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Role of red blood cells in haemostasis and thrombosis
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In contrast to an obsolete notion that erythrocytes, or red blood cells (RBCs), play
a passive and minor role in haemostasis and thrombosis, over the past decades
there has been increasing evidence that RBCs have biologically and clinically
important functions in blood clotting and its disorders. This review summarizes
the main mechanisms that underlie the involvement of RBCs in haemostasis and
thrombosis in vivo, such as rheological effects on blood viscosity and platelet
margination, aggregation and deformability of RBCs; direct adhesion and indirect
biochemical interactions with endothelial cells and platelets. The ability of stored
and pathologically altered RBCs to generate thrombin through exposure of phos-
phatidylserine has been emphasized. The procoagulant and prothrombotic poten-
tial of RBC-derived microparticles transfused with stored RBCs or formed in
various pathological conditions associated with haemolysis has been described
along with prothrombotic effects of free haemoglobin and haem. Binding of fib-
rinogen or fibrin to RBCs may influence their effects on fibrin network structure,
clot mechanical properties and fibrinolytic resistance. Recent data on platelet-dri-
ven clot contraction show that RBCs compressed by platelets pulling on fibrin
form a tightly packed array of polyhedral erythrocytes, or polyhedrocytes, which
comprises a nearly impermeable barrier important for haemostasis and wound
healing. RBCs may perform dual roles, both helping to stem bleeding but at the
same time contributing to thrombosis in a variety of ways.
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Introduction

Until recently, little attention has been paid to the poten-

tial involvement of erythrocytes, or red blood cells

(RBCs), in haemostasis and thrombosis. Moreover, most

scientists and clinicians have assumed that they play a

largely passive and relatively unimportant role. However,

in the past few decades, there has been increasing evi-

dence that RBCs have a variety of active functions in

haemostasis and thrombosis that are significant and need

to be taken into account in assessing health and disease.

This review will summarize the main mechanisms that

underlie the involvement of RBCs in blood coagulation

and its disorders, including the effects of stored and

transfused RBCs.

Indirect evidence for the influence of RBCs
on haemostasis and thrombosis

More than a hundred years ago, it was reported that in

anaemia patients, the bleeding time was prolonged irre-

spective of the platelet count [1]. Fifty years later, a more

general correlation between low haematocrit and pro-

longed bleeding times was found, including correction of

the haemostatic parameters by blood transfusion [2]. It

was also established that many bleeding disorders can be

treated by an increase in RBC count despite low or nor-

mal platelet levels [3]. On the other hand, an abnormally

high haematocrit is associated with thrombosis, and

patients with polycythemia vera or taking erythropoietin

are more susceptible to thrombosis and thromboembolism
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[4, 5]. These and other observations have provided indi-

rect but strong evidence that RBCs are important players

in haemostasis and thrombosis and can act as a procoag-

ulant and prothrombotic blood component.

Rheological effect of RBCs

High haematocrit results in an increase in blood viscosity

that impedes the blood flow [6, 7]. These haemorheologi-

cal effects of RBCs can be a strong prothrombotic factor

since the impaired blood flow is a component of

Virchow’s triad that explains the pathophysiological

mechanisms of thrombosis by a combination of hyperco-

agulability, disturbance of blood flow and endothelial

damage [8]. The haematocrit-related blood viscosity may

have physical effects on the interaction between platelets

and blood vessel surfaces. Under flow conditions, platelet

adhesion increases greatly with haematocrit. Thus, the

volume fraction of red cells may have a significant

impact on haemostasis and thrombosis, with the nature of

the effect related to the flow conditions [9].

A remarkable rheological effect of RBCs that affects

platelets in haemostasis and thrombosis is that RBCs pref-

erentially move down the centre of blood vessel, causing

margination of platelets, so that they are poised to adhere

preferentially to the site of vessel wall injury [10]. In

addition to platelets, the peripheral layer formed by the

axial accumulation of RBCs contains plasma (with clot-

ting factors) and neutrophils. Formation of the RBC-free

layer next to the endothelial lining changes local viscos-

ity, such that the viscosity gets smaller with decreasing

vessel diameter (known as the Fahraeus–Lindqvist effect),
down to 5–7 lm. In capillaries that are smaller than

