-video
microscopy. Whole-cell recordings from these neurons were
taken at room temperature (23–25◦C) in voltage-clamp mode
using a HEKA EPC-7 amplifier (List Elektronik) with a sampling
rate of 100 μs and filtered at 3 kHz. Cells were held at -70 mV.
In paired recordings, presynaptic CB1+ putative basket cells
were identified by location and firing pattern. The identity of
the presynaptic neuron was further confirmed after finding the
connected postsynaptic cell, by asynchronous release evoked
by high frequency stimulation (10 action potentials 50 Hz)
and the presence of depolarization induced suppression of
inhibition.

To extracellularly evoke synaptic currents, glass electrodes
filled with ACSF were placed in the stratum pyramidale
within ∼50–100 μm of the body of the recorded neuron.
Excitatory synaptic transmission was blocked during recordings
by the addition of 10 μM NBQX to the perfusion ACSF.
A minimal stimulation protocol was used in all experiments with
extracellular stimulation. The stimulus intensity was reduced to
the lowest amplitude that would cause a response, to reduce
the chance of contaminating the response by stimulating many
projections. Putative CB1+ interneuron to CA1 pyramidal
cell inputs were identified by the presence of pronounced
asynchronous release evoked by high frequency stimulation (10
stimuli at 50 Hz) and lasting for at least 100 ms (Figure 2A).
In LTD experiments, the intersweep interval was 7 s. The
theta burst stimulation protocol consisted of four bursts of five
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stimuli at 50 Hz separated by 200 ms. For LTD induction TBS
was repeated 25 times. For analysis, five subsequent responses
were averaged and normalized to the mean IPSC amplitude
obtained during control recordings prior to TBS or drug
application.

The degree of IPSC amplitude changes was calculated as
a ratio of the average steady-state current amplitudes before
and after TBS or after drug application. Series resistance was
monitored, and data from cells in which series resistance
varied by >15% during recording were discarded from the
analysis.

For statistical analysis, the paired Student’s t-test was used, and
data are presented as mean ± SD.

RESULTS

TBS Induces LTD in CB1+ Interneuron to
Pyramidal Cell Connections
It has been shown that TBS triggers LTP in both excitatory
and inhibitory hippocampal synapses (Perez et al., 1999;
Hoffman et al., 2002; Patenaude et al., 2003; Evstratova
et al., 2011). Therefore, we decided to test if this holds
true in GABAergic connections between CB1+ interneurons
and CA1 pyramidal cells (CB1+ to Pyr). Whole-cell voltage-
and current-clamp recordings were performed simultaneously
from pairs of connected neurons. Presynaptic interneurons
were identified by morphology, location, characteristic firing
pattern, and long-lasting asynchronous release evoked by a
50 Hz train of 10 action potentials (Figures 1A,B; Hefft
and Jonas, 2005). It has been shown that both perisomatic
and dendritic targeting CB1+/CCK+ interneurons exhibit a
regularly spiking firing pattern but differ in their response to
hyperpolarizing current injections (Cope et al., 2002; Evstratova
et al., 2011). Schaffer collateral-associated interneurons show
a significant hyperpolarization-activated Ih current and a
rebound depolarizing potential often followed by a spike. In
contrast to that, CB1+/CCK+ basket cells usually have a
small or no Ih and lack the rebound spike (Figure 1A).
In this study cells without the Ih current and the rebound
spike were considered as the putative CB1+/CCK+ basket
cells.

Presynaptic interneurons were stimulated with a 10 Hz
train of two short suprathreshold depolarizing current pulses
in current-clamp mode, while IPSCs were recorded in CA1
pyramidal neurons under voltage clamp (Vm = −70 mV).
After obtaining a stable baseline (100 sweeps), the TBS train
was repeated 25 times, then at least 150 more sweeps were
recorded. In all these experiments TBS resulted in strong LTD
with an average IPSC amplitude at a steady state level of
61 ± 17 % relative to control (n = 5; p < 0.01; Figure 1C).
Note that during TBS, CB1+ terminals exhibit profound
asynchronous release. Paired pulse ratio (PPR) measured before
and after TBS did not change significantly (1.16 ± 0.19 vs.
1.17 ± 0.15; p > 0.05; n = 5). We also analyzed the coefficient
of variation (CV; Faber and Korn, 1991) of IPSC amplitudes.
The average CV2 ratio was close to 1 (1.02 ± 0.19, n = 5,

Figure 1C) pointing toward a postsynaptic locus of LTD
induction.