RBCs, the viscosity of the RBC-free layer increases due to

the presence of platelets that have a greater viscosity than

RBCs [11]. In the presence of RBCs, the distribution of

platelets is changed by a few orders of magnitude com-

pared to uniform Brownian diffusivity, resulting in a 3–
8x platelet accumulation near the vessel wall [12, 13]. An

elevated haematocrit predisposes one to platelet interac-

tions with the activated endothelium, thus promoting

haemostasis or thrombosis [14]. Another consequence of

the axial RBC accumulation followed by reduction in

local viscosity is a decrease in the wall shear stress caus-

ing a lesser local release of nitric oxide [15]. Because

nitric oxide is known to prevent activation of endothelial

cells and platelets, this nitric oxide deficiency promotes

cellular activation.

RBC aggregation

At low shear rates or with stasis of blood, RBCs tend to

form linear arrays of stacked cells (rouleaux) or three-

dimensional aggregates [16]. Such aggregates are difficult

to disperse, and they tend to increase the blood viscosity

and hydrodynamic resistance in larger blood vessels with

low shear, such as the veins in the lower limbs. RBC

aggregation promotes thrombosis in veins, confirming the

pathogenic importance of locally altered blood rheology

in the development of venous thrombosis [17].

RBC deformability

RBCs are remarkably deformable, which is important to

minimize their resistance to flow and to allow them to fit

through blood vessels smaller than their size. The great

deformability of RBCs is primarily a consequence of their

biconcave shape, specifically the high surface area to vol-

ume ratio. More rigid RBCs may be less able to squeeze

through the capillaries, and they also increase platelet

margination described above, both of which increase the

susceptibility to thrombosis [18]. Increased rigidity can be

caused by either a decrease in membrane deformability,

determined primarily by the cytoskeleton and the cellular

metabolic energy, or the cytoplasmic viscosity, deter-

mined mainly by the haemoglobin concentration [19].

A major, clinically significant feature of some inherited

diseases is RBCs with reduced deformability. RBCs of

patients with sickle cell disease have membranes that are

stiffer than those of normal cells [20, 21]. In addition,

the cells themselves become strikingly stiffer when the

mutated haemoglobin polymerizes inside and sickles the

cells [22]. Other diseases, including b-thalassaemia, haemo-

lytic anaemias caused by RBC antibodies, and hereditary

stomatocytosis, also commonly have RBCs with stiff mem-

branes [23]. Some diseases, such as diabetes, hypertension,

lower limb vein thrombosis and coronary heart disease, can

secondarily alter the properties of RBCs, making them stif-

fer and prothrombotic [24]. Decreased RBC deformability

reduces permeability of blood clots and thrombi, which

may have implications for the penetration of fibrinolytic

agents [25]. Stored RBCs exhibit altered biophysical char-

acteristics, including higher cell rigidity that accounts in

part for impaired blood flow haemodynamics and adverse

effects of RBC transfusion [26].

Interaction of RBCs with platelets

RBCs can modulate platelet reactivity directly through

either chemical signalling or adhesive RBC–platelet inter-
actions. RBCs promote platelet aggregation and degranu-

lation by releasing ATP and ADP under low pO2, low pH

and in response to mechanical deformation [27, 28].

Another mechanism for platelet activation by RBC lysate

is extracellular haemoglobin, which enhances platelet

activation by lowering NO bioavailability [29]. Cell-free
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haemoglobin acts as a strong NO scavenger, preventing

NO-mediated suppression of activated platelets [30]. Dam-

aged RBCs also release arginase that cleaves L-arginine, a

substrate for NO production [29]. In acute coronary syn-

drome, RBC transfusion increases platelet reactivity [31].

In the presence of RBCs, platelets are less responsive to

aspirin, even when synthesis of thromboxane A2 is inhib-

ited [32]. When RBCs are damaged by high shear in con-

tinuous flow ventricular assist devices, free haemoglobin

induces platelet aggregation, contributing to high risk of

thrombotic complications [33].

RBCs can play a role in thrombus formation under

flowing conditions at venous shear rates by direct adhe-

sive interactions with platelets [34, 35]. The RBC–platelet
adhesive interaction may be important in pathological

conditions associated with a high incidence of thrombo-

sis, such as thalassaemia [36] or sickle cell disease [37].

Interestingly, in the widely used ferric chloride in vivo

model of thrombosis, platelets bind to the wall-associated

RBC-derived material rather than the endothelium [38].