It has been shown that activation of CB1Rs can lead to
LTD induction at GABAergic and glutamatergic synapses (Robbe
et al., 2002; Adermark and Lovinger, 2009; Adermark et al., 2009).
Therefore we tested whether endocannabinoids were involved
in TBS induced LTD. Application of the CB1R antagonist
AM-251 (2 μM) resulted in IPSC enhancement (243 ± 65%
relative to control; n = 6) and PPR reduction due to relief
from CB1R-dependent tonic suppression of synaptic release
(Ali and Todorova, 2010). However, TBS still caused robust
LTD even in the presence of AM-251. Relative to control, the
averaged IPSC amplitudes were 55 ± 15% (n = 6; p < 0.01;
Figure 1D). PPR measured before and after TBS did not change
significantly (0.87 ± 0.19 vs. 0.84 ± 0.23; p > 0.05; n = 6).
The average CV2 ratio was close to 1 (1.05 ± 0.2, n = 6,
Figure 1D).

Functional and Pharmacological
Identification of Putative CB1+
Interneuron to Pyramidal Cell
Connections
It has been shown that prolonged whole-cell dialysis of
presynaptic GABAergic neurons can significantly affect vesicle
transmitter refilling and, therefore, cause a reduction of
postsynaptic IPSCs (Diana and Marty, 2003; Apostolides and
Trussell, 2013; Wang et al., 2013). To exclude the “washout
effect” on synaptic efficacy we decided to use extracellular
stimulation to study plasticity at synapses formed by CB1+
interneurons on CA1 pyramidal cells. One of the difficulties
with this stimulation technique is finding reliable conditions
and criteria for input specificity. However, as mentioned above,
synaptic transmission at these synapses has a number of
unique features allowing a relatively easy way to find the
proper stimulation location and intensity to ensure activation
of a single presynaptic axon. One such feature is robust
asynchronous transmitter release following high frequency
stimulation. Figure 2A shows a typical response to a train
of 10 stimuli at 50 Hz when putative CB1+ terminals were
stimulated. Another classical way to test for the presence
of CB1Rs is depolarization induced suppression of inhibition
(DSI; Wilson and Nicoll, 2001). To further substantiate our
criteria for stimulation settings we tested whether inputs selected
by the presence of asynchronous release can undergo DSI.
After collecting 25 control sweeps (Vh = –70 mV; intersweep
interval 5 s.) the postsynaptic CA1 pyramidal neurons were
depolarized to 0 mV for 5 s, then an additional 50 sweeps
were recorded. In all cases depolarization resulted in strong
reduction of IPSC amplitudes (13 ± 12% of control values;
n = 6; p < 0.01; Figure 2B). IPSC amplitudes recovered
with a time course of about 30 s which is typical for
DSI. In an additional set of experiments we showed the
expression of CB1Rs on asynchronously releasing terminals
by testing their sensitivity to the synthetic CB1R agonist
CP55940. Application of 1 μM CP55940 caused a tenfold
reduction of IPSC amplitudes (8 ± 5% of control values;
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FIGURE 1 | Theta-burst stimulation (TBS) induces LTD in pairs of connected CB1+ to CA1 pyramidal neurons. (A) Voltage responses of CB1+
interneuron to hyperpolarizing and depolarizing current injections. (B) Inhibitory postsynaptic currents (IPSCs; red) evoked by 50 Hz trains of 10 action potentials
(black) in a CB1+ interneuron–pyramidal cell pair. Note profound asynchronous release after the end of presynaptic stimulation. (C) TBS triggers long-term
depression (LTD) in the pairs of connected presynaptic CB1+ interneurons and postsynaptic CA1 pyramidal cells. The scatter plot (left) shows pooled data from five
neurons. The trace above the plot is a typical response to TBS at CB1+ synapses, note profound asynchronous release between AP bursts. Traces underneath are
averaged IPSCs prior to (black) and 20 min after (red) TBS. The plot on the right shows result of CV analysis. Black squares represent individual experiments; red
square is an average of the data. (D) CB1R blocker does not affect TBS induced LTD at CB1+ to pyramidal cells connections. The scatter plot (left) shows pooled
data from five neuron pairs. Traces underneath are averaged IPSCs prior to (black) and 20 min after (red) TBS. The plot on the right shows result of CV analysis.
Black squares represent individual experiments; red square is an average of the data.

n = 5; p < 0.01; Figure 2C). In addition to CB1R, CCK+
terminals show strong GABABR expression (Lee and Soltesz,
2011). Indeed, 10 μM of baclofen suppressed amplitudes of
IPSCs down to 15 ± 7% relative to control (n = 6; p < 0.01;
Figure 2D). Thus, asynchronous release together with profound
DSI is a reliable indicator of CB1+ to CA1 pyramidal neuron
input even with extracellular stimulation. The possible level
of unspecific stimulation–responses is less than 10% (see
Figure 2C).

Finally we tested whether TBS can produce LTD of
extracellularly evoked IPSCs at putative CB1+ to pyramidal cell
synapses. A possible contribution of endocannabinoid signaling
cascades was excluded by application of the CB1R antagonist
AM-251 (2 μM) throughout all subsequent experiments.

Similarly with the data obtained by paired recordings, TBS
resulted in strong LTD with an average IPSC amplitude
at a steady state level of 65 ± 9% relative to control
(n = 10; p < 0.01; Figure 3A). Note that during TBS,
extracellularly stimulated CCK+ terminals exhibit profound
asynchronous release similar to that observed with paired
recordings. PPR measured before and after TBS did not
change significantly (0.78 ± 0.12 vs. 0.71 ± 0.09; p > 0.05;
n = 10). The average CV2 ratio was close to 1, indicating
a postsynaptic origin of the LTD (1.06 ± 0.23, n = 10,
Figure 3A).

This result contradicts previously reported findings showing
that TBS potentiates efficacy at hippocampal GABAergic
synapses (Perez et al., 1999; Patenaude et al., 2003; Evstratova
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FIGURE 2 | Identification of putative CB1+ interneuron to CA1
pyramidal cell connections. (A) Typical postsynaptic response from CB1+
interneurons to-pyramidal cell synapses evoked by high frequency (10 stimuli,
50 Hz) extracellular stimulation. Note long lasting asynchronous release
following the stimulation train. (B) Depolarization induced suppression of
inhibition (DSI) in synapses selected by the presence of asynchronous release.
DSI was induced by 5 s depolarization to 0 mV. The scatter plot shows pooled
normalized data from five cells. (C,D) Effects of the CB1R agonist CP55940
(C) and GABABR agonist baclofen (D) applications on synaptic transmission
at synapses with profound asynchronous release. Scatter plots show pooled
data from five cells for CP55940 and from six neurons for baclofen. Traces
underneath are averaged IPSCs before and after drug application.

et al., 2011). To resolve this apparent contradiction we examined
the effect of TBS on CB1-negative (CB1-) inhibitory connections.
To this end, release from CB1+ terminals was blocked

by activation of CB1 receptors with 1 μM CP55940. The
stimulation location was in the stratum pyramidale, close
to the soma of the recorded neuron. However, despite
the very similar recording and stimulation conditions, in
the presence of CP55940, TBS triggered significant LTP
(147 ± 11% relative to control; n = 5; p < 0.01; Figure 3B).
TBS failed to trigger asynchronous release confirming a
different origin of postsynaptic responses under these
conditions. Moreover CV analysis showed that LTP in CB1
negative synapses is presynaptic. The average CV2 ratio was
1.75 ± 0.23 (n = 5, Figure 3B) Thus, TBS-induced LTD
at CB1+ synapses represents a unique property of these
synapses.

Role of GABABRs in TBS Induced LTD at
CB1+ Interneuron to Pyramidal Cell
Connections
Next we examined whether GABABR activation is required for
LTD induction at CB1–Pyr synapses. To test this, GABABRs
were blocked throughout the experiments by application of
the receptor antagonist CGP55845 (3 μM). The presence
of CGP55845 did not affect the characteristic properties of
CB1+ interneuron to pyramidal cell synapses. However, upon
chronic CGP55845 application TBS, instead of triggering LTD of
IPSCs, caused significant enhancement of postsynaptic responses.
(128 ± 8% relative to control; n = 5; p < 0.01; Figure 4A),
strongly suggesting that GABABR activation is involved in the
induction of LTD in these synapses.

Long-term depressionmaintenance may also rely on sustained
GABABR activity. To assess this, CGP55845 was added to the
perfusion ACSF after a steady state level of LTD had been
reached. In this case CGP55845 failed to reverse the LTD. In
contrast, IPSC suppression slightly increased after addition of the
blocker. Relative to control, the averaged IPSC amplitudes were
51 ± 11% and 41 ± 9% before and after CGP55845 application,
respectively; (n = 5; Figure 4B). Taken together our data suggest
that activation of GABABRs is essential for LTD induction but not
for its maintenance.