Interactions of RBCs with the endothelium

There is increasing evidence that RBCs can be incorporated

into thrombi via specific interactions with activated

endothelial cells and/or exposed subendothelial matrix.

Normal mature RBCs do not interact with endothelium, but

they become highly sticky under certain pathological con-

ditions, and this adhesion of abnormal and/or stimulated

RBCs to vascular endothelium can contribute substantially

to microvascular occlusions associated with thrombosis.

The most common pathological states in which RBCs inter-

act with the endothelium include sickle cell disease [39],

malaria [40] and diabetes [41]. Structurally and metaboli-

cally altered RBCs, which are present in higher numbers in

RBCs that have been stored longer, have greater strength

of adhesion to the endothelium [26].

Phosphatidylserine exposure in RBC
membrane

Efficient blood coagulation requires sufficient prothrom-

botic surfaces for the proper assembly of the prothrombi-

nase complex and generation of thrombin to initiate

clotting. These surfaces are provided by cells that expose

phosphatidylserine, a negatively charged phospholipid,

which is normally on the cytoplasmic side of the membrane

to separate this procoagulant surface from plasma coagula-

tion factors [42]. Much of the focus on exposure of phos-

phatidylserine in coagulation has been on activated

platelets, but recently, it has been shown that RBCs also are

involved. Under conditions of apoptosis or RBC damage,

such as high shear rates, inflammation or oxidative stress,

RBCs can lose membrane asymmetry and expose phos-

phatidylserine [43]. Phosphatidylserine externalization and

shedding are mediated by increased cellular Ca2+ flux and

play an important role in natural RBC senescence [44].

Because of the large numbers of RBCs present in the blood,

even a small fraction of RBCs with phosphatidylserine

exposure can result in prothrombotic conditions. Even in

healthy individuals, about 0�5–0�6% of the RBC population

expresses phosphatidylserine and provides an active sur-

face for prothrombin activation. This subpopulation of

RBCs might account for up to 40% of the thrombin-gener-

ating potential of whole blood [45].

Some remarkable examples of phosphatidylserine expo-

sure in RBC membranes are sickle cell disease and thalas-

saemia [46, 47]. The abnormal phosphatidylserine

exposure in sickle cell disease is thought to result from the

repeated cell sickling and unsickling that are linked to

polymerization and depolymerization of mutated haemo-

globin [48]. An increase in RBC phosphatidylserine expo-

sure in b-thalassaemia patients has been shown to be

connected with eryptosis, the suicidal death of RBCs [49].

RBC-derived microparticles

Activation, ageing and apoptosis of various cells, includ-

ing RBCs, are accompanied by the formation of micro-

scopic extracellular membranous structures named

microvesicles or microparticles (MPs). The ability of cells

to generate MPs in vivo is an important regulatory mech-

anism of physiologic reactions, a means for intercellular

communications and a pathogenic component in many

diseases that impact haemostasis and thrombosis [50, 51].

Formation of RBC-derived MPs is typical during the

ex vivo storage of whole blood [52], and accumulation of

MPs is thought to be responsible for an increased inci-

dence of deep vein thrombosis after transfusion of ‘old’

red cells [53]. An increase in the number of circulating

RBC-derived MPs has been found in RBC-related pro-

thrombotic states, such as sickle cell disease and haemo-

lytic anaemia [54]. Irrespective of their source, elevated

plasma levels of MPs are associated with a reduced clot-

ting time and a dose- and time-dependent increase in

thrombin generation, suggesting that the MPs enhance

hypercoagulability.

The ability of RBC-derived MPs to enhance thrombin

generation has been associated with expression of phos-

phatidylserine [55] and possibly also tissue factor [56].

RBC-derived MPs are capable of activating coagulation

by other clotting factors or supporting anticoagulant

reactions. The circulating MPs can internalize free haem

and transfer it to vascular endothelium, promoting vaso-

occlusion, or amplify systemic inflammation via throm-

bin-mediated activation of the complement system [57].
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Given the broad procoagulant activity of RBC-derived

MPs, they are considered a potential agent for treatment

of haemostatic disorders [58].