LTD at CB1+ Interneuron to Pyramidal
Cell Connections Results from GABABR
Dependent Suppression of PKA
GABABR receptors are Gi/o coupled and have a well-documented
inhibitory effect on adenylyl cyclase and PKA activity (Gassmann
and Bettler, 2012). Therefore, the cAMP/PKA pathway might
be involved in GABABR-mediated long-term LTD. To test this
notion, 100 μM of the cAMP analog 8-bromocAMP (8-Br-
cAMP) was added to the intracellular solution. Figure 4C
compares the effect of TBS on synaptic efficacy in the presence
and absence of 8-Br-cAMP. Sustained activation of PKA totally
blocked TBS-induced LTD. The averaged IPSC amplitude was
96 ± 5% of control value (n = 7; p > 0.05). These data
strongly support the postsynaptic origin of LTD and allows us
to suggest that GABABR-mediated suppression of PKA underlies
long lasting plasticity at these synapses.
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FIGURE 3 | Differential TBS-induced plasticity at CB1+ and CB1- synapses. (A) TBS triggers LTD at CB1+ to pyramidal cell connections. The scatter plot
shows pooled data from 10 neurons. The trace above the plot is a typical response to TBS at CB1+ synapses, note profound asynchronous release between AP
bursts. Traces underneath are averaged IPSCs prior to (black) and 20 min after (red) TBS. The plot on the right shows result of CV analysis. Black squares represent
individual experiments; red square is an average of the data. (B) TBS-induced LTP at CB1- synapses. CB1+ connections were blocked by bath application of
CP55940. Scatter plots summarizes data from five neurons. The trace above the plot is a typical response to TBS at CB1- synapses, note the absence of
asynchronous release. Traces underneath are averaged IPSCs prior to (black) and 20 min after (red) TBS. The plot on the right shows result of CV analysis. Black
squares represent individual experiments; red square is an average of the data.

DISCUSSION

In this study we explored the ability of synapses formed by
CB1+ interneurons onto CA1 pyramidal cells to undergo long
lasting synaptic plasticity in response to TBS. This stimulation
protocol was chosen for two reasons. Firstly, since hippocampal
CB1+/CCK+ interneurons have been shown to be involved in
generation of theta frequency oscillations in vivo (Klausberger
and Somogyi, 2008), TBS might represent a natural activity

mode for these neurons. Secondly, TBS has been used as an
induction protocol to study plasticity in numerous other types
of inhibitory connections (Perez et al., 1999; Patenaude et al.,
2003; Evstratova et al., 2011) which allows us to compare our
data with previously published findings. We found that TBS
triggers robust LTD at CB1+ interneuron to pyramidal cell
connections. The LTD induction is postsynaptic and requires
activation of GABAB receptors. Also, we show that LTD at
this connection involves GABABR-dependent suppression of
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FIGURE 4 | GABABR involved in LTD induction but not maintenance at
CB1+ interneuron to CA1 pyramidal cell connections. (A) In CB1+
interneuron to pyramidal cell connections blockade of GABABR prior to TBS
occludes LTD and triggers potentiation of IPSCs. The scatter plot summarizes
data from five neurons. Traces underneath are averaged IPSCs prior to (black)
and 20 min after (red) TBS. (B) Application of the GABABR antagonist
CGP55845 after LTD development does not affect IPSC amplitudes. The
scatter plot summarizes data from five neurons. Traces underneath are
averaged IPSCs prior to (black), after (red) TBS and in the presence of
CGP55845 (blue). (C) GABABR dependent suppression of PKA underlies
TBS-induced LTD at CB1+ interneuron to pyramidal cell connections. After
postsynaptic intracellular administration of the PKA activator 8Br-cAMP TBS
fails to induce LTD. The scatter plot compares data obtained with (red
squares; n = 5) and without (black circles; n = 10) 8Br-cAMP in the
intracellular solution. Traces underneath are averaged IPSCs prior (left) and
after (right) TBS. Responses recorded in the presence of 8Br-cAMP are
shown in red.

adenylyl cyclase and consequent reduction of PKA activity. This
contrasts markedly with other hippocampal synapses, where
TBS typically induces LTP. Thus, functionally TBS-like activity
will selectively suppresses CB1+ synapses and simultaneously
promote other GABAergic inputs, which can have a strong
modulatory impact on hippocampal network activity patterns.

Functional Segregation of Inputs
Between CB1+ Interneurons and CA1
Pyramidal Cells
We developed an approach allowing reliable extracellular
stimulation of these particular synapses. To accomplish this
we used the unique features of CB1+ terminals: long lasting
asynchronous transmitter release following high frequency
stimulation (Hefft and Jonas, 2005), and exclusive expression
of CB1Rs (Wilson and Nicoll, 2001). We used asynchronous
release as an indication of proper positioning of the stimulation
pipettes. The CCK+ nature of these inputs was further confirmed
by testing sensitivity of release to cannabinoids. We found
that all inputs with characteristic asynchronous release undergo
robust DSI in response to 5 s depolarization and also could
be almost entirely blocked by application of the CB1R agonist
CP55940. Thus, asynchronous release can be used as a reliable
indicator of CB1+ to-pyramidal cell input even with extracellular
stimulation.