RBC storage

Stored RBCs undergo a complex structural and metabolic

impairment that includes leakage of haemoglobin from the

cells and haemolysis, reduced energy and NO production,

formation of toxic products, such as lysophospholipids and

free iron, phosphatidylserine exposure and shedding MPs

[59]. All these and other changes that occur to RBCs during

storage make infusions of RBCs a procedure with frequent

side-effects and complications, including an increased

incidence of deep vein thrombosis [53]. During the storage

of RBCs, the MP concentration increases and the number

of those that express phosphatidylserine also increases

[60], which represents a mechanism by which stored RBCs

could promote thrombotic complications after infusion.

Another potential mechanism that underlies deleterious

effects upon RBC infusion is NO scavenging by haemoglo-

bin released from RBCs during storage [61].

RBC destruction (haemolysis)

More or less massive in vivo haemolysis with release of

free, extracellular haemoglobin into the blood is the patho-

genic basis of hereditary and acquired haemolytic anae-

mias of various aetiologies, of which immune haemolysis

is the most common. These conditions are accompanied by

(pro)thrombotic disorders that vary from laboratory signs

of hypercoagulability to life-threatening complications,

such as disseminated intravascular coagulation [62] and

venous thromboembolism [63]. There are several patho-

genic mechanisms by which haemolysis may lead to

intravascular coagulation. First, damaged RBCs release free

haemoglobin and haem that are toxic to many cells and

tissues. Extracellular haemoglobin sequesters NO and thus

promotes activation of endothelial cells and adhesion/ag-

gregation of platelets [64]. Free haem upregulates haem

oxygenase activity, generates reactive oxygen species and

activates endothelial cells and macrophages directly [65].

Second, immune haemolysis is accompanied by production

of TNF-a which induces tissue factor expression in

endothelial cells and also decreases the endothelial expres-

sion of thrombomodulin, a potent modulator of thrombin

activity [62]. Third, haemolysis results in a massive release

of procoagulant RBC-derived MPs [66].

Interactions of RBCs and fibrinogen

The tendency of RBCs to form rouleaux under low shear

conditions requires fibrinogen [67]. An increase in

fibrinogen concentration can result in greater RBC aggre-

gation, which is associated with a higher incidence of

thrombosis. Such RBC aggregation has generally been

considered to be caused by the non-specific binding of

fibrinogen to RBC membrane. However, there is now

some evidence for the existence of specific interactions

between fibrinogen and an integrin receptor on the RBC

membrane [68], either a b3 integrin [69] or CD47 (inte-

grin-associated protein) [70] or both. Interestingly, RBCs

from a Glanzmann’s thrombasthenia patient (a rare hered-

itary bleeding disease caused by aIIbb3 mutation) show

impaired fibrinogen binding [69]. The probability of bind-

ing interactions of RBC and fibrinogen progressively

decrease with in vivo cell ageing, likely associated with

the loss of sialic acid on older RBCs [71]. The administra-

tion of fibrinogen concentrate, which is critical for the

formation of a fibrin clot in the perioperative setting and

in massive haemorrhage, may include interaction with

RBCs followed by haemostatic effects of RBC aggregates.

Effects of RBCs on clot structure

The presence of RBCs affects the structure of fibrin clots.

Intermediate RBC concentrations cause heterogeneity in

the fibre network with pockets of densely packed fibres

alongside regions with few fibres [72]. With high levels

of RBCs, fibres are arranged more uniformly but loosely

around the cells. There is also a significant increase in

fibre diameter upon RBC incorporation, and the viscoelas-

tic properties of the clot are influenced. Besides the

effects of intact RBCs, free extracellular haemoglobin pro-

longs clotting time of fibrinogen due to impaired poly-

merization [73]. Therefore, intact or damaged RBCs

trigger variability in fibrin network structure, individual

fibre characteristics and overall clot viscoelasticity, which

has important implications for in vivo clot formation,

maturation, stability, embolization and the efficacy of

prophylactic anticoagulation and therapeutic fibrinolysis

[72, 74]. It has been shown that RBC retention within

clots determines thrombus size dependent on factor XIIIa

activity [75], a plasma transglutaminase that cross-links

fibrin polymer covalently increasing its mechanical sta-

bility, via cross-linking of the fibrin a chains [76]. RBCs

are incorporated into all types of clots and thrombi

formed in whole blood, both in vitro and in vivo, either

venous [77] or arterial [31].

RBCs and fibrinolysis

RBCs are an important component of the complex reac-

tions in clot formation and thus determine the ultimate

physical and biological properties of fibrin, which affect

profoundly the course of its dissolution [78]. As a
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generality, incorporation of RBCs increases the lytic resis-

tance and decreases the permeability of fibrin in a dose-

dependent manner [79, 80]. In addition, the RBC-induced

retardation of fibrinolysis correlates with mechanical sta-

bilization and strengthening of fibrin clots, which was

shown for thrombi in experimental cerebral ischaemia

[81].

RBCs in clot contraction

Clot contraction, or retraction, has been proposed to be

involved in haemostasis to form a tighter seal to stem

bleeding, to pull clots or thrombi closer to the vessel wall

so that they are less obstructive, and in wound healing.

Clot contraction requires platelets and fibrin or fibrino-

gen. Non-muscle myosin IIa inside the platelet interacts

with actin filaments attached to the cell membrane inte-

grin aIIbb3 via talin and kindlin. Fibrin or fibrinogen

binds to aIIbb3 outside the platelet to link other platelets

[82, 83].

Contracted blood clots develop a remarkable structure,

with a meshwork of fibrin and platelet aggregates on the

exterior of the clot and a close-packed, tessellated array of

compressed polyhedral erythrocytes, named polyhedro-

cytes, within (Fig. 1). Platelets (with their cytoskeletal

motility proteins) and fibrin(ogen) (as the substrate bridg-

ing platelets for contraction) are required to generate the

forces necessary to segregate platelets/fibrin from RBCs

and to compress these cells into a tightly packed array [84].

The structure and properties of contracted clots and the

kinetics of contraction vary depending on the relative

amounts of platelets, fibrinogen and RBCs and the

conditions of clotting. Clot contraction occurs in three

sequential phases, each characterized by a distinct rate

constant. Thrombin, calcium ions, the integrin aIIbb3,
non-muscle myosin IIa, factor XIIIa cross-linking and

platelet count all promote one or more phases of the clot

contraction process. In contrast, RBCs impair contraction

and reduce stiffness, while increasing the overall contrac-

tile stress generated by the platelet-fibrin meshwork

[75, 76, 85].

Polyhedrocytes are the major component of venous

clots, demonstrating that clot contraction occurs in vivo

and suggesting that polyhedrocytes may play a role in

haemostasis, at least on the venous side. Polyhedrocytes

have also been observed in human arterial and especially

venous thrombi, and pulmonary emboli, taken from

patients [84, 86]. Moreover, the kinetics of contraction

and extent of contraction can be different in patients with

sickle cell disease, ischaemic stroke and deep vein throm-

bosis [87]. Such experiments suggest that the extent of

clot contraction and the prevalence of polyhedrocytes

may be associated with thrombosis and could be a marker

of prothrombotic conditions.

Conclusions

The best-known effects of RBCs in clotting in vivo are

rheological, involving laminar shearing with platelet

margination plus aggregation and deformability of RBCs.

In addition, RBCs interact directly and indirectly with

endothelial cells and platelets, which may be involved in

thrombosis. Both the stiffness of RBCs and the extent to

which they form a procoagulant surface to generate

thrombin through exposure of phosphatidylserine appear

to play an important role. RBC-derived MPs transfused

with stored RBCs or formed in various pathological con-

ditions associated with haemolysis have strong procoagu-

lant potential along with prothrombotic effects of the

extracellular haemoglobin and haem. RBCs directly inter-

act with fibrin(ogen) and affect the structure, mechanical

properties and lytic resistance of clots and thrombi.

Finally, the results on clot contraction demonstrate how

contracted clots form an impermeable barrier made of

tessellated polyhedral RBCs (polyhedrocytes) important

for haemostasis and wound healing and to restore flow

past obstructive thrombi. In summary, RBCs may perform

a dual role, both helping to stem bleeding but at the same

time contributing to thrombosis in several ways.
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Fig. 1 The structure of contracted whole blood clot. Scanning electron

micrograph of the interior of a contracted whole blood clot activated by

thrombin following recalcification. The red blood cells are compressed by

platelets pulling on fibrin to change shape from biconcave to polyhedral

and are tightly packed; hence, they are named polyhedrocytes. A few fib-

rin strands and platelet aggregates are visible, but most of the platelets

and fibrin are on the exterior of the contracted clot. Magnification

bar = 10 lm.
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