Possible Mechanism of
GABABR-Dependent LTD in Synapses
Formed by CB1+ Interneurons onto CA1
Pyramidal Cells
In contrast to other inhibitory synapses where TBS triggers
LTP, at this connection TBS leads to LTD. Depression seems
to be specific for this type of synapse, since the inputs
remaining after blockade of release from CB1+ terminals show
potentiation under the same stimulation protocol. However, as
with TBS-induced LTP, LTD induction at CB1+ interneuron
to pyramidal cell connections also requires activation of
GABABRs. Furthermore, GABABR activity leads to LTD via
an inhibitory effect on adenylyl cyclase and PKA activity.
Recruitment of the same postsynaptic signaling pathway was
suggested for LTP induction at a number of GABAergic synapses.
What can explain the contradiction between our data and
findings reported by other groups? Suppression of PKA should
shift the phosphorylation balance of kinase targets toward
the dephosphorylated state. The beta subunits of GABAARs
belong to those targets. Moreover, PKA differentially modulates
GABAAR subtypes, depending on the identity of the beta
subunit (Feigenspan and Bormann, 1994; McDonald et al., 1998;
Vithlani et al., 2011). Analysis of recombinant GABAARs has
shown that PKA depresses GABA-activated currents in HEK-293
cells expressing beta1-containing GABAARs, whereas in beta3
containing channels, potentiation was observed (McDonald et al.,
1998). Consequently, the final outcome of a reduction in PKA
activity will strongly depend on GABAAR composition. This
might underlie the differences in TBS-induced plasticity between

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 January 2016 | Volume 10 | Article 4

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Jappy et al. LTD at Hippocampal Perisomatic Synapses

different inhibitory synapses. Indeed, in contrast to the majority
of GABAergic synapses which express mainly alpha1-containing
channels, GABAARs at CB1+/CCK+ terminals contain the
alpha2 subunit (Nyiri et al., 2001; Kasugai et al., 2010). It has also
been shown that the alpha1 subunit assembles with beta2, while
alpha2 forms functional channels together with beta3 (Ramadan
et al., 2003). Thus, connections between CCK+ interneurons
and CA1 pyramidal cells differ from other inhibitory synapses
in both alpha and beta subunit identity. At CB1+ interneuron
to pyramidal cell synapses, dephosphorylation of synaptic beta3-
containing channels due to GABABR-induced reduction of
PKA activity, should lead to suppression of GABAAR-mediated
currents. Alternatively, blockade of GABABRs can promote
PKA phosphorylation and cause potentiation of postsynaptic
responses.

Possible Functional Implications of
Differential Long Term Plasticity at
CB+/CCK+ Interneuron to Pyramidal
Cell Synapses
Hippocampal CB+/CCK+ interneurons constitute a subclass
of perisomatic inhibitory cells. Together with parvalbumin-
containing basket cells they control the outputs of pyramidal
cells. Besides the fact that both types of interneurons target the
same compartment, they also receive glutamatergic excitatory
drive from the same sources: feed-forward excitation via Schaffer
collaterals and feed-back from CA1 pyramids (Freund and
Katona, 2007). Moreover, the firing activity of both types
of basket cells is phase-locked to theta oscillations in vivo
(Klausberger et al., 2005; Klausberger and Somogyi, 2008). The
TBS stimulation protocol used in this study mimics the in vivo
theta rhythm activity that normally occurs during exploratory

behaviors and sleep. Our findings suggest that during prolonged
theta frequency activity, the strength of inputs from CB1+
interneurons can be selectively reduced, leading to a selective
disinhibition of a subset of CA1 pyramidal cells. These activity-
dependent changes in hippocampal synaptic transmission may
contribute to place cell formation and maintenance (Wilson and
McNaughton, 1993). In this respect GABABR dependent LTD
might have a similar function to endocannabinoid dependent
LTD (Younts et al., 2013). In turn LTP at CB1 negative
synapses (putative parvalbumin-containing basket cells) might
enhance lateral inhibition and further contrast the activity
of place cells. Together, our results reveal a new mechanism
for activity-dependent modulation of perisomatic inhibition
in the hippocampus, with specificity for a well-defined local
microcircuit.
